101
|
Song Y, Yao X, Ying H. Thyroid hormone action in metabolic regulation. Protein Cell 2011; 2:358-68. [PMID: 21614672 DOI: 10.1007/s13238-011-1046-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/24/2011] [Indexed: 12/19/2022] Open
Abstract
Thyroid hormone plays pivotal roles in growth, differentiation, development and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. The transcriptional activity of TRs is modulated by multiple factors including various TR isoforms, diverse thyroid hormone response elements, different heterodimeric partners, coregulators, and the cellular location of TRs. In the present review, we summarize recent advance in understanding the molecular mechanisms of thyroid hormone action obtained from human subject research, thyroid hormone mimetics application, TR isoform-specific knock-in mouse models, and mitochondrion study with highlights in metabolic regulations. Finally, as future perspectives, we share our thoughts about current challenges and possible approaches to promote our knowledge of thyroid hormone action in metabolism.
Collapse
Affiliation(s)
- Yiyun Song
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
102
|
Souza PCT, Barra GB, Velasco LFR, Ribeiro ICJ, Simeoni LA, Togashi M, Webb P, Neves FAR, Skaf MS, Martínez L, Polikarpov I. Helix 12 dynamics and thyroid hormone receptor activity: experimental and molecular dynamics studies of Ile280 mutants. J Mol Biol 2011; 412:882-93. [PMID: 21530542 DOI: 10.1016/j.jmb.2011.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 01/28/2023]
Abstract
Nuclear hormone receptors (NRs) form a family of transcription factors that mediate cellular responses initiated by hormone binding. It is generally recognized that the structure and dynamics of the C-terminal helix 12 (H12) of NRs' ligand binding domain (LBD) are fundamental to the recognition of coactivators and corepressors that modulate receptor function. Here we study the role of three mutations in the I280 residue of H12 of thyroid hormone receptors using site-directed mutagenesis, functional assays, and molecular dynamics simulations. Although residues at position 280 do not interact with coactivators or with the ligand, we show that its mutations can selectively block coactivator and corepressor binding, and affect hormone binding affinity differently. Molecular dynamics simulations suggest that ligand affinity is reduced by indirectly displacing the ligand in the binding pocket, facilitating water penetration and ligand destabilization. Mutations I280R and I280K link H12 to the LBD by forming salt bridges with E457 in H12, stabilizing H12 in a conformation that blocks both corepressor and coactivator recruitment. The I280M mutation, in turn, blocks corepressor binding, but appears to enhance coactivator affinity, suggesting stabilization of H12 in agonist conformation.
Collapse
Affiliation(s)
- Paulo C T Souza
- Institute of Chemistry, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
Selective thyromimetics are synthetic analogs of thyroid hormones with tissue-specific thyroid hormone actions. Tissue selectivity is partly mediated by selectivity for the thyroid hormone receptor-β isoform, but is also enhanced by tissue-selective uptake. Several preclinical animal models and recent human clinical trials have provided sound evidence that thyromimetics can serve as pharmacological tools to improve serum lipids without affecting heart rate. Thyromimetics consistently and efficiently lowered low-density lipoprotein cholesterol and lipoprotein (a) plasma levels without positive chronotropic effects. Most importantly, thyromimetics had a synergistic action when used in addition to 3-hydroxy-3-methylglutaryl CoA reductase inhibitors. Animal data have further suggested that thyromimetics might be useful in the treatment of obesity, hepatic steatosis and atherosclerosis. However, only long-term phase III clinical trials will tell if the observed lipid lowering effects of thyromimetics will improve cardiovascular outcome in humans, too. At the moment, the treatment of dyslipidemia seems to be the major indication for the therapeutic use of thyromimetics, which are now rapidly moving from bench to bed-side.
Collapse
Affiliation(s)
- Ivan Tancevski
- Department of Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|
104
|
Construction of a bacterial assay for estrogen detection based on an estrogen-sensitive intein. Appl Environ Microbiol 2011; 77:2488-95. [PMID: 21317264 DOI: 10.1128/aem.02336-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli strain DIER was constructed for estrogen detection by inserting an estrogen-sensitive intein (VMA(ER) intein) into the specific site of the constitutively expressed chromosomal lacZ gene. This VMA(ER) intein was generated by replacing the endonuclease region of the Saccharomyces cerevisiae VMA intein with the estrogen binding region of the human estrogen receptor α (hERα). When there were estrogens or analogs, the splicing of the VMA(ER) intein was induced to produce the mature LacZ protein, which was detected through a β-galactosidase colorimetric assay. Eight typical chemicals (17-β-estradiol, bisphenol A, chrysene, 6-OH-chrysene, benz[a]anthracene, pyrene, progesterone, and testosterone) were detected using this DIER strain, and the whole detection procedure was accomplished in 2 h. Their 50% effective concentrations (EC(50)), relative estrogenic activities, and estradiol equivalency factors were calculated and were quite consistent with those detected with the yeast estrogen screening (YES) system. Furthermore, the estrogenic activities of the synthetic musk samples extracted from the wastewater and waste sludge of a sewage treatment plant of Shanghai (China) were detected, and their results were comparable to those obtained from the YES system and gas chromatography-mass spectrometry (GC-MS). In conclusion, the DIER bioassay could fill a niche for the efficient, rapid, high-throughput screening of estrogenic compounds and has potential for the remote, near-real-time monitoring of environmental estrogens.
Collapse
|
105
|
Abstract
Heat-shock protein 90 (Hsp90) is a molecular chaperone that assists in the maturation of a limited set of substrate proteins that are collectively referred to as clients. The majority of identified Hsp90 clients are involved in signal transduction, including many steroid hormone receptors and kinases. A handful of Hsp90 clients can be classified as nonsignal transduction proteins, including telomerase, cystic fibrosis transmembrane conductance regulator, and antigenic peptides destined for major histocompatibility complex. Because Hsp90 clients are causative agents in cancer and cystic fibrosis, research on Hsp90 has intensified in recent years. We review the historical path of Hsp90 research within each class of client (kinase, hormone receptor, and nonsignal transduction clients) and highlight current areas of active investigation.
Collapse
|
106
|
Aagaard MM, Siersbæk R, Mandrup S. Molecular basis for gene-specific transactivation by nuclear receptors. Biochim Biophys Acta Mol Basis Dis 2010; 1812:824-35. [PMID: 21193032 DOI: 10.1016/j.bbadis.2010.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 01/31/2023]
Abstract
Nuclear receptors (NRs) are key transcriptional regulators of metazoan physiology and metabolism. Different NRs bind to similar or even identical core response elements; however, they regulate transcription in a highly receptor- and gene-specific manner. These differences in gene activation can most likely be accounted for by mechanisms involving receptor-specific interactions with DNA as well as receptor-specific interactions with protein complexes binding to adjacent and distant DNA sequences. Here, we review key molecular aspects of transactivation by NRs with special emphasis on the recent advances in the molecular mechanisms responsible for receptor- and gene-specific transcriptional activation. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Mads M Aagaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | |
Collapse
|
107
|
Figueira ACM, Saidemberg DM, Souza PCT, Martínez L, Scanlan TS, Baxter JD, Skaf MS, Palma MS, Webb P, Polikarpov I. Analysis of agonist and antagonist effects on thyroid hormone receptor conformation by hydrogen/deuterium exchange. Mol Endocrinol 2010; 25:15-31. [PMID: 21106879 DOI: 10.1210/me.2010-0202] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH3. We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes.
Collapse
Affiliation(s)
- A C M Figueira
- Universidade de São Paulo, Departamento Física e Informática, Instituto de Física, Avenida Trabalhador Sãocarlense 400, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Jin L, Li Y. Structural and functional insights into nuclear receptor signaling. Adv Drug Deliv Rev 2010; 62:1218-26. [PMID: 20723571 DOI: 10.1016/j.addr.2010.08.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 08/08/2010] [Accepted: 08/10/2010] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are important transcriptional factors that share high sequence identity and conserved domains, including a DNA-binding domain (DBD) and a ligand-binding domain (LBD). The LBD plays a crucial role in ligand-mediated nuclear receptor activity. Hundreds of different crystal structures of nuclear receptors have revealed a general mechanism for the molecular basis of ligand binding and ligand-mediated regulation of nuclear receptors. Despite the conserved fold of nuclear receptor LBDs, the ligand-binding pocket is the least conserved region among different nuclear receptor LBDs. Structural comparison and analysis show that several features of the pocket, like the size and also the shape, have contributed to the ligand binding affinity and specificity. In addition, the plastic nature of the ligand-binding pockets in many nuclear receptors provides greater flexibility to further accommodate specific ligands with a variety of conformations. Nuclear receptor coactivators usually contain multiple LXXLL motifs that are used to interact with nuclear receptors. The nuclear receptors respond differently to distinct ligands and readily exchange their ligands in different environments. The conformational flexibility of the AF-2 helix allows the nuclear receptor to sense the presence of the bound ligands, either an agonist or an antagonist, and to recruit the coactivators or corepressors that ultimately determine the transcriptional activation or repression of nuclear receptors.
Collapse
|
109
|
Trivella DBB, Sairre MI, Foguel D, Lima LMTR, Polikarpov I. The binding of synthetic triiodo l-thyronine analogs to human transthyretin: molecular basis of cooperative and non-cooperative ligand recognition. J Struct Biol 2010; 173:323-32. [PMID: 20937391 DOI: 10.1016/j.jsb.2010.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 10/03/2010] [Accepted: 10/05/2010] [Indexed: 11/25/2022]
Abstract
Transthyretin (TTR) is a tetrameric β-sheet-rich transporter protein directly involved in human amyloid diseases. Several classes of small molecules can bind to TTR delaying its amyloid fibril formation, thus being promising drug candidates to treat TTR amyloidoses. In the present study, we characterized the interactions of the synthetic triiodo L-thyronine analogs and thyroid hormone nuclear receptor TRβ-selective agonists GC-1 and GC-24 with the wild type and V30M variant of human transthyretin (TTR). To achieve this aim, we conducted in vitro TTR acid-mediated aggregation and isothermal titration calorimetry experiments and determined the TTR:GC-1 and TTR:GC-24 crystal structures. Our data indicate that both GC-1 and GC-24 bind to TTR in a non-cooperative manner and are good inhibitors of TTR aggregation, with dissociation constants for both hormone binding sites (HBS) in the low micromolar range. Analysis of the crystal structures of TTRwt:GC-1(24) complexes and their comparison with the TTRwt X-ray structure bound to its natural ligand thyroxine (T4) suggests, at the molecular level, the basis for the cooperative process displayed by T4 and the non-cooperative process provoked by both GC-1 and GC-24 during binding to TTR.
Collapse
Affiliation(s)
- Daniela B B Trivella
- Instituto de Física de São Carlos-Universidade de São Paulo, São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
110
|
Scapin S, Leoni S, Spagnuolo S, Gnocchi D, De Vito P, Luly P, Pedersen JZ, Incerpi S. Short-term effects of thyroid hormones during development: Focus on signal transduction. Steroids 2010; 75:576-84. [PMID: 19900468 DOI: 10.1016/j.steroids.2009.10.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/21/2009] [Accepted: 10/28/2009] [Indexed: 12/27/2022]
Abstract
Extranuclear or nongenomic effects of thyroid hormones are mediated by receptors located at the plasma membrane or inside cells, and are independent of protein synthesis. Recently the alphaVbeta3 integrin was identified as a cell membrane receptor for thyroid hormones, and a wide variety of nongenomic effects have now been shown to be induced through binding of thyroid hormones to this receptor. However, also other thyroid hormone receptors can produce nongenomic effects, including the cytoplasmic TRalpha and TRbeta receptors and probably also a G protein-coupled membrane receptor, and increasing importance is now given to thyroid hormone metabolites like 3,5-diiodothyronine and reverse T(3) that can mimick some nongenomic effects of T(3) and T(4). Signal transduction from the alphaVbeta3 integrin may proceed through at least three independent pathways (protein kinase C, Src or mitogen-activated kinases) but the details are still unknown. Thyroid hormones induce nongenomic effects on at least three important Na(+)-dependent transport systems, the Na(+)/K(+)-ATPase, the Na(+)/H(+) exchanger, and amino acid transport System A, leading to a mitogenic response in embryo cells; but modulation of the same transport systems may have different roles in other cells and at different developmental stages. It seems that thyroid hormones in many cases can modulate nongenomically the same targets affected by the nuclear receptors through long-term mechanisms. Recent results on nongenomic effects confirm the old theory that the primary role of thyroid hormones is to keep the steady-state level of functioning of the cell, but more and more mechanisms are discovered by which this goal can be achieved.
Collapse
Affiliation(s)
- Sergio Scapin
- Department of Cellular and Developmental Biology, Sapienza University, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Prasanth GK, Divya LM, Sadasivan C. Bisphenol-A can bind to human glucocorticoid receptor as an agonist: an in silico study. J Appl Toxicol 2010; 30:769-74. [PMID: 20669259 DOI: 10.1002/jat.1570] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 11/12/2022]
Abstract
Bisphenol-A (BPA) is a primary monomer in polycarbonate plastics and epoxy resins. BPA may be released into the environment following its formation via hydrolysis of ester bonds of the polymers. It has been detected in human plasma, placenta, amniotic fluid, amniotic chord, urine and saliva. BPA disrupts normal cell function by acting as an estrogen agonist as well as an androgen antagonist. The present study was carried out to investigate whether BPA can bind to human glucocorticoid receptor (GR) and elucidate its mode of interaction. BPA has been successfully docked in silico into the ligand binding site of GR using the program Discovery Studio 2.0. The structure has been compared with other agonist and antagonist bound structures of GR. It is found that the mode of interactions and binding energy of BPA were similar to that of DEXA and cortisol, two known agonists of GR. This reveals that BPA can bind to GR as an agonist. Hence, BPA may produce biological effects similar to that produced by glucocorticoids.
Collapse
Affiliation(s)
- G K Prasanth
- Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Palayad P.O., Kannur, Kerala-670661, India
| | | | | |
Collapse
|
112
|
Margolis R, Smith P. Commentary: Parallel evolution of Molecular Endocrinology as a journal and a discipline: convergence of interests with the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK/NIH). Mol Endocrinol 2010; 24:1697-702. [PMID: 20660301 DOI: 10.1210/me.2010-0168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) celebrates in 2010 its 60(th) year as an institute of the National Institutes of Health. NIDDK has been fundamental in providing support for research in endocrinology, fostering research to elucidate basic principles of endocrine signaling leading to understanding of diseases and disorders of hormone action. Over this time span, a move to a more molecular level in understanding of the basis of hormone action has emerged and been supported by NIDDK, with many advances finding their way into a new journal, Molecular Endocrinology. The merging of disciplines that has made this possible constitutes a major force for further progress as NIDDK moves forward over the next 60 yr. Together, NIDDK and Molecular Endocrinology have served as catalysts for advancing knowledge in the field, energizing new paradigms that have led to advances in the clinic.
Collapse
Affiliation(s)
- Ronald Margolis
- Division of Diabetes, Endocrinology and Metabolic Disease, National Institute of Diabetes and Digestive and Kidney Diseases/National Institutes of Health, 6707 Democracy Boulevard, Room 693, Bethesda, MD 20892-5460, USA.
| | | |
Collapse
|
113
|
Kinne A, Kleinau G, Hoefig CS, Grüters A, Köhrle J, Krause G, Schweizer U. Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J Biol Chem 2010; 285:28054-63. [PMID: 20628049 DOI: 10.1074/jbc.m110.129577] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8, SLC16A2) is a thyroid hormone (TH) transmembrane transport protein mutated in Allan-Herndon-Dudley syndrome, a severe X-linked psychomotor retardation. The neurological and endocrine phenotypes of patients deficient in MCT8 function underscore the physiological significance of carrier-mediated TH transmembrane transport. MCT8 belongs to the major facilitator superfamily of 12 transmembrane-spanning proteins and mediates energy-independent bidirectional transport of iodothyronines across the plasma membrane. Structural information is lacking for all TH transmembrane transporters. To gain insight into structure-function relations in TH transport, we chose human MCT8 as a paradigm. We systematically performed conventional and liquid chromatography-tandem mass spectrometry-based uptake measurements into MCT8-transfected cells using a large number of compounds structurally related to iodothyronines. We found that human MCT8 is specific for L-iodothyronines and requires at least one iodine atom per aromatic ring. Neither thyronamines, decarboxylated metabolites of iodothyronines, nor triiodothyroacetic acid and tetraiodothyroacetic acid, TH derivatives lacking both chiral center and amino group, are substrates for MCT8. The polyphenolic flavonoids naringenin and F21388, potent competitors for TH binding at transthyretin, did not inhibit T(3) transport, suggesting that MCT8 can discriminate its ligand better than transthyretin. Bioinformatic studies and a first molecular homology model of MCT8 suggested amino acids potentially involved in substrate interaction. Indeed, alanine mutation of either Arg(445) (helix 8) or Asp(498) (helix 10) abrogated T(3) transport activity of MCT8, supporting their predicted role in substrate recognition. The MCT8 model allows us to rationalize potential interactions of amino acids including those mutated in patients with Allan-Herndon-Dudley syndrome.
Collapse
Affiliation(s)
- Anita Kinne
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
114
|
Watanabe C, Watanabe H, Tanaka S. An interpretation of positional displacement of the helix12 in nuclear receptors: preexistent swing-up motion triggered by ligand binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1832-40. [PMID: 20601221 DOI: 10.1016/j.bbapap.2010.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 05/27/2010] [Accepted: 06/09/2010] [Indexed: 11/16/2022]
Abstract
Positional displacement of helix12 (H12) in the estrogen receptor alpha, which belongs to the nuclear receptor (NR) superfamily, is studied by the molecular dynamics (MD) simulation and the linear response theory. Tendency of the H12 to swing up upon ligand binding, which is consistent with X-ray structures and earlier MD simulations, is reproduced by the calculation of the conformational fluctuation in apo state and the response to the external perturbation. Our study thus provides an interpretation of the positional change of the H12 such that it is derived by the preexistent swing-up motion where the ligand binding works only as a trigger. Our finding, which illustrates underlying mechanism of the H12 motion, would contribute to finding a way to regulate the transcriptional activity by synthesized ligands because the transcriptional activity of the NR is governed by the position of the H12.
Collapse
Affiliation(s)
- Chiduru Watanabe
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada, Kobe 657-8501, Japan.
| | | | | |
Collapse
|
115
|
Pfaff SJ, Fletterick RJ. Hormone binding and co-regulator binding to the glucocorticoid receptor are allosterically coupled. J Biol Chem 2010; 285:15256-15267. [PMID: 20335180 PMCID: PMC2865338 DOI: 10.1074/jbc.m110.108118] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/09/2010] [Indexed: 12/19/2022] Open
Abstract
The glucocorticoid receptor initiates the cellular response to glucocorticoid steroid hormones in vertebrates. Co-regulator proteins dock to the receptor in response to hormone binding and potentiate the transcriptional activity of the receptor by modifying DNA and recruiting essential transcription factors like RNA polymerase II. Hormones and co-regulators bind at distinct sites in the ligand binding domain yet function cooperatively to mediate transcriptional control. This study reveals and quantifies energetic coupling between two binding sites using purified components. Using a library of peptides taken from co-regulator proteins, we determine the pattern of co-regulator binding to the glucocorticoid receptor ligand binding domain. We show that peptides from co-regulators differ in their effects on hormone binding and kinetics. Peptides from DAX1 and SRC1 bind with similar affinity, but DAX1 binding is coupled to hormone binding, and SRC1 is not. Mechanistic details of co-regulator binding and coupling to the hormone binding pocket are uncovered by analysis of properties endowed by mutation of a key residue in the allosteric network connecting the sites.
Collapse
Affiliation(s)
- Samuel J Pfaff
- Graduate Group in Biophysics, University of California, San Francisco, California 94143
| | - Robert J Fletterick
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143.
| |
Collapse
|
116
|
Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 2010; 72:247-72. [PMID: 20148675 DOI: 10.1146/annurev-physiol-021909-135917] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Pharmacology, and Center for Molecular Design, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
117
|
|
118
|
Abstract
Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T(3) via transcriptional regulation. Two TR genes, alpha and beta, encode four T(3)-binding receptor isoforms (alpha1, beta1, beta2, and beta3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T(3), transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T(3) target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T(3)-dependent manner. In the absence of T(3), corepressors act to repress the basal transcriptional activity, whereas in the presence of T(3), coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRbeta gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T(3). Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin alphavbeta3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na(+)/H(+) exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T(4) is an agonist at the plasma membrane without conversion to T(3). Tetraiodothyroacetic acid is a T(4) analog that inhibits the actions of T(4) and T(3) at the integrin, including angiogenesis and tumor cell proliferation. T(3) can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin alphavbeta3. Downstream consequences of phosphatidylinositol 3-kinase activation by T(3) include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T(3) and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T(4) and rT(3), but not T(3), is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRalpha1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton.
Collapse
Affiliation(s)
- Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
119
|
Therapeutic Implications of PPARgamma in Human Osteosarcoma. PPAR Res 2010; 2010:956427. [PMID: 20182546 PMCID: PMC2825651 DOI: 10.1155/2010/956427] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/21/2009] [Accepted: 11/24/2009] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma (OS) is the most common nonhematologic malignancy of bone in children and adults. Although dysregulation of tumor suppressor genes and oncogenes, such as Rb, p53, and the genes critical to cell cycle control, genetic stability, and apoptosis have been identified in OS, consensus genetic changes that lead to OS development are poorly understood. Disruption of the osteogenic differentiation pathway may be at least in part responsible for OS tumorigenesis. Current OS management involves chemotherapy and surgery. Peroxisome proliferator-activated receptor (PPAR) agonists and/or retinoids can inhibit OS proliferation and induce apoptosis and may inhibit OS growth by promoting osteoblastic terminal differentiation. Thus, safe and effective PPAR agonists and/or retinoid derivatives can be then used as adjuvant therapeutic drugs for OS therapy. Furthermore, these agents have the potential to be used as chemopreventive agents for the OS patients who undergo the resection of the primary bone tumors in order to prevent local recurrence and/or distal pulmonary metastasis.
Collapse
|
120
|
Hirano T, Kagechika H. Thyromimetics: a review of recent reports and patents (2004 – 2009). Expert Opin Ther Pat 2010; 20:213-28. [DOI: 10.1517/13543770903567069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
121
|
Martínez L, Souza PCT, Garcia W, Batista FAH, Portugal RV, Nascimento AS, Nakahira M, Lima LMTR, Polikarpov I, Skaf MS. On the Denaturation Mechanisms of the Ligand Binding Domain of Thyroid Hormone Receptors. J Phys Chem B 2009; 114:1529-40. [DOI: 10.1021/jp911554p] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Leandro Martínez
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Paulo C. T. Souza
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Wanius Garcia
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Fernanda A. H. Batista
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Rodrigo V. Portugal
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Alessandro S. Nascimento
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Marcel Nakahira
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Luis M. T. R. Lima
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Igor Polikarpov
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Munir S. Skaf
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador SaoCarlense 400-IFSC-Grupo de Crystalografia, P.O. Box 369, Sao Carlos, SP, 13560-970, Brazil, and Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, bloco B, subsolo, sala 34. Ilha do Fundão, Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
122
|
Gaining ligand selectivity in thyroid hormone receptors via entropy. Proc Natl Acad Sci U S A 2009; 106:20717-22. [PMID: 19926848 DOI: 10.1073/pnas.0911024106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TRbeta) vs. TRalpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TRbeta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331beta) in the TRbeta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3'-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TRbeta selectivity. TR x-ray structures reveal better fit of ligand with the TRalpha LBC. The TRbeta LBC, however, expands relative to TRalpha in the presence of Triac (549 A(3) vs. 461 A(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TRbeta and permits greater flexibility of the Triac carboxylate group in TRbeta than in TRalpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TRbeta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.
Collapse
|
123
|
Lima STC, Nguyen NH, Togashi M, Apriletti JW, Nguyen P, Polikarpov I, Scanlan TS, Baxter JD, Webb P. Differential effects of TR ligands on hormone dissociation rates: evidence for multiple ligand entry/exit pathways. J Steroid Biochem Mol Biol 2009; 117:125-31. [PMID: 19729063 PMCID: PMC2784034 DOI: 10.1016/j.jsbmb.2009.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 08/16/2009] [Accepted: 08/21/2009] [Indexed: 11/26/2022]
Abstract
Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself. This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here, we show that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2)<2h) of radiolabeled T(3) vs. T(3) (T(1/2) approximately 5-7h). We cannot discern relationships between this effect and ligand size, activity or affinity for TRbeta. One ligand, GC-24, binds the TR LBC and (weakly) to the TRbeta-LBD surface that mediates dimer/heterodimer interaction, but we cannot link this interaction to rapid T(3) dissociation. Instead, several lines of evidence suggest that the challenger ligand must interact with the buried LBC to promote rapid T(3) release. Since previous molecular dynamics simulations suggest that TR ligands leave the LBC by several routes, we propose that a subset of challenger ligands binds and stabilizes a partially unfolded intermediate state of TR that arises during T(3) release and that this effect enhances hormone dissociation.
Collapse
Affiliation(s)
- Suzana T. Cunha Lima
- Department of General Biology, Biology Institute. Federal University of Bahia. 147, Barão de Geremoabo Street, - Campus of Ondina, Salvador, BA, 40170–290 Brazil
| | - Ngoc-Ha Nguyen
- Department of Biochemistry and Biophysics, University of California School of Medicine, San Francisco, CA 94143, USA
| | - Marie Togashi
- Health Science Institute. Brasilia University, Asa Norte, Brasilia, DF 70919–970, Brazil
| | - James W. Apriletti
- Diabetes Center, University of California School of Medicine, San Francisco, CA 94143, USA
| | - Phuong Nguyen
- Diabetes Center, University of California School of Medicine, San Francisco, CA 94143, USA
| | - Igor Polikarpov
- Physics Institute of São Carlos, University of São Paulo. 400, Trabalhador São Carlense Av., São Carlos, SP 13560–970, Brazil
| | - Thomas S. Scanlan
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR97239
| | - John D. Baxter
- The Methodist Hospital Research Institute. 6565 Fannin St. Houston, TX 77030, USA
| | - Paul Webb
- The Methodist Hospital Research Institute. 6565 Fannin St. Houston, TX 77030, USA
| |
Collapse
|
124
|
Abstract
The molting process in arthropods is regulated by steroid hormones acting via nuclear receptor proteins. The most common molting hormone is the ecdysteroid, 20-hydroxyecdysone. The receptors of 20-hydroxyecdysone have also been identified in many arthropod species, and the amino acid sequences determined. The functional molting hormone receptors consist of two members of the nuclear receptor superfamily, namely the ecdysone receptor and the ultraspiracle, although the ecdysone receptor may be functional, in some instances, without the ultraspiracle. Generally, the ecdysone receptor/ultraspiracle heterodimer binds to a number of ecdysone response elements, sequence motifs that reside in the promoter of various ecdysteroid-responsive genes. In the ensuing transcriptional induction, the ecdysone receptor/ultraspiracle complex binds to 20-hydroxyecdysone or to a cognate ligand that, in turn, leads to the release of a corepressor and the recruitment of coactivators. 3D structures of the ligand-binding domains of the ecdysone receptor and the ultraspiracle have been solved for a few insect species. Ecdysone agonists bind to ecdysone receptors specifically, and ligand-ecdysone receptor binding is enhanced in the presence of the ultraspiracle in insects. The basic mode of ecdysteroid receptor action is highly conserved, but substantial functional differences exist among the receptors of individual species. Even though the transcriptional effects are apparently similar for ecdysteroids and nonsteroidal compounds such as diacylhydrazines, the binding shapes are different between them. The compounds having the strongest binding affinity to receptors ordinarily have strong molting hormone activity. The ability of the ecdysone receptor/ultraspiracle complex to manifest the effects of small lipophilic agonists has led to their use as gene switches for medical and agricultural applications.
Collapse
Affiliation(s)
- Yoshiaki Nakagawa
- Division of Applied Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-Ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
125
|
Fair PA, Lee HB, Adams J, Darling C, Pacepavicius G, Alaee M, Bossart GD, Henry N, Muir D. Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2248-2254. [PMID: 19410343 DOI: 10.1016/j.envpol.2009.04.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 03/23/2009] [Accepted: 04/01/2009] [Indexed: 05/27/2023]
Abstract
The presence of triclosan, a widely-used antibacterial chemical, is currently unknown in higher trophic-level species such as marine mammals. Blood plasma collected from wild bottlenose dolphins (Tursiops truncatus) in Charleston, SC (CHS) (n = 13) and Indian River Lagoon, FL (IRL) (n = 13) in 2005 was analyzed for triclosan. Plasma concentrations in CHS dolphins ranged from 0.12 to 0.27 ng/g wet weight (mean 0.18 ng/g), with 31% of the sampled individuals having detectable triclosan. The mean IRL dolphin plasma concentrations were 0.072 ng/g wet weight (range 0.025-0.11 ng/g); 23% of the samples having detectable triclosan. In the CHS area, triclosan effluent values from two WWTP were both 190 ng/L and primary influents were 2800 ng/L and 3400 ng/L. Triclosan values in CHS estuarine surface water samples averaged 7.5 ng/L (n = 18) ranging from 4.9 to 14 ng/L. This is the first study to report bioaccumulation of anthropogenic triclosan in a marine mammal highlighting the need for further monitoring and assessment.
Collapse
Affiliation(s)
- Patricia A Fair
- National Oceanic and Atmospheric Administration, National Ocean Services, Center for Coastal Environmental Health and Biomolecular Research, 219 Fort Johnson Road, Charleston, SC 29412-9110, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Mizwicki MT, Norman AW. The vitamin D sterol-vitamin D receptor ensemble model offers unique insights into both genomic and rapid-response signaling. Sci Signal 2009; 2:re4. [PMID: 19531804 DOI: 10.1126/scisignal.275re4] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Steroid hormones serve as chemical messengers in a wide number of species and target tissues by transmitting signals that result in both genomic and nongenomic responses. Genomic responses are mediated by the formation of a ligand-receptor complex with its cognate steroid hormone nuclear receptor (NR). Nongenomic responses can be mediated at the plasma membrane by a membrane-localized NR. The focus of this Review is on the structural attributes and molecular mechanisms underlying vitamin D sterol (VDS)-vitamin D receptor (VDR) selective and stereospecific regulation of nongenomic and genomic signaling. The VDS-VDR conformational ensemble model describes how VDSs can selectively initiate or block either nongenomic or genomic biological responses by interacting with two VDR ligand-binding pockets, one kinetically favored by 1alpha,25(OH)(2)D(3) (1,25D) and the other thermodynamically favored. We describe the variables that affect the three major elements of the model: the conformational flexibility of the unliganded (apo) protein, the flexibility of the VDS, and the physicochemical selectivity of the VDR genomic pocket (VDR-GP) and alternative pocket (VDR-AP). We also discuss how these three factors collectively provide a rational explanation for the complexities of VDS regulation of cell biology and highlight the current limitations of the model.
Collapse
Affiliation(s)
- Mathew T Mizwicki
- Department of Biochemistry, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
127
|
A thyroid hormone receptor mutation that dissociates thyroid hormone regulation of gene expression in vivo. Proc Natl Acad Sci U S A 2009; 106:9441-6. [PMID: 19439650 DOI: 10.1073/pnas.0903227106] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resistance to thyroid hormone (RTH) is most often due to point mutations in the beta-isoform of the thyroid hormone (TH) receptor (TR-beta). The majority of mutations involve the ligand-binding domain, where they block TH binding and receptor function on both stimulatory and inhibitory TH response elements. In contrast, a few mutations in the ligand-binding domain are reported to maintain TH binding and yet cause RTH in certain tissues. We introduced one such naturally occurring human RTH mutation (R429Q) into the germline of mice at the TR-beta locus. R429Q knock-in (KI) mice demonstrated elevated serum TH and inappropriately normal thyroid-stimulating hormone (TSH) levels, consistent with hypothalamic-pituitary RTH. In contrast, 3 hepatic genes positively regulated by TH (Dio1, Gpd1, and Thrsp) were increased in R429Q KI animals. Mice were then rendered hypothyroid, followed by graded T(3) replacement. Hypothyroid R429Q KI mice displayed elevated TSH subunit mRNA levels, and T(3) treatment failed to normally suppress these levels. T(3) treatment, however, stimulated pituitary Gh levels to a greater degree in R429Q KI than in control mice. Gsta, a hepatic gene negatively regulated by TH, was not suppressed in R429Q KI mice after T(3) treatment, but hepatic Dio1 and Thrsp mRNA levels increased in response to TH. Cardiac myosin heavy chain isoform gene expression also showed a specific defect in TH inhibition. In summary, the R429Q mutation is associated with selective impairment of TH-mediated gene repression, suggesting that the affected domain, necessary for TR homodimerization and corepressor binding, has a critical role in negative gene regulation by TH.
Collapse
|
128
|
Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat Rev Drug Discov 2009; 8:308-20. [PMID: 19337272 DOI: 10.1038/nrd2830] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thyroid hormones influence heart rate, serum lipids, metabolic rate, body weight and multiple aspects of lipid, carbohydrate, protein and mineral metabolism. Although increased thyroid hormone levels can improve serum lipid profiles and reduce fat, these positive effects are counterbalanced by harmful effects on the heart, muscle and bone. Thus, attempts to use thyroid hormones for cholesterol-lowering and weight loss purposes have so far been limited. However, over the past decade, thyroid hormone analogues that are capable of uncoupling beneficial effects from deleterious effects have been developed. Such drugs could serve as powerful new tools to address two of the largest medical problems in developed countries--atherosclerosis and obesity.
Collapse
|
129
|
Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Cadmium--a metallohormone? Toxicol Appl Pharmacol 2009; 238:266-71. [PMID: 19362102 DOI: 10.1016/j.taap.2009.03.025] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/29/2009] [Accepted: 03/31/2009] [Indexed: 01/11/2023]
Abstract
Cadmium is a heavy metal that is often referred to as the metal of the 20th century. It is widely used in industry principally in galvanizing and electroplating, in batteries, in electrical conductors, in the manufacture of alloys, pigments, and plastics, and in the stabilization of phosphate fertilizers. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. In the general population, exposure to cadmium occurs primarily through dietary sources, cigarette smoking, and, to a lesser degree, drinking water. Although the metal has no known physiological function, there is evidence to suggest that the cadmium is a potent metallohormone. This review summarizes the increasing evidence that cadmium mimics the function of steroid hormones, addresses our current understanding of the mechanism by which cadmium functions as a hormone, and discusses its potential role in development of the hormone dependent cancers.
Collapse
Affiliation(s)
- Celia Byrne
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
130
|
Jouravel N, Sablin E, Togashi M, Baxter JD, Webb P, Fletterick RJ. Molecular basis for dimer formation of TRbeta variant D355R. Proteins 2009; 75:111-7. [PMID: 18798561 PMCID: PMC2649980 DOI: 10.1002/prot.22225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein quality and stability are critical during protein purification for X-ray crystallography. A target protein that is easy to manipulate and crystallize becomes a valuable product useful for high-throughput crystallography for drug design and discovery. In this work, a single surface mutation, D355R, was shown to be crucial for converting the modestly stable monomeric ligand binding domain of the human thyroid hormone receptor (TR LBD) into a stable dimer. The structure of D335R TR LBD mutant was solved using X-ray crystallography and refined to 2.2 A resolution with R(free)/R values of 24.5/21.7. The crystal asymmetric unit reveals the TR dimer with two molecules of the hormone-bound LBD related by twofold symmetry. The ionic interface between the two LBDs comprises residues within loop H10-H11 and loop H6-H7 as well as the C-terminal halves of helices 8 of both protomers. Direct intermolecular contacts formed between the introduced residue Arg 355 of one TR molecule and Glu 324 of the second molecule become a part of the extended dimerization interface of 1330 A(2) characteristic for a strong complex assembly that is additionally strengthened by buffer solutes.
Collapse
Affiliation(s)
- Natalia Jouravel
- Department Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA. Tel: 415-476-5051; Fax: 415-476-1902; / /
| | - Elena Sablin
- Department Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA. Tel: 415-476-5051; Fax: 415-476-1902; / /
| | - Marie Togashi
- Diabetes Center & Dept. of Medicine, University California San Francisco (UCSF), 513 Parnassus Avenue, S-1222, Box 0540, Medical Sciences Building, San Francisco, CA 94143, USA. Tel: 415-476-6789; Fax: 415-564-5813; / /
| | - John D. Baxter
- Diabetes Center & Dept. of Medicine, University California San Francisco (UCSF), 513 Parnassus Avenue, S-1222, Box 0540, Medical Sciences Building, San Francisco, CA 94143, USA. Tel: 415-476-6789; Fax: 415-564-5813; / /
| | - Paul Webb
- Diabetes Center & Dept. of Medicine, University California San Francisco (UCSF), 513 Parnassus Avenue, S-1222, Box 0540, Medical Sciences Building, San Francisco, CA 94143, USA. Tel: 415-476-6789; Fax: 415-564-5813; / /
| | - Robert J. Fletterick
- Department Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, San Francisco, CA 94158, USA. Tel: 415-476-5051; Fax: 415-476-1902; / /
| |
Collapse
|
131
|
Tagami T, Yamamoto H, Moriyama K, Sawai K, Usui T, Shimatsu A, Naruse M. A selective peroxisome proliferator-activated receptor-gamma modulator, telmisartan, binds to the receptor in a different fashion from thiazolidinediones. Endocrinology 2009; 150:862-70. [PMID: 19147680 DOI: 10.1210/en.2008-0502] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Angiotensin type 1 receptor blockers are widely used for the treatment of hypertension, and one angiotensin type 1 receptor blocker, telmisartan, specifically activates the peroxisome proliferator-activated receptor (PPAR)-gamma. We studied the impact of PPARgamma mutants on transcriptional control and interaction with cofactors to elucidate differences in the molecular mechanism between telmisartan and other PPARgamma agonists, thiazolidinediones (TZDs). We created several amino acid substitutions in the ligand binding domain of PPARgamma that, based on molecular modeling, may affect the binding of these agents. In transient expression experiments, wild-type PPARgamma-mediated transcription stimulated by telmisartan was more than one third of that stimulated by TZDs. The activation stimulated by TZDs was impaired, whereas activation stimulated by telmisartan was retained, in the H323Y, S342A, and H449A mutants. In the Y473A mutant, the TZD-induced activation was further impaired and lower than that of telmisartan-induced activation. Coexpression of coactivators enhanced the activation by both telmisartan and TZDs, but activation by telmisartan always exceeded that of TZDs in the Y473A mutant. Based on a mammalian two-hybrid assay, the interaction with corepressors was retained in Y473A. Telmisartan and TZDs, but not 9cis retinoic acid, dissociated corepressors from the wild-type PPARgamma. Telmisartan most effectively dissociated corepressors from Y473A. The interaction with coactivators was enhanced by TZD activation of wild-type PPARgamma and both telmisartan and TZD activation of Y473A. Thus, the Y473A mutant is selectively stimulated by telmisartan but not TZDs, suggesting that telmisartan and TZDs have differential effects on the transcriptional control. In conclusion, these PPARgamma mutants could be powerful tools for developing novel therapeutic agents that retain the metabolic efficacy of PPARgamma activation with fewer adverse effects, such as the increase in body weight associated with TZDs.
Collapse
Affiliation(s)
- Tetsuya Tagami
- Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Fukakusa, Kyoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
The first crystal structure of a full-length nuclear receptor complex on DNA reveals an interdomain contact between the ligand- and DNA-binding domains of subunits and illuminates the role of the 5' extension of the binding site in polarity of positioning. These findings have possible functional implications.
Collapse
Affiliation(s)
- Dino Moras
- Laboraratoire de Biologie et de Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, Illkircho 67400 Cedex, France.
| |
Collapse
|
133
|
Shah V, Nguyen P, Nguyen NH, Togashi M, Scanlan TS, Baxter JD, Webb P. Complex actions of thyroid hormone receptor antagonist NH-3 on gene promoters in different cell lines. Mol Cell Endocrinol 2008; 296:69-77. [PMID: 18930112 PMCID: PMC4180716 DOI: 10.1016/j.mce.2008.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/11/2008] [Accepted: 09/11/2008] [Indexed: 12/20/2022]
Abstract
It is desirable to obtain new antagonists for thyroid hormone receptors (TRs) and other nuclear receptors (NRs). We previously used X-ray structural models of TR ligand binding domains (LBDs) to design compounds, such as NH-3, that impair coactivator binding to activation function 2 (AF-2) and block thyroid hormone (triiodothyronine, T(3)) actions. However, TRs bind DNA and are transcriptionally active without ligand. Thus, NH-3 could modulate TR activity via effects on other coregulator interaction surfaces, such as activation function (AF-1) and corepressor binding sites. Here, we find that NH-3 blocks TR-LBD interactions with coactivators and corepressors and also inhibits activities of AF-1 and AF-2 in transfections. While NH-3 lacks detectable agonist activity at T(3)-activated genes in GC pituitary cells it nevertheless activates spot 14 (S14) in HTC liver cells with the latter effect accompanied by enhanced histone H4 acetylation and coactivator recruitment at the S14 promoter. Surprisingly, T(3) promotes corepressor recruitment to target promoters. NH-3 effects vary; we observe transient recruitment of N-CoR to S14 in GC cells and dismissal and rebinding of N-CoR to the same promoter in HTC cells. We propose that NH-3 will generally behave as an antagonist by blocking AF-1 and AF-2 but that complex effects on coregulator recruitment may result in partial/mixed agonist effects that are independent of blockade of T(3) binding in some contexts. These properties could ultimately be utilized in drug design and development of new selective TR modulators.
Collapse
Affiliation(s)
- Vanya Shah
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA94143
| | - Phuong Nguyen
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA94143
| | - Ngoc-Ha Nguyen
- Departments of Pharmaceutical Chemistry and Molecular & Cellular Pharmacology, University of California, San Francisco, CA94143
| | - Marie Togashi
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA94143
- Molecular Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, University of Brasilia, Brazil
| | - Thomas S. Scanlan
- Departments of Pharmaceutical Chemistry and Molecular & Cellular Pharmacology, University of California, San Francisco, CA94143
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR97239
| | - John D. Baxter
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA94143
- Methodist Hospital Research Institute, Houston TX77030
| | - Paul Webb
- Diabetes Center and Department of Medicine, University of California, San Francisco, CA94143
- Methodist Hospital Research Institute, Houston TX77030
| |
Collapse
|
134
|
Scanlan TS. Sobetirome: a case history of bench-to-clinic drug discovery and development. Heart Fail Rev 2008; 15:177-82. [DOI: 10.1007/s10741-008-9122-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
|
135
|
Kruse SW, Suino-Powell K, Zhou XE, Kretschman JE, Reynolds R, Vonrhein C, Xu Y, Wang L, Tsai SY, Tsai MJ, Xu HE. Identification of COUP-TFII orphan nuclear receptor as a retinoic acid-activated receptor. PLoS Biol 2008; 6:e227. [PMID: 18798693 PMCID: PMC2535662 DOI: 10.1371/journal.pbio.0060227] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 08/04/2008] [Indexed: 12/22/2022] Open
Abstract
The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 Å crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix α10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation. Unlike other classes of receptors, nuclear receptors can bind directly to DNA and act as transcription factors, playing key roles in embryonic development and cellular metabolism. Most nuclear receptors are activated by signal-triggering molecules (ligands) and can regulate their activity by recruiting coactivator proteins. However, the ligands are unknown for a subset of “orphan” nuclear receptors, including the chicken ovalbumin promoter-transcription factors (COUP-TFI and II, and EAR2). COUP-TFs are the most conserved nuclear receptors, with roles in angiogenesis, neuronal development, organogenesis, and metabolic homeostasis. Here we demonstrate that COUP-TFII is a ligand-regulated nuclear receptor that can be activated by unphysiological micromolar concentrations of retinoic acids. We determined the structure of the ligand-free ligand-binding domain of the human COUP-TFII, revealing the autorepressed conformation of the receptor, where helix α10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. These results suggest a mechanism where ligands activate COUP-TFII by releasing the receptor from the autorepressed conformation. The identification of COUP-TFII as a low-affinity retinoic acid receptor suggests ways of searching for the endogenous ligands that may ultimately link retinoic acid and COUP-TF signaling pathways. Structural and functional studies reveal that the orphan nuclear receptor COUP-TFII is a low-affinity receptor for retinoic acids. paving the way to finding the endogenous ligands that may ultimately link retinoic acid and COUP-TF signaling pathways.
Collapse
Affiliation(s)
- Schoen W Kruse
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Kelly Suino-Powell
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - X. Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Jennifer E Kretschman
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Ross Reynolds
- Department of Physics, Grand Valley State University, Allendale, Michigan, United States of America
| | - Clemens Vonrhein
- Global Phasing Ltd., Sheraton House, Castle Park, Cambridge, United Kingdom
| | - Yong Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Liliang Wang
- Department of Molecular and Cellular Biology and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sophia Y Tsai
- Department of Molecular and Cellular Biology and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ming-Jer Tsai
- Department of Molecular and Cellular Biology and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - H. Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
136
|
Peräkylä M. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:185-98. [DOI: 10.1007/s00249-008-0369-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/25/2008] [Accepted: 08/28/2008] [Indexed: 02/04/2023]
|
137
|
Martínez L, Polikarpov I, Skaf MS. Only subtle protein conformational adaptations are required for ligand binding to thyroid hormone receptors: simulations using a novel multipoint steered molecular dynamics approach. J Phys Chem B 2008; 112:10741-51. [PMID: 18681473 DOI: 10.1021/jp803403c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thyroid hormone receptors (TR) are hormone-dependent transcription regulators that play a major role in human health, development, and metabolic functions. The thyroid hormone resistance syndrome, diabetes, obesity, and some types of cancer are just a few examples of important diseases that are related to TR malfunctioning, particularly impaired hormone binding. Ligand binding to and dissociation from the receptor ultimately control gene transcription and, thus, detailed knowledge of binding and release mechanisms are fundamental for the comprehension of the receptor's biological function and development of pharmaceuticals. In this work, we present the first computational study of ligand entry into the ligand binding domain (LBD) of a nuclear receptor. We report molecular dynamics simulations of ligand binding to TRs using a generalization of the steered molecular dynamics technique designed to perform single-molecule pulling simulations along arbitrarily nonlinear driving pathways. We show that only gentle protein movements and conformational adaptations are required for ligand entry into the LBDs and that the magnitude of the forces applied to assist ligand binding are of the order of the forces involved in ligand dissociation. Our simulations suggest an alternative view for the mechanisms ligand binding and dissociation of ligands from nuclear receptors in which ligands can simply diffuse through the protein surface to reach proper positioning within the binding pocket. The proposed picture indicates that the large-amplitude protein motions suggested by the apo- and holo-RXRalpha crystallographic structures are not required, reconciling conformational changes of LBDs required for ligand entry with other nuclear receptors apo-structures that resemble the ligand-bound LBDs.
Collapse
Affiliation(s)
- Leandro Martínez
- Institute of Chemistry, State University of Campinas-UNICAMP, P.O. Box 6154, Campinas, SP, 13084-862, Brazil
| | | | | |
Collapse
|
138
|
Abstract
Thyroid hormone resistance occurs when a genetic mutation in the thyroid hormone receptor leads to reduced hormone binding affinity; the concentration of free thyroid hormone in the circulation is inversely correlated with the hormone binding affinity of the mutant receptor. Thyroid hormone resistance mutations are associated with a wide variety of phenotypes and subsequent treatment challenges. Among the more common symptoms are hyperactivity, emotional lability, a below average intelligence quotient, and short stature. We report here a patient who presented with thyroid hormone resistance at an early age, providing an opportunity to optimize her overall growth and development. We review the limited information currently available in the literature addressing the treatment of thyroid hormone resistance in children and describe the approach used to determine the treatment plan in this young child.
Collapse
|
139
|
Sonoda MT, Martínez L, Webb P, Skaf MS, Polikarpov I. Ligand dissociation from estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Mol Endocrinol 2008; 22:1565-78. [PMID: 18403716 PMCID: PMC5419439 DOI: 10.1210/me.2007-0501] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 04/03/2008] [Indexed: 11/19/2022] Open
Abstract
Estrogen Receptor (ER) is an important target for pharmaceutical design. Like other ligand-dependent transcription factors, hormone binding regulates ER transcriptional activity. Nevertheless, the mechanisms by which ligands enter and leave ERs and other nuclear receptors remain poorly understood. Here, we report results of locally enhanced sampling molecular dynamics simulations to identify dissociation pathways of two ER ligands [the natural hormone 17beta-estradiol (E(2)) and the selective ER modulator raloxifene (RAL)] from the human ERalpha ligand-binding domain in monomeric and dimeric forms. E(2) dissociation occurs via three different pathways in ER monomers. One resembles the mousetrap mechanism (Path I), involving repositioning of helix 12 (H12), others involve the separation of H8 and H11 (Path II), and a variant of this pathway at the bottom of the ligand-binding domain (Path II'). RAL leaves the receptor through Path I and a Path I variant in which the ligand leaves the receptor through the loop region between H11 and H12 (Path I'). Remarkably, ER dimerization strongly suppresses Paths II and II' for E(2) dissociation and modifies RAL escape routes. We propose that differences in ligand release pathways detected in the simulations for ER monomers and dimers provide an explanation for previously observed effects of ER quaternary state on ligand dissociation rates and suggest that dimerization may play an important, and hitherto unexpected, role in regulation of ligand dissociation rates throughout the nuclear receptor family.
Collapse
Affiliation(s)
- Milton T Sonoda
- São Carlos Institute of Physics, University of São Paulo-USP, São Carlos, SP, Brazil
| | | | | | | | | |
Collapse
|
140
|
Paris M, Escriva H, Schubert M, Brunet F, Brtko J, Ciesielski F, Roecklin D, Vivat-Hannah V, Jamin EL, Cravedi JP, Scanlan TS, Renaud JP, Holland ND, Laudet V. Amphioxus Postembryonic Development Reveals the Homology of Chordate Metamorphosis. Curr Biol 2008; 18:825-30. [DOI: 10.1016/j.cub.2008.04.078] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 04/17/2008] [Accepted: 04/25/2008] [Indexed: 11/24/2022]
|
141
|
Lee JS, Kim KI, Baek SH. Nuclear receptors and coregulators in inflammation and cancer. Cancer Lett 2008; 267:189-96. [PMID: 18433989 DOI: 10.1016/j.canlet.2008.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 02/27/2008] [Accepted: 03/11/2008] [Indexed: 01/29/2023]
Abstract
Functional role of nuclear receptors and numerous coregulators have been studied in terms of regulating transcriptional control of genes that play critical roles in various pathways. There is growing evidence that nuclear receptors and their coregulators control inflammatory programs of gene expression and progression of hormone-dependent cancer. This review provides a general overview of the interrelationship between nuclear receptor signalling, inflammation and cancer. These insights provide inflammatory genes as attractive targets for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Jason S Lee
- Department of Biological Sciences, Research Center for Functional Cellulomics, Seoul National University, Seoul 151-742, South Korea
| | | | | |
Collapse
|
142
|
Burendahl S, Treuter E, Nilsson L. Molecular Dynamics Simulations of Human LRH-1: The Impact of Ligand Binding in a Constitutively Active Nuclear Receptor. Biochemistry 2008; 47:5205-15. [DOI: 10.1021/bi7025084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sofia Burendahl
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | - Eckardt Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| |
Collapse
|
143
|
Brenta G, Danzi S, Klein I. Potential therapeutic applications of thyroid hormone analogs. ACTA ACUST UNITED AC 2008; 3:632-40. [PMID: 17710084 DOI: 10.1038/ncpendmet0590] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 06/20/2007] [Indexed: 12/20/2022]
Abstract
Thyroid hormone (T3 and T4) has many beneficial effects including enhancing cardiac function, promoting weight loss and reducing serum cholesterol. Excess thyroid hormone is, however, associated with unwanted effects on the heart, bone and skeletal muscle. We therefore need analogs that harness the beneficial effects of thyroid hormone without the untoward effects. Such work is largely based on understanding the cellular mechanisms of thyroid hormone action, specifically the crystal structure of the nuclear receptor proteins. In clinical studies, use of naturally occurring thyroid hormone analogs can suppress TSH levels in patients with thyroid cancer without producing tachycardia. Many thyromimetic compounds have been tested in animal models and shown to increase total body oxygen consumption, and to lower weight and serum cholesterol and triglyceride levels while having minor effects on heart rate. Alternatively, analogs that specifically enhance both systolic and diastolic function are potentially useful in the treatment of chronic congestive heart failure. In addition to analogs that are thyroid hormone receptor agonists, several compounds that are thyroid hormone receptor antagonists have been identified and tested. This Review discusses the potential application of thyroid hormone analogs (both agonists and antagonists) in a variety of human disease states.
Collapse
Affiliation(s)
- Gabriela Brenta
- School of Medicine, Favaloro University of Buenos Aires, Argentina
| | | | | |
Collapse
|
144
|
Abstract
The processes and pathways mediating the intermediary metabolism of carbohydrates, lipids, and proteins are all affected by thyroid hormones (THs) in almost all tissues. Particular attention has been devoted by scientists to the effects of THs on lipid metabolism. Among others, effects related to cholesterol, lipid handling, and cardiac performance have been the subject of study. Many reports are present in the literature concerning the calorigenic effect of THs, with most of them aimed at identifying the molecular basis of this effect. However, at the moment the mechanism(s) underlying the metabolic effects of THs remain to be elucidated. THs exert most of their effects though TH receptors (TRs). However, some effects of THs cannot be explained by a nuclear-mediated pathway, and recently an increasing number of nonnuclear actions have been described, which can provide a regulatory system of which the effects differ from those mediated on the transcriptional level by TRs. Some of the TH derivatives (naturally occurring metabolites and analogs) possess biological activities. TH-related biological effects have been described for physiological products such as tetraiodothyroacetic acid (Tetrac) and triiodothyroacetic acid (Triac) (via oxidative deamination and decarboxylation of thyroxine [T4] and triiodothyronine [T3] alanine chain), 3,3',5'-triiodothyronine (rT3) (via T4 and T3 deiodination), 3,3'-diiodothyronine (3,3'-T2) and 3,5-diiodothyronine (T2) (via T4, T3, and rT3 deiodination), and 3-iodothyronamine (T1AM) and thyronamine (T0AM) (via T4 and T3 deiodination and amino acid decarboxylation), as well as for TH structural analogs, such as 3,5,3'-triiodothyropropionic acid (Triprop), 3,5-dibromo-3-pyridazinone-l-thyronine (L-940901), N-[3,5-dimethyl-4-(4'-hydroxy-3'-isopropylphenoxy)-phenyl]-oxamic acid (CGS 23425), 3,5-dimethyl-4[(4'-hydroxy-3'-isopropylbenzyl)-phenoxy] acetic acid (GC-1), 3,5-dichloro-4[(4-hydroxy-3-isopropylphenoxy)phenyl] acetic acid (KB-141), and 3,5-diiodothyropropionic acid (DITPA). Most of these compounds have interesting properties: counteracting lipid accumulation, reducing cholesterol level, and increasing lipid metabolism without cardiotoxic effects. Hopefully, further studies on basic mechanisms of such compounds will be harbingers of more knowledge on the metabolic effects of TH derivatives and on their possible clinical application.
Collapse
Affiliation(s)
- Maria Moreno
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi del Sannio, Via Port'Arsa, Benevento, Italy
| | | | | | | | | | | |
Collapse
|
145
|
Bleicher L, Aparicio R, Nunes FM, Martinez L, Gomes Dias SM, Figueira ACM, Santos MAM, Venturelli WH, da Silva R, Donate PM, Neves FA, Simeoni LA, Baxter JD, Webb P, Skaf MS, Polikarpov I. Structural basis of GC-1 selectivity for thyroid hormone receptor isoforms. BMC STRUCTURAL BIOLOGY 2008; 8:8. [PMID: 18237438 PMCID: PMC2275733 DOI: 10.1186/1472-6807-8-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 01/31/2008] [Indexed: 12/14/2022]
Abstract
Background Thyroid receptors, TRα and TRβ, are involved in important physiological functions such as metabolism, cholesterol level and heart activities. Whereas metabolism increase and cholesterol level lowering could be achieved by TRβ isoform activation, TRα activation affects heart rates. Therefore, β-selective thyromimetics have been developed as promising drug-candidates for treatment of obesity and elevated cholesterol level. GC-1 [3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl)-phenoxy acetic acid] has ability to lower LDL cholesterol with 600- to 1400-fold more potency and approximately two- to threefold more efficacy than atorvastatin (Lipitor©) in studies in rats, mice and monkeys. Results To investigate GC-1 specificity, we solved crystal structures and performed molecular dynamics simulations of both isoforms complexed with GC-1. Crystal structures reveal that, in TRα Arg228 is observed in multiple conformations, an effect triggered by the differences in the interactions between GC-1 and Ser277 or the corresponding asparagine (Asn331) of TRβ. The corresponding Arg282 of TRβ is observed in only one single stable conformation, interacting effectively with the ligand. Molecular dynamics support this model: our simulations show that the multiple conformations can be observed for the Arg228 in TRα, in which the ligand interacts either strongly with the ligand or with the Ser277 residue. In contrast, a single stable Arg282 conformation is observed for TRβ, in which it strongly interacts with both GC-1 and the Asn331. Conclusion Our analysis suggests that the key factors for GC-1 selectivity are the presence of an oxyacetic acid ester oxygen and the absence of the amino group relative to T3. These results shed light into the β-selectivity of GC-1 and may assist the development of new compounds with potential as drug candidates to the treatment of hypercholesterolemia and obesity.
Collapse
Affiliation(s)
- Lucas Bleicher
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense, 400 CEP 13560-970 São Carlos, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Johnson SM, Connelly S, Wilson IA, Kelly JW. Biochemical and Structural Evaluation of Highly Selective 2-Arylbenzoxazole-Based Transthyretin Amyloidogenesis Inhibitors. J Med Chem 2007; 51:260-70. [DOI: 10.1021/jm0708735] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Steven M. Johnson
- Departments of Chemistry and Molecular Biology, and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, BCC 265, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Stephen Connelly
- Departments of Chemistry and Molecular Biology, and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, BCC 265, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Ian A. Wilson
- Departments of Chemistry and Molecular Biology, and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, BCC 265, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Jeffery W. Kelly
- Departments of Chemistry and Molecular Biology, and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, BCC 265, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
147
|
Grover GJ, Kelly J, Malm J. Thyroid hormone receptor subtype-β-selective agonists as potential treatments for metabolic syndrome. ACTA ACUST UNITED AC 2007. [DOI: 10.2217/17460875.2.6.641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
148
|
Martin MB, Reiter R, Johnson M, Shah MS, Iann MC, Singh B, Richards JK, Wang A, Stoica A. Effects of tobacco smoke condensate on estrogen receptor-alpha gene expression and activity. Endocrinology 2007; 148:4676-86. [PMID: 17640996 DOI: 10.1210/en.2007-0208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metallo-estrogens are a new class of potent environmental estrogens. This study investigates whether tobacco smoke condensate (TSC), which contains metals and metalloids, elicits estrogen-like effects at environmentally relevant doses. Treatment of human breast cancer cells, MCF-7, with 40 microg/ml TSC resulted in a 2.5-fold stimulation of cell growth. TSC decreased the concentration of estrogen receptor (ER)-alpha protein and mRNA (63 and 62%, respectively), and increased the expression of the estrogen-regulated genes, progesterone receptor and pS2 (5- and 2-fold, respectively). In addition, TSC activated ER-alpha in COS-1 or CHO cells transiently transfected with wild-type ER-alpha and an ERE-CAT or an ERE-luciferase reporter gene (11- and 6-fold, respectively). TSC also activated a chimeric receptor (GAL-ER) containing the hormone binding domain of ER-alpha (3.5-fold). It blocked the binding of estradiol to the receptor without altering the affinity of estradiol (K(d) = 2.2-6.8 x 10(-10) m). Transfection assays with ER-alpha mutants identified C381, C447, H524, N532, E523, and D538 in the hormone binding domain as important for activation by TSC. In ovariectomized rats, low doses of TSC [10 or 20 mg/kg body weight (bw)] increased uterine wet weight (1.7- and 2.1-fold), and induced the expression of progesterone receptor and complement C3 in the uterus (2- and 26-fold) and mammary gland (4.4- and 15-fold). Both the in vitro and in vivo TSC effects were blocked by the antiestrogen ICI 182,780, suggesting the involvement of ER. Collectively, these results provide strong evidence that low doses of TSC, acting through the hormone binding domain, exert estrogen-like effects in cell culture and animals.
Collapse
Affiliation(s)
- Mary Beth Martin
- Department of Human Science, School of Nursing and Health Studies, Lombardi Comprehensive Cancer Center, Georgetown University, 3700 Reservoir Road Northwest, Washington, D.C. 20057-1107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 2007; 317:1544-8. [PMID: 17702911 PMCID: PMC2519897 DOI: 10.1126/science.1142819] [Citation(s) in RCA: 322] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The structural mechanisms by which proteins have evolved new functions are known only indirectly. We report x-ray crystal structures of a resurrected ancestral protein-the approximately 450 million-year-old precursor of vertebrate glucocorticoid (GR) and mineralocorticoid (MR) receptors. Using structural, phylogenetic, and functional analysis, we identify the specific set of historical mutations that recapitulate the evolution of GR's hormone specificity from an MR-like ancestor. These substitutions repositioned crucial residues to create new receptor-ligand and intraprotein contacts. Strong epistatic interactions occur because one substitution changes the conformational position of another site. "Permissive" mutations-substitutions of no immediate consequence, which stabilize specific elements of the protein and allow it to tolerate subsequent function-switching changes-played a major role in determining GR's evolutionary trajectory.
Collapse
MESH Headings
- Aldosterone/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Crystallography, X-Ray
- Epistasis, Genetic
- Evolution, Molecular
- Humans
- Hydrocortisone/metabolism
- Ligands
- Likelihood Functions
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Phylogeny
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Glucocorticoid/chemistry
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/chemistry
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
Collapse
Affiliation(s)
| | - Jamie T. Bridgham
- Center for Ecology and Evolutionary Biology, University of Oregon, USA
| | | | | |
Collapse
|
150
|
Wu W, Niles EG, LoVerde PT. Thyroid hormone receptor orthologues from invertebrate species with emphasis on Schistosoma mansoni. BMC Evol Biol 2007; 7:150. [PMID: 17727708 PMCID: PMC2045677 DOI: 10.1186/1471-2148-7-150] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 08/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thyroid hormone receptors (TRs) function as molecular switches in response to thyroid hormone to regulate gene transcription. TRs were previously believed to be present only in chordates. RESULTS We isolated two TR genes from the Schistosoma mansoni and identified TR orthologues from other invertebrates: the platyhelminths, S. japonium and Schmidtea mediterranea, the mollusc, Lottia gigantean and the arthropod Daphnia pulex. Phylogenetic analysis of the DNA binding domain and/or ligand binding domain shows that invertebrate and vertebrate TRs cluster together, TRs from the vertebrates and from the jawless vertebrate (lamprey) clustered within separate subgroups, Platyhelminth TRs cluster outside of the vertebrate TR subgroups and that the schistosome TRs and S. mediterranea TRs clustered within separate subgroups. Alignment of the C-terminus of the A/B domain revealed a conserved TR-specific motif, termed TR 'N-terminus signature sequence', with a consensus sequence of (G/P)YIPSY(M/L)XXXGPE(D/E)X. Heterodimer formation between S. mansoni TRs and SmRXR1 suggests that the invertebrate TR protein gained the ability to form a heterodimer with RXR. ESMA analysis showed that SmTR alpha could bind to a conserved DNA core motif as a monomer or homodimer. CONCLUSION Vertebrate TR genes originated from a common ancestor of the Bilateria. TR genes underwent duplication independently in the Protostomia and Deuterostomia. The duplication of TRs in deuterostomes occurred after the split of jawless and jawed vertebrates. In protostomes, TR genes underwent duplication in Platyhelminths, occurring independently in trematode and turbellarian lineages. Using S. mansoni TRs as an example, invertebrate TRs exhibited the ability to form a dimer with RXR prior to the emergence of the vertebrate TRs and were able to bind to vertebrate TR core DNA elements as a monomer or homodimer.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA
- Southwest Foundation for Biomedical Research, 7620 NW Loop 410 San Antonio, Texas, 78227-5301, USA
- Departments of Biochemistry and Pathology, University of Texas Health Sciences Center, San Antonio, Texas, 78229-3800, USA
| | - Edward G Niles
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA
| | - Philip T LoVerde
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA
- Southwest Foundation for Biomedical Research, 7620 NW Loop 410 San Antonio, Texas, 78227-5301, USA
- Departments of Biochemistry and Pathology, University of Texas Health Sciences Center, San Antonio, Texas, 78229-3800, USA
| |
Collapse
|