101
|
Kao HI, Henricksen LA, Liu Y, Bambara RA. Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem 2002; 277:14379-89. [PMID: 11825897 DOI: 10.1074/jbc.m110662200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a structure-specific nuclease that cleaves substrates containing unannealed 5'-flaps during Okazaki fragment processing. Cleavage removes the flap at or near the point of annealing. The preferred substrate for archaeal FEN1 or the 5'-nuclease domains of bacterial DNA polymerases is a double-flap structure containing a 3'-tail on the upstream primer adjacent to the 5'-flap. We report that FEN1 in Saccharomyces cerevisiae (Rad27p) exhibits a similar specificity. Cleavage was most efficient when the upstream primer contained a 1-nucleotide 3'-tail as compared with the fully annealed upstream primer traditionally tested. The site of cleavage was exclusively at a position one nucleotide into the annealed region, allowing human DNA ligase I to seal all resulting nicks. In contrast, a portion of the products from traditional flap substrates is not ligated. The 3'-OH of the upstream primer is not critical for double-flap recognition, because Rad27p is tolerant of modifications. However, the positioning of the 3'-nucleotide defines the site of cleavage. We have tested substrates having complementary tails that equilibrate to many structures by branch migration. FEN1 only cleaved those containing a 1-nucleotide 3'-tail. Equilibrating substrates containing 12-ribonucleotides at the end of the 5'-flap simulates the situation in vivo. Rad27p cleaves this substrate in the expected 1-nucleotide 3'-tail configuration. Overall, these results suggest that the double-flap substrate is formed and cleaved during eukaryotic DNA replication in vivo.
Collapse
Affiliation(s)
- Hui-I Kao
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
102
|
Lee Bi BI, Nguyen LH, Barsky D, Fernandes M, Wilson DM. Molecular interactions of human Exo1 with DNA. Nucleic Acids Res 2002; 30:942-9. [PMID: 11842105 PMCID: PMC100345 DOI: 10.1093/nar/30.4.942] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human Exo1 is a member of the RAD2 nuclease family with roles in replication, repair and recombination. Despite sharing significant amino acid sequence homology, the RAD2 proteins exhibit disparate nuclease properties and biological functions. In order to identify elements that dictate substrate selectivity within the RAD2 family, we sought to identify residues key to Exo1 nuclease activity and to characterize the molecular details of the human Exo1-DNA interaction. Site-specific mutagenesis studies demonstrate that amino acids D78, D173 and D225 are critical for Exo1 nuclease function. In addition, we show that the chemical nature of the 5'-terminus has a major impact on Exo1 nuclease efficiency, with a 5'-phosphate group stimulating degradation 10-fold and a 5'-biotin inhibiting degradation 10-fold (relative to a 5'-hydroxyl moiety). An abasic lesion located within a substrate DNA strand impedes Exo1 nucleolytic degradation, and a 5'-terminal abasic residue reduces nuclease efficiency 2-fold. Hydroxyl radical footprinting indicates that Exo1 binds predominantly along the minor groove of flap DNA, downstream of the junction. As will be discussed, our results favor the notion that the single-stranded DNA structure is pinched by the helical arch of the protein and not threaded through this key recognition loop. Furthermore, our studies indicate that significant, presumably biologically relevant, differences exist between the active site dynamics of Exo1 and Fen1.
Collapse
Affiliation(s)
- Byung-in Lee Bi
- Biology and Biotechnology Research Program, L-441, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551-9900, USA
| | | | | | | | | |
Collapse
|
103
|
Frank G, Qiu J, Zheng L, Shen B. Stimulation of eukaryotic flap endonuclease-1 activities by proliferating cell nuclear antigen (PCNA) is independent of its in vitro interaction via a consensus PCNA binding region. J Biol Chem 2001; 276:36295-302. [PMID: 11477073 DOI: 10.1074/jbc.m103397200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interaction between human flap endonuclease-1 (hFEN-1) and proliferating cell nuclear antigen (PCNA) represents a good model for interactions between multiple functional proteins involved in DNA metabolic pathways. A region of 9 conserved amino acid residues (residues Gln-337 through Lys-345) in the C terminus of human FEN-1 (hFEN-1) was shown to be responsible for the interaction with PCNA. Our current study indicates that 4 amino acid residues in hFEN-1 (Leu-340, Asp-341, Phe-343, and Phe-344) are critical for human PCNA (hPCNA) interaction. A conserved PCNA interaction motif in various proteins from assorted species has been defined as Q(1)X(2)X(3)(L/I)(4)X(5)X(6)F(7)(F/Y)(8), although our results fail to implicate Q(1) (Gln-337 in hFEN-1) as a crucial residue. Surprisingly, all hFEN-1 mutants, including L340A, D341A, F343A, and F344A, retained hPCNA-mediated stimulation of both exo- and flap endonuclease activities. Furthermore, our in vitro assay showed that hPCNA failed to bind to the scRad27 (yeast homolog of FEN-1) nuclease. However, its nuclease activities were significantly enhanced in the presence of hPCNA. Four additional Saccharomyces cerevisiae scRad27 mutants, including multiple alanine mutants and a deletion mutant of the entire PCNA binding region, were constructed to confirm this result. All of these mutants retained PCNA-driven nuclease activity stimulation. We therefore conclude that stimulation of eukaryotic hFEN-1 nuclease activities by PCNA is independent of its in vitro interaction via the PCNA binding region.
Collapse
Affiliation(s)
- G Frank
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
104
|
Xie Y, Liu Y, Argueso JL, Henricksen LA, Kao HI, Bambara RA, Alani E. Identification of rad27 mutations that confer differential defects in mutation avoidance, repeat tract instability, and flap cleavage. Mol Cell Biol 2001; 21:4889-99. [PMID: 11438646 PMCID: PMC87203 DOI: 10.1128/mcb.21.15.4889-4899.2001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, the nuclease activity of Rad27p (Fen1p) is thought to play a critical role in lagging-strand DNA replication by removing ribonucleotides present at the 5' ends of Okazaki fragments. Genetic analysis of Saccharomyces cerevisiae also has identified a role for Rad27p in mutation avoidance. rad27Delta mutants display both a repeat tract instability phenotype and a high rate of forward mutations to canavanine resistance that result primarily from duplications of DNA sequences that are flanked by direct repeats. These observations suggested that Rad27p activities in DNA replication and repair could be altered by mutagenesis and specifically assayed. To test this idea, we analyzed two rad27 alleles, rad27-G67S and rad27-G240D, that were identified in a screen for mutants that displayed repeat tract instability and mutator phenotypes. In chromosome stability assays, rad27-G67S strains displayed a higher frequency of repeat tract instabilities relative to CAN1 duplication events; in contrast, the rad27-G240D strains displayed the opposite phenotype. In biochemical assays, rad27-G67Sp displayed a weak exonuclease activity but significant single- and double-flap endonuclease activities. In contrast, rad27-G240Dp displayed a significant double-flap endonuclease activity but was devoid of exonuclease activity and showed only a weak single-flap endonuclease activity. Based on these observations, we hypothesize that the rad27-G67S mutant phenotypes resulted largely from specific defects in nuclease function that are important for degrading bubble intermediates, which can lead to DNA slippage events. The rad27-G240D mutant phenotypes were more difficult to reconcile to a specific biochemical defect, suggesting a structural role for Rad27p in DNA replication and repair. Since the mutants provide the means to relate nuclease functions in vitro to genetic characteristics in vivo, they are valuable tools for further analyses of the diverse biological roles of Rad27p.
Collapse
Affiliation(s)
- Y Xie
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Affiliation(s)
- D C Rees
- Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
106
|
Garforth SJ, Patel D, Feng M, Sayers JR. Unusually wide co-factor tolerance in a metalloenzyme; divalent metal ions modulate endo-exonuclease activity in T5 exonuclease. Nucleic Acids Res 2001; 29:2772-9. [PMID: 11433022 PMCID: PMC55779 DOI: 10.1093/nar/29.13.2772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2001] [Revised: 05/17/2001] [Accepted: 05/17/2001] [Indexed: 11/13/2022] Open
Abstract
T5 5'-3' exonuclease is a member of a homologous group of 5' nucleases which require divalent metal co-factors. Structural and biochemical studies suggest that single-stranded DNA substrates thread through a helical arch or hole in the protein, thus bringing the phosphodiester backbone into close proximity with the active site metal co-factors. In addition to the expected use of Mg(2+), Mn(2+) and Co(2+) as co-factors, we found that divalent zinc, iron, nickel and copper ions also supported catalysis. Such a range of co-factor utilisation is unusual in a single enzyme. Some co-factors such as Mn(2+) stimulated the cleavage of double-stranded closed-circular plasmid DNA. Such endonucleolytic cleavage of circular double-stranded DNA cannot be readily explained by the threading model proposed for the cleavage of substrates with free 5'-ends as the hole observed in the crystal structure of T5 exonuclease is too small to permit the passage of double-stranded DNA. We suggest that such a substrate may gain access to the active site of the enzyme by a process which does not involve threading.
Collapse
Affiliation(s)
- S J Garforth
- Division of Genomic Medicine, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2RX, UK
| | | | | | | |
Collapse
|
107
|
Amblar M, de Lacoba MG, Corrales MA, Lopez P. Biochemical analysis of point mutations in the 5'-3' exonuclease of DNA polymerase I of Streptococcus pneumoniae. Functional and structural implications. J Biol Chem 2001; 276:19172-81. [PMID: 11278428 DOI: 10.1074/jbc.m008678200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To define the active site of the 5'-3' exonucleolytic domain of the Streptococcus pneumoniae DNA polymerase I (Spn pol I), we have constructed His-tagged Spn pol I fusion protein and introduced mutations at residues Asp(10), Glu(88), and Glu(114), which are conserved among all prokaryotic and eukaryotic 5' nucleases. The mutations, but not the fusion to the C-terminal end of the wild-type, reduced the exonuclease activity. The residual exonuclease activity of the mutant proteins has been kinetically studied, together with potential alterations in metal binding at the active site. Comparison of the catalytic rate and dissociation constant of the D10G, E114G, and E88K mutants and the control fusion protein support: (i) a critical function of Asp(10) in the catalytic event, (ii) a role of Glu(114) in the exonucleolytic reaction, being secondarily involved in both catalysis and DNA binding, and (iii) a nonessential function of Glu(88) for the exonuclease activity of Spn pol I. Moreover, the pattern of metal activation of the mutant proteins indicates that none of the three residues is a metal-ligand at the active site. These findings and those previously obtained with D190A mutant of Spn pol I are discussed in relation to structural and mutational data for related 5' nucleases.
Collapse
Affiliation(s)
- M Amblar
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Velázquez 144, 28006 Madrid, Spain
| | | | | | | |
Collapse
|
108
|
Hasan S, Stucki M, Hassa PO, Imhof R, Gehrig P, Hunziker P, Hübscher U, Hottiger MO. Regulation of human flap endonuclease-1 activity by acetylation through the transcriptional coactivator p300. Mol Cell 2001; 7:1221-31. [PMID: 11430825 DOI: 10.1016/s1097-2765(01)00272-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe a role for the transcriptional coactivator p300 in DNA metabolism. p300 formed a complex with flap endonuclease-1 (Fen1) and acetylated Fen1 in vitro. Furthermore, Fen1 acetylation was observed in vivo and was enhanced upon UV treatment of human cells. Remarkably, acetylation of the Fen1 C terminus by p300 significantly reduced Fen1's DNA binding and nuclease activity. Proliferating cell nuclear antigen (PCNA) was able to stimulate both acetylated and unacetylated Fen1 activity to the same extent. Our results identify acetylation as a novel regulatory modification of Fen1 and implicate that p300 is not only a component of the chromatin remodeling machinery but might also play a critical role in regulating DNA metabolic events.
Collapse
Affiliation(s)
- S Hasan
- Institute of Veterinary Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Teichmann SA, Murzin AG, Chothia C. Determination of protein function, evolution and interactions by structural genomics. Curr Opin Struct Biol 2001; 11:354-63. [PMID: 11406387 DOI: 10.1016/s0959-440x(00)00215-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genome sequencing projects and knowledge of the entire protein repertoires of many organisms have prompted new procedures and techniques for the large-scale determination of protein structure, function and interactions. Recently, new work has been carried out on the determination of the function and evolutionary relationships of proteins by experimental structural genomics, and the discovery of protein-protein interactions by computational structural genomics.
Collapse
Affiliation(s)
- S A Teichmann
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, WC1E 6BT, London, UK.
| | | | | |
Collapse
|
110
|
Xu Y, Potapova O, Leschziner AE, Grindley ND, Joyce CM. Contacts between the 5' nuclease of DNA polymerase I and its DNA substrate. J Biol Chem 2001; 276:30167-77. [PMID: 11349126 DOI: 10.1074/jbc.m100985200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5' nuclease of DNA polymerase I (Pol I) of Escherichia coli is a member of an important class of prokaryotic and eukaryotic nucleases, involved in DNA replication and repair, with specificity for the junction between single-stranded and duplex DNA. We have investigated the interaction of the 5' nuclease domain with DNA substrates from the standpoint of both the protein and the DNA. Phosphate ethylation interference showed that the nuclease binds to the nucleotides immediately surrounding the cleavage site and also contacts the complementary strand one-half turn away, indicating that contacts are made to one face only of the duplex portion of the DNA substrate. Phosphodiester contacts were investigated further using DNA substrates carrying unique methylphosphonate substitutions, together with mutations in the 5' nuclease. These experiments suggested that two highly conserved basic residues, Lys(78) and Arg(81), are close to the phosphodiester immediately 5' to the cleavage site, while a third highly conserved residue, Arg(20), may interact with the phosphodiester 3' to the cleavage site. Our results provide strong support for a DNA binding model proposed for the related exonuclease from bacteriophage T5, in which the conserved basic residues mentioned above define the two ends of a helical arch that forms part of the single-stranded DNA-binding region. The nine highly conserved carboxylates in the active site region appear to play a relatively minor role in substrate binding, although they are crucial for catalysis. In addition to binding the DNA backbone around the cleavage point, the 5' nuclease also has a binding site for one or two frayed bases at the 3' end of an upstream primer strand. In agreement with work in related systems, 5' nuclease cleavage is blocked by duplex DNA in the 5' tail, but the enzyme is quite tolerant of abasic DNA or polarity reversal within the 5' tail.
Collapse
Affiliation(s)
- Y Xu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
111
|
Negritto MC, Qiu J, Ratay DO, Shen B, Bailis AM. Novel function of Rad27 (FEN-1) in restricting short-sequence recombination. Mol Cell Biol 2001; 21:2349-58. [PMID: 11259584 PMCID: PMC86868 DOI: 10.1128/mcb.21.7.2349-2358.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae mutants lacking the structure-specific nuclease Rad27 display an enhancement in recombination that increases as sequence length decreases, suggesting that Rad27 preferentially restricts recombination between short sequences. Since wild-type alleles of both RAD27 and its human homologue FEN1 complement the elevated short-sequence recombination (SSR) phenotype of a rad27-null mutant, this function may be conserved from yeast to humans. Furthermore, mutant Rad27 and FEN-1 enzymes with partial flap endonuclease activity but without nick-specific exonuclease activity partially complement the SSR phenotype of the rad27-null mutant. This suggests that the endonuclease activity of Rad27 (FEN-1) plays a role in limiting recombination between short sequences in eukaryotic cells.
Collapse
Affiliation(s)
- M C Negritto
- Department of Molecular Biology, Beckman Research Institute, Duarte, California 91010-0269, USA
| | | | | | | | | |
Collapse
|
112
|
Stucki M, Jónsson ZO, Hübscher U. In eukaryotic flap endonuclease 1, the C terminus is essential for substrate binding. J Biol Chem 2001; 276:7843-9. [PMID: 11083875 DOI: 10.1074/jbc.m008829200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease 1 (Fen1) is a structure-specific metallonuclease with important functions in DNA replication and DNA repair. It interacts like many other proteins involved in DNA metabolic events with proliferating cell nuclear antigen (PCNA), and its enzymatic activity is stimulated by PCNA in vitro. The PCNA interaction site is located close to the C terminus of Fen1 and is flanked by a conserved basic region of 35-38 amino acids in eukaryotic species but not in archaea. We have constructed two deletion mutants of human Fen1 that lack either the PCNA interaction motif or a part of its adjacent C-terminal region and analyzed them in a variety of assays. Remarkably, deletion of the basic C-terminal region did not affect PCNA interaction but resulted in a protein with significantly reduced enzymatic activity. Electrophoretic mobility shift analysis revealed that this mutant displayed a severe defect in substrate binding. Our results suggest that the C terminus of eukaryotic Fen1 consists of two functionally distinct regions that together might form an important regulatory domain.
Collapse
Affiliation(s)
- M Stucki
- Institut für Veterinärbiochemie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
113
|
Kim CY, Park MS, Dyer RB. Human flap endonuclease-1: conformational change upon binding to the flap DNA substrate and location of the Mg2+ binding site. Biochemistry 2001; 40:3208-14. [PMID: 11258937 DOI: 10.1021/bi002100n] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human flap endonuclease-1 (FEN-1) is a member of the structure-specific endonuclease family and is a key enzyme in DNA replication and repair. FEN-1 recognizes the 5'-flap DNA structure and cleaves it, a specialized endonuclease function essential for the processing of Okazaki fragments during DNA replication and for the repair of 5'-end single-stranded tails from nicked double-stranded DNA substrates. Magnesium is a cofactor required for nuclease activity. We have used Fourier transform infrared (FTIR) spectroscopy to better understand how Mg2+ and flap DNA interact with human FEN-1. FTIR spectroscopy provides three fundamentally new insights into the structural changes induced by the interaction of FEN-1 with substrate DNA and Mg2+. First, FTIR difference spectra in the amide I vibrational band (1600-1700 cm(-1)) reveal a change in the secondary structure of FEN-1 induced by substrate DNA binding. Quantitative analysis of the FTIR spectra indicates a 4% increase in helicity upon DNA binding or about 14 residues converted from disordered to helical conformations. The observation that the residues are disordered without DNA strongly implicates the flexible loop region. The conversion to helix also suggests a mechanism for locking the flexible loop region around the bound DNA. This is the first direct experimental evidence for a binding mechanism that involves a secondary structural change of the protein. Second, in contrast with DNA binding, no change is observed in the secondary structure of FEN-1 upon Mg2+ binding to the wild type or to the noncleaving D181A mutant. Third, the FTIR results provide direct evidence (via the carboxylate ligand band at 1535 cm(-1)) that not only is D181 a ligand to Mg2+ in the human enzyme but Mg2+ binding does not occur in the D181A mutant which lacks this ligand.
Collapse
Affiliation(s)
- C Y Kim
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|
114
|
Shao X, Grishin NV. Common fold in helix-hairpin-helix proteins. Nucleic Acids Res 2000; 28:2643-50. [PMID: 10908318 PMCID: PMC102670 DOI: 10.1093/nar/28.14.2643] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2000] [Revised: 06/05/2000] [Accepted: 06/05/2000] [Indexed: 12/13/2022] Open
Abstract
Helix-hairpin-helix (HhH) is a widespread motif involved in non-sequence-specific DNA binding. The majority of HhH motifs function as DNA-binding modules, however, some of them are used to mediate protein-protein interactions or have acquired enzymatic activity by incorporating catalytic residues (DNA glycosylases). From sequence and structural analysis of HhH-containing proteins we conclude that most HhH motifs are integrated as a part of a five-helical domain, termed (HhH)(2) domain here. It typically consists of two consecutive HhH motifs that are linked by a connector helix and displays pseudo-2-fold symmetry. (HhH)(2) domains show clear structural integrity and a conserved hydrophobic core composed of seven residues, one residue from each alpha-helix and each hairpin, and deserves recognition as a distinct protein fold. In addition to known HhH in the structures of RuvA, RadA, MutY and DNA-polymerases, we have detected new HhH motifs in sterile alpha motif and barrier-to-autointegration factor domains, the alpha-subunit of Escherichia coli RNA-polymerase, DNA-helicase PcrA and DNA glycosylases. Statistically significant sequence similarity of HhH motifs and pronounced structural conservation argue for homology between (HhH)(2) domains in different protein families. Our analysis helps to clarify how non-symmetric protein motifs bind to the double helix of DNA through the formation of a pseudo-2-fold symmetric (HhH)(2) functional unit.
Collapse
Affiliation(s)
- X Shao
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA
| | | |
Collapse
|
115
|
Xu Y, Grindley ND, Joyce CM. Coordination between the polymerase and 5'-nuclease components of DNA polymerase I of Escherichia coli. J Biol Chem 2000; 275:20949-55. [PMID: 10806216 DOI: 10.1074/jbc.m909135199] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polymerase and 5'-nuclease components of DNA polymerase I must collaborate in vivo so as to generate ligatable structures. Footprinting shows that the polymerase and 5'-nuclease cannot bind simultaneously to a DNA substrate and appear to compete with one another, suggesting that the two active sites are physically separate and operate independently. The desired biological end point, a ligatable nick, results from the substrate specificities of the polymerase and 5'-nuclease. The preferred substrate of the 5'-nuclease is a "double-flap" structure having a frayed base at the primer terminus overlapping the displaced strand that is to be cleaved by the 5'-nuclease. Cleavage of this structure occurs almost exclusively between the first two paired bases of the downstream strand, yielding a ligatable nick. In whole DNA polymerase I, the polymerase and 5'-nuclease activities are coupled such that the majority of molecules cleaved by the 5'-nuclease have also undergone polymerase-catalyzed addition to the primer terminus. This implies that the 5'-nuclease can capture a DNA molecule from the polymerase site more efficiently than from the bulk solution.
Collapse
Affiliation(s)
- Y Xu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
116
|
Henricksen LA, Tom S, Liu Y, Bambara RA. Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J Biol Chem 2000; 275:16420-7. [PMID: 10748145 DOI: 10.1074/jbc.m909635199] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent genetic evidence indicates that null mutants of the 5'-flap endonuclease (FEN1) result in an expansion of repetitive sequences. The substrate for FEN1 is a flap formed by natural 5'-end displacement of the short intermediates of lagging strand replication. FEN1 binds the 5'-end of the flap, tracks to the point of annealing at the base of the flap, and then cleaves. Here we examine mechanisms by which foldback structures within the flap could contribute to repeat expansions. Cleavage by FEN1 was reduced with increased length of the foldback. However, even the longest foldbacks were cleaved at a low rate. Substrates containing the repetitive sequence CTG also were cleaved at a reduced rate. Bubble substrates, likely intermediates in repeat expansions, were inhibitory. Neither replication protein A nor proliferating cell nuclear antigen were able to assist in the removal of secondary structure within a flap. We propose that FEN1 cleaves natural foldbacks at a reduced rate. However, although the cleavage delay is not likely to influence the overall process of chromosomal replication, specific foldbacks could inhibit cleavage sufficiently to result in duplication of the foldback sequence.
Collapse
Affiliation(s)
- L A Henricksen
- Department of Biochemistry and Biophysics and the Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
117
|
Kim IS, Lee MY, Lee IH, Shin SL, Lee SY. Gene expression of flap endonuclease-1 during cell proliferation and differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:333-40. [PMID: 10771101 DOI: 10.1016/s0167-4889(00)00029-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
It has been shown that flap endonuclease-1 (FEN-1), a structure-specific nuclease, acts on the removal of RNA primers during Okazaki fragment maturation in DNA synthesis. To study whether the gene expression of FEN-1 is inducible during cell proliferation, we analyzed the FEN-1 mRNA levels in actively growing cells and non-growing cells. The gene expression of FEN-1 was higher in mitotic cells than in resting cells, and was markedly decreased, especially, when terminal differentiation was induced in promyelocytic leukemia cells (HL-60 cells). The decline correlated substantially with the ceasing of DNA synthesis. In the examination of tissue-specific gene expression, the human testis, spleen, thymus and mucosal lining of colon tissues expressed this gene actively, whereas the prostate, ovary, small intestine and peripheral blood leukocyte hardly expressed it. In addition, FEN-1 was co-localized with the proliferating cell nuclear antigen (PCNA) in young rat kidney according to immunohistochemistry. These findings suggest that FEN-1 gene expression is inducible during cell proliferation for DNA synthesis, and is down-regulated during cell differentiation.
Collapse
Affiliation(s)
- I S Kim
- Department of Natural Sciences, Chemistry Section, College of Medicine, The Catholic University of Korea, 505 Banpo-Dong, Socho-Gu, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
118
|
Tom S, Henricksen LA, Bambara RA. Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem 2000; 275:10498-505. [PMID: 10744741 DOI: 10.1074/jbc.275.14.10498] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human flap endonuclease 1 (FEN1), an essential DNA replication protein, cleaves substrates with unannealed 5'-tails. FEN1 apparently tracks along the flap from the 5'-end to the cleavage site. Proliferating cell nuclear antigen (PCNA) stimulates FEN1 cleavage 5-50-fold. To determine whether tracking, binding, or cleavage is enhanced by PCNA, we tested a variety of flap substrates. Similar levels of PCNA stimulation occur on both a cleavage-sensitive nicked substrate and a less sensitive gapped substrate. PCNA stimulates FEN1 irrespective of the flap length. Stimulation occurs on a pseudo-Y substrate that exhibits upstream primer-independent cleavage. A pseudo-Y substrate with a sequence requiring an upstream primer for cleavage was not activated by PCNA, suggesting that PCNA does not compensate for substrate features that inhibit cleavage. A biotin.streptavidin conjugation at the 5'-end of a flap structure prevents FEN1 loading. The addition of PCNA does not restore FEN1 activity. These results indicate that PCNA does not direct FEN1 to the cleavage site from solution. Kinetic analyses reveal that PCNA can lower the K(m) for FEN1 by 11-12-fold. Overall, our results indicate that after FEN1 tracks to the cleavage site, PCNA enhances FEN1 binding stability, allowing for greater cleavage efficiency.
Collapse
Affiliation(s)
- S Tom
- Department of Biochemistry and Biophysics and Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
119
|
Klumpp K, Doan L, Roberts NA, Handa B. RNA and DNA hydrolysis are catalyzed by the influenza virus endonuclease. J Biol Chem 2000; 275:6181-8. [PMID: 10692410 DOI: 10.1074/jbc.275.9.6181] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influenza virus polymerase complex contains a metal ion-dependent endonuclease activity, which generates short capped RNA primer molecules from capped RNA precursors. Previous studies have provided evidence for a two-metal ion mechanism of RNA cleavage, and the data are consistent with a direct interaction of a divalent metal ion with the catalytic water molecule. To refine the model of this active site, we have generated a series of DNA, RNA, and DNA-RNA chimeric molecules to study the role of the 2'-hydroxy groups on nucleic acid substrates of the endonuclease. We could observe specific cleavage of nucleic acid substrates devoid of any 2'-hydroxy groups if they contained a cap structure (m7GpppG) at the 5'-end. The capped DNA endonuclease products were functional as primers for transcription initiation by the influenza virus polymerase. The apparent cleavage rates were about 5 times lower with capped DNA substrates as compared with capped RNA substrates. Cleavage rates with DNA substrates could be increased to RNA levels by substituting the deoxyribosyl moieties immediately 5' and 3' of the cleavage site with ribosyl moieties. Similarly, cleavage rates of RNA substrates could be lowered to DNA levels by exchanging the same two ribosyl groups with deoxyribosyl groups at the cleavage site. These results demonstrate that the 2'-hydroxy groups are not essential for binding and cleavage of nucleic acids by the influenza virus endonuclease, but small differences of the nucleic acid conformation in the endonuclease active site can influence the overall rate of hydrolysis. The observed relative cleavage rates with DNA and RNA substrates argue against a direct interaction of a catalytic metal ion with a 2'-hydroxy group in the endonuclease active site.
Collapse
Affiliation(s)
- K Klumpp
- Roche Discovery Welwyn, 40 Broadwater Road, Welwyn Garden City, Herts AL7 3AY, United Kingdom.
| | | | | | | |
Collapse
|
120
|
Lee BI, Wilson DM. The RAD2 domain of human exonuclease 1 exhibits 5' to 3' exonuclease and flap structure-specific endonuclease activities. J Biol Chem 1999; 274:37763-9. [PMID: 10608837 DOI: 10.1074/jbc.274.53.37763] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RAD2 family of nucleases includes human XPG (Class I), FEN1 (Class II), and HEX1/hEXO1 (Class III) products gene. These proteins exhibit a blend of substrate specific exo- and endonuclease activities and contribute to repair, recombination, and/or replication. To date, the substrate preferences of the EXO1-like Class III proteins have not been thoroughly defined. We report here that the RAD2 domain of human exonuclease 1 (HEX1-N2) exhibits both a robust 5' to 3' exonuclease activity on single- and double-stranded DNA substrates as well as a flap structure-specific endonuclease activity but does not show specific endonuclease activity at 10-base pair bubble-like structures, G:T mismatches, or uracil residues. Both the 5' to 3' exonuclease and flap endonuclease activities require a divalent metal cofactor, with Mg(2+) being the preferred metal ion. HEX1-N2 is approximately 3-fold less active in Mn(2+)-containing buffers and exhibits <5% activity in the presence of Co(2+), Zn(2+), or Ca(2+). The optimal pH range for the nuclease activities of HEX1-N2 is 7.2-8.2. The specific activity of its 5' to 3' exonuclease function is 2.5-7-fold higher on blunt end and 5'-recessed double-stranded DNA substrates compared with duplex 5'-overhang or single-stranded DNAs. The flap endonuclease activity of HEX1-N2 is similar to that of human flap endonuclease-1, both in terms of turnover efficiency (k(cat)) and site of incision, and is as efficient (k(cat)/K(m)) as its exonuclease function. The nuclease activities of HEX1-N2 described here indicate functions for the EXO1-like proteins in replication, repair, and/or recombination that may overlap with human flap endonuclease-1.
Collapse
Affiliation(s)
- B I Lee
- Molecular Division, Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | | |
Collapse
|
121
|
Qiu J, Qian Y, Frank P, Wintersberger U, Shen B. Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol Cell Biol 1999; 19:8361-71. [PMID: 10567561 PMCID: PMC84926 DOI: 10.1128/mcb.19.12.8361] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1999] [Accepted: 08/16/1999] [Indexed: 11/20/2022] Open
Abstract
Correct removal of RNA primers of Okazaki fragments during lagging-strand DNA synthesis is a critical process for the maintenance of genome integrity. Disturbance of this process has severe mutagenic consequences and could contribute to the development of cancer. The role of the mammalian nucleases RNase HI and FEN-1 in RNA primer removal has been substantiated by several studies. Recently, RNase H(35), the Saccharomyces cerevisiae homologue of mammalian RNase HI, was identified and its possible role in DNA replication was proposed (P. Frank, C. Braunshofer-Reiter, and U. Wintersberger, FEBS Lett. 421:23-26, 1998). This led to the possibility of moving to the genetically powerful yeast system for studying the homologues of RNase HI and FEN-1, i.e., RNase H(35) and Rad27p, respectively. In this study, we have biochemically defined the substrate specificities and the cooperative as well as independent cleavage mechanisms of S. cerevisiae RNase H(35) and Rad27 nuclease by using Okazaki fragment model substrates. We have also determined the additive and compensatory pathological effects of gene deletion and overexpression of these two enzymes. Furthermore, the mutagenic consequences of the nuclease deficiencies have been analyzed. Based on our findings, we suggest that three alternative RNA primer removal pathways of different efficiencies involve RNase H(35) and Rad27 nucleases in yeast.
Collapse
Affiliation(s)
- J Qiu
- Department of Cell and Tumor Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
122
|
Greene AL, Snipe JR, Gordenin DA, Resnick MA. Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability. Hum Mol Genet 1999; 8:2263-73. [PMID: 10545607 DOI: 10.1093/hmg/8.12.2263] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The flap endonuclease, FEN1, is an evolutionarily conserved component of DNA replication from archaebacteria to humans. Based on in vitro results, it processes Okazaki fragments during replication and is involved in base excision repair. FEN1 removes the last primer ribonucleotide on the lagging strand and it cleaves a 5' flap that may result from strand displacement during replication or during base excision repair. Its biological importance has been revealed largely through studies in the yeast Saccharomyces cerevisiae where deletion of the homologous gene RAD27 results in genome instability and mutagen sensitivity. While the in vivo function of Rad27 has been well characterized through genetic and biochemical approaches, little is understood about the in vivo functions of human FEN1. Guided by our recent results with yeast RAD27, we explored the function of human FEN1 in yeast. We found that the human FEN1 protein complements a yeast rad27 null mutant for a variety of defects including mutagen sensitivity, genetic instability and the synthetic lethal interactions of a rad27 rad51 and a rad27 pol3-01 mutant. Furthermore, a mutant form of FEN1 lacking nuclease function exhibits dominant-negative effects on cell growth and genome instability similar to those seen with the homologous yeast rad27 mutation. This genetic impact is stronger when the human and yeast PCNA-binding domains are exchanged. These data indicate that the human FEN1 and yeast Rad27 proteins act on the same substrate in vivo. Our study defines a sensitive yeast system for the identification and characterization of mutations in FEN1.
Collapse
Affiliation(s)
- A L Greene
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
123
|
Abstract
DNA replication is central to all extant cellular organisms. There are substantial functional similarities between the bacterial and the archaeal/eukaryotic replication machineries, including but not limited to defined origins, replication bidirectionality, RNA primers and leading and lagging strand synthesis. However, several core components of the bacterial replication machinery are unrelated or only distantly related to the functionally equivalent components of the archaeal/eukaryotic replication apparatus. This is in sharp contrast to the principal proteins involved in transcription and translation, which are highly conserved in all divisions of life. We performed detailed sequence comparisons of the proteins that fulfill indispensable functions in DNA replication and classified them into four main categories with respect to the conservation in bacteria and archaea/eukaryotes: (i) non-homologous, such as replicative polymerases and primases; (ii) containing homologous domains but apparently non-orthologous and conceivably independently recruited to function in replication, such as the principal replicative helicases or proofreading exonucleases; (iii) apparently orthologous but poorly conserved, such as the sliding clamp proteins or DNA ligases; (iv) orthologous and highly conserved, such as clamp-loader ATPases or 5'-->3' exonucleases (FLAP nucleases). The universal conservation of some components of the DNA replication machinery and enzymes for DNA precursor biosynthesis but not the principal DNA polymerases suggests that the last common ancestor (LCA) of all modern cellular life forms possessed DNA but did not replicate it the way extant cells do. We propose that the LCA had a genetic system that contained both RNA and DNA, with the latter being produced by reverse transcription. Consequently, the modern-type system for double-stranded DNA replication likely evolved independently in the bacterial and archaeal/eukaryotic lineages.
Collapse
Affiliation(s)
- D D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
124
|
Kaiser MW, Lyamicheva N, Ma W, Miller C, Neri B, Fors L, Lyamichev VI. A comparison of eubacterial and archaeal structure-specific 5'-exonucleases. J Biol Chem 1999; 274:21387-94. [PMID: 10409700 DOI: 10.1074/jbc.274.30.21387] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5'-exonuclease domains of the DNA polymerase I proteins of Eubacteria and the FEN1 proteins of Eukarya and Archaea are members of a family of structure-specific 5'-exonucleases with similar function but limited sequence similarity. Their physiological role is to remove the displaced 5' strands created by DNA polymerase during displacement synthesis, thereby creating a substrate for DNA ligase. In this paper, we define the substrate requirements for the 5'-exonuclease enzymes from Thermus aquaticus, Thermus thermophilus, Archaeoglobus fulgidus, Pyrococcus furiosus, Methanococcus jannaschii, and Methanobacterium thermoautotrophicum. The optimal substrate of these enzymes resembles DNA undergoing strand displacement synthesis and consists of a bifurcated downstream duplex with a directly abutted upstream duplex that overlaps the downstream duplex by one base pair. That single base of overlap causes the enzymes to leave a nick after cleavage and to cleave several orders of magnitude faster than a substrate that lacks overlap. The downstream duplex needs to be 10 base pairs long or greater for most of the enzymes to cut efficiently. The upstream duplex needs to be only 2 or 3 base pairs long for most enzymes, and there appears to be interaction with the last base of the primer strand. Overall, the enzymes display very similar substrate specificities, despite their limited level of sequence similarity.
Collapse
Affiliation(s)
- M W Kaiser
- Third Wave Technologies, Inc., Madison, Wisconsin 53719, USA.
| | | | | | | | | | | | | |
Collapse
|
125
|
Matsui E, Kawasaki S, Ishida H, Ishikawa K, Kosugi Y, Kikuchi H, Kawarabayashi Y, Matsui I. Thermostable flap endonuclease from the archaeon, Pyrococcus horikoshii, cleaves the replication fork-like structure endo/exonucleolytically. J Biol Chem 1999; 274:18297-309. [PMID: 10373433 DOI: 10.1074/jbc.274.26.18297] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The flap endonuclease gene homologue from the hyperthermophilic archaeon, Pyrococcus horikoshii, was overexpressed in Escherichia coli and purified. The results of gel filtration indicated that this protein was a 41-kDa monomer. P. horikoshii flap endonuclease (phFEN) cleaves replication fork-like substrates (RF) and 5' double-strand flap structures (DF) using both flap endonuclease and 5'-3'-exonuclease activities. The mammalian flap endonuclease (mFEN) is a single-strand flap-specific endonuclease (Harrington, J. J., and Lieber, M. R. (1994) EMBO J. 13, 1235-1246), but the action patterns of phFEN appear to be quite different from those of mFEN at this point. The DF-specific flap endonuclease and 5'-exonuclease activities have not yet been reported. Therefore, this is the first report of the specific endo/exonuclease activities of phFEN. The DF-specific 5'-exonuclease activity degraded the downstream primer of 3' single-flap structure and was 15 times higher than the activities against nicked substrates without 3' flap strand. DF-specific flap endonuclease cleaved the 5' double-flap strand in DF and the lagging strand in RF at the junction portion. Because the RF appears to be the intermediate structure, due to the arrest of the replication fork, the double strand breaks after the arrests of the replication forks are probably caused by phFEN.
Collapse
Affiliation(s)
- E Matsui
- National Institute of Bioscience and Human Technology, Higashi 1-1, Tsukuba, Ibaraki 305, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Pickering TJ, Garforth S, Sayers JR, Grasby JA. Variation in the steady state kinetic parameters of wild type and mutant T5 5'-3'-exonuclease with pH. Protonation of Lys-83 is critical for DNA binding. J Biol Chem 1999; 274:17711-7. [PMID: 10364212 DOI: 10.1074/jbc.274.25.17711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T5 5'-3'-exonuclease is a member of a family of homologous 5'-nucleases essential for DNA replication and repair. We have measured the variation of the steady state parameters of the enzyme with pH. The log of the association constant of the enzyme and substrate is pH-independent between pH 5 and 7, but at higher pH, it decreases (gradient -0.91 +/- 0.1) with increasing pH. The log of the turnover number increases (gradient 0.9 +/- 0.01) with increasing pH until a pH-independent plateau is reached. The T5 5'-3'-exonuclease-catalyzed reaction requires the protonation of a single residue for substrate binding, whereas kcat depends on a single deprotonation as demonstrated by the bell-shaped dependence of log (kcat/Km) on pH. To investigate the role of a conserved lysine (Lys-83), the pH profile of log (kcat/Km) of a K83A mutant was determined and found to increase with pH (gradient 1.01 +/- 0. 01) until a pH-independent plateau is reached. We therefore conclude that protonation of Lys-83 in the wild type protein facilitates DNA binding. The origin of the pH dependence of the kcat parameter of the wild type enzyme is discussed.
Collapse
Affiliation(s)
- T J Pickering
- Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | | | | | |
Collapse
|
127
|
Lyamichev V, Brow MA, Varvel VE, Dahlberg JE. Comparison of the 5' nuclease activities of taq DNA polymerase and its isolated nuclease domain. Proc Natl Acad Sci U S A 1999; 96:6143-8. [PMID: 10339555 PMCID: PMC26849 DOI: 10.1073/pnas.96.11.6143] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/1999] [Indexed: 11/18/2022] Open
Abstract
Many eubacterial DNA polymerases are bifunctional molecules having both polymerization (P) and 5' nuclease (N) activities, which are contained in separable domains. We previously showed that the DNA polymerase I of Thermus aquaticus (TaqNP) endonucleolytically cleaves DNA substrates, releasing unpaired 5' arms of bifurcated duplexes. Here, we compare the substrate specificities of TaqNP and the isolated 5' nuclease domain of this enzyme, TaqN. Both enzymes are significantly activated by primer oligonucleotides that are hybridized to the 3' arm of the bifurcation; optimal stimulation requires overlap of the 3' terminal nucleotide of the primer with the terminal base pair of the duplex, but the terminal nucleotide need not hybridize to the complementary strand in the substrate. In the presence of Mn2+ ions, TaqN can cleave both RNA and circular DNA at structural bifurcations. Certain anti-TaqNP mAbs block cleavage by one or both enzymes, whereas others can stimulate cleavage of nonoptimal substrates.
Collapse
Affiliation(s)
- V Lyamichev
- Department of Biomolecular Chemistry, 1300 University Avenue, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
128
|
Bebenek A, Smith LA, Drake JW. Bacteriophage T4 rnh (RNase H) null mutations: effects on spontaneous mutation and epistatic interaction with rII mutations. J Bacteriol 1999; 181:3123-8. [PMID: 10322013 PMCID: PMC93767 DOI: 10.1128/jb.181.10.3123-3128.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacteriophage T4 rnh gene encodes T4 RNase H, a relative of a family of flap endonucleases. T4 rnh null mutations reduce burst sizes, increase sensitivity to DNA damage, and increase the frequency of acriflavin resistance (Acr) mutations. Because mutations in the related Saccharomyces cerevisiae RAD27 gene display a remarkable duplication mutator phenotype, we further explored the impact of rnh mutations upon the mutation process. We observed that most Acr mutants in an rnh+ strain contain ac mutations, whereas only roughly half of the Acr mutants detected in an rnhDelta strain bear ac mutations. In contrast to the mutational specificity displayed by most mutators, the DNA alterations of ac mutations arising in rnhDelta and rnh+ backgrounds are indistinguishable. Thus, the increase in Acr mutants in an rnhDelta background is probably not due to a mutator effect. This conclusion is supported by the lack of increase in the frequency of rI mutations in an rnhDelta background. In a screen that detects mutations at both the rI locus and the much larger rII locus, the r frequency was severalfold lower in an rnhDelta background. This decrease was due to the phenotype of rnh rII double mutants, which display an r+ plaque morphology but retain the characteristic inability of rII mutants to grow on lambda lysogens. Finally, we summarize those aspects of T4 forward-mutation systems which are relevant to optimal choices for investigating quantitative and qualitative aspects of the mutation process.
Collapse
Affiliation(s)
- A Bebenek
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
129
|
Parikh SS, Mol CD, Hosfield DJ, Tainer JA. Envisioning the molecular choreography of DNA base excision repair. Curr Opin Struct Biol 1999; 9:37-47. [PMID: 10047578 DOI: 10.1016/s0959-440x(99)80006-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent breakthroughs integrate individual DNA repair enzyme structures, biochemistry and biology to outline the structural cell biology of the DNA base excision repair pathways that are essential to genome integrity. Thus, we are starting to envision how the actions, movements, steps, partners and timing of DNA repair enzymes, which together define their molecular choreography, are elegantly controlled by both the nature of the DNA damage and the structural chemistry of the participating enzymes and the DNA double helix.
Collapse
Affiliation(s)
- S S Parikh
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, Molecular Biology MB4, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
130
|
Pickering TJ, Garforth SJ, Thorpe SJ, Sayers JR, Grasby JA. A single cleavage assay for T5 5'-->3' exonuclease: determination of the catalytic parameters forwild-type and mutant proteins. Nucleic Acids Res 1999; 27:730-5. [PMID: 9889266 PMCID: PMC148240 DOI: 10.1093/nar/27.3.730] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacteriophage T5 5'-->3' exonuclease is a member of a family of sequence related 5'-nucleases which play an essential role in DNA replication. The 5'-nucleases have both exonucleolytic and structure-specific endo-nucleolytic DNA cleavage activity and are conserved in organisms as diverse as bacteriophage and mammals. Here, we report the development of a structure-specific single cleavage assay for this enzyme which uses a 5'-overhanging hairpin substrate. The products of DNA hydrolysis are characterised by mass spectrometry. The steady-state catalytic parameters of the enzyme are reported and it is concluded that T5 5'-->3' exonuclease accelerates the cleavage of a specific phosphodiester bond by a factor of at least 10(15). The catalytic assay has been extended to three mutants of T5 5'-->3' exonuclease, K83A, K196A and K215A. Mutation of any of these three lysine residues to alanine is detrimental to catalytic efficiency. All three lysines contribute to ground state binding of the substrate. In addition, K83 plays a significant role in the chemical reaction catalysed by this enzyme. Possible roles for mutated lysine residues are discussed.
Collapse
Affiliation(s)
- T J Pickering
- Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | | | | | | | | |
Collapse
|
131
|
Frank G, Qiu J, Somsouk M, Weng Y, Somsouk L, Nolan JP, Shen B. Partial functional deficiency of E160D flap endonuclease-1 mutant in vitro and in vivo is due to defective cleavage of DNA substrates. J Biol Chem 1998; 273:33064-72. [PMID: 9830061 DOI: 10.1074/jbc.273.49.33064] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To assess the roles of the active site residues Glu160 and Asp181 of human FEN-1 nuclease in binding and catalysis of the flap DNA substrate and in vivo biological processes of DNA damage and repair, five different amino acids were replaced at each site through site-directed mutagenesis of the FEN-1 gene. The mutants were then expressed in Escherichia coli and purified using a His-tag. Even though the mutants bind to the flap DNA to different degrees, most of the mutants lost flap nuclease activity with the exception of an E160D mutant. This mutant retained wild type-like binding ability, specificity, and partial catalytic activity. Detailed steady state and pre-steady state kinetic analysis revealed that the functional deficiency of this mutant was due to retardation of the endonucleolytic cleavage. When the mutant enzyme E160D was expressed in yeast, it partially complements the biological functions of the homologous yeast gene, RAD27, and reverses the hyper-temperature lethality and hypersensitivity to methyl methanesulfonate, in a manner corresponding to the in vitro activity.
Collapse
Affiliation(s)
- G Frank
- Department of Cell and Tumor Biology, City of Hope National Medical Center and Beckman Research Institute, Duarte, California 91010, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Paper Alert. Structure 1998. [DOI: 10.1016/s0969-2126(98)00133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
133
|
Sayers JR, Artymiuk PJ. Flexible loops and helical arches. NATURE STRUCTURAL BIOLOGY 1998; 5:668-70. [PMID: 9699623 DOI: 10.1038/1358] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|