101
|
Chen P, Wen Z, Shi W, Li Z, Chen X, Gao Y, Xu S, Gong Q, Deng J. Effects of Sodium Ferulate on Cardiac Hypertrophy Are via the CaSR-Mediated Signaling Pathway. Front Pharmacol 2021; 12:674570. [PMID: 34690749 PMCID: PMC8526863 DOI: 10.3389/fphar.2021.674570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
As a common complication of many cardiovascular diseases, cardiac hypertrophy is characterized by increased cardiac cell volume, reorganization of the cytoskeleton, and the reactivation of fetal genes such as cardiac natriuretic peptide and β-myosin heavy chain. Cardiac hypertrophy is a distinguishing feature of some cardiovascular diseases. Our previous study showed that sodium ferulate (SF) alleviates myocardial hypertrophy induced by coarctation of the abdominal aorta, and these protective effects may be related to the inhibition of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) signaling pathways. This study investigated the inhibitory effect and mechanism of SF on myocardial hypertrophy in spontaneously hypertensive rats (SHRs). The effects of SF on cardiac hypertrophy were evaluated using echocardiographic measurement, pathological analysis, and detection of atrial natriuretic peptide (ANP) and β-myosin heavy chain (β-MHC) expression. To investigate the mechanisms underlying the anti-hypertrophic effects of SF, the calcium-sensing receptor (CaSR), calcineurin (CaN), nuclear factor of activated T cells 3 (NFAT3), zinc finger transcription factor 4 (GATA4), protein kinase C beta (PKC-β), Raf-1, extracellular signal-regulated kinase 1/2 (ERK 1/2), and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by molecular biology techniques. Treatment with SF ameliorated myocardial hypertrophy in 26-week-old SHRs. In addition, it downregulated the levels of ANP, β-MHC, CaSR, CaN, NFAT3, phosphorylated GATA4 (p-GATA4), PKC-β, Raf-1, and p-ERK 1/2; and upregulated the levels of p-NFAT3 and MKP-1. These results suggest that the effects of SF on cardiac hypertrophy are related to regulation of the CaSR-mediated signaling pathway.
Collapse
Affiliation(s)
- Panpan Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Zhaoqin Wen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Wanlan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Zhongli Li
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Chen
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| | - Yang Gao
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
102
|
Alexander R, Debiec N, Razzaque MS, He P. Inorganic phosphate-induced cytotoxicity. IUBMB Life 2021; 74:117-124. [PMID: 34676972 DOI: 10.1002/iub.2561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/27/2021] [Accepted: 09/18/2021] [Indexed: 12/17/2022]
Abstract
Phosphate, an essential nutrient, is available in organic and inorganic forms. The balance of phosphate is central for cellular homeostasis through the genomic roles of DNA and RNA synthesis and cell signaling processes. Therefore, an imbalance of this nutrient, manifested, either as a deficiency or excess in phosphate levels, can result in pathology, ranging from cytotoxicity to musculoskeletal defects. Inorganic phosphate (Pi) overdosing can result in a wide spectrum of cytotoxicity processes, as noted in both animal models and human studies. These include rewired cell signaling pathways, impaired bone mineralization, infertility, premature aging, vascular calcification, and renal dysfunction. This article briefly reviews the regulation of phosphate homeostasis and elaborates on cytotoxic effects of excessive Pi, as documented in cell-based models.
Collapse
Affiliation(s)
- Rachel Alexander
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Nicholas Debiec
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Mohammad S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| | - Ping He
- Department of Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, USA
| |
Collapse
|
103
|
Gorkhali R, Tian L, Dong B, Bagchi P, Deng X, Pawar S, Duong D, Fang N, Seyfried N, Yang J. Extracellular calcium alters calcium-sensing receptor network integrating intracellular calcium-signaling and related key pathway. Sci Rep 2021; 11:20576. [PMID: 34663830 PMCID: PMC8523568 DOI: 10.1038/s41598-021-00067-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are a target for over 34% of current drugs. The calcium-sensing receptor (CaSR), a family C GPCR, regulates systemic calcium (Ca2+) homeostasis that is critical for many physiological, calciotropical, and noncalciotropical outcomes in multiple organs. However, the mechanisms by which extracellular Ca2+ (Ca2+ex) and the CaSR mediate networks of intracellular Ca2+-signaling and players involved throughout the life cycle of CaSR are largely unknown. Here we report the first CaSR protein–protein interactome with 94 novel putative and 8 previously published interactors using proteomics. Ca2+ex promotes enrichment of 66% of the identified CaSR interactors, pertaining to Ca2+ dynamics, endocytosis, degradation, trafficking, and primarily to protein processing in the endoplasmic reticulum (ER). These enhanced ER-related processes are governed by Ca2+ex-activated CaSR which directly modulates ER-Ca2+ (Ca2+ER), as monitored by a novel ER targeted Ca2+-sensor. Moreover, we validated the Ca2+ex dependent colocalizations and interactions of CaSR with ER-protein processing chaperone, 78-kDa glucose regulated protein (GRP78), and with trafficking-related protein. Live cell imaging results indicated that CaSR and vesicle-associated membrane protein-associated A (VAPA) are inter-dependent during Ca2+ex induced enhancement of near-cell membrane expression. This study significantly extends the repertoire of the CaSR interactome and reveals likely novel players and pathways of CaSR participating in Ca2+ER dynamics, agonist mediated ER-protein processing and surface expression.
Collapse
Affiliation(s)
- Rakshya Gorkhali
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Li Tian
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Bin Dong
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xiaonan Deng
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Shrikant Pawar
- Department of Biology, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Duc Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ning Fang
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA
| | - Nicholas Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jenny Yang
- Department of Chemistry, Center of Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
104
|
Ansari N, Isojima T, Crimeen-Irwin B, Poulton IJ, McGregor NE, Ho PWM, Forwood MR, Kovacs CS, Dimitriadis E, Gooi JH, Martin TJ, Sims NA. Dmp1Cre-directed knockdown of parathyroid hormone-related protein (PTHrP) in murine decidua is associated with a life-long increase in bone mass, width, and strength in male progeny. J Bone Miner Res 2021; 36:1999-2016. [PMID: 34101894 DOI: 10.1002/jbmr.4388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/14/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022]
Abstract
Parathyroid hormone-related protein (PTHrP, gene name Pthlh) is a pleiotropic regulator of tissue homeostasis. In bone, Dmp1Cre-targeted PTHrP deletion in osteocytes causes osteopenia and impaired cortical strength. We report here that this outcome depends on parental genotype. In contrast to our previous report using mice bred from heterozygous (flox/wild type) Dmp1Cre.Pthlhf/w parents, adult (16-week-old and 26-week-old) flox/flox (f/f) Dmp1Cre.Pthlhf/f mice from homozygous parents (Dmp1Cre.Pthlhf/f(hom) ) have stronger bones, with 40% more trabecular bone mass and 30% greater femoral width than controls. This greater bone size was observed in Dmp1Cre.Pthlhf/f(hom) mice as early as 12 days of age, when greater bone width was also found in male and female Dmp1Cre.Pthlhf/f(hom) mice compared to controls, but not in gene-matched mice from heterozygous parents. This suggested a maternal influence on skeletal size prior to weaning. Although Dmp1Cre has previously been reported to cause gene recombination in mammary gland, milk PTHrP protein levels were normal. The wide-bone phenotype was also noted in utero: Dmp1Cre.Pthlhf/f(hom) embryonic femurs were more mineralized and wider than controls. Closer examination revealed that Dmp1Cre caused PTHrP recombination in placenta, and in the maternal-derived decidual layer that resides between the placenta and the uterus. Decidua from mothers of Dmp1Cre.Pthlhf/f(hom) mice also exhibited lower PTHrP levels by immunohistochemistry and were smaller than controls. We conclude that Dmp1Cre leads to gene recombination in decidua, and that decidual PTHrP might, through an influence on decidual cells, limit embryonic bone radial growth. This suggests a maternal-derived developmental origin of adult bone strength. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Niloufar Ansari
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Tsuyoshi Isojima
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Narelle E McGregor
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Patricia W M Ho
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Mark R Forwood
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynecology, University of Melbourne, The Women's Hospital, Melbourne, Victoria, Australia
| | - Jonathan H Gooi
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
105
|
Li T, Chen J, Zeng Z. Pathophysiological role of calcium channels and transporters in the multiple myeloma. Cell Commun Signal 2021; 19:99. [PMID: 34579758 PMCID: PMC8477534 DOI: 10.1186/s12964-021-00781-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a common malignant tumor of plasma cells. Despite several treatment approaches in the past two decades, MM remains an aggressive and incurable disease in dire need of new treatment strategies. Approximately 70–80% of patients with MM have myeloma bone disease (MBD), often accompanied by pathological fractures and hypercalcemia, which seriously affect the prognosis of the patients. Calcium channels and transporters can mediate Ca2+ balance inside and outside of the membrane, indicating that they may be closely related to the prognosis of MM. Therefore, this review focuses on the roles of some critical calcium channels and transporters in MM prognosis, which located in the plasma membrane, endoplasmic reticulum and mitochondria. The goal of this review is to facilitate the identification of new targets for the treatment and prognosis of MM.![]() Video Abstract
Collapse
Affiliation(s)
- Tingting Li
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China.,Fujian Key Laboratory of Laboratory Medicine, Fuzhou, People's Republic of China
| | - Junmin Chen
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China. .,Fujian Key Laboratory of Laboratory Medicine, Fuzhou, People's Republic of China.
| | - Zhiyong Zeng
- Department of Hematology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350005, People's Republic of China. .,Fujian Key Laboratory of Laboratory Medicine, Fuzhou, People's Republic of China.
| |
Collapse
|
106
|
Schepelmann M, Kupper N, Sladczyk M, Mansfield B, Manhardt T, Piatek K, Iamartino L, Riccardi D, Kariuki BM, Bassetto M, Kallay E. Stereo-Specific Modulation of the Extracellular Calcium-Sensing Receptor in Colon Cancer Cells. Int J Mol Sci 2021; 22:10124. [PMID: 34576291 PMCID: PMC8464956 DOI: 10.3390/ijms221810124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 01/19/2023] Open
Abstract
Pharmacological allosteric agonists (calcimimetics) of the extracellular calcium-sensing receptor (CaSR) have substantial gastro-intestinal side effects and induce the expression of inflammatory markers in colon cancer cells. Here, we compared the effects of both CaSR-specific (R enantiomers) and -unspecific (S enantiomers) enantiomers of a calcimimetic (NPS 568) and a calcilytic (allosteric CaSR antagonists; NPS 2143) to prove that these effects are indeed mediated via the CaSR, rather than via off-target effects, e.g., on β-adrenoceptors or calcium channels, of these drugs. The unspecific S enantiomer of NPS 2143 and NPS S-2143 was prepared using synthetic chemistry and characterized using crystallography. NPS S-2143 was then tested in HEK-293 cells stably transfected with the human CaSR (HEK-CaSR), where it did not inhibit CaSR-mediated intracellular Ca2+ signals, as expected. HT29 colon cancer cells transfected with the CaSR were treated with both enantiomers of NPS 568 and NPS 2143 alone or in combination, and the expression of CaSR and the pro-inflammatory cytokine interleukin 8 (IL-8) was measured by RT-qPCR and ELISA. Only the CaSR-selective enantiomers of the calcimimetic NPS 568 and NPS 2143 were able to modulate CaSR and IL-8 expression. We proved that pro-inflammatory effects in colon cancer cells are indeed mediated through CaSR activation. The non-CaSR selective enantiomer NPS S-2143 will be a valuable tool for investigations in CaSR-mediated processes.
Collapse
Affiliation(s)
- Martin Schepelmann
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Nadja Kupper
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Marta Sladczyk
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Bethan Mansfield
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; (B.M.); (D.R.)
| | - Teresa Manhardt
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Karina Piatek
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| | - Luca Iamartino
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 18, 50139 Florence, Italy
| | - Daniela Riccardi
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; (B.M.); (D.R.)
| | - Benson M. Kariuki
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK;
| | - Marcella Bassetto
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Singleton Park Campus, Swansea SA2 8PP, UK;
| | - Enikö Kallay
- Center for Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria; (N.K.); (M.S.); (T.M.); (K.P.); (L.I.)
| |
Collapse
|
107
|
Connelly MK, Cheng AA, Hernandez LL. Graduate Student Literature Review: Serotonin and calcium metabolism: A story unfolding. J Dairy Sci 2021; 104:13008-13019. [PMID: 34531048 DOI: 10.3168/jds.2021-20610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022]
Abstract
The peripartum period is characterized by dynamic shifts in metabolic, mineral, and immune metabolism as the dairy cow adapts to the demands of lactation. Emphasis over the past decade has been placed on understanding the biology of the large shift in calcium metabolism in particular. Moreover, research has also focused on exploring the role of serotonin during the transition period and lactation and further unraveling its relationship with calcium. This review aimed to demonstrate the integration of calcium physiology during the peripartal period and throughout lactation. More specifically, we sought to discuss the knowledge gained in recent years on calcium metabolism, mammary calcium transport, serotonin metabolism, and the serotonin-calcium axis. Herein we also discuss the challenges and limitations of current research and where that leaves the present understanding of the serotonin-calcium axis as we seek to move forward and continue exploring this interesting relationship.
Collapse
Affiliation(s)
- M K Connelly
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706.
| | - A A Cheng
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| | - L L Hernandez
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison 53706
| |
Collapse
|
108
|
Ngamkam J, Vadcharavivad S, Areepium N, Auamnoy T, Takkavatakarn K, Katavetin P, Tiranathanagul K, Praditpornsilpa K, Eiam-Ong S, Susantitaphong P. The impact of CASR A990G polymorphism in response to cinacalcet treatment in hemodialysis patients with secondary hyperparathyroidism. Sci Rep 2021; 11:18006. [PMID: 34504264 PMCID: PMC8429569 DOI: 10.1038/s41598-021-97587-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/27/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to determine the impact of calcium sensing receptor (CASR) A990G genetic polymorphism on parathyroid hormone (PTH) lowering response to cinacalcet treatment when controlling for significant influencing clinical factors. This retrospective study was conducted on 135 Thai hemodialysis (HD) patients with secondary hyperparathyroidism (SHPT). CASR A990G genotypes were determined. The patients were identified as either G carriers (heterozygous or homozygous CASR 990G allele carriers) or noncarriers (homozygous CASR 990A carriers). Tested covariates were baseline PTH level (bPTH), baseline serum phosphate (bPhos), baseline serum calcium (bCa), baseline calcitriol equivalent dose (bCtriol), baseline ergocalciferol dose (bErgo), and age. The ANCOVA showed that intact PTH levels after 12 weeks of cinacalcet treatment (PTHw12) was significantly lower among G carriers compared with noncarriers after controlling for bPTH, bPhos, bCtriol, and bErgo (F(1, 127) = 15.472, p < 0.001), with the adjusted mean difference of 253.7 pg/mL. The logistic regression analysis revealed that the odds of a G carrier achieving 30% PTH reduction after 12-week cinacalcet treatment were 3.968 times greater than the odds for a noncarrier after adjusting for bPhos, bCtriol, and age. In conclusion, the CASR A990G polymorphism significantly influences cinacalcet response in HD patients with SHPT.
Collapse
MESH Headings
- Age Factors
- Aged
- Alleles
- Calcitriol/blood
- Calcium/blood
- Calcium-Regulating Hormones and Agents/therapeutic use
- Cinacalcet/therapeutic use
- Ergocalciferols/blood
- Female
- Gene Expression
- Genotype
- Heterozygote
- Homozygote
- Humans
- Hyperparathyroidism, Secondary/blood
- Hyperparathyroidism, Secondary/genetics
- Hyperparathyroidism, Secondary/pathology
- Hyperparathyroidism, Secondary/therapy
- Logistic Models
- Male
- Middle Aged
- Parathyroid Hormone/blood
- Parathyroid Hormone/genetics
- Phosphates/blood
- Polymorphism, Single Nucleotide
- Receptors, Calcium-Sensing/blood
- Receptors, Calcium-Sensing/genetics
- Renal Dialysis/methods
- Renal Insufficiency, Chronic/blood
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/therapy
- Retrospective Studies
Collapse
Affiliation(s)
- Jaruwan Ngamkam
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somratai Vadcharavivad
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nutthada Areepium
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Titinun Auamnoy
- Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri, 20131, Thailand
| | - Kullaya Takkavatakarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pisut Katavetin
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khajohn Tiranathanagul
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellent Center of Geriatrics, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Paweena Susantitaphong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
109
|
Chen X, Wang L, Cui Q, Ding Z, Han L, Kou Y, Zhang W, Wang H, Jia X, Dai M, Shi Z, Li Y, Li X, Geng Y. Structural insights into the activation of human calcium-sensing receptor. eLife 2021; 10:68578. [PMID: 34467854 PMCID: PMC8476121 DOI: 10.7554/elife.68578] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that maintains Ca2+ homeostasis in serum. Here, we present the cryo-electron microscopy structures of the CaSR in the inactive and agonist+PAM bound states. Complemented with previously reported structures of CaSR, we show that in addition to the full inactive and active states, there are multiple intermediate states during the activation of CaSR. We used a negative allosteric nanobody to stabilize the CaSR in the fully inactive state and found a new binding site for Ca2+ ion that acts as a composite agonist with L-amino acid to stabilize the closure of active Venus flytraps. Our data show that agonist binding leads to compaction of the dimer, proximity of the cysteine-rich domains, large-scale transitions of seven-transmembrane domains, and inter- and intrasubunit conformational changes of seven-transmembrane domains to accommodate downstream transducers. Our results reveal the structural basis for activation mechanisms of CaSR and clarify the mode of action of Ca2+ ions and L-amino acid leading to the activation of the receptor.
Collapse
Affiliation(s)
- Xiaochen Chen
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lu Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Cui
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhanyu Ding
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Han
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongjun Kou
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Zhang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haonan Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaomin Jia
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mei Dai
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhong Shi
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuying Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiyang Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yong Geng
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
110
|
Kuro-o M. Klotho and calciprotein particles as therapeutic targets against accelerated ageing. Clin Sci (Lond) 2021; 135:1915-1927. [PMID: 34374422 PMCID: PMC8355631 DOI: 10.1042/cs20201453] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023]
Abstract
The klotho gene, named after a Greek goddess who spins the thread of life, was identified as a putative 'ageing-suppressor' gene. Klotho-deficient mice exhibit complex ageing-like phenotypes including hypogonadism, arteriosclerosis (vascular calcification), cardiac hypertrophy, osteopenia, sarcopenia, frailty, and premature death. Klotho protein functions as the obligate co-receptor for fibroblast growth factor-23 (FGF23), a bone-derived hormone that promotes urinary phosphate excretion in response to phosphate intake. Thus, Klotho-deficient mice suffer not only from accelerated ageing but also from phosphate retention due to impaired phosphate excretion. Importantly, restoration of the phosphate balance by placing Klotho-deficient mice on low phosphate diet rescued them from premature ageing, leading us to the notion that phosphate accelerates ageing. Because the extracellular fluid is super-saturated in terms of phosphate and calcium ions, an increase in the phosphate concentration can trigger precipitation of calcium-phosphate. In the blood, calcium-phosphate precipitated upon increase in the blood phosphate concentration is adsorbed by serum protein fetuin-A to form colloidal nanoparticles called calciprotein particles (CPPs). In the urine, CPPs appear in the renal tubular fluid when FGF23 increases phosphate load excreted per nephron. CPPs can induce cell damage, ectopic calcification, and inflammatory responses. CPPs in the blood can induce arteriosclerosis and non-infectious chronic inflammation, whereas CPPs in the urine can induce renal tubular damage and interstitial inflammation/fibrosis. Thus, we propose that CPPs behave like a pathogen that accelerates ageing and should be regarded as a novel therapeutic target against age-related disorders including chronic kidney disease.
Collapse
Affiliation(s)
- Makoto Kuro-o
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
111
|
González-Casaus ML, Fernández-Calle P, Buño Soto A. Should clinical laboratories adapt to the reality of chronic kidney disease in the determination of parathyroid hormone? ADVANCES IN LABORATORY MEDICINE 2021; 2:332-351. [PMID: 37362408 PMCID: PMC10197458 DOI: 10.1515/almed-2021-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 06/28/2023]
Abstract
Objectives The contribution of the clinical laboratory to diagnostics is increasingly important since a great deal of clinical decisions rely on laboratory test results. Content Parathyroid hormone (PTH) measurement presents a considerable analytical variability due to the heterogeneity of its circulating forms and the antigenic configuration of the different assays commercially available. Such variability may have an impact on pathological conditions associated with significant increases in circulating PTH, as it is the case of chronic kidney disease (CKD). Summary Despite the recent identification of new molecules involved in bone and mineral disorders associated with CKD, such as klotho or the fibroblastic factor 23 (FGF23), nephrologists still base their clinical decisions on PTH concentrations. The problem is that unawareness of these analytical considerations may cause errors in the clinical interpretation of test results. Outlook This systematic review addresses these issues from the clinical laboratory perspective and proposes new approaches related to PTH method selection and result expression. These new strategies will help laboratory medicine specialists and nephrologist better determine the status of CKD patients.
Collapse
Affiliation(s)
| | | | - Antonio Buño Soto
- Department of Laboratory Medicine, Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
112
|
Tang PK, Geddes RF, Jepson RE, Elliott J. A feline-focused review of chronic kidney disease-mineral and bone disorders - Part 1: Physiology of calcium handling. Vet J 2021; 275:105719. [PMID: 34311095 DOI: 10.1016/j.tvjl.2021.105719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/03/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023]
Abstract
Mineral derangements are a common consequence of chronic kidney disease (CKD). Despite the well-established role of phosphorus in the pathophysiology of CKD, the implications of calcium disturbances associated with CKD remain equivocal. Calcium plays an essential role in numerous physiological functions in the body and is a fundamental structural component of bone. An understanding of calcium metabolism is required to understand the potential adverse clinical implications and outcomes secondary to the (mal)adaptation of calcium-regulating hormones in CKD. The first part of this two-part review covers the physiology of calcium homeostasis (kidneys, intestines and bones) and details the intimate relationships between calcium-regulating hormones (parathyroid hormone, calcitriol, fibroblast growth factor 23, α-Klotho and calcitonin) and the role of the calcium-sensing receptor.
Collapse
Affiliation(s)
- Pak-Kan Tang
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.
| | - Rebecca F Geddes
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Rosanne E Jepson
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
113
|
Actkins KV, Beasley HK, Faucon AB, Davis LK, Sakwe AM. Calcium-Sensing Receptor Polymorphisms at rs1801725 Are Associated with Increased Risk of Secondary Malignancies. J Pers Med 2021; 11:642. [PMID: 34357109 PMCID: PMC8304025 DOI: 10.3390/jpm11070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of systemic calcium homeostasis during malignancy is common in most patients with high-grade tumors. However, it remains unclear whether single nucleotide polymorphisms (SNPs) that alter the sensitivity of the calcium-sensing receptor (CaSR) to circulating calcium are associated with primary and/or secondary neoplasms at specific pathological sites in patients of European and African ancestry. Multivariable logistic regression models were used to analyze the association of CASR SNPs with circulating calcium, parathyroid hormone, vitamin D, and primary and secondary neoplasms. Circulating calcium is associated with an increased risk for breast, prostate, and skin cancers. In patients of European descent, the rs1801725 CASR SNP is associated with bone-related cancer phenotypes, deficiency of humoral immunity, and a higher risk of secondary neoplasms in the lungs and bone. Interestingly, circulating calcium levels are higher in homozygous patients for the inactivating CASR variant at rs1801725 (TT genotype), and this is associated with a higher risk of secondary malignancies. Our data suggest that expression of CaSR variants at rs1801725 is associated with a higher risk of developing secondary neoplastic lesions in the lungs and bone, due in part to cancer-induced hypercalcemia and/or tumor immune suppression. Screening of patients for CASR variants at this locus may lead to improved management of high calcium associated tumor progression.
Collapse
Affiliation(s)
- Ky’Era V. Actkins
- Department of Microbiology, Immunology and Physiology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA;
| | - Heather K. Beasley
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (H.K.B.); (L.K.D.)
| | - Annika B. Faucon
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, TN 37232, USA;
| | - Lea K. Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (H.K.B.); (L.K.D.)
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (H.K.B.); (L.K.D.)
| |
Collapse
|
114
|
Rocha T, Cavalcanti AS, Leal AC, Dias RB, da Costa RS, Ribeiro GDO, Guimarães JAM, Duarte MEL. PTH 1-34 improves devitalized allogenic bone graft healing in a murine femoral critical size defect. Injury 2021; 52 Suppl 3:S3-S12. [PMID: 34088469 DOI: 10.1016/j.injury.2021.03.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
The treatment of large segmental defects of long bones resulting from trauma, infection, or bone tumor resections is a major challenge for orthopedic surgeons. The reconstruction of bone defects with acellular allografts can be used as an osteoconductive approach. However, devitalized allografts are associated with high rates of clinical failure as a result of poor intrinsic osteoinduction properties and a lack of further remodeling. Nevertheless, evidence suggests that due to its anabolic properties, teriparatide (PTH1-34) could be effective as an adjuvant therapy for massive allograft healing. Therefore, our goal was to investigate in a murine critical-sized defect model whether the intermittent administration of PTH1-34 improves the incorporation and revitalization of acellular structural bone allografts. Thus, a 2.5-mm critical-sized defect was established in the right femur of C57BL/6 mice, followed by the reconstruction with a devitalized cortical structural allograft. A titanium micro locking plate was applied to the anterior femoral surface and secured in place with self-tapping locking screws. Subsequently, daily doses of PTH1-34 (30, and 40 µg/kg) or saline were administered to the mice for 14 days after surgery. The mice were maintained without PTH1-34 therapy for an additional 7 days before being euthanized at 3 weeks post-surgery. Bone graft consolidation was assessed on radiographic images and by histomorphometric analysis. Additionally, to determine the frequency of osteoprogenitor cells in the bone marrow and their in vitro osteogenic capacity, stromal cells were isolated from the bone marrow of animals treated with 30 or 40 µg/kg/day of PTH1-34 following the same protocol used for the experimental animals. Our results suggest that intermittent PTH1-34 treatment at 30 µg/kg/day after femoral allograft reconstruction surgery accelerated the healing process as evidenced by new bone formation induced on endosteal and periosteal surfaces, enhanced revitalization of allogeneic graft, and increased frequency and osteogenic capacity of bone marrow stromal cells (BMSC). These findings should encourage further studies aimed at investigating the potential therapeutic use of intermittent PTH1-34, specifically with regards to the optimal dosing regimen in clinically challenging orthopedic scenarios.
Collapse
Affiliation(s)
- Tito Rocha
- Trauma Center, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Amanda S Cavalcanti
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Ana Carolina Leal
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Rhayra B Dias
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Rafaela Sartore da Costa
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | | | - João Antonio Matheus Guimarães
- Trauma Center, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil; Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| | - Maria Eugênia Leite Duarte
- Research Division, National Institute of Traumatology and Orthopedics, Rio de Janeiro 20940-070, Brazil.
| |
Collapse
|
115
|
Habas E, Eledrisi M, Khan F, Elzouki ANY. Secondary Hyperparathyroidism in Chronic Kidney Disease: Pathophysiology and Management. Cureus 2021; 13:e16388. [PMID: 34408941 PMCID: PMC8362860 DOI: 10.7759/cureus.16388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
Serum calcium concentration is the main determinant of parathyroid hormone (PTH) release. Defect in the activation of vitamin D in the kidneys due to chronic kidney disease (CKD) leads to hypocalcemia and hyperphosphatemia, resulting in a compensatory increase in parathyroid gland cellularity and parathyroid hormone production and causing secondary hyperparathyroidism (SHP). Correction and maintenance of normal serum calcium and phosphate are essential to preventing SHP, hungry bone disease, cardiovascular events, and anemia development. Understanding the pathophysiology of PTH and possible therapeutic agents can reduce the development and associated complications of SHP in patients with CKD. Medical interventions to control serum calcium, phosphate, and PTH such as vitamin D analogs, calcium receptor blockers, and parathyroidectomy are needed in some CKD patients. In this review, we discuss the pathophysiology, clinical presentation, and management of SHP in CKD patients.
Collapse
Affiliation(s)
| | | | - Fahmi Khan
- Internal Medicine, Hamad General Hospital, Doha, QAT
| | | |
Collapse
|
116
|
Teisseyre M, Moranne O, Renaud S. Late diagnosis of chronic hypocalcemia due to autoimmune hypoparathyroidism. BMJ Case Rep 2021; 14:14/6/e243299. [PMID: 34193455 DOI: 10.1136/bcr-2021-243299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hypoparathyroidism is most often the result of postsurgical damage to the parathyroid glands but may occasionally be autoimmune hypoparathyroidism. In the latter context, activating antibodies directed against the calcium-sensing receptor (CaSR) have been described. We hereby present the case of a patient suffering from chronic recurrent muscle cramps and paresthesia, presenting for a seizure due to hypocalcaemia. After eliminating the possibility of a genetic disorder, we searched for autoimmune hypoparathyroidism as there was no obvious cause of hypoparathyroidism. The search for anti-CaSR antibodies was positive. There was no argument for autoimmune polyendocrine syndrome type 1 so we concluded that it was isolated autoimmune hypoparathyroidism caused by activating antibodies to the CaSR. The patient was treated with vitamin D and calcium supplementation. The search for complications of hypoparathyroidism and hypercalciuria revealed basal ganglia calcification. The patient's hypocalcaemia is now being kept under control with oral supplementation.
Collapse
Affiliation(s)
- Maxime Teisseyre
- Service de Néphrologie-Dialyse-Aphérèse, Hopital Universitaire de Nimes, Université de Montpellier, Nîmes, France
| | - Olivier Moranne
- Service de Néphrologie-Dialyse-Aphérèse, Hopital Universitaire de Nimes, Université de Montpellier, Nîmes, France .,Desbrest Institute Of Epidemiology and Public Health, Inserm, Montpellier, France
| | - Sophie Renaud
- Service de Néphrologie-Dialyse-Aphérèse, Hopital Universitaire de Nimes, Université de Montpellier, Nîmes, France
| |
Collapse
|
117
|
Store-Independent Calcium Entry and Related Signaling Pathways in Breast Cancer. Genes (Basel) 2021; 12:genes12070994. [PMID: 34209733 PMCID: PMC8303984 DOI: 10.3390/genes12070994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/12/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Known as a key effector in breast cancer (BC) progression, calcium (Ca2+) is tightly regulated to maintain the desired concentration to fine-tune cell functions. Ca2+ channels are the main actors among Ca2+ transporters that control the intracellular Ca2+ concentration in cells. It is well known that the basal Ca2+ concentration is regulated by both store-dependent and independent Ca2+ channels in BC development and progression. However, most of the literature has reported the role of store-dependent Ca2+ entry, and only a few studies are focusing on store-independent Ca2+ entry (SICE). In this review, we aim to summarize all findings on SICE in the BC progression field.
Collapse
|
118
|
Salinity-dependent expression of calcium-sensing receptors in Atlantic salmon (Salmo salar) tissues. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:505-522. [PMID: 34114081 DOI: 10.1007/s00359-021-01493-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Multiple reports suggest that calcium-sensing receptors (CaSRs) are involved in calcium homeostasis, osmoregulation, and/or salinity sensing in fish (Loretz 2008, Herberger and Loretz 2013). We have isolated three unique full-length CaSR cDNAs from Atlantic salmon (Salmo salar) kidney that share many features with other reported CaSRs. Using anti-CaSR antibodies and PCR primers specific for individual salmon CaSR transcripts we show expression in osmoregulatory, neuroendocrine and sensory tissues. Furthermore, CaSRs are expressed in different patterns in salmon tissues where mRNA and protein expression are modified by freshwater or seawater acclimation. For example, in seawater, CaSR mRNA and protein expression is increased significantly in kidney as compared to freshwater. Electrophysiological recordings of olfactory responses produced upon exposure of salmon olfactory epithelium to CaSR agonists suggest a role for CaSRs in chemoreception in this species consistent with other freshwater, anadromous, and marine species where similar olfactory responses to divalent and polyvalent cations have been reported. These data provide further support for a role of CaSR proteins in osmoregulatory and sensory functions in Atlantic salmon, an anadromous species that experiences a broad range of environmental salinities in its life history.
Collapse
|
119
|
Wen T, Wang Z, Chen X, Ren Y, Lu X, Xing Y, Lu J, Chang S, Zhang X, Shen Y, Yang X. Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. SCIENCE ADVANCES 2021; 7:7/23/eabg1483. [PMID: 34088669 PMCID: PMC8177707 DOI: 10.1126/sciadv.abg1483] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) that plays an important role in calcium homeostasis and parathyroid hormone secretion. Here, we present multiple cryo-electron microscopy structures of full-length CaSR in distinct ligand-bound states. Ligands (Ca2+ and l-tryptophan) bind to the extracellular domain of CaSR and induce large-scale conformational changes, leading to the closure of two heptahelical transmembrane domains (7TMDs) for activation. The positive modulator (evocalcet) and the negative allosteric modulator (NPS-2143) occupy the similar binding pocket in 7TMD. The binding of NPS-2143 causes a considerable rearrangement of two 7TMDs, forming an inactivated TM6/TM6 interface. Moreover, a total of 305 disease-causing missense mutations of CaSR have been mapped to the structure in the active state, creating hotspot maps of five clinical endocrine disorders. Our results provide a structural framework for understanding the activation, allosteric modulation mechanism, and disease therapy for class C GPCRs.
Collapse
Affiliation(s)
- Tianlei Wen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Ziyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xiaozhe Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yue Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xuhang Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yangfei Xing
- State Key Laboratory of Medical Genomics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jing Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
- Synergetic Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| |
Collapse
|
120
|
Bertoldo E, Adami G, Rossini M, Giollo A, Orsolini G, Viapiana O, Gatti D, Fassio A. The Emerging Roles of Endocrine Hormones in Different Arthritic Disorders. Front Endocrinol (Lausanne) 2021; 12:620920. [PMID: 34093428 PMCID: PMC8177688 DOI: 10.3389/fendo.2021.620920] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/20/2021] [Indexed: 12/17/2022] Open
Abstract
The relationship between endocrine hormones and the spectrum of rheumatic conditions has long been discussed in the literature, focusing primarily on sexual hormones, such as estrogens, androgens, prolactin (PRL). Estrogens are indeed involved in the pathogenesis of the main inflammatory arthritis thanks to their effects on the immune system, both stimulatory and inhibitory. The PRL system has been discovered in synovial tissue of rheumatoid arthritis (RA) and psoriatic arthritis (PsA), patients and has been propose as a new potential therapeutic target. Besides sexual hormones, in the last years scientific interest about the crosstalk of immune system with other class of hormones has grown. Hormones acting on the bone tissue (i.e. parathyroid hormone, vitamin D) and modulators of the Wnt pathway (i.e. Dickkopf-1) have been demonstrated to play active role in inflammatory arthritis course, defining a new field of research named osteoimmunology. PTH, which is one of the main determinants of Dkkopf-1, plays a crucial role in bone erosions in RA and a correlation between PTH, Trabecular Bone Score (TBS) and disease activity has been found in ankylosing spondylitis (AS). In PSA is under studying the interaction among IL-17 and bone metabolism. The purpose of this review is to discuss and summarize the recent data about the interaction between endocrine hormone and immune system in the main rheumatic disorders, covering in particular the role of bone-related hormones and cytokines. We will describe this relationship from a biochemical, diagnostic and therapeutic perspective, with a particular focus on RA, PsA and AS.
Collapse
Affiliation(s)
- Eugenia Bertoldo
- Rheumatology Unit, Department of Medicine, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Sundararaman SS, Peters LJF, Jansen Y, Gencer S, Yan Y, Nazir S, Bonnin Marquez A, Kahles F, Lehrke M, Biessen EAL, Jankowski J, Weber C, Döring Y, van der Vorst EPC. Adipocyte calcium sensing receptor is not involved in visceral adipose tissue inflammation or atherosclerosis development in hyperlipidemic Apoe -/- mice. Sci Rep 2021; 11:10409. [PMID: 34001955 PMCID: PMC8128899 DOI: 10.1038/s41598-021-89893-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/04/2021] [Indexed: 01/02/2023] Open
Abstract
The calcium sensing receptor (CaSR) is a G-protein coupled receptor that especially plays an important role in the sensing of extracellular calcium to maintain its homeostasis. Several in-vitro studies demonstrated that CaSR plays a role in adipose tissue metabolism and inflammation, resulting in systemic inflammation and contributing to atherosclerosis development. The aim of this study was to investigate whether adipocyte CaSR plays a role in adipose tissue inflammation in-vivo and atherosclerosis development. By using a newly established conditional mature adipocyte specific CaSR deficient mouse on a hyperlipidemic and atherosclerosis prone Apoe−/− background it could be shown that CaSR deficiency in adipocytes does neither contribute to initiation nor to progression of atherosclerotic plaques as judged by the unchanged lesion size or composition. Additionally, CaSR deficiency did not influence gonadal visceral adipose tissue (vAT) inflammation in-vivo, although a small decrease in gonadal visceral adipose cholesterol content could be observed. In conclusion, adipocyte CaSR seems not to be involved in vAT inflammation in-vivo and does not influence atherosclerosis development in hyperlipidemic Apoe−/− mice.
Collapse
Affiliation(s)
- Sai Sahana Sundararaman
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Linsey J F Peters
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sumra Nazir
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andrea Bonnin Marquez
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Florian Kahles
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I-Cardiology, University Hospital Aachen, Aachen, Germany
| | - Erik A L Biessen
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Emiel P C van der Vorst
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany. .,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany. .,Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
122
|
Martiszus BJ, Tsintsadze T, Chang W, Smith SM. Enhanced excitability of cortical neurons in low-divalent solutions is primarily mediated by altered voltage-dependence of voltage-gated sodium channels. eLife 2021; 10:67914. [PMID: 33973519 PMCID: PMC8163501 DOI: 10.7554/elife.67914] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing extracellular [Ca2+] ([Ca2+]o) strongly decreases intrinsic excitability in neurons but the mechanism is unclear. By one hypothesis, [Ca2+]o screens surface charge, reducing voltage-gated sodium channel (VGSC) activation and by another [Ca2+]o activates Calcium-sensing receptor (CaSR) closing the sodium-leak channel (NALCN). Here we report that neocortical neurons from CaSR-deficient (Casr-/-) mice had more negative resting potentials and did not fire spontaneously in reduced divalent-containing solution (T0.2) in contrast with wild-type (WT). However, after setting membrane potential to −70 mV, T0.2 application similarly depolarized and increased action potential firing in Casr-/- and WT neurons. Enhanced activation of VGSCs was the dominant contributor to the depolarization and increase in excitability by T0.2 and occurred due to hyperpolarizing shifts in VGSC window currents. CaSR deletion depolarized VGSC window currents but did not affect NALCN activation. Regulation of VGSC gating by external divalents is the key mechanism mediating divalent-dependent changes in neocortical neuron excitability.
Collapse
Affiliation(s)
- Briana J Martiszus
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, United States.,Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, United States
| | - Timur Tsintsadze
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, United States.,Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, United States
| | - Wenhan Chang
- Endocrine Research Unit, Veterans Affairs Medical Center and University of California, San Francisco, San Francisco, United States
| | - Stephen M Smith
- Section of Pulmonary & Critical Care Medicine, VA Portland Health Care System, Portland, United States.,Department of Medicine, Division of Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, United States
| |
Collapse
|
123
|
Liu W, Guo Y, Liu Y, Sun J, Yin X. Calcium-Sensing Receptor of Immune Cells and Diseases. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2021. [DOI: 10.15212/cvia.2021.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Calcium-sensing receptor (CaSR), which was initially found in the parathyroid gland, is ubiquitously expressed and exerts specific functions in multiple cells, including immune cells. CaSR is functionally expressed on neutrophils, monocytes/macrophages, and T lymphocytes, but not B
lymphocytes, and regulates cell functions, such as cytokine secretion, chemotaxis, phenotype switching, and ligand delivery. In these immune cells, CaSR is involved in the development of many diseases, such as sepsis, cryopyrin-associated periodic syndromes, rheumatism, myocardial infarction,
diabetes, and peripheral artery disease. Since its discovery, it has been controversial whether CaSR is expressed and plays a role in immune cells. This article reviews current knowledge of the role of CaSR in immune cells.
Collapse
Affiliation(s)
- Wenxiu Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Yutong Guo
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Jiaxing Sun
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| | - Xinhua Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang, China
| |
Collapse
|
124
|
Tan RSG, Lee CHL, Dimke H, Todd Alexander R. The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport. Exp Biol Med (Maywood) 2021; 246:2407-2419. [PMID: 33926258 DOI: 10.1177/15353702211010415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The calcium-sensing receptor (CaSR) plays a critical role in sensing extracellular calcium (Ca2+) and signaling to maintain Ca2+ homeostasis. In the parathyroid, the CaSR regulates secretion of parathyroid hormone, which functions to increase extracellular Ca2+ levels. The CaSR is also located in other organs imperative to Ca2+ homeostasis including the kidney and intestine, where it modulates Ca2+ reabsorption and absorption, respectively. In this review, we describe CaSR expression and its function in transepithelial Ca2+ transport in the kidney and intestine. Activation of the CaSR leads to G protein dependent and independent signaling cascades. The known CaSR signal transduction pathways involved in modulating paracellular and transcellular epithelial Ca2+ transport are discussed. Mutations in the CaSR cause a range of diseases that manifest in altered serum Ca2+ levels. Gain-of-function mutations in the CaSR result in autosomal dominant hypocalcemia type 1, while loss-of-function mutations cause familial hypocalciuric hypercalcemia. Additionally, the putative serine protease, FAM111A, is discussed as a potential regulator of the CaSR because mutations in FAM111A cause Kenny Caffey syndrome type 2, gracile bone dysplasia, and osteocraniostenosis, diseases that are characterized by hypocalcemia, hypoparathyroidism, and bony abnormalities, i.e. share phenotypic features of autosomal dominant hypocalcemia. Recent work has helped to elucidate the effect of CaSR signaling cascades on downstream proteins involved in Ca2+ transport across renal and intestinal epithelia; however, much remains to be discovered.
Collapse
Affiliation(s)
- Rebecca Siu Ga Tan
- Department of Physiology, University of Alberta, Edmonton T6G 1C9, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 1C9, Canada
| | | | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.,Department of Nephrology, Odense University Hospital, Odense 5000, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton T6G 1C9, Canada.,Membrane Protein Disease Research Group, University of Alberta, Edmonton T6G 1C9, Canada.,Department of Pediatrics, University of Alberta, Edmonton T6G 1C9, Canada
| |
Collapse
|
125
|
Oster M, Reyer H, Gerlinger C, Trakooljul N, Siengdee P, Keiler J, Ponsuksili S, Wolf P, Wimmers K. mRNA Profiles of Porcine Parathyroid Glands Following Variable Phosphorus Supplies throughout Fetal and Postnatal Life. Biomedicines 2021; 9:biomedicines9050454. [PMID: 33922173 PMCID: PMC8146947 DOI: 10.3390/biomedicines9050454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge of gene expression profiles reflecting functional features and specific responsiveness of parathyroid glands (PTGs) contributes to understanding mineral homeostasis and parathyroid function in healthy and diseased conditions. The study aims to reveal effector molecules driving the maintenance of phosphorus (P) homeostasis and parathyroid hormone (PTH) responsiveness to variable P supply throughout fetal and postnatal life. In this study, a long-term dietary intervention was performed by keeping pig offspring on distinct mineral P levels throughout fetal and postnatal life. Respective adaptation processes of P homeostasis were assessed in mRNA profiles of PTGs and serum minerals. RNA sequencing data and resulting molecular pathways of PTGs showed that the PTH abundance is very strictly controlled via e.g., PIN1, CaSR, MAfB, PLC and PKA signaling to regulate PTH expression, stability, and secretion. Additionally, the observed dietary effects on collagen expression indicate shifts in the ratio between connective tissue and parenchyma, thereby affecting cell-cell contacts as another line of PTH regulation. Taken together, the mRNA profiles of porcine PTGs reflect physiological responses in-vivo following variable dietary P supplies during fetal and postnatal life. The results serve to evaluate a long-term nutrition strategy with implications for improving the mineral balance in individuals with pathological disorders.
Collapse
Affiliation(s)
- Michael Oster
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Henry Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Christian Gerlinger
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Nares Trakooljul
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Puntita Siengdee
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Jonas Keiler
- Department of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany;
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
| | - Petra Wolf
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany;
| | - Klaus Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.O.); (H.R.); (C.G.); (N.T.); (P.S.); (S.P.)
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany;
- Correspondence: ; Tel.: +49-382-086-8600
| |
Collapse
|
126
|
Ferreira PG, van Megen WH, Tan R, Lee CHL, Svenningsen P, Alexander RT, Dimke H. Renal claudin-14 expression is not required for regulating Mg 2+ balance in mice. Am J Physiol Renal Physiol 2021; 320:F897-F907. [PMID: 33818126 DOI: 10.1152/ajprenal.00590.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidneys play a crucial role in maintaining Ca2+ and Mg2+ homeostasis by regulating these minerals' reabsorption. In the thick ascending limb of Henle's loop (TAL), Ca2+ and Mg2+ are reabsorbed through the tight junctions by a shared paracellular pathway formed by claudin-16 and claudin-19. Hypercalcemia activates the Ca2+-sensing receptor (CaSR) in the TAL, causing upregulation of pore-blocking claudin-14 (CLDN14), which reduces Ca2+ and Mg2+ reabsorption from this segment. In addition, a high-Mg2+ diet is known to increase both urinary Mg2+ and Ca2+ excretion. Since Mg2+ may also activate CaSR, we aimed to investigate whether CaSR-dependent increases in CLDN14 expression also regulate urinary Mg2+ excretion in response to hypermagnesemia. Here, we show that a Mg2+-enriched diet increased urinary Mg2+ and Ca2+ excretion in mice; however, this occurred without detectable changes in renal CLDN14 expression. The administration of a high-Mg2+ diet to Cldn14-/- mice did not cause more pronounced hypermagnesemia or significantly alter urinary Mg2+ excretion. Finally, in vitro evaluation of CaSR-driven Cldn14 promoter activity in response to increasing Mg2+ concentrations revealed that Cldn14 expression only increases at supraphysiological extracellular Mg2+ levels. Together, these results suggest that CLDN14 is not involved in regulating extracellular Mg2+ balance following high dietary Mg2+ intake.NEW & NOTEWORTHY Using transgenic models and in vitro assays, this study examined the effect of Mg2+ on regulating urinary excretion of Ca2+ and Mg2+ via activation of the Ca2+-sensing receptor-claudin 14 (CLDN14) pathway. The study suggests that CLDN14 is unlikely to play a significant role in the compensatory response to hypermagnesemia.
Collapse
Affiliation(s)
- Patrícia G Ferreira
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Wouter H van Megen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rebecca Tan
- Department of Physiology, The University of Alberta, Edmonton, Alberta, Canada
| | - Christy H L Lee
- Department of Physiology, The University of Alberta, Edmonton, Alberta, Canada
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - R Todd Alexander
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada.,Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
127
|
Komaba H, Ketteler M, Cunningham J, Fukagawa M. Old and New Drugs for the Management of Bone Disorders in CKD. Calcif Tissue Int 2021; 108:486-495. [PMID: 33386480 DOI: 10.1007/s00223-020-00788-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022]
Abstract
Disturbances in mineral and bone metabolism are common in patients with chronic kidney disease (CKD), especially those undergoing dialysis. Renal osteodystrophy, which describes an alteration of bone morphology, is an important component of this systemic disorder and may explain the elevated risk of fracture which adversely affects morbidity and mortality. The most common form of renal osteodystrophy is high-turnover bone disease (osteitis fibrosa), which is induced by secondary hyperparathyroidism (SHPT). During the past decade, there has been considerable advances in the management of SHPT, with the introduction of the calcimimetic agents, the optimized use of nutritional and active vitamin D, and the accumulated experience with surgical parathyroidectomy. Studies supported that these advances could translate into improvement of renal bone disease and fracture prevention, as well as decreasing the risk of cardiovascular events and mortality. In this review, we summarize the available clinical evidence on the effect of old and new drugs on bone disorders in patients with CKD.
Collapse
Affiliation(s)
- Hirotaka Komaba
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Japan
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | | | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, 143 Shimo-Kasuya, Isehara, 259-1193, Japan.
| |
Collapse
|
128
|
Structural mechanism of cooperative activation of the human calcium-sensing receptor by Ca 2+ ions and L-tryptophan. Cell Res 2021; 31:383-394. [PMID: 33603117 PMCID: PMC8115157 DOI: 10.1038/s41422-021-00474-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The human calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) responsible for maintaining Ca2+ homeostasis in the blood. The general consensus is that extracellular Ca2+ is the principal agonist of CaSR. Aliphatic and aromatic L-amino acids, such as L-Phe and L-Trp, increase the sensitivity of CaSR towards Ca2+ and are considered allosteric activators. Crystal structures of the extracellular domain (ECD) of CaSR dimer have demonstrated Ca2+ and L-Trp binding sites and conformational changes of the ECD upon Ca2+/L-Trp binding. However, it remains to be understood at the structural level how Ca2+/L-Trp binding to the ECD leads to conformational changes in transmembrane domains (TMDs) and consequent CaSR activation. Here, we determined the structures of full-length human CaSR in the inactive state, Ca2+- or L-Trp-bound states, and Ca2+/L-Trp-bound active state using single-particle cryo-electron microscopy. Structural studies demonstrate that L-Trp binding induces the closure of the Venus flytrap (VFT) domain of CaSR, bringing the receptor into an intermediate active state. Ca2+ binding relays the conformational changes from the VFT domains to the TMDs, consequently inducing close contact between the two TMDs of dimeric CaSR, activating the receptor. Importantly, our structural and functional studies reveal that Ca2+ ions and L-Trp activate CaSR cooperatively. Amino acids are not able to activate CaSR alone, but can promote the receptor activation in the presence of Ca2+. Our data provide complementary insights into the activation of class C GPCRs and may aid in the development of novel drugs targeting CaSR.
Collapse
|
129
|
Tőke J, Czirják G, Enyedi P, Tóth M. Rare diseases caused by abnormal calcium sensing and signalling. Endocrine 2021; 71:611-617. [PMID: 33528764 PMCID: PMC8016752 DOI: 10.1007/s12020-021-02620-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
The calcium-sensing receptor (CaSR) provides the major mechanism for the detection of extracellular calcium concentration in several cell types, via the induction of G-protein-coupled signalling. Accordingly, CaSR plays a pivotal role in calcium homeostasis, and the CaSR gene defects are related to diseases characterized by serum calcium level changes. Activating mutations of the CaSR gene cause enhanced sensitivity to extracellular calcium concentration resulting in autosomal dominant hypocalcemia or Bartter-syndrome type V. Inactivating CaSR gene mutations lead to resistance to extracellular calcium. In these cases, familial hypocalciuric hypercalcaemia (FHH1) or neonatal severe hyperparathyroidism (NSHPT) can develop. FHH2 and FHH3 are associated with mutations of genes of partner proteins of calcium signal transduction. The common polymorphisms of the CaSR gene have been reported not to affect the calcium homeostasis itself; however, they may be associated with the increased risk of malignancies.
Collapse
Affiliation(s)
- Judit Tőke
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Miklós Tóth
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
130
|
Kuro-O M. Phosphate as a Pathogen of Arteriosclerosis and Aging. J Atheroscler Thromb 2021; 28:203-213. [PMID: 33028781 PMCID: PMC8048948 DOI: 10.5551/jat.rv17045] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
During the evolution of skeletons, terrestrial vertebrates acquired strong bones made of calcium-phosphate. By keeping the extracellular fluid in a supersaturated condition regarding calcium and phosphate ions, they created the bone when and where they wanted simply by providing a cue for precipitation. To secure this strategy, they acquired a novel endocrine system to strictly control the extracellular phosphate concentration. In response to phosphate intake, fibroblast growth factor-23 (FGF23) is secreted from the bone and acts on the kidney through binding to its receptor Klotho to increase urinary phosphate excretion, thereby maintaining phosphate homeostasis. The FGF23-Klotho endocrine system, when disrupted in mice, results in hyperphosphatemia and vascular calcification. Besides, mice lacking Klotho or FGF23 suffer from complex aging-like phenotypes, which are alleviated by placing them on a low- phosphate diet, indicating that phosphate is primarily responsible for the accelerated aging. Phosphate acquires the ability to induce cell damage and inflammation when precipitated with calcium. In the blood, calcium-phosphate crystals are adsorbed by serum protein fetuin-A and prevented from growing into large precipitates. Consequently, nanoparticles that comprised calcium-phosphate crystals and fetuin-A, termed calciprotein particles (CPPs), are generated and dispersed as colloids. CPPs increase in the blood with an increase in serum phosphate and age. Circulating CPP levels correlate positively with vascular stiffness and chronic non-infectious inflammation, raising the possibility that CPPs may be an endogenous pro-aging factor. Terrestrial vertebrates with the bone made of calcium- phosphate may be destined to age due to calcium-phosphate in the blood.
Collapse
Affiliation(s)
- Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University
| |
Collapse
|
131
|
Tuffour A, Kosiba AA, Zhang Y, Peprah FA, Gu J, Shi H. Role of the calcium-sensing receptor (CaSR) in cancer metastasis to bone: Identifying a potential therapeutic target. Biochim Biophys Acta Rev Cancer 2021; 1875:188528. [PMID: 33640382 DOI: 10.1016/j.bbcan.2021.188528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022]
Abstract
Cancer is a major cause of morbidity and mortality worldwide due to its ability to evade immune surveillance and metastasize from its origin to a secondary point of contact. Though several treatment techniques have been developed to suppress or manage cancer spread, a strategy for total control over the disease continues to evade researchers. In considering ways to control or prevent cancer from metastasizing to the bone, we analyze the impact of the calcium-sensing receptor (CaSR), whose primary role is to maintain calcium (Ca2+) homeostasis in cellular and systemic physiological processes. CaSR is a pleiotropic receptor capable of enhancing the proliferation of some cancers such as breast, lung, prostate and kidney cancers at its primary site(s) and stimulating bone metastasis, while exerting a suppressive effect in others such as colon cancer. The activity of CaSR not only increases cancer cell proliferation, migration and suppression of apoptosis in the organs indicated, but also increases the secretion of parathyroid hormone-related protein (PTHrP) and epiregulin, which induce osteolytic activity and osteoblastic suppression. In addition, released cytokines and Ca2+ from bone resorption are critical factors that further promote cancer proliferation. In this review, we seek to highlight previous viewpoints on CaSR, discuss its role in a new context, and consider its potential clinical application in cancer treatment.
Collapse
Affiliation(s)
- Alex Tuffour
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | | | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Frank Addai Peprah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
132
|
Non-Musculoskeletal Benefits of Vitamin D beyond the Musculoskeletal System. Int J Mol Sci 2021; 22:ijms22042128. [PMID: 33669918 PMCID: PMC7924658 DOI: 10.3390/ijms22042128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Vitamin D, a fat-soluble prohormone, is endogenously synthesized in response to sunlight or taken from dietary supplements. Since vitamin D receptors are present in most tissues and cells in the body, the mounting understanding of the role of vitamin D in humans indicates that it does not only play an important role in the musculoskeletal system, but has beneficial effects elsewhere as well. This review summarizes the metabolism of vitamin D, the research regarding the possible risk factors leading to vitamin D deficiency, and the relationships between vitamin D deficiency and numerous illnesses, including rickets, osteoporosis and osteomalacia, muscle weakness and falls, autoimmune disorders, infectious diseases, cardiovascular diseases (CVDs), cancers, and neurological disorders. The system-wide effects of vitamin D and the mechanisms of the diseases are also discussed. Although accumulating evidence supports associations of vitamin D deficiency with physical and mental disorders and beneficial effects of vitamin D with health maintenance and disease prevention, there continue to be controversies over the beneficial effects of vitamin D. Thus, more well-designed and statistically powered trials are required to enable the assessment of vitamin D’s role in optimizing health and preventing disease.
Collapse
|
133
|
Hui Q, Zhao X, Lu P, Liu S, Nyachoti M, O K, Yang C. Molecular distribution and localization of extracellular calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) at three different laying stages in laying hens (Gallus gallus domesticus). Poult Sci 2021; 100:101060. [PMID: 33752067 PMCID: PMC8010884 DOI: 10.1016/j.psj.2021.101060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 11/02/2020] [Accepted: 02/11/2021] [Indexed: 01/06/2023] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) play important roles in regulating calcium mobilization, calcium absorption, and calcium homeostasis, and they could be potential therapeutic targets to osteoporosis in laying hens. The present study investigated the molecular distribution of CaSR and VDR and the localization of CaSR in the kidney, proventriculus (true stomach), duodenum, jejunum, ileum, colon, cecum, shell gland, and tibia of laying hens at 3 different laying stages (19, 40, and 55 wk). The results showed that the relative mRNA abundance of CaSR in the kidney, ileum, proventriculus, duodenum, and colon was higher (P < 0.05) than the other tissues at 40 and 55 wk. The relative mRNA abundance of CaSR in the tibia was higher (P < 0.05) at 55 wk than at 40 wk. However, there were no significant differences in the relative protein abundance of CaSR among all tested tissues at peak production or in each tissue at the 3 different laying stages (P > 0.05). The relative mRNA abundance of VDR was higher (P < 0.05) in the small intestine (duodenum, jejunum, and ileum) when compared with other tissues at the 3 different laying stages. The relative protein abundance of VDR in the duodenum was higher (P < 0.05) than that in the proventriculus, colon, and cecum. There were no significant differences in the VDR expression among the tested tissues at the 3 different laying stages (P > 0.05). The immunohistochemical results showed that the positive staining was found widely in each tissue. Moreover, different laying stages did not affect the localization of CaSR except for the tibia tissue. In conclusion, similar to VDR, CaSR was widely expressed not only in the gut but also in the tibia and shell gland in laying hens. The expression level of CaSR and VDR in all tested tissues was unchanged at the different laying stages.
Collapse
Affiliation(s)
- Qianru Hui
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; CCARM, St. Boniface Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
134
|
Abstract
Umami, the fifth taste, has been recognized as a legitimate taste modality only recently relative to the other tastes. Dozens of compounds from vastly different chemical classes elicit a savory (also called umami) taste. The prototypical umami substance glutamic acid or its salt monosodium glutamate (MSG) is present in numerous savory food sources or ingredients such as kombu (edible kelp), beans, soy sauce, tomatoes, cheeses, mushrooms, and certain meats and fish. Derivatives of glutamate (Glu), other amino acids, nucleotides, and small peptides can also elicit or modulate umami taste. In addition, many potent umami tasting compounds structurally unrelated to amino acids, nucleotides, and MSG have been either synthesized or discovered as naturally occurring in plants and other substances. Over the last 20 years several receptors have been suggested to mediate umami taste, including members of the metabotropic and ionotropic Glu receptor families, and more recently, the heterodimeric G protein-coupled receptor, T1R1/T1R3. Careful assessment of representative umami tasting molecules from several different chemical classes shows activation of T1R1/T1R3 with the expected rank order of potency in cell-based assays. Moreover, 5'-ribonucleotides, molecules known to enhance the savory note of Glu, considerably enhance the effect of MSG on T1R1/T1R3 in vitro. Binding sites are found on at least 4 distinct locations on T1R1/T1R3, explaining the propensity of the receptor to being activated or modulated by many structurally distinct compounds and these binding sites allosterically interact to modulate receptor activity. Activation of T1R1/T1R3 by all known umami substances evaluated and the receptor's pharmacological properties are sufficient to explain the basic human sensory experience of savory taste and it is therefore unlikely that other receptors are involved.
Collapse
|
135
|
Wu X, Ju L, Song Y, Bai L, Yuan M, Xu W, Li J, Xu T, Pei L, Sun J. Mechanism of Colonic Slow Wave Rhythm Regulated by Electro-acupuncture Determined using Calcium-Sensitive Receptor. ACUPUNCTURE ELECTRO 2021. [DOI: 10.3727/036012921x16112663844842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The calcium-sensitive receptor (CaSR) plays a role in several biological processes. However, its role in intestinal motility remains unclear. In this study, we aimed to determine the effect of electro-acupuncture (EA) at Shangjuxu (ST37) on CaSR in colonic dysplasia mice, and to explore
the possible mechanism of EA regulating colonic movement. The mice were injected with nicardipine or hexamethonium bromide to induce colonic dysplasia. Intestinal transit function was assessed by twelve hours fecal granules and fecal water content percentage, while colonic slow wave was assessed
by multi-channel physiological signal acquisition system, immunofluorescence and laser confocal microscopy were used to examine CaSR expression in the gastrointestinal (GI) tract of the mice. We found that the number of fecal particles, the frequency and amplitude of colonic slow wave were
disrupted after nicardipine or hexamethonium bromide injection. In addition, CaSR expression in control group was mainly distributed in intestinal epithelial cells, and the morphological structure of mucosal layer was regular. Compared with control group, the structure of mucosal layer in
nicardipine group and hexamethonium bromide group were all disorderly, the expression and fluorescence intensity of CaSR in nicardipine group were visible, but in hexamethonium bromide group were weakened. After EA intervention, these disorders were ameliorated, which suggested that EA at
ST37 could therefore regulate colonic motility disorders via the involvement of CaSR.
Collapse
|
136
|
Yarova PL, Huang P, Schepelmann MW, Bruce R, Ecker R, Nica R, Telezhkin V, Traini D, Gomes Dos Reis L, Kidd EJ, Ford WR, Broadley KJ, Kariuki BM, Corrigan CJ, Ward JPT, Kemp PJ, Riccardi D. Characterization of Negative Allosteric Modulators of the Calcium-Sensing Receptor for Repurposing as a Treatment of Asthma. J Pharmacol Exp Ther 2021; 376:51-63. [PMID: 33115824 DOI: 10.1124/jpet.120.000281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
Asthma is still an incurable disease, and there is a recognized need for novel small-molecule therapies for people with asthma, especially those poorly controlled by current treatments. We previously demonstrated that calcium-sensing receptor (CaSR) negative allosteric modulators (NAMs), calcilytics, uniquely suppress both airway hyperresponsiveness (AHR) and inflammation in human cells and murine asthma surrogates. Here we assess the feasibility of repurposing four CaSR NAMs, which were originally developed for oral therapy for osteoporosis and previously tested in the clinic as a novel, single, and comprehensive topical antiasthma therapy. We address the hypotheses, using murine asthma surrogates, that topically delivered CaSR NAMs 1) abolish AHR; 2) are unlikely to cause unwanted systemic effects; 3) are suitable for topical application; and 4) inhibit airway inflammation to the same degree as the current standard of care, inhaled corticosteroids, and, furthermore, inhibit airway remodeling. All four CaSR NAMs inhibited poly-L-arginine-induced AHR in naïve mice and suppressed both AHR and airway inflammation in a murine surrogate of acute asthma, confirming class specificity. Repeated exposure to inhaled CaSR NAMs did not alter blood pressure, heart rate, or serum calcium concentrations. Optimal candidates for repurposing were identified based on anti-AHR/inflammatory activities, pharmacokinetics/pharmacodynamics, formulation, and micronization studies. Whereas both inhaled CaSR NAMs and inhaled corticosteroids reduced airways inflammation, only the former prevented goblet cell hyperplasia in a chronic asthma model. We conclude that inhaled CaSR NAMs are likely a single, safe, and effective topical therapy for human asthma, abolishing AHR, suppressing airways inflammation, and abrogating some features of airway remodeling. SIGNIFICANCE STATEMENT: Calcium-sensing receptor (CaSR) negative allosteric modulators (NAMs) reduce airway smooth muscle hyperresponsiveness, reverse airway inflammation as efficiently as topical corticosteroids, and suppress airway remodeling in asthma surrogates. CaSR NAMs, which were initially developed for oral therapy of osteoporosis proved inefficacious for this indication despite being safe and well tolerated. Here we show that structurally unrelated CaSR NAMs are suitable for inhaled delivery and represent a one-stop, steroid-free approach to asthma control and prophylaxis.
Collapse
Affiliation(s)
- Polina L Yarova
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Ping Huang
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Martin W Schepelmann
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Richard Bruce
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Rupert Ecker
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Robert Nica
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Vsevolod Telezhkin
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Daniela Traini
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Larissa Gomes Dos Reis
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Emma J Kidd
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - William R Ford
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Kenneth J Broadley
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Benson M Kariuki
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Christopher J Corrigan
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Jeremy P T Ward
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Paul J Kemp
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| | - Daniela Riccardi
- Schools of Biosciences (P.L.Y., P.H., M.W.S., R.B., P.J.K., D.R.), Pharmacy (E.J.K., W.R.F., K.J.B.), and Chemistry (B.M.K.), Cardiff University, Cardiff, United Kingdom; Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (M.W.S.); TissueGnostics GmbH, Vienna, Austria (R.E., R.N.); School of Dental Sciences, University of Newcastle, United Kingdom (V.T.); Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia (D.T., L.G.d.R.); and School of Immunology & Microbial Sciences, King's College London, London, United Kingdom (C.J.C., J.P.T.W.)
| |
Collapse
|
137
|
Wu H, Li Q, Fan L, Zeng D, Chi X, Guan B, Hu B, Lu Y, Yun C, Krämer B, Hocher B, Liu F, Yin L. Prognostic Value of Serum Magnesium in Mortality Risk among Patients on Hemodialysis: A Meta-Analysis of Observational Studies. KIDNEY DISEASES 2021; 7:24-33. [PMID: 33614731 PMCID: PMC7879293 DOI: 10.1159/000510513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022]
Abstract
Background Previous studies have reported that serum magnesium (Mg) deficiency is involved in the development of heart failure, particularly in patients with end-stage kidney disease. The association between serum Mg levels and mortality risk in patients receiving hemodialysis is controversial. We aimed to estimate the prognostic value of serum Mg concentration on all-cause mortality and cardiovascular mortality in patients receiving hemodialysis. Methods We did a systematic literature search in PubMed, EMBASE, Cochrane Library, and Web of Science to identify eligible studies that reported the prognostic value of serum Mg levels in mortality risk among patients on hemodialysis. We performed a meta-analysis by pooling and analyzing hazard ratios (HRs) and 95% confidence intervals (CIs). Results We identified 13 observational studies with an overall sample of 42,967 hemodialysis patients. Higher all-cause mortality (adjusted HR 1.58 [95% CI: 1.31–1.91]) and higher cardiovascular mortality (adjusted HR 3.08 [95% CI: 1.27–7.50]) were found in patients with lower serum Mg levels after multivariable adjustment. There was marked heterogeneity (I<sup>2</sup> = 79.6%, p < 0.001) that was partly explained by differences in age stratification and study area. In addition, subgroup analysis showed that a serum Mg concentration of ≤1.1 mmol/L might be the vigilant cutoff value. Conclusion A lower serum Mg level was associated with higher all-cause mortality and cardiovascular mortality in patients receiving hemodialysis.
Collapse
Affiliation(s)
- Hongwei Wu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Qiang Li
- Department of Nephrology, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Lijing Fan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Dewang Zeng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Nephrology, Huadu District People's Hospital, Guangzhou, China
| | - Xianggeng Chi
- Department of Nephrology, The First Affiliated Xiaolan Hospital of Southern Medical University, Zhongshan, China
- Department of Medicine Nephrology, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany
| | - Baozhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yongping Lu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Medicine Nephrology, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany
| | - Chen Yun
- Department of Medicine Nephrology, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany
| | - Bernhard Krämer
- Department of Medicine Nephrology, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany
| | - Berthold Hocher
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Medicine Nephrology, Medical Faculty Mannheim Heidelberg University, Mannheim, Germany
| | - Fanna Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- **Fanna Liu, Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 West Huangpu Avenue, Guangzhou 510632 (China),
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- *Lianghong Yin, Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, 613 West Huangpu Avenue, Guangzhou 510632 (China),
| |
Collapse
|
138
|
Cho H, Lee J, Jang S, Lee J, Oh TI, Son Y, Lee E. CaSR-Mediated hBMSCs Activity Modulation: Additional Coupling Mechanism in Bone Remodeling Compartment. Int J Mol Sci 2020; 22:ijms22010325. [PMID: 33396907 PMCID: PMC7795180 DOI: 10.3390/ijms22010325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/01/2023] Open
Abstract
Near the bone remodeling compartments (BRC), extracellular calcium concentration (Ca2+o) is locally elevated and bone marrow stromal cells (BMSCs) close to the BRC can be exposed to high calcium concentration. The calcium-sensing receptor (CaSR) is known to play a key role in maintaining extracellular calcium homeostasis by sensing fluctuations in the levels of extracellular calcium (Ca2+o). When human BMSCs (hBMSCs) were exposed to various calcium concentrations (1.8, 3, 5, 10, 30 mM), moderate-high extracellular calcium concentrations (3–5 mM) stimulated proliferation, while a high calcium concentration (30 mM) inhibited the proliferation. Exposure to various calcium concentrations did not induce significant differences in the apoptotic cell fraction. Evaluation of multi-lineage differentiation potential showed no significant difference among various calcium concentration groups, except for the high calcium concentration (30 mM) treated group, which resulted in increased calcification after in vitro osteogenic differentiation. Treatment of NPS2143, a CaSR inhibitor, abolished the stimulatory effect on hBMSCs proliferation and migration indicating that CaSR is involved. These results suggest that the calcium concentration gradient near the BRC may play an important role in bone remodeling by acting as an osteoblast–osteoclast coupling mechanism through CaSR.
Collapse
Affiliation(s)
- Hyunji Cho
- College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Seochon-dong, Kiheung-go, Yongin-si, Geonggi-do 17104, Korea;
| | - Jisoo Lee
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.L.); (S.J.)
| | - Seoyoung Jang
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul 02447, Korea; (J.L.); (S.J.)
| | - Jungsun Lee
- R&D Institute, Biosolution Inc., Seoul 18111, Korea;
| | - Tong In Oh
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science, Kyung Hee University, Seochon-dong, Kiheung-go, Yongin-si, Geonggi-do 17104, Korea
- Correspondence: (Y.S.); (E.L.); Tel.: +82-31-201-3822 (Y.S.); +82-10-3751-7532 (E.L.)
| | - EunAh Lee
- Impedance Imaging Research Center, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (Y.S.); (E.L.); Tel.: +82-31-201-3822 (Y.S.); +82-10-3751-7532 (E.L.)
| |
Collapse
|
139
|
Genetic Abnormalities in Pancreatitis: An Update on Diagnosis, Clinical Features, and Treatment. Diagnostics (Basel) 2020; 11:diagnostics11010031. [PMID: 33375361 PMCID: PMC7824215 DOI: 10.3390/diagnostics11010031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/12/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Several pancreatitis susceptibility genes have been identified to date. A relationship between a mutation in the cationic trypsinogen (protease serine 1, PRSS1) gene and hereditary pancreatitis (HP) was first identified in 1996. Currently, HP has been defined as either two or more individuals within a family exhibiting pancreatitis for two or more generations, or pancreatitis linked to mutation of the PRSS1 gene. In 2000, a mutation in the serine protease inhibitor gene (Kazal type 1: SPINK1) was reported to be related to sporadic pancreatitis of unknown etiology. This paper reviews and summarizes the current published data on the pancreatitis susceptibility genes, mainly PRSS1 and SPINK1 genes, and introduces a diagnostic and therapeutic approach for dealing with patients with these gene mutations. Patients with these genetic predispositions, both children and adults, have often been initially diagnosed with idiopathic acute pancreatitis, in approximately 20-50% of pediatric cases and 28-80% of adult cases. In such patients, where the etiology is unknown, genetic testing, which requires pre-test and post-test genetic counselling, may prove helpful. Patients with chronic pancreatitis (CP) due to SPINK1 gene mutation and HP patients have a potentially high risk of pancreatic exocrine insufficiency, diabetes mellitus, and, of particular importance, pancreatic cancer. Thus, these patients require careful long-term follow-up and management. Specifically, symptomatic CP patients often need endoscopic therapy or surgery, often following a step-up approach beginning with endoscopic therapy and progressing to surgery if necessary, which is similar to the therapeutic approach for patients with CP due to other etiologies. It is important that clinicians are aware of the characteristics of patients with pancreatitis susceptibility genetic abnormalities.
Collapse
|
140
|
The Calcilytic Drug Calhex-231 Ameliorates Vascular Hyporesponsiveness in Traumatic Hemorrhagic Shock by Inhibiting Oxidative Stress and miR-208a-Mediated Mitochondrial Fission. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4132785. [PMID: 33343806 PMCID: PMC7732383 DOI: 10.1155/2020/4132785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022]
Abstract
Background The calcium-sensing receptor (CaSR) plays a fundamental role in extracellular calcium homeostasis in humans. Surprisingly, CaSR is also expressed in nonhomeostatic tissues and is involved in regulating diverse cellular functions. The objective of this study was to determine if Calhex-231 (Cal), a negative modulator of CaSR, may be beneficial in the treatment of traumatic hemorrhagic shock (THS) by improving cardiovascular function and investigated the mechanisms. Methods Rats that had been subjected to THS and hypoxia-treated vascular smooth muscle cells (VSMCs) were used in this study. The effects of Cal on cardiovascular function, animal survival, hemodynamics, and vital organ function in THS rats and the relationship to oxidative stress, mitochondrial fusion-fission, and microRNA (miR-208a) were investigated. Results Cal significantly improved hemodynamics, elevated blood pressure, increased vital organ blood perfusion and local oxygen supply, and markedly improved the survival outcomes of THS rats. Furthermore, Cal significantly improved vascular reactivity after THS in vivo and in vitro. Cal also restored the THS-induced decrease in myosin light chain (MLC) phosphorylation (the key element for VSMC contraction). Inhibition of MLC phosphorylation antagonized the Cal-induced restoration of vascular reactivity following THS. Cal suppressed oxidative stress in THS rats and hypoxic-VSMCs. Meanwhile, THS induced expression of mitochondrial fission proteins Drp1 and Fis1 and decreased expression of mitochondrial fusion protein Mfn1 in vascular tissues. Cal reduced expression of Drp1 and Fis1. In hypoxic-VSMCs, Cal inhibited mitochondrial fragmentation and preserved mitochondrial morphology. In addition, miR-208a mimic decreased Fis1 expression, and miR-208a inhibitor prevented Cal-induced Fis1 downregulation in hypoxic-VSMCs. Conclusion Calhex-231 exhibits outstanding potential for effective therapy of traumatic hemorrhagic shock, and the beneficial effects result from its protection of vascular function via inhibition of oxidative stress and miR-208a-mediated mitochondrial fission.
Collapse
|
141
|
Iamartino L, Elajnaf T, Gall K, David J, Manhardt T, Heffeter P, Grusch M, Derdak S, Baumgartner-Parzer S, Schepelmann M, Kallay E. Effects of pharmacological calcimimetics on colorectal cancer cells over-expressing the human calcium-sensing receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118836. [PMID: 32861746 DOI: 10.1016/j.bbamcr.2020.118836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
The calcium-sensing receptor (CaSR) is a ubiquitously expressed multifunctional G protein-coupled receptor. Several studies reported that the CaSR plays an anti-inflammatory and anti-tumorigenic role in the intestine, and that it is down-regulated during colorectal carcinogenesis. We hypothesized that positive allosteric CaSR modulators (type II calcimimetics) selectively targeting the intestinal cells could be used for the treatment of intestinal pathologies. Therefore, the aim of this study was to determine the effect of pharmacological stimulation of CaSR on gene expression in vitro and on tumor growth in vivo. We stably transduced two colon cancer cell lines (HT29 and Caco2) with lentiviral vectors containing either the CaSR fused to GFP or GFP only. Using RNA sequencing, RT-qPCR experiments and ELISA, we determined that CaSR over-expression itself had generally little effect on gene expression in these cells. However, treatment with 1 μM of the calcimimetic NPS R-568 increased the expression of pro-inflammatory factors such as IL-23α and IL-8 and reduced the transcription of various differentiation markers in the cells over-expressing the CaSR. In vivo, neither the presence of the CaSR nor p.o. treatment of the animals with the calcimimetic cinacalcet affected tumor growth, tumor cell proliferation or tumor vascularization of murine HT29 xenografts. In summary, CaSR stimulation in CaSR over-expressing cells enhanced the expression of inflammatory markers in vitro, but was not able to repress colorectal cancer tumorigenicity in vivo. These findings suggest potential pro-inflammatory effects of the CaSR and type II calcimimetics in the intestine.
Collapse
Affiliation(s)
- Luca Iamartino
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Taha Elajnaf
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Katharina Gall
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Jacquelina David
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Teresa Manhardt
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Petra Heffeter
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Borschkegasse 8a, 1090 Vienna, Austria
| | - Michael Grusch
- Medical University of Vienna, Institute of Cancer Research and Comprehensive Cancer Center, Borschkegasse 8a, 1090 Vienna, Austria
| | - Sophia Derdak
- Medical University of Vienna, Core Facilities, Lazarettgasse 14, 1090 Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Medical University of Vienna, Department of Internal Medicine III, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Martin Schepelmann
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Enikö Kallay
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute for Pathophysiology and Allergy Research, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
142
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
143
|
Li Q, Zhang L, Lametsch R. Current progress in kokumi-active peptides, evaluation and preparation methods: a review. Crit Rev Food Sci Nutr 2020; 62:1230-1241. [DOI: 10.1080/10408398.2020.1837726] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qian Li
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Longteng Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - René Lametsch
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
144
|
Liu W, Sun J, Guo Y, Liu N, Ding X, Zhang X, Chi J, Kang N, Liu Y, Yin X. Calhex231 ameliorates myocardial fibrosis post myocardial infarction in rats through the autophagy-NLRP3 inflammasome pathway in macrophages. J Cell Mol Med 2020; 24:13440-13453. [PMID: 33043596 PMCID: PMC7701583 DOI: 10.1111/jcmm.15969] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
The calcium‐sensing receptor (CaSR) is involved in the pathophysiology of many cardiovascular diseases, including myocardial infarction (MI) and hypertension. The role of Calhex231, a specific inhibitor of CaSR, in myocardial fibrosis following MI is still unclear. Using Wistar rats, we investigated whether Calhex231 ameliorates myocardial fibrosis through the autophagy‐NLRP3 inflammasome pathway in macrophages post myocardial infarction (MI). The rats were randomly divided into sham, MI and MI + Calhex231 groups. Compared with the sham rats, the MI rats consistently developed severe cardiac function, myocardial fibrosis and infiltration of inflammatory cells including macrophages. Moreover, inflammatory pathway including activation of NLRP3 inflammasome, IL‐1β and autophagy was significantly up‐regulated in myocardial tissue, infiltrated cardiac macrophages and peritoneal macrophages of the MI rats. These impacts were reversed by Calhex231. In vitro, studies revealed that calindol and rapamycin exacerbated MI‐induced autophagy and NLRP3 inflammasome activation in peritoneal macrophages. Calhex231 and 3‐Methyladenine (a specific inhibitor of autophagy) attenuated both autophagy and NLRP3 inflammasome activation; however, the caspase‐1 inhibitor Z‐YVAD‐FMK did not. Our study indicated that Calhex231 improved cardiac function and ameliorated myocardial fibrosis post MI, likely via the inhibition of autophagy‐mediated NLRP3 inflammasome activation; this provides a new therapeutic target for ventricular remodelling‐related cardiovascular diseases.
Collapse
Affiliation(s)
- Wenxiu Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaxing Sun
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yutong Guo
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Na Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Ding
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Zhang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinyu Chi
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ningning Kang
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Liu
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinhua Yin
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
145
|
Ramezani A, Rasaee MJ, Jalaeefar A, Salmanian AH. Efficient detection of eukaryotic calcium-sensing receptor (CaSR) by polyclonal antibody against prokaryotic expressed truncated CaSR. Mol Biol Rep 2020; 47:7723-7734. [PMID: 33001312 DOI: 10.1007/s11033-020-05847-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/15/2020] [Indexed: 11/26/2022]
Abstract
Calcium-sensing receptor (CaSR), which is better known for its action as regulating calcium homeostasis, can bind various ligands. To facilitate research on CaSR and understand the receptor's function further, an in silico designed truncated protein was developed. The resulting protein folding indicated that 99% of predicted three dimensional (3D) structure residues are located in favored and allowed Ramachandran plots. However, it was found that such protein does not fold properly when expressed in prokaryotic host cells. Thioredoxin (Trx) tag was conjugated to increase the final protein's solubility, which could help obtain the soluble antigen with better immunogenic properties. The truncated recombinant proteins were expressed and purified in two forms (Trx-CaSR: RR19 and CaSR: RRJ19). The polyclonal antibody was induced by the rabbit immunization with the form of RR19. Western blot on mouse kidney lysates evidenced the proper immune recognition of the receptor by the produced antibody. The specificity and sensitivity of antibodies were also assayed by immunohistofluorescence. These experiments affirmed antibody's ability to indicate the receptor on the cell surface in native form and the possibility of applying such antibodies in further cellular and tissue assays.
Collapse
Affiliation(s)
- Aghdas Ramezani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, PO Box 14115-331, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, PO Box 14115-331, Tehran, Iran.
| | - Amirmohsen Jalaeefar
- Department of Surgical Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hatef Salmanian
- Departments of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
146
|
Mineral and bone disorder in chronic kidney disease: pioneering studies. Kidney Int 2020; 98:807-811. [PMID: 32998807 DOI: 10.1016/j.kint.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
|
147
|
|
148
|
Serna J, Bergwitz C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020; 12:E3001. [PMID: 33007883 PMCID: PMC7599912 DOI: 10.3390/nu12103001] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) plays a critical function in many tissues of the body: for example, as part of the hydroxyapatite in the skeleton and as a substrate for ATP synthesis. Pi is the main source of dietary phosphorus. Reduced bioavailability of Pi or excessive losses in the urine causes rickets and osteomalacia. While critical for health in normal amounts, dietary phosphorus is plentiful in the Western diet and is often added to foods as a preservative. This abundance of phosphorus may reduce longevity due to metabolic changes and tissue calcifications. In this review, we examine how dietary phosphorus is absorbed in the gut, current knowledge about Pi sensing, and endocrine regulation of Pi levels. Moreover, we also examine the roles of Pi in different tissues, the consequences of low and high dietary phosphorus in these tissues, and the implications for healthy aging.
Collapse
Affiliation(s)
- Juan Serna
- Yale College, Yale University, New Haven, CT 06511, USA;
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
149
|
Otto PI, Guimarães SEF, Calus MPL, Vandenplas J, Machado MA, Panetto JCC, da Silva MVGB. Single-step genome-wide association studies (GWAS) and post-GWAS analyses to identify genomic regions and candidate genes for milk yield in Brazilian Girolando cattle. J Dairy Sci 2020; 103:10347-10360. [PMID: 32896396 DOI: 10.3168/jds.2019-17890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Milk production is economically important to the Brazilian agribusiness, and the majority of the country's milk production derives from Girolando (Gir × Holstein) cows. This study aimed to identify quantitative trait loci (QTL) and candidate genes associated with 305-d milk yield (305MY) in Girolando cattle. In addition, we investigated the SNP-specific variances for Holstein and Gir breeds of origin within the sequence of candidate genes. A single-step genomic BLUP procedure was used to identify QTL associated with 305MY, and the most likely candidate genes were identified through follow-up analyses. Genomic breeding values specific for Holstein and Gir were estimated in the Girolando animals using a model that uses breed-specific partial relationship matrices, which were converted to breed of origin SNP effects. Differences between breed of origin were evaluated by comparing estimated SNP variances between breeds. From 10 genome regions explaining most additive genetic variance for 305MY in Girolando cattle, 7 candidate genes were identified on chromosomes 1, 4, 6, and 26. Within the sequence of these 7 candidate genes, Gir breed of origin SNP alleles showed the highest genetic variance. These results indicated QTL regions that could be further explored in genomic selection panels and which may also help in understanding the gene mechanisms involved in milk production in the Girolando breed.
Collapse
Affiliation(s)
- Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Mario P L Calus
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Jeremie Vandenplas
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Marco A Machado
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - João Cláudio C Panetto
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | | |
Collapse
|
150
|
Structural Mechanism of Cooperative Regulation of Calcium-Sensing Receptor-Mediated Cellular Signaling. CURRENT OPINION IN PHYSIOLOGY 2020; 17:269-277. [PMID: 33709045 DOI: 10.1016/j.cophys.2020.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Calcaium sensing receptors (CaSRs) play a central role in regulating extracellular calcium (Ca2+) homeostasis and many (patho)physiological processes. This regulation is primarily orchestrated in response to extracellular stimuli via the extracellular domain (ECD). This paper first reviews the modeled structure of the CaSR ECD and the prediction and investigation of the Ca2+ and amino acid binding sites. Several recently solved X-ray structures are then compared to support a proposed CaSR activation model involving functional cooperativity. The review also discusses recent implications for drug development. These studies provide new insights into the molecular basis of diseases and the design of therapeutic agents that target CaSR and other family C G protein-coupled receptors (cGPCRs).
Collapse
|