101
|
Yoon JS, Lee CW. Protein phosphatases regulate the liver microenvironment in the development of hepatocellular carcinoma. Exp Mol Med 2022; 54:1799-1813. [PMID: 36380016 PMCID: PMC9722691 DOI: 10.1038/s12276-022-00883-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is a complicated heterogeneous organ composed of different cells. Parenchymal cells called hepatocytes and various nonparenchymal cells, including immune cells and stromal cells, are distributed in liver lobules with hepatic architecture. They interact with each other to compose the liver microenvironment and determine its characteristics. Although the liver microenvironment maintains liver homeostasis and function under healthy conditions, it also shows proinflammatory and profibrogenic characteristics that can induce the progression of hepatitis and hepatic fibrosis, eventually changing to a protumoral microenvironment that contributes to the development of hepatocellular carcinoma (HCC). According to recent studies, phosphatases are involved in liver diseases and HCC development by regulating protein phosphorylation in intracellular signaling pathways and changing the activities and characteristics of liver cells. Therefore, this review aims to highlight the importance of protein phosphatases in HCC development and in the regulation of the cellular components in the liver microenvironment and to show their significance as therapeutic targets.
Collapse
Affiliation(s)
- Joon-Sup Yoon
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| | - Chang-Woo Lee
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351 Republic of Korea
| |
Collapse
|
102
|
Fu Y, Zhou Y, Shen L, Li X, Zhang H, Cui Y, Zhang K, Li W, Chen WD, Zhao S, Li Y, Ye W. Diagnostic and therapeutic strategies for non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:973366. [PMID: 36408234 PMCID: PMC9666875 DOI: 10.3389/fphar.2022.973366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
The global incidence rate of non-alcoholic fatty liver disease (NAFLD) is approximately 25%. With the global increase in obesity and its associated metabolic syndromes, NAFLD has become an important cause of chronic liver disease in many countries. Despite recent advances in pathogenesis, diagnosis, and therapeutics, there are still challenges in its treatment. In this review, we briefly describe diagnostic methods, therapeutic targets, and drugs related to NAFLD. In particular, we focus on evaluating carbohydrate and lipid metabolism, lipotoxicity, cell death, inflammation, and fibrosis as potential therapeutic targets for NAFLD. We also summarized the clinical research progress in terms of drug development and combination therapy, thereby providing references for NAFLD drug development.
Collapse
Affiliation(s)
- Yajie Fu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yanzhi Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Linhu Shen
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Xuewen Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Haorui Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yeqi Cui
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Ke Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Weiguo Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Wei-dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| | - Yunfu Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| |
Collapse
|
103
|
The Mechanisms of Systemic Inflammatory and Immunosuppressive Acute-on-Chronic Liver Failure and Application Prospect of Single-Cell Sequencing. J Immunol Res 2022; 2022:5091275. [PMID: 36387424 PMCID: PMC9646330 DOI: 10.1155/2022/5091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a complex clinical syndrome, and patients often have high short-term mortality. It occurs with intense systemic inflammation, often accompanied by a proinflammatory event (such as infection or alcoholic hepatitis), and is closely related to single or multiple organ failure. Liver inflammation begins when innate immune cells (such as Kupffer cells (KCs)) are activated by binding of pathogen-associated molecular patterns (PAMPs) from pathogenic microorganisms or damage-associated molecular patterns (DAMPs) of host origin to their pattern recognition receptors (PRRs). Activated KCs can secrete inflammatory factors as well as chemokines and recruit bone marrow-derived cells such as neutrophils and monocytes to the liver to enhance the inflammatory process. Bacterial translocation may contribute to ACLF when there are no obvious precipitating events. Immunometabolism plays an important role in the process (including mitochondrial dysfunction, amino acid metabolism, and lipid metabolism). The late stage of ACLF is mainly characterized by immunosuppression. In this process, the dysfunction of monocyte and macrophage is reflected in the downregulation of HLA-DR and upregulation of MER tyrosine kinase (MERTK), which weakens the antigen presentation function and reduces the secretion of inflammatory cytokines. We also describe the specific function of bacterial translocation and the gut-liver axis in the process of ACLF. Finally, we also describe the transcriptomics in HBV-ACLF and the recent progress of single-cell RNA sequencing as well as its potential application in the study of ACLF in the future, in order to gain a deeper understanding of ACLF in terms of single-cell gene expression.
Collapse
|
104
|
Lee J, Kim CM, Cha JH, Park JY, Yu YS, Wang HJ, Sung PS, Jung ES, Bae SH. Multiplexed Digital Spatial Protein Profiling Reveals Distinct Phenotypes of Mononuclear Phagocytes in Livers with Advanced Fibrosis. Cells 2022; 11:3387. [PMID: 36359782 PMCID: PMC9654480 DOI: 10.3390/cells11213387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 07/29/2023] Open
Abstract
Background and Aims: Intrahepatic mononuclear phagocytes (MPs) are critical for the initiation and progression of liver fibrosis. In this study, using multiplexed digital spatial protein profiling, we aimed to derive a unique protein signature predicting advanced liver fibrosis. Methods: Snap-frozen liver tissues from various chronic liver diseases were subjected to spatially defined protein-based multiplexed profiling (Nanostring GeoMXTM). A single-cell RNA sequencing analysis was performed using Gene Expression Omnibus (GEO) datasets from normal and cirrhotic livers. Results: Sixty-four portal regions of interest (ROIs) were selected for the spatial profiling. Using the results from the CD68+ area, a highly sensitive and specific immune-related protein signature (CD68, HLA-DR, OX40L, phospho-c-RAF, STING, and TIM3) was developed to predict advanced (F3 and F4) fibrosis. A combined analysis of single-cell RNA sequencing data from GEO datasets (GSE136103) and spatially-defined, protein-based multiplexed profiling revealed that most proteins upregulated in F0-F2 livers in portal CD68+ cells were specifically marked in tissue monocytes, whereas proteins upregulated in F3 and F4 livers were marked in scar-associated macrophages (SAMacs) and tissue monocytes. Internal validation using mRNA expression data with the same cohort tissues demonstrated that mRNA levels for TREM2, CD9, and CD68 are significantly higher in livers with advanced fibrosis. Conclusions: In patients with advanced liver fibrosis, portal MPs comprise of heterogeneous populations composed of SAMacs, Kupffer cells, and tissue monocytes. This is the first study that used spatially defined protein-based multiplexed profiling, and we have demonstrated the critical difference in the phenotypes of portal MPs between livers with early- or late-stage fibrosis.
Collapse
Affiliation(s)
- Jaejun Lee
- Department of Internal Medicine, Armed Forces Goyang Hospital, Goyang 10267, Korea
- The Catholic University Liver Research Center, Department of Biomedical Science, The Graduates School of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | - Jung Hoon Cha
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | | | - Yun Suk Yu
- CbsBioscience, Inc., Daejeon 34036, Korea
| | - Hee Jung Wang
- Department of Surgery, Inje University Haeundae Paik Hospital, Busan 48108, Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Eun Sun Jung
- Department of Hospital pathology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03383, Korea
| |
Collapse
|
105
|
Cai T, Xu L, Xia D, Zhu L, Lin Y, Yu S, Zhu K, Wang X, Pan C, Chen Y, Chen D. Polyguanine alleviated autoimmune hepatitis through regulation of macrophage receptor with collagenous structure and TLR4‐TRIF‐NF‐κB signalling. J Cell Mol Med 2022; 26:5690-5701. [PMID: 36282897 PMCID: PMC9667514 DOI: 10.1111/jcmm.17599] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a progressive and chronic inflammatory disease in the liver. MARCO is a surface receptor of macrophage involving in tissue inflammation and immune disorders. Moreover, polyguanine (PolyG) is considered to bind to macrophage receptor with collagenous structure (MARCO). However, the role of MARCO and PolyG in the development and treatment of AIH still remains unclear. Therefore, this study explores the expression of MARCO and therapeutic activity of PolyG in both S100‐induced AIH in mouse and Lipopolysaccharide (LPS)‐treated macrophage (RAW264.7 cells). Moreover, there were significant increases in inflammatory factors and MARCO, as well as decrease in I‐kappa‐B‐alpha (Ik‐B) in the liver of AIH mice and LPS‐induced cells. However, PolyG treatment significantly reversed the elevation of inflammatory cytokins, MARCO and reduction of Ik‐B. In addition, PolyG treatment could downregulate the expression of Toll‐like receptor 4 (TLR4) and TIR‐domain‐containing adaptor inducing interferon‐β (TRIF), decrease macrophage M1 polarization and increase macrophage M2 polarization. When hepatocytes were co‐cultured with different treatment of macrophages, similar expression profile of inflammatory cytokines was observed in hepatocytes. The research revealed that MARCO expression was elevated in AIH mice. PolyG treatment and inhibition of MARCO significantly reduced inflammatory cytokines expression in the liver as well as hepatocytes and macrophages. Therefore, MARCO could be a target for the treatment of AIH.
Collapse
Affiliation(s)
- Tingchen Cai
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Lanman Xu
- Department of Infectious Diseases and Liver Diseases, Ningbo Medical Centre Lihuili Hospital, Affiliated Lihuili Hospital of Ningbo University Ningbo Institute of Innovation for Combined Medicine and Engineering Ningbo China
| | - Dingchao Xia
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Lujian Zhu
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Yanhan Lin
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Sijie Yu
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Kailu Zhu
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Xiaodong Wang
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Chenwei Pan
- Department of Infectious Diseases The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Yongping Chen
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Dazhi Chen
- Department of Infectious Diseases, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
- Department of Clinical Medicine Hangzhou Medical College Hangzhou China
| |
Collapse
|
106
|
Fodor M, Salcher S, Gottschling H, Mair A, Blumer M, Sopper S, Ebner S, Pircher A, Oberhuber R, Wolf D, Schneeberger S, Hautz T. The liver-resident immune cell repertoire - A boon or a bane during machine perfusion? Front Immunol 2022; 13:982018. [PMID: 36311746 PMCID: PMC9609784 DOI: 10.3389/fimmu.2022.982018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
The liver has been proposed as an important “immune organ” of the body, as it is critically involved in a variety of specific and unique immune tasks. It contains a huge resident immune cell repertoire, which determines the balance between tolerance and inflammation in the hepatic microenvironment. Liver-resident immune cells, populating the sinusoids and the space of Disse, include professional antigen-presenting cells, myeloid cells, as well as innate and adaptive lymphoid cell populations. Machine perfusion (MP) has emerged as an innovative technology to preserve organs ex vivo while testing for organ quality and function prior to transplantation. As for the liver, hypothermic and normothermic MP techniques have successfully been implemented in clinically routine, especially for the use of marginal donor livers. Although there is evidence that ischemia reperfusion injury-associated inflammation is reduced in machine-perfused livers, little is known whether MP impacts the quantity, activation state and function of the hepatic immune-cell repertoire, and how this affects the inflammatory milieu during MP. At this point, it remains even speculative if liver-resident immune cells primarily exert a pro-inflammatory and hence destructive effect on machine-perfused organs, or in part may be essential to induce liver regeneration and counteract liver damage. This review discusses the role of hepatic immune cell subtypes during inflammatory conditions and ischemia reperfusion injury in the context of liver transplantation. We further highlight the possible impact of MP on the modification of the immune cell repertoire and its potential for future applications and immune modulation of the liver.
Collapse
Affiliation(s)
- M. Fodor
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Salcher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - H. Gottschling
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Mair
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - M. Blumer
- Department of Anatomy and Embryology, Medical University of Innsbruck, Innsbruck, Austria
| | - S. Sopper
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Ebner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - A. Pircher
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - R. Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - D. Wolf
- Department of Internal Medicine V, Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - S. Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - T. Hautz
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, organLife Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- Department of Visceral, Transplant and Thoracic Surgery, Daniel Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: T. Hautz,
| |
Collapse
|
107
|
Li H, Meng Y, He S, Tan X, Zhang Y, Zhang X, Wang L, Zheng W. Macrophages, Chronic Inflammation, and Insulin Resistance. Cells 2022; 11:cells11193001. [PMID: 36230963 PMCID: PMC9562180 DOI: 10.3390/cells11193001] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of obesity has reached alarming levels, which is considered a major risk factor for several metabolic diseases, including type 2 diabetes (T2D), non-alcoholic fatty liver, atherosclerosis, and ischemic cardiovascular disease. Obesity-induced chronic, low-grade inflammation may lead to insulin resistance, and it is well-recognized that macrophages play a major role in such inflammation. In the current review, the molecular mechanisms underlying macrophages, low-grade tissue inflammation, insulin resistance, and T2D are described. Also, the role of macrophages in obesity-induced insulin resistance is presented, and therapeutic drugs and recent advances targeting macrophages for the treatment of T2D are introduced.
Collapse
Affiliation(s)
- He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ya Meng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuwang He
- Shandong DYNE Marine Biopharmaceutical Co., Ltd., Rongcheng 264300, China
| | - Xiaochuan Tan
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yujia Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiuli Zhang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| | - Wensheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Correspondence: (L.W.); (W.Z.); Tel.: +86-010-63165233 (W.Z.)
| |
Collapse
|
108
|
Qin T, Hasnat M, Zhou Y, Yuan Z, Zhang W. Macrophage malfunction in Triptolide-induced indirect hepatotoxicity. Front Pharmacol 2022; 13:981996. [PMID: 36225585 PMCID: PMC9548637 DOI: 10.3389/fphar.2022.981996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 12/05/2022] Open
Abstract
Background and Objective: Indirect hepatotoxicity is a new type of drug-induced hepatotoxicity in which the character of a drug that may induce its occurrence and the underlying mechanism remains elusive. Previously, we proved that Triptolide (TP) induced indirect hepatotoxicity upon LPS stimulation resulting from the deficiency of cytoprotective protein of hepatocyte. However, whether immune cells participated in TP-induced indirect hepatotoxicity and the way immune cells change the liver hypersensitivity to LPS still need to be deeply investigated. In this study, we tried to explore whether and how macrophages are involved in TP-induced indirect hepatotoxicity. Method: Firstly, TP (500 μg/kg) and LPS (0.1 mg/kg) were administrated into female C57BL/6 mice as previously reported. Serum biochemical indicators, morphological changes, hepatic macrophage markers, as well as macrophage M1/M2 markers were detected. Secondly, macrophage scavenger clodronate liposomes were injected to prove whether macrophages participated in TP-induced indirect hepatotoxicity. Also, the ability of macrophages to secrete inflammatory factors and macrophage phagocytosis were detected. Lastly, reverse docking was used to find the target of TP on macrophage and the possible target was verified in vivo and in RAW264.7 cells. Results: TP pretreatment increased the liver hypersensitization to LPS accompanied by the recruitment of macrophages to the liver and promoted the transformation of macrophages to M1 type. Depletion of hepatic macrophages almost completely alleviated the liver injury induced by TP/LPS. TP pretreatment increased the secretion of pro-inflammatory factors and weakened the phagocytic function of macrophages upon LPS exposure. Reverse docking results revealed that MerTK might be the real target of TP. Conclusion: TP disrupts inflammatory cytokines profile and phagocytic function of hepatic macrophages, resulting in the production of massive inflammatory factors and the accumulation of endotoxin in the liver, ultimately leading to the indirect hepatotoxicity of TP. MerTK might be the target of TP on the macrophage, while the binding of TP to MerTK should be investigated in vivo and in vitro.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| | - Muhammad Hasnat
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yang Zhou
- Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou University, Zhengzhou, China
| | - Ziqiao Yuan
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, , Ziqiao Yuan, ,
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Anticancer Drug Research, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wenzhou Zhang, , Ziqiao Yuan, ,
| |
Collapse
|
109
|
Cheng K, Cai N, Zhu J, Yang X, Liang H, Zhang W. Tumor-associated macrophages in liver cancer: From mechanisms to therapy. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1112-1140. [PMID: 36069342 DOI: 10.1002/cac2.12345] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Multidimensional analyses have demonstrated the presence of a unique tumor microenvironment (TME) in liver cancer. Tumor-associated macrophages (TAMs) are among the most abundant immune cells infiltrating the TME and are present at all stages of liver cancer progression, and targeting TAMs has become one of the most favored immunotherapy strategies. In addition, macrophages and liver cancer cells have distinct origins. At the early stage of liver cancer, macrophages can provide a niche for the maintenance of liver cancer stem cells. In contrast, cancer stem cells (CSCs) or poorly differentiated tumor cells are key factors modulating macrophage activation. In the present review, we first propose the origin connection between precursor macrophages and liver cancer cells. Macrophages undergo dynamic phenotypic transition during carcinogenesis. In this course of such transition, it is critical to determine the appropriate timing for therapy and block specific markers to suppress pro-tumoral TAMs. The present review provides a more detailed discussion of transition trends of such surface markers than previous reviews. Complex crosstalk occurs between TAMs and liver cancer cells. TAMs play indispensable roles in tumor progression, angiogenesis, and autophagy due to their heterogeneity and robust plasticity. In addition, macrophages in the TME interact with other immune cells by directing cell-to-cell contact or secreting various effector molecules. Similarly, tumor cells combined with other immune cells can drive macrophage recruitment and polarization. Despite the latest achievements and the advancements in treatment strategies following TAMs studies, comprehensive discussions on the communication between macrophages and cancer cells or immune cells in liver cancer are currently lacking. In this review, we discussed the interactions between TAMs and liver cancer cells (from cell origin to maturation), the latest therapeutic strategies (including chimeric antigen receptor macrophages), and critical clinical trials for hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA) to provide a rationale for further clinical investigation of TAMs as a potential target for treating patients with liver cancer.
Collapse
Affiliation(s)
- Kun Cheng
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ning Cai
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jinghan Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xing Yang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Huifang Liang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Wanguang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| |
Collapse
|
110
|
Calcagno D, Chu A, Gaul S, Taghdiri N, Toomu A, Leszczynska A, Kaufmann B, Papouchado B, Wree A, Geisler L, Hoffman HM, Feldstein AE, King KR. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH. Hepatology 2022; 76:727-741. [PMID: 34997987 PMCID: PMC10176600 DOI: 10.1002/hep.32320] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS The NOD-like receptor protein 3 (NLRP3) inflammasome is a central contributor to human acute and chronic liver disease, yet the molecular and cellular mechanisms by which its activation precipitates injury remain incompletely understood. Here, we present single cell transcriptomic profiling of livers from a global transgenic tamoxifen-inducible constitutively activated Nlrp3A350V mutant mouse, and we investigate the changes in parenchymal and nonparenchymal liver cell gene expression that accompany inflammation and fibrosis. APPROACH AND RESULTS Our results demonstrate that NLRP3 activation causes chronic extramedullary myelopoiesis marked by myeloid progenitors that differentiate into proinflammatory neutrophils, monocytes, and monocyte-derived macrophages. We observed prominent neutrophil infiltrates with increased Ly6gHI and Ly6gINT cells exhibiting transcriptomic signatures of granulopoiesis typically found in the bone marrow. This was accompanied by a marked increase in Ly6cHI monocytes differentiating into monocyte-derived macrophages that express transcriptional programs similar to macrophages of NASH models. NLRP3 activation also down-regulated metabolic pathways in hepatocytes and shifted hepatic stellate cells toward an activated profibrotic state based on expression of collagen and extracellular matrix regulatory genes. CONCLUSIONS These results define the single cell transcriptomes underlying hepatic inflammation and fibrosis precipitated by NLRP3 activation. Clinically, our data support the notion that NLRP3-induced mechanisms should be explored as therapeutic target in NASH-like inflammation.
Collapse
Affiliation(s)
- David Calcagno
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | - Angela Chu
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Susanne Gaul
- University of California San Diego, Department of Pediatrics, San Diego, United States
- Leipzig University, Clinic and Polyclinic of Cardiology, Leipzig, Germany
| | - Nika Taghdiri
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | - Avinash Toomu
- University of California San Diego, Department of Bioengineering, San Diego, United States
| | | | - Benedikt Kaufmann
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Bettina Papouchado
- Department of Pathology, University of California San Diego, La Jolla, USA
| | - Alexander Wree
- Charité University Medicine, Department of Hepatology and Gastroenterology, Berlin, Germany
| | - Lukas Geisler
- Charité University Medicine, Department of Hepatology and Gastroenterology, Berlin, Germany
| | - Hal M. Hoffman
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Ariel E. Feldstein
- University of California San Diego, Department of Pediatrics, San Diego, United States
| | - Kevin R. King
- University of California San Diego, Department of Bioengineering, San Diego, United States
- University of California San Diego, School of Medicine, San Diego, United States
| |
Collapse
|
111
|
Zhao D, Xue C, Yang Y, Li J, Wang X, Chen Y, Zhang S, Chen Y, Duan Y, Yang X, Han J. Lack of Nogo-B expression ameliorates PPARγ deficiency-aggravated liver fibrosis by regulating TLR4-NF-κB-TNF-α axis and macrophage polarization. Biomed Pharmacother 2022; 153:113444. [DOI: 10.1016/j.biopha.2022.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022] Open
|
112
|
Liu M, Xiang Y, Yang Y, Long X, Xiao Z, Nan Y, Jiang Y, Qiu Y, Huang Q, Ai K. State-of-the-art advancements in Liver-on-a-chip (LOC): Integrated biosensors for LOC. Biosens Bioelectron 2022; 218:114758. [DOI: 10.1016/j.bios.2022.114758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 12/12/2022]
|
113
|
Elchaninov A, Vishnyakova P, Menyailo E, Sukhikh G, Fatkhudinov T. An Eye on Kupffer Cells: Development, Phenotype and the Macrophage Niche. Int J Mol Sci 2022; 23:9868. [PMID: 36077265 PMCID: PMC9456487 DOI: 10.3390/ijms23179868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key participants in the maintenance of tissue homeostasis under normal and pathological conditions, and implement a rich diversity of functions. The largest population of resident tissue macrophages is found in the liver. Hepatic macrophages, termed Kupffer cells, are involved in the regulation of multiple liver functionalities. Specific differentiation profiles and functional activities of tissue macrophages have been attributed to the shaping role of the so-called tissue niche microenvironments. The fundamental macrophage niche concept was lately shaken by a flood of new data, leading to a revision and substantial update of the concept, which constitutes the main focus of this review. The macrophage community discusses contemporary evidence on the developmental origins of resident macrophages, notably Kupffer cells and the issues of heterogeneity of the hepatic macrophage populations, as well as the roles of proliferation, cell death and migration processes in the maintenance of macrophage populations of the liver. Special consideration is given to interactions of Kupffer cells with other local cell lineages, including Ito cells, sinusoidal endothelium and hepatocytes, which participate in the maintenance of their phenotypical and functional identity.
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Egor Menyailo
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Laboratory of Growth and Development, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| |
Collapse
|
114
|
Lu Y, Feng N, Du Y, Yu R. Nanoparticle-Based Therapeutics to Overcome Obstacles in the Tumor Microenvironment of Hepatocellular Carcinoma. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12162832. [PMID: 36014696 PMCID: PMC9414814 DOI: 10.3390/nano12162832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 05/09/2023]
Abstract
Hepatocellular carcinoma (HCC) is still a main health concern around the world, with a rising incidence and high mortality rate. The tumor-promoting components of the tumor microenvironment (TME) play a vital role in the development and metastasis of HCC. TME-targeted therapies have recently drawn increasing interest in the treatment of HCC. However, the short medication retention time in TME limits the efficiency of TME modulating strategies. The nanoparticles can be elaborately designed as needed to specifically target the tumor-promoting components in TME. In this regard, the use of nanomedicine to modulate TME components by delivering drugs with protection and prolonged circulation time in a spatiotemporal manner has shown promising potential. In this review, we briefly introduce the obstacles of TME and highlight the updated information on nanoparticles that modulate these obstacles. Furthermore, the present challenges and future prospects of TME modulating nanomedicines will be briefly discussed.
Collapse
Affiliation(s)
- Yuanfei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Na Feng
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (Y.D.); (R.Y.); Tel.: +86-571-88208435 (Y.D.); +86-571-87783925 (R.Y.)
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
- Correspondence: (Y.D.); (R.Y.); Tel.: +86-571-88208435 (Y.D.); +86-571-87783925 (R.Y.)
| |
Collapse
|
115
|
Šrajer Gajdošik M, Kovač Peić A, Begić M, Grbčić P, Brilliant KE, Hixson DC, Josić D. Possible Role of Extracellular Vesicles in Hepatotoxicity of Acetaminophen. Int J Mol Sci 2022; 23:8870. [PMID: 36012131 PMCID: PMC9408656 DOI: 10.3390/ijms23168870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
We examined proteomic profiles of rat liver extracellular vesicles (EVs) shed following treatment with a sub-toxic dose (500 mg/kg) of the pain reliever drug, acetaminophen (APAP). EVs representing the entire complement of hepatic cells were isolated after perfusion of the intact liver and analyzed with LC-MS/MS. The investigation was focused on revealing the function and cellular origin of identified EVs proteins shed by different parenchymal and non-parenchymal liver cells and their possible role in an early response of this organ to a toxic environment. Comparison of EV proteomic profiles from control and APAP-treated animals revealed significant differences. Alpha-1-macroglobulin and members of the cytochrome P450 superfamily were highly abundant proteins in EVs shed by the normal liver. In contrast, proteins like aminopeptidase N, metalloreductase STEAP4, different surface antigens like CD14 and CD45, and most members of the annexin family were detected only in EVs that were shed by livers of APAP-treated animals. In EVs from treated livers, there was almost a complete disappearance of members of the cytochrome P450 superfamily and a major decrease in other enzymes involved in the detoxification of xenobiotics. Additionally, there were proteins that predominated in non-parenchymal liver cells and in the extracellular matrix, like fibronectin, receptor-type tyrosine-protein phosphatase C, and endothelial type gp91. These differences indicate that even treatment with a sub-toxic concentration of APAP initiates dramatic perturbation in the function of this vital organ.
Collapse
Affiliation(s)
| | | | - Marija Begić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Petra Grbčić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Kate E. Brilliant
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Douglas C. Hixson
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Djuro Josić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
116
|
Xue Y, Li X, Tian Y, Huang X, Zhang L, Li J, Hou H, Dong P, Wang J. Salmon sperm DNA prevents acute liver injury by regulating alcohol‐induced steatosis and restores chronic hepatosis via alleviating inflammation and apoptosis. J Food Biochem 2022; 46:e14346. [DOI: 10.1111/jfbc.14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yuhan Xue
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Xiaojing Li
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Yingying Tian
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Xinyi Huang
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Lei Zhang
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Jing Li
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Hu Hou
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Ping Dong
- School of Food Science and Engineering Ocean University of China Qingdao China
| | - Jingfeng Wang
- School of Food Science and Engineering Ocean University of China Qingdao China
| |
Collapse
|
117
|
Gao CC, Bai J, Han H, Qin HY. The versatility of macrophage heterogeneity in liver fibrosis. Front Immunol 2022; 13:968879. [PMID: 35990625 PMCID: PMC9389038 DOI: 10.3389/fimmu.2022.968879] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is a highly conserved wound healing response to liver injury, characterized by excessive deposition of extracellular matrix (ECM) in the liver which might lead to loss of normal functions. In most cases, many types of insult could damage hepatic parenchymal cells like hepatocytes and/or cholangiocytes, and persistent injury might lead to initiation of fibrosis. This process is accompanied by amplified inflammatory responses, with immune cells especially macrophages recruited to the site of injury and activated, in order to orchestrate the process of wound healing and tissue repair. In the liver, both resident macrophages and recruited macrophages could activate interstitial cells which are responsible for ECM synthesis by producing a variety of cytokines and chemokines, modulate local microenvironment, and participate in the regulation of fibrosis. In this review, we will focus on the main pathological characteristics of liver fibrosis, as well as the heterogeneity on origin, polarization and functions of hepatic macrophages in the setting of liver fibrosis and their underlying mechanisms, which opens new perspectives for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Chun-Chen Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Jian Bai
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Hong-Yan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hong-Yan Qin,
| |
Collapse
|
118
|
Thadathil N, Selvarani R, Mohammed S, Nicklas EH, Tran AL, Kamal M, Luo W, Brown JL, Lawrence MM, Borowik AK, Miller BF, Van Remmen H, Richardson A, Deepa SS. Senolytic treatment reduces cell senescence and necroptosis in Sod1 knockout mice that is associated with reduced inflammation and hepatocellular carcinoma. Aging Cell 2022; 21:e13676. [PMID: 35869934 PMCID: PMC9381894 DOI: 10.1111/acel.13676] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/20/2022] [Accepted: 07/03/2022] [Indexed: 02/06/2023] Open
Abstract
The goal of this study was to test the role cellular senescence plays in the increased inflammation, chronic liver disease, and hepatocellular carcinoma seen in mice null for Cu/Zn-Superoxide dismutase (Sod1KO). To inhibit senescence, wildtype (WT) and Sod1KO mice were given the senolytics, dasatinib, and quercetin (D + Q) at 6 months of age when the Sod1KO mice begin exhibiting signs of accelerated aging. Seven months of D + Q treatment reduced the expression of p16 in the livers of Sod1KO mice to WT levels and the expression of several senescence-associated secretory phenotype factors (IL-6, IL-1β, CXCL-1, and GDF-15). D + Q treatment also reduced markers of inflammation in livers of the Sod1KO mice, for example, cytokines, chemokines, macrophage levels, and Kupffer cell clusters. D + Q treatment had no effect on various markers of liver fibrosis in the Sod1KO mice but reduced the expression of genes involved in liver cancer and dramatically reduced the incidence of hepatocellular carcinoma. Surprisingly, D + Q also reduced markers of necroptosis (phosphorylated and oligomerized MLKL) in the Sod1KO mice to WT levels. We also found that inhibiting necroptosis in the Sod1KO mice with necrostatin-1s reduced the markers of cellular senescence (p16, p21, and p53). Our study suggests that an interaction occurs between cellular senescence and necroptosis in the liver of Sod1KO mice. We propose that these two cell fates interact through a positive feedback loop resulting in a cycle amplifying both cellular senescence and necroptosis leading to inflammaging and age-associated pathology in the Sod1KO mice.
Collapse
Affiliation(s)
- Nidheesh Thadathil
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Ramasamy Selvarani
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Sabira Mohammed
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Evan H. Nicklas
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Albert L. Tran
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Maria Kamal
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Wenyi Luo
- Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Jacob L. Brown
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
| | - Marcus M. Lawrence
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Department of Kinesiology and Outdoor RecreationSouthern Utah UniversityCedar CityUtahUSA
| | - Agnieszka K. Borowik
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
| | - Benjamin F. Miller
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Holly Van Remmen
- Aging & Metabolism Program, Oklahoma Medical Research FoundationOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Arlan Richardson
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Oklahoma City VA Medical CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Sathyaseelan S. Deepa
- Department of Biochemistry & Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Stephenson Cancer CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
- Center for Geroscience and Healthy Brain AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| |
Collapse
|
119
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
120
|
Geng A, Flint E, Bernsmeier C. Plasticity of monocytes and macrophages in cirrhosis of the liver. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:937739. [PMID: 36926073 PMCID: PMC10013015 DOI: 10.3389/fnetp.2022.937739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/27/2022] [Indexed: 06/06/2023]
Abstract
Cirrhosis of the liver is a systemic condition with raising prevalence worldwide. Patients with cirrhosis are highly susceptible to develop bacterial infections leading to acute decompensation and acute-on-chronic liver failure both associated with a high morbidity and mortality and sparse therapeutic options other than transplantation. Mononuclear phagocytes play a central role in innate immune responses and represent a first line of defence against pathogens. Their function includes phagocytosis, killing of bacteria, antigen presentation, cytokine production as well as recruitment and activation of immune effector cells. Liver injury and development of cirrhosis induces activation of liver resident Kupffer cells and recruitment of monocytes to the liver. Damage- and pathogen-associated molecular patterns promote systemic inflammation which involves multiple compartments besides the liver, such as the circulation, gut, peritoneal cavity and others. The function of circulating monocytes and tissue macrophages is severely impaired and worsens along with cirrhosis progression. The underlying mechanisms are complex and incompletely understood. Recent 'omics' technologies help to transform our understanding of cellular diversity and function in health and disease. In this review we point out the current state of knowledge on phenotypical and functional changes of monocytes and macrophages during cirrhosis evolution in different compartments and their role in disease progression. We also discuss the value of potential prognostic markers for cirrhosis-associated immuneparesis, and future immunotherapeutic strategies that may reduce the need for transplantation and death.
Collapse
Affiliation(s)
- Anne Geng
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Emilio Flint
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Christine Bernsmeier
- Translational Hepatology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
121
|
Guo R, Jia X, Ding Z, Wang G, Jiang M, Li B, Chen S, Xia B, Zhang Q, Liu J, Zheng R, Gao Z, Xie X. Loss of MLKL ameliorates liver fibrosis by inhibiting hepatocyte necroptosis and hepatic stellate cell activation. Am J Cancer Res 2022; 12:5220-5236. [PMID: 35836819 PMCID: PMC9274737 DOI: 10.7150/thno.71400] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Liver fibrosis affects millions of people worldwide without an effective treatment. Although multiple cell types in the liver contribute to the fibrogenic process, hepatocyte death is considered to be the trigger. Multiple forms of cell death, including necrosis, apoptosis, and necroptosis, have been reported to co-exist in liver diseases. Mixed lineage kinase domain-like protein (MLKL) is the terminal effector in necroptosis pathway. Although necroptosis has been reported to play an important role in a number of liver diseases, the function of MLKL in liver fibrosis has yet to be unraveled. Methods and Results: Here we report that MLKL level is positively correlated with a number of fibrotic markers in liver samples from both patients with liver fibrosis and animal models. Mlkl deletion in mice significantly reduces clinical symptoms of CCl4- and bile duct ligation (BDL) -induced liver injury and fibrosis. Further studies indicate that Mlkl-/- blocks liver fibrosis by reducing hepatocyte necroptosis and hepatic stellate cell (HSC) activation. AAV8-mediated specific knockdown of Mlkl in hepatocytes remarkably alleviates CCl4-induced liver fibrosis in both preventative and therapeutic ways. Conclusion: Our results show that MLKL-mediated signaling plays an important role in liver damage and fibrosis, and targeting MLKL might be an effective way to treat liver fibrosis.
Collapse
Affiliation(s)
- Ren Guo
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaohui Jia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Zhenbin Ding
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200031, China,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200031, China,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
| | - Gang Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mengmeng Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bing Li
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shanshan Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Zhang
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jian Liu
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruting Zheng
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China,CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China,✉ Corresponding author: Dr. Xin Xie, 189 Guo Shou Jing Road, Shanghai 201203, China; Tel: (86) 186-0211-0377; Fax: 0086-21-50800721; E-mail:
| |
Collapse
|
122
|
Wen H, He R, Wang H, Zhao S, Zheng J, Wu J, Xie M. Effects of small molecule inhibitor SW033291 on hepatic ischemia-reperfusion injury in mice. Biochem Biophys Res Commun 2022; 615:70-74. [PMID: 35605408 DOI: 10.1016/j.bbrc.2022.05.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022]
|
123
|
Niu WX, Bao YY, Zhang N, Lu ZN, Ge MX, Li YM, Li Y, Chen MH, He HW. Dehydromevalonolactone ameliorates liver fibrosis and inflammation by repressing activation of NLRP3 inflammasome. Bioorg Chem 2022; 127:105971. [PMID: 35749855 DOI: 10.1016/j.bioorg.2022.105971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
Liver fibrosis is an important process in chronic liver disease and is strongly related to poor prognosis. Dehydromevalonolactone (C8) is a natural product isolated from a fungus of Fusarium sp. CPCC 401218, and its pharmacological activity has never been reported before. In this study, the potential of C8 as an anti-hepatic fibrosis agent was investigated. In human hepatic stellate cell (HSC) line LX-2, C8 suppressed the increased expression of COL1A1 and α-SMA induced by TGFβ1, which indicated that C8 could repress the activation of HSCs. In bile duct ligated rats, C8 administration (100 mg/kg, i.p.) markedly attenuated liver injury, fibrosis, and inflammation, and suppressed the expression of the macrophage surface marker F4/80. In terms of mechanism, C8 treatment blocked the activation of the NLRP3 inflammasome, which was stimulated by LPS and nigericin in bone marrow-derived macrophages (BMDMs) and companied by the release of active IL-1β. In addition, the activation of LX-2 cells induced by IL-1β released from BMDMs was also inhibited after C8 administration, which indicated that C8 repressed HSCs activation by inhibiting the activation of NLRP3 inflammasome in macrophages. Furthermore, C8 exhibited the effects of anti-fibrosis and inhibiting the expression of NLRP3 inflammasome in non-alcoholic steatohepatitis (NASH) mice. Finally, C8 can be commendably absorbed in vivo and was safe for mice at the concentration of 1000 mg/kg (p.o.). In summary, our study reveals that C8 ameliorates HSCs activation and liver fibrosis in cholestasis rats and NASH mice by inhibiting NLRP3 inflammasome in macrophages, and C8 might be a safe and effective candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Wei-Xiao Niu
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun-Yang Bao
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Ning Lu
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mao-Xu Ge
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi-Ming Li
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Li
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming-Hua Chen
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hong-Wei He
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
124
|
Foster JR, Billimoria K, Del Castillo Busto ME, Strekopytov S, Goenaga-Infante H, Morley TJ. Accumulation of molybdenum in major organs following repeated oral administration of bis-choline tetrathiomolybdate in the Sprague Dawley rat. J Appl Toxicol 2022; 42:1807-1821. [PMID: 35701339 DOI: 10.1002/jat.4358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/12/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
Molybdenum is an essential dietary trace element required for several critical enzyme systems. High intake is associated with toxicity in ruminants and animal studies. The proposed therapeutic use of molybdenum based drugs poses a potential risk for accumulation through chronic administration of therapeutic doses of this element. The current experiment was designed to study the effect of daily dosing of a molybdenum compound, bis-choline tetrathiomolybdate (TTM), in Sprague Dawley rats using laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-ToF-MS), and two dosing levels of TTM for up to 3-months. To investigate if molybdenum accumulation was associated with tissue toxicity, histopathology, haematology and clinical biochemistry markers of toxicity were incorporated into the study design. There were no behavioural signs of toxicity to the rats, and no clinical or anatomic pathology associated with treatment. The current data did show a progressive accumulation of molybdenum within the adrenal gland, kidneys, liver, spleen, brain and testes. While this was not associated with tissue toxicity within the three-month study design, greater exposure over a longer period of time has potential for adverse pathophysiological cellular function. Tissue toxicity, as a result of local excessive accumulation of molybdenum over time has clear implications for the therapeutic use of molybdenum in humans and demands sensitive monitoring of tissue molybdenum levels to avoid toxicity. The current study highlights the shortcomings of conventional biomonitoring approaches to detect molybdenum accumulation with the goal of avoiding molybdenum associated toxicity.
Collapse
Affiliation(s)
| | - Kharmen Billimoria
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex, United Kingdom
| | | | - Stanislav Strekopytov
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex, United Kingdom
| | - Heidi Goenaga-Infante
- LGC Limited, National Measurement Laboratory (NML), Queens Road, Teddington, Middlesex, United Kingdom
| | | |
Collapse
|
125
|
Binatti E, Gerussi A, Barisani D, Invernizzi P. The Role of Macrophages in Liver Fibrosis: New Therapeutic Opportunities. Int J Mol Sci 2022; 23:6649. [PMID: 35743092 PMCID: PMC9224467 DOI: 10.3390/ijms23126649] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is the hallmark of fibrotic disorders and is characterized by the activation of immune cells in the damaged tissues. Macrophages have emerged as central players in the fibrotic process since they initiate, sustain and amplify the inflammatory reaction. As regards the liver, distinct populations of phagocytic cells, like Kupffer cells and monocyte-derived macrophages, are indisputably key cells implicated in the pathogenesis of several chronic liver diseases. In this review, we summarize the current knowledge on the origin, role and functions of macrophages in fibrotic conditions, with a specific focus on liver fibrosis; then, we discuss some innovative therapeutic strategies targeting macrophages in fibrotic liver diseases.
Collapse
Affiliation(s)
- Eleonora Binatti
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, Università degli Studi di Milano Bicocca, 20900 Monza, Italy; (A.G.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, Università degli Studi di Milano Bicocca, 20900 Monza, Italy; (A.G.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, Università degli Studi di Milano Bicocca, 20900 Monza, Italy; (A.G.); (P.I.)
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, 20900 Monza, Italy
| |
Collapse
|
126
|
Ngo W, Ahmed S, Blackadar C, Bussin B, Ji Q, Mladjenovic SM, Sepahi Z, Chan WC. Why nanoparticles prefer liver macrophage cell uptake in vivo. Adv Drug Deliv Rev 2022; 185:114238. [PMID: 35367524 DOI: 10.1016/j.addr.2022.114238] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Effective delivery of therapeutic and diagnostic nanoparticles is dependent on their ability to accumulate in diseased tissues. However, most nanoparticles end up in liver macrophages regardless of nanoparticle design after administration. In this review, we describe the interactions of liver macrophages with nanoparticles. Liver macrophages have significant advantages in interacting with circulating nanoparticles over most target cells and tissues in the body. We describe these advantages in this article. Understanding these advantages will enable the development of strategies to overcome liver macrophages and deliver nanoparticles to targeted diseased tissues effectively. Ultimately, these approaches will increase the therapeutic efficacy and diagnostic signal of nanoparticles.
Collapse
|
127
|
Li Z, Wu K, Zou Y, Gong W, Wang P, Wang H. PREX1 depletion ameliorates high-fat diet-induced non-alcoholic fatty liver disease in mice and mitigates palmitic acid-induced hepatocellular injury via suppressing the NF-κB signaling pathway. Toxicol Appl Pharmacol 2022; 448:116074. [PMID: 35605788 DOI: 10.1016/j.taap.2022.116074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/30/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver diseases worldwide. Oxidative stress has been considered a key factor in the pathogenesis of NAFLD. Phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 (PREX1), a guanine nucleotide exchange factor for Rac, has been associated with inflammation and oxidative stress. This study aimed to investigate the biological function of PREX1 in the progression of NAFLD. Male C57BL/6 mice were fed a high-fat diet for 12 weeks to induce NAFLD in vivo. Adeno-associated virus type 8-mediated liver-specific PREX1 depletion was employed to investigate the role of PREX1 in the progression of high-fat diet-induced NAFLD. Murine hepatocyte cell line AML-12 was stimulated with palmitic acid for 24 h to induce steatosis in vitro. PREX1 depletion was carried out by transfection with PREX1 small interfering RNA. Results showed that PREX1 depletion exerted protective effects against lipid accumulation, oxidative stress and inflammation and inhibited activation of the nuclear factor-κB (NF-κB) signaling pathway in vivo and in vitro. Subsequently, NF-κB inhibitor BAY11-7082 was applied to investigate the role of the NF-κB signaling pathway in the protective effect of PREX1 inhibition against NAFLD. We confirmed that PREX1 inhibition mitigated palmitic acid-induced hepatocellular inflammation mainly via the NF-κB signaling pathway and lipid accumulation and oxidative stress at least partly via the NF-κB signaling pathway. This study highlights the biological function of PREX1 in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kanglin Wu
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Yi Zou
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Wei Gong
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Peng Wang
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Hong Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
128
|
Shu B, Zhang RZ, Zhou YX, He C, Yang X. METTL3-mediated macrophage exosomal NEAT1 contributes to hepatic fibrosis progression through Sp1/TGF-β1/Smad signaling pathway. Cell Death Dis 2022; 8:266. [PMID: 35585044 PMCID: PMC9117676 DOI: 10.1038/s41420-022-01036-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/06/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Hepatic fibrosis (HF) is caused by chronic hepatic injury and is characterized by hepatic stellate cells (HSCs) activation. Studies focusing on the function of exosomes derived from macrophages in HF progression are limited. This study aims to identify the roles of exosomal NEAT1 derived from macrophages on HF and the underlying mechanisms. Our studies showed that METTL3 targeted and enhanced NEAT1 expression in macrophages. Exosomal NEAT1 originating from LPS-treated macrophages promoted HSCs proliferation and migration, and induced the expression of fibrotic proteins including collagen I, α-SMA, and fibronectin. Macrophage exosomal NEAT1 contributed to HSCs activation by sponging miR-342. MiR-342 directly targeted Sp1 and suppressed its downstream TGF-β1/Smad signaling pathway, which eventually led to the inhibition of HSCs activation. Depletion of NEAT1 in the macrophage exosomes inhibited HF progression both in vitro and in vivo. Altogether, our study proved that silence of NEAT1 in the macrophage exosomes exerted protective roles against HF through the miR-342/Sp1/TGF-β1/Smad signaling pathway, suggesting a potential therapeutic target in HF treatment.
Collapse
Affiliation(s)
- Bo Shu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Rui-Zhi Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Ying-Xia Zhou
- Department of Surgical Operation, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Chao He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China
| | - Xin Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, PR China.
| |
Collapse
|
129
|
Zhang X, Thompkins-Johns A, Ziober A, Zhang PJ, Furth EE. Hepatic Macrophage Types Cluster with Disease Etiology in Chronic Liver Disease and Differ Compared to Normal Liver: Implications for Their Biologic and Diagnostic Role. Int J Surg Pathol 2022; 31:268-279. [PMID: 35521912 DOI: 10.1177/10668969221099630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction. Macrophages are phenotypically heterogeneous cells that play a vital role in hepatic fibrogenesis. We aimed to compare the macrophage profiles between normal livers and those with various chronic liver diseases in the precirrhotic fibrosis stage. Methods. Immunohistochemistry was performed for three macrophage markers (CD163, CD68, and IBA1) on 48 liver biopsies. Digital image analysis and automated cell count were used to calculate the densities of immunostained cells in two selected regions of interest: the periportal region and the perivenous region. Results. The absolute and relative densities of the macrophage phenotypes in relationship with zones and etiologies showed four distinct patterns by hierarchical cluster analysis: (1) no significant increase in the macrophage densities in either periportal or perivenous regions - nonalcoholic steatohepatitis; (2) significant increase in the selected macrophage densities in both periportal and perivenous regions - Hepatitis C; (3) significant increase in the macrophage densities only in periportal region - alcoholic liver disease, primary sclerosing cholangitis, and primary biliary cholangitis; and (4) significant increase in the densities of all types of macrophages in both periportal and perivenous regions - autoimmune hepatitis. Conclusions. There are distinct macrophage phenotypic and zonal geographic signatures correlating to etiologies of chronic liver disease in the precirrhotic stage.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Thompkins-Johns
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Ziober
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Paul J Zhang
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Emma E Furth
- Department of Pathology and Laboratory Medicine, 428224Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
130
|
Raszeja-Wyszomirska J, Niewiński G, Graczyńska A, Morawiec S, Janik MK, Kornasiewicz O. Clinical Implication of Plasma CD163 in Patients With Acute-on-Chronic Liver Failure. Transplant Proc 2022; 54:1011-1016. [PMID: 35523597 DOI: 10.1016/j.transproceed.2022.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND It was postulated that CD163 plasma level should be incorporated into existing predictive systems to improve prognostic performance in patients with acute-on-chronic liver failure (ACLF). PATIENTS AND METHODS Plasma CD163 was assessed in 24 consecutive patients with ACLF (17 male, 7 female; mean age 54.9 years; 50% with alcohol-related liver disease) and compered with the existing scoring tools to predict the availability of transplantation or survival without liver transplant (LT). RESULTS There were no differences in plasma CD163 levels between graft recipients and deceased patients on the waiting list or transplant survivors vs nonsurvivors. CD163 did not correlate with CLIF-ACLF, CLIF Consortium organ failure score (CLIF-OF), and ACLF grades (all P < .05). However, sequential organ failure assessment (SOFA), CLIF Consortium acute-on-chronic liver failure score (CLIF-C) ACLF, and CLIF-C OF scores correlated significantly with mortality (P < .01) in contrast to Child-Pugh scale and Model for End-Stage Liver Disease score (all P > .05). Transplanted survivors and deceased individuals differed robustly with respect to the SOFA and CLIF-SOFA scores and the CLIF-C OF, CLIF-C Grade, and CLIF-C ACLF scales (all P < .05). CLIF-C performed well in ACLF prognostication with an area under receiver operating characteristic curve (AUROC) 0.893 (95% CI, 0.766-1), surpassing in that respect CD163 with AUROC of 0.664 (95% CI, 0417-0.911). CONCLUSIONS Our preliminary results showed that the plasma CD163 level in patients with ACLF played only a minor role in predicting LT futility/benefit, with no impact on the narrow transplant window. Moreover, to optimize LT outcomes, newly developed CLIF-C scales showed superior predictive value.
Collapse
Affiliation(s)
| | - Grzegorz Niewiński
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.
| | | | | | - Maciej K Janik
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland.
| | - Oskar Kornasiewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
131
|
Remetic J, Ghallab A, Hobloss Z, Brackhagen L, Hassan R, Myllys M, Radun R, Mlitz V, Zhu C, Baumgartner M, Schrottmaier WC, Mussbacher M, Timelthaler G, Scharnagl H, Stojakovic T, Assinger A, Fuchs CD, Hengstler JG, Trauner M. Loss of bile salt export pump aggravates lipopolysaccharide-induced liver injury in mice due to impaired hepatic endotoxin clearance. Hepatology 2022; 75:1095-1109. [PMID: 34927748 PMCID: PMC9306629 DOI: 10.1002/hep.32289] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Lipopolysaccharide (LPS) clearance is delayed in cholestatic liver diseases. While compromised clearance by Kupffer cells (KCs) is involved, the role of LPS uptake into hepatocytes and canalicular excretion remains unclear. APPROACH AND RESULTS Wild-type (WT) and bile salt export pump (Bsep) knockout (KO) mice were challenged i.p. with LPS. Liver injury was assessed by serum biochemistry, histology, molecular inflammation markers, and immune cell infiltration. LPS concentrations were determined in liver tissue and bile. Subcellular kinetics of fluorescently labeled LPS was visualized by intravital two-photon microscopy, and the findings in Bsep KO mice were compared to common bile duct-ligated (BDL) and multidrug resistance protein 2 (Mdr2) KO mice. Changes in gut microbiota composition were evaluated by 16S ribosomal RNA gene amplicon sequencing analysis. Bsep KO mice developed more pronounced LPS-induced liver injury and inflammatory signaling, with subsequently enhanced production of proinflammatory cytokines and aggravated hepatic immune cell infiltration. After LPS administration, its concentrations were higher in liver but lower in bile of Bsep KO compared to WT mice. Intravital imaging of LPS showed a delayed clearance from sinusoidal blood with a basolateral uptake block into hepatocytes and reduced canalicular secretion. Moreover, LPS uptake into KCs was reduced. Similar findings with respect to hepatic LPS clearance were obtained in BDL and Mdr2 KO mice. Pretreatment with the microtubule inhibitor colchicine inhibited biliary excretion of LPS in WT mice, indicating that LPS clearance is microtubule-dependent. Microbiota analysis showed no change of the gut microbiome between WT and Bsep KO mice at baseline but major changes upon LPS challenge in WT mice. CONCLUSIONS Absence of Bsep and cholestasis in general impair LPS clearance by a basolateral uptake block into hepatocytes and consequently less secretion into canaliculi. Impaired LPS removal aggravates hepatic inflammation in cholestasis.
Collapse
Affiliation(s)
- Jelena Remetic
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Ahmed Ghallab
- Leibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
- Department of Forensic Medicine and ToxicologyFaculty of Veterinary MedicineSouth Valley UniversityQenaEgypt
| | - Zaynab Hobloss
- Leibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Lisa Brackhagen
- Leibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Reham Hassan
- Leibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
- Department of Forensic Medicine and ToxicologyFaculty of Veterinary MedicineSouth Valley UniversityQenaEgypt
| | - Maiju Myllys
- Leibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Richard Radun
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Veronika Mlitz
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Ci Zhu
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Maximilian Baumgartner
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Waltraud C. Schrottmaier
- Institute of Vascular Biology and Thrombosis ResearchCentre of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Marion Mussbacher
- Institute of Pharmaceutical SciencesDepartment of Pharmacology and ToxicologyUniversity of GrazGrazAustria
| | - Gerald Timelthaler
- The Institute of Cancer ResearchDepartment of Medicine IMedical University of ViennaViennaAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsUniversity Hospital GrazGrazAustria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis ResearchCentre of Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Claudia D. Fuchs
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo)DortmundGermany
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
132
|
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis 2022; 54:598-613. [PMID: 34344577 DOI: 10.1016/j.dld.2021.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Intercellular crosstalk among various liver cells plays an important role in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Capillarization of liver sinusoidal endothelial cells (LSECs) precedes fibrosis and accumulating evidence suggests that the crosstalk between LSECs and other liver cells is critical in the development and progression of liver fibrosis. LSECs dysfunction, a key event in the progression from fibrosis to cirrhosis, and subsequently obstruction of hepatic sinuses and increased intrahepatic vascular resistance (IHVR) contribute to development of portal hypertension (PHT) and cirrhosis. More importantly, immunosuppressive tumor microenvironment (TME), which is closely related to the crosstalk between LSECs and immune liver cells like CD8+ T cells, promotes advances tumorigenesis, especially HCC. However, the connections within the crosstalk between LSECs and other liver cells during the progression from liver fibrosis to cirrhosis to HCC have yet to be discussed. In this review, we first summarize the current knowledge of how different crosstalk between LSECs and other liver cells, including hepatocytes, hepatic stellate cells (HSCs), macrophoges, immune cells in liver and extra cellular matrix (ECM) contribute to the physiological function and the progrssion from liver fibrosis to cirrhosis, or even to HCC. Then we examine current treatment strategies for LSECs crosstalk in liver fibrosis, cirrhosis and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
133
|
Ghasemzadeh M, Ahmadi J, Hosseini E. Platelet-leukocyte crosstalk in COVID-19: How might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis? Thromb Res 2022; 213:179-194. [PMID: 35397313 PMCID: PMC8969450 DOI: 10.1016/j.thromres.2022.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023]
Abstract
Platelet-leukocyte crosstalk is commonly manifested by reciprocal links between thrombosis and inflammation. Platelet thrombus acts as a reactive matrix that recruits leukocytes to the injury site where their massive accumulation, activation and migration promote thrombotic events while triggering inflammatory responses. As a life-threatening condition with the associations between inflammation and thrombosis, COVID-19 presents diffuse alveolar damage due to exaggerated macrophage activity and cytokine storms. These events, together with direct intracellular virus invasion lead to pulmonary vascular endothelialitis, cell membranes disruption, severe endothelial injury, and thrombosis. The developing pre-alveolar thrombus provides a hyper-reactive milieu that recruits circulating leukocytes to the injury site where their activation contributes to thrombus stabilization and thrombosis propagation, primarily through the formation of Neutrophil extracellular trap (NET). NET fragments can also circulate and deposit in further distance where they may disseminate intravascular thrombosis in severe cases of disease. Thrombi may also facilitate leukocytes migration into alveoli where their accumulation and activation exacerbate cytokine storms and tissue damage, further complicating the disease. Based on these mechanisms, whether an effective anti-inflammatory protocol can prevent thrombotic events, or on the other hand; efficient antiplatelet or anticoagulant regimens may be associated with reduced cytokine storms and tissue damage, is now of interests for several ongoing researches. Thus shedding more light on platelet-leukocyte crosstalk, the review presented here discusses the detailed mechanisms by which platelets may contribute to the pathogenesis of COVID-19, especially in severe cases where their interaction with leukocytes can intensify both inflammatory state and thrombosis in a reciprocal manner.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| |
Collapse
|
134
|
Abstract
Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases.
Collapse
Affiliation(s)
- Kyeong-Jin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
135
|
Qian LL, Ji JJ, Jiang Y, Guo JQ, Wu Y, Yang Z, Ma G, Yao YY. Serpina3c deficiency induced necroptosis promotes non‐alcoholic fatty liver disease through β‐catenin/Foxo1/TLR4 signaling. FASEB J 2022; 36:e22316. [PMID: 35429042 DOI: 10.1096/fj.202101345rrr] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ling Lin Qian
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Jing Jing Ji
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Yu Jiang
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Jia Qi Guo
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Ya Wu
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Ziwei Yang
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Gen Shan Ma
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| | - Yu Yu Yao
- Department of Cardiology Zhongda Hospital, School of Medicine, Southeast University Nanjing China
| |
Collapse
|
136
|
Yong H, Shan S, Wang S, Liu Z, Liu Z, Zhang C, Yang Y, Huang Z, Song F. Activation of mitophagy by rapamycin eliminated the accumulation of TDP-43 on mitochondrial and promoted the resolution of carbon tetrachloride-induced liver fibrosis in mice. Toxicology 2022; 471:153176. [PMID: 35405287 DOI: 10.1016/j.tox.2022.153176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
Abstract
Liver fibrosis can lead to liver cirrhosis and hepatocellular carcinoma, and no effective treatment is available in clinical practice. Mitochondrial dysfunction is thought to be closely related to the development of liver fibrosis. Recent studies have reported that abnormal accumulation of TDP-43 on mitochondria may interfere with mitochondrial function in neurodegenerative disorders. However, whether aberrant TDP-43 aggregation is also involved in liver fibrosis has not been investigated. In this study, C57/BL6 mice were treated with CCl4 (escalating doses, three times a week) for 8 weeks to establish a model of liver fibrosis. Furthermore, mitophagy intervention experiment was achieved by the activator rapamycin (RAPA). The results demonstrated that chronic CCl4 exposure resulted in severe mitochondrial damage, inflammatory response and hepatic fibrogenesis. Interestingly, abnormal aggregation of TDP-43 on mitochondria was observed. By contrast, RAPA administration could promote the regression of liver fibrosis. Mechanistically, RAPA could eliminate the accumulation of TDP-43 on mitochondrial through enhancing mitophagy, thereby improving mitochondrial function. Taken together, our study revealed that mitochondrial damage induced by abnormal accumulation of TDP-43 has been implicated in the progression of liver fibrosis. Targeted clearance of mitochondrial TDP-43 may lead to the development of some anti-fibrotic therapies.
Collapse
Affiliation(s)
- Hui Yong
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
137
|
Luo Y, Bednarek J, Chaidez A, Atif S, Wang D, Mack CL. Regulatory T Cell (Treg) Cytotoxic T Lymphocyte-associated Antigen-4 Deficits in Biliary Atresia (BA) and Disease Rescue With Treg Augmentation in Murine BA. GASTRO HEP ADVANCES 2022; 1:461-470. [PMID: 39131670 PMCID: PMC11307853 DOI: 10.1016/j.gastha.2021.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 08/13/2024]
Abstract
Background and Aims Biliary atresia (BA) entails an inflammatory injury of the biliary tree, leading to fibrosis of the extrahepatic and intrahepatic bile ducts. The chronic inflammatory biliary injury may be due to lack of appropriate regulatory T cell (Treg) suppression of inflammation. The aims of the study were to characterize Treg deficits in human BA and to determine if Treg augmentation therapy improved outcomes in the rhesus rotavirus (RRV)-induced mouse model of BA. Methods Immunophenotyping of human peripheral blood and liver Tregs was performed with flow cytometry, Vectra-6 multicolor immunohistochemistry (IHC), and real-time polymerase chain reaction. Measured outcomes of Treg augmentation with the interleukin-2 monoclonal antibody JES6-1/interleukin-2 in the RRV-induced mouse model of BA included survival, direct bilirubin, IHC, and liver flow cytometry. Results Patients with BA had decreased peripheral blood Treg frequency and lack of cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) upregulation despite a highly activated, effector Treg phenotype. IHC revealed decreased liver Treg frequency and Treg CTLA-4 expression. Treg augmentation in the murine model led to increased survival, decreased direct bilirubin levels and liver inflammation, and expansion of resident macrophages. In addition to the M2 phenotype of resident macrophages, these cells adopted an inflammatory M1 phenotype in response to RRV infection, which was inhibited with Treg augmentation. Conclusion Patients with BA have Treg deficiencies associated with lack of sufficient CTLA-4 expression that is necessary for cell-cell contact inhibition of inflammatory responses. Treg augmentation therapy in murine BA protected from disease. Future treatment trials for BA should include agents that enhance Treg number or function, mimic CTLA-4 function, and promote anti-inflammatory M2 macrophage phenotypes.
Collapse
Affiliation(s)
- Yuhuan Luo
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine. Aurora, Colorado
| | - Joseph Bednarek
- Department of Pathology, University of Utah. Salt Lake City, Utah
| | - Alexander Chaidez
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine. Aurora, Colorado
| | - Shaikh Atif
- Division of Allergy & Immunology, Department of Medicine, University of Colorado School of Medicine. Aurora, Colorado
| | - Dong Wang
- University of Colorado School of Medicine. Aurora, Colorado
| | - Cara L. Mack
- Section of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Children’s Hospital Colorado, University of Colorado School of Medicine. Aurora, Colorado
| |
Collapse
|
138
|
Gudd CLC, Possamai LA. The Role of Myeloid Cells in Hepatotoxicity Related to Cancer Immunotherapy. Cancers (Basel) 2022; 14:1913. [PMID: 35454819 PMCID: PMC9027811 DOI: 10.3390/cancers14081913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Drug-related hepatotoxicity is an emerging clinical challenge with the widening use of immunotherapeutic agents in the field of oncology. This is an important complication to consider as more immune oncological targets are being identified to show promising results in clinical trials. The application of these therapeutics may be complicated by the development of immune-related adverse events (irAEs), a serious limitation often requiring high-dose immunosuppression and discontinuation of cancer therapy. Hepatoxicity presents one of the most frequently encountered irAEs and a better understanding of the underlying mechanism is crucial for the development of alternative therapeutic interventions. As a novel drug side effect, the immunopathogenesis of the condition is not completely understood. In the liver, myeloid cells play a central role in the maintenance of homeostasis and promotion of inflammation. Recent research has identified myeloid cells to be associated with hepatic adverse events of various immune modulatory monoclonal antibodies. In this review article, we provide an overview of the role of myeloid cells in the immune pathogenesis during hepatoxicity related to cancer immunotherapies and highlight potential treatment options.
Collapse
Affiliation(s)
- Cathrin L. C. Gudd
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Lucia A. Possamai
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
139
|
Gu J, Xu H, Chen Y, Li N, Hou X. MiR-223 as a Regulator and Therapeutic Target in Liver Diseases. Front Immunol 2022; 13:860661. [PMID: 35371024 PMCID: PMC8965842 DOI: 10.3389/fimmu.2022.860661] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/23/2022] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding single-stranded small molecule RNAs consisting of 20–24 nucleotides that are highly conserved in species evolution. Expression of miRNAs is strictly tissue-specific, and it is chronological in fungi and plants, as well as in animals. MiR-223 has been shown to play a key role in innate immunity, and dysregulation of its expression contributes to the pathogenesis of multiple inflammatory diseases, and cancers. In this article the biosynthesis and functions of miR-223 in innate immunity are reviewed, and the role of miR-223 in liver physiopathology and therapeutic prospects are highlighted.
Collapse
Affiliation(s)
- Jiarong Gu
- School of Medicine, Ningbo University, Ningbo, China
| | - Hao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Yandong Chen
- School of Medicine, Ningbo University, Ningbo, China
| | - Na Li
- School of Medicine, Ningbo University, Ningbo, China
| | - Xin Hou
- School of Medicine, Ningbo University, Ningbo, China.,The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
140
|
Lee KJ, Kim MY, Han YH. Roles of heterogenous hepatic macrophages in the progression of liver diseases. BMB Rep 2022; 55:166-174. [PMID: 35321784 PMCID: PMC9058466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/21/2025] Open
Abstract
Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases. [BMB Reports 2022; 55(4): 166-174].
Collapse
Affiliation(s)
- Kyeong-Jin Lee
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Mi-Yeon Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
141
|
Chen Y, Li T, Tan P, Shi H, Cheng Y, Cai T, Bai J, Du Y, Fu W. Kaempferol From Penthorum chinense Pursh Attenuates Hepatic Ischemia/Reperfusion Injury by Suppressing Oxidative Stress and Inflammation Through Activation of the Nrf2/HO-1 Signaling Pathway. Front Pharmacol 2022; 13:857015. [PMID: 35431932 PMCID: PMC9011142 DOI: 10.3389/fphar.2022.857015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/07/2022] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study is to investigate the protective effect of kaempferol (KAE), the main active monomer from Penthorum chinense Pursh, on hepatic ischemia/reperfusion injury (HI/RI) and its specific mechanism. HI/RI is a common complication closely related to the prognosis of liver surgery, and effective prevention and treatment methods are still unavailable. Ischemia/reperfusion (I/R) injury is caused by tissue damage during ischemia and sustained oxidative stress and inflammation during reperfusion. Penthorum chinense Pursh is a traditional Chinese medicine widely used to treat liver disease since ancient times. Kaempferol (KAE), a highly purified flavonoid active monomer isolated and extracted from Penthorum chinense Pursh, was investigated for its protective effect on HI/RI. Our study indicates that KAE pretreatment alleviated I/R-induced transaminase elevation and pathological changes. Further analysis revealed that KAE pretreatment attenuates I/R-induced oxidative stress (as measured by the content of MDA, SOD and GSH) in vivo and reduces hypoxia/reoxygenation (H/R) -induced reactive oxygen species (ROS) generation in vitro. Meanwhile, KAE inhibits activation of NF-κB/p65 and reduces the release of pro-inflammatory factors (TNF-α and IL-6) to protect the liver from I/R-induced inflammation. Nuclear erythroid 2-related factor 2 (Nrf2) is a crucial cytoprotection regulator because it induces anti-inflammatory, antioxidant, and cytoprotective genes. Therefore, we analyzed the protein levels of Nrf2 and its downstream heme oxygenase-1 (HO-1) in the liver of mice and hepatocytes of humankind, respectively, and discovered that KAE pretreatment activates the Nrf2/HO-1 signaling pathway. In summary, this study confirmed the hepatoprotective effect of KAE on HI/RI, which inhibits oxidative stress and inflammation by activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Yifan Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tongxi Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peng Tan
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Shi
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yonglang Cheng
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tianying Cai
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Junjie Bai
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yichao Du
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yichao Du, ; Wenguang Fu,
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yichao Du, ; Wenguang Fu,
| |
Collapse
|
142
|
Mooli RGR, Mukhi D, Ramakrishnan SK. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. Compr Physiol 2022; 12:3167-3192. [PMID: 35578969 PMCID: PMC10074426 DOI: 10.1002/cphy.c200021] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increased production of derivatives of molecular oxygen and nitrogen in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS) lead to molecular damage called oxidative stress. Under normal physiological conditions, the ROS generation is tightly regulated in different cells and cellular compartments. Any disturbance in the balance between the cellular generation of ROS and antioxidant balance leads to oxidative stress. In this article, we discuss the sources of ROS (endogenous and exogenous) and antioxidant mechanisms. We also focus on the pathophysiological significance of oxidative stress in various cell types of the liver. Oxidative stress is implicated in the development and progression of various liver diseases. We narrate the master regulators of ROS-mediated signaling and their contribution to liver diseases. Nonalcoholic fatty liver diseases (NAFLD) are influenced by a "multiple parallel-hit model" in which oxidative stress plays a central role. We highlight the recent findings on the role of oxidative stress in the spectrum of NAFLD, including fibrosis and liver cancer. Finally, we provide a brief overview of oxidative stress biomarkers and their therapeutic applications in various liver-related disorders. Overall, the article sheds light on the significance of oxidative stress in the pathophysiology of the liver. © 2022 American Physiological Society. Compr Physiol 12:3167-3192, 2022.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
143
|
Zhang C, Hang Y, Tang W, Sil D, Jensen-Smith HC, Bennett RG, McVicker BL, Oupický D. Dually Active Polycation/miRNA Nanoparticles for the Treatment of Fibrosis in Alcohol-Associated Liver Disease. Pharmaceutics 2022; 14:pharmaceutics14030669. [PMID: 35336043 PMCID: PMC8949580 DOI: 10.3390/pharmaceutics14030669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Alcohol-associated liver disease (AALD) is a major cause of liver disorders worldwide. Current treatment options are limited, especially for AALD-associated fibrosis. Promising approaches include RNA interference for miR-155 overexpression in Kupffer cells (KCs), as well as the use of CXCR4 antagonists that inhibit the activation of hepatic stellate cells (HSCs) through the CXCL12/CXCR4 axis. The development of dual-functioning nanoparticles for the effective delivery of antifibrotic RNA together with a CXCR4 inhibitor thus promises to improve the treatment of AALD fibrosis. In this study, cholesterol-modified polymeric CXCR4 inhibitor (Chol-PCX) was synthesized and used to encapsulate anti-miR-155 or non-coding (NC) miRNA in the form of Chol-PCX/miRNA nanoparticles. The results indicate that the nanoparticles induce a significant miR-155 silencing effect both in vitro and in vivo. Treatment with the Chol-PCX/anti-miR-155 particles in a model of moderate alcohol consumption with secondary liver insult resulted in a significant reduction in aminotransferase enzymes as well as collagen content in the liver parenchyma. Overall, our data support the use of Chol-PCX as a carrier for anti-miR-155 for the combined therapeutic inhibition of CXCR4 and miR-155 expression as a way to improve fibrotic damage in the liver.
Collapse
Affiliation(s)
- Chuhan Zhang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Yu Hang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Diptesh Sil
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
| | - Heather C. Jensen-Smith
- Eppley Institute for Cancer Research & Fred and Pamela Buffer Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Robert G. Bennett
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.G.B.); (B.L.M.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Benita L. McVicker
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.G.B.); (B.L.M.)
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.Z.); (Y.H.); (W.T.); (D.S.)
- Correspondence:
| |
Collapse
|
144
|
Murphy JM, Ngai L, Mortha A, Crome SQ. Tissue-Dependent Adaptations and Functions of Innate Lymphoid Cells. Front Immunol 2022; 13:836999. [PMID: 35359972 PMCID: PMC8960279 DOI: 10.3389/fimmu.2022.836999] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident immune cells reside in distinct niches across organs, where they contribute to tissue homeostasis and rapidly respond to perturbations in the local microenvironment. Innate lymphoid cells (ILCs) are a family of innate immune cells that regulate immune and tissue homeostasis. Across anatomical locations throughout the body, ILCs adopt tissue-specific fates, differing from circulating ILC populations. Adaptations of ILCs to microenvironmental changes have been documented in several inflammatory contexts, including obesity, asthma, and inflammatory bowel disease. While our understanding of ILC functions within tissues have predominantly been based on mouse studies, development of advanced single cell platforms to study tissue-resident ILCs in humans and emerging patient-based data is providing new insights into this lymphocyte family. Within this review, we discuss current concepts of ILC fate and function, exploring tissue-specific functions of ILCs and their contribution to health and disease across organ systems.
Collapse
Affiliation(s)
- Julia M. Murphy
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sarah Q. Crome
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
145
|
Friedman SL, Pinzani M. Hepatic fibrosis 2022: Unmet needs and a blueprint for the future. Hepatology 2022; 75:473-488. [PMID: 34923653 DOI: 10.1002/hep.32285] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Steady progress over four decades toward understanding the pathogenesis and clinical consequences of hepatic fibrosis has led to the expectation of effective antifibrotic drugs, yet none has been approved. Thus, an assessment of the field is timely, to clarify priorities and accelerate progress. Here, we highlight the successes to date but, more importantly, identify gaps and unmet needs, both experimentally and clinically. These include the need to better define cell-cell interactions and etiology-specific elements of fibrogenesis and their link to disease-specific drivers of portal hypertension. Success in treating viral hepatitis has revealed the remarkable capacity of the liver to degrade scar in reversing fibrosis, yet we know little of the mechanisms underlying this response. Thus, there is an exigent need to clarify the cellular and molecular mechanisms of fibrosis regression in order for therapeutics to mimic the liver's endogenous capacity. Better refined and more predictive in vitro and animal models will hasten drug development. From a clinical perspective, current diagnostics are improving but not always biologically plausible or sufficiently accurate to supplant biopsy. More urgently, digital pathology methods that leverage machine learning and artificial intelligence must be validated in order to capture more prognostic information from liver biopsies and better quantify the response to therapies. For more refined treatment of NASH, orthogonal approaches that integrate genetic, clinical, and pathological data sets may yield treatments for specific subphenotypes of the disease. Collectively, these and other advances will strengthen and streamline clinical trials and better link histologic responses to clinical outcomes.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver DiseasesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Massimo Pinzani
- Institute for Liver and Digestive HealthUniversity College LondonLondonUK
| |
Collapse
|
146
|
Dywicki J, Buitrago‐Molina LE, Noyan F, Davalos‐Misslitz AC, Hupa‐Breier KL, Lieber M, Hapke M, Schlue J, Falk CS, Raha S, Prinz I, Koenecke C, Manns MP, Wedemeyer H, Hardtke‐Wolenski M, Jaeckel E. The Detrimental Role of Regulatory T Cells in Nonalcoholic Steatohepatitis. Hepatol Commun 2022; 6:320-333. [PMID: 34532981 PMCID: PMC8793993 DOI: 10.1002/hep4.1807] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is induced by steatosis and metabolic inflammation. While involvement of the innate immune response has been shown, the role of the adaptive immune response in NASH remains controversial. Likewise, the role of regulatory T cells (Treg) in NASH remains unclear although initial clinical trials aim to target these regulatory responses. High-fat high-carbohydrate (HF-HC) diet feeding of NASH-resistant BALB/c mice as well as the corresponding recombination activating 1 (Rag)-deficient strain was used to induce NASH and to study the role of the adaptive immune response. HF-HC diet feeding induced strong activation of intrahepatic T cells in BALB/c mice, suggesting an antigen-driven effect. In contrast, the effects of the absence of the adaptive immune response was notable. NASH in BALB/c Rag1-/- mice was substantially worsened and accompanied by a sharp increase of M1-like macrophage numbers. Furthermore, we found an increase in intrahepatic Treg numbers in NASH, but either adoptive Treg transfer or anti-cluster of differentiation (CD)3 therapy unexpectedly increased steatosis and the alanine aminotransferase level without otherwise affecting NASH. Conclusion: Although intrahepatic T cells were activated and marginally clonally expanded in NASH, these effects were counterbalanced by increased Treg numbers. The ablation of adaptive immunity in murine NASH led to marked aggravation of NASH, suggesting that Tregs are not regulators of metabolic inflammation but rather enhance it.
Collapse
Affiliation(s)
- Janine Dywicki
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Laura Elisa Buitrago‐Molina
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
- Department of Gastroenterology and HepatologyEssen University HospitalUniversity Duisburg‐EssenEssenGermany
| | - Fatih Noyan
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Ana C. Davalos‐Misslitz
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Katharina L. Hupa‐Breier
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Maren Lieber
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Martin Hapke
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Jerome Schlue
- Institute of PathologyHannover Medical SchoolHannoverGermany
| | - Christine S. Falk
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Solaiman Raha
- Institute of ImmunologyHannover Medical SchoolHannoverGermany
| | - Immo Prinz
- Institute of ImmunologyHannover Medical SchoolHannoverGermany
- Institute of Systems ImmunologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christian Koenecke
- Institute of ImmunologyHannover Medical SchoolHannoverGermany
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell TransplantationHannover Medical SchoolHannoverGermany
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| | - Heiner Wedemeyer
- Department of Gastroenterology and HepatologyEssen University HospitalUniversity Duisburg‐EssenEssenGermany
| | - Matthias Hardtke‐Wolenski
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
- Department of Gastroenterology and HepatologyEssen University HospitalUniversity Duisburg‐EssenEssenGermany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, and EndocrinologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
147
|
Xiao F, Wang HW, Hu JJ, Tao R, Weng XX, Wang P, Wu D, Wang XJ, Yan WM, Xi D, Luo XP, Wan XY, Ning Q. Fibrinogen-like protein 2 deficiency inhibits virus-induced fulminant hepatitis through abrogating inflammatory macrophage activation. World J Gastroenterol 2022; 28:479-496. [PMID: 35125831 PMCID: PMC8790557 DOI: 10.3748/wjg.v28.i4.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/18/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Heterogeneous macrophages play an important role in multiple liver diseases, including viral fulminant hepatitis (VFH). Fibrinogen-like protein 2 (FGL2) is expressed on macrophages and regulates VFH pathogenesis; however, the underlying mechanism remains unclear. AIM To explore how FGL2 regulates macrophage function and subsequent liver injury during VFH. METHODS Murine hepatitis virus strain 3 (MHV-3) was used to induce VFH in FGL2-deficient (Fgl2-/-) and wild-type (WT) mice. The dynamic constitution of hepatic macrophages was examined. Adoptive transfer of Fgl2-/- or WT bone marrow-derived macrophages (BMDMs) into WT recipients with macrophages depleted prior to infection was carried out and the consequent degree of liver damage was compared. The signaling cascades that may be regulated by FGL2 were detected in macrophages. RESULTS Following MHV-3 infection, hepatic macrophages were largely replenished by proinflammatory monocyte-derived macrophages (MoMFs), which expressed high levels of FGL2. In Fgl2-/- mice, the number of infiltrating inflammatory MoMFs was reduced compared with that in WT mice after viral infection. Macrophage depletion ameliorated liver damage in WT mice and further alleviated liver damage in Fgl2-/- mice. Adoptive transfer of Fgl2-/- BMDMs into macrophage-removed recipients significantly reduced the degree of liver damage. Inhibition of monocyte infiltration also significantly ameliorated liver damage. Functionally, Fgl2 deletion impaired macrophage phagocytosis and the antigen presentation potential and attenuated the proinflammatory phenotype. At the molecular level, FGL2 deficiency impaired IRF3, IRF7, and p38 phosphorylation, along with NF-κB activation in BMDMs in response to viral infection. CONCLUSION Infiltrated MoMFs represent a major source of hepatic inflammation during VFH progression, and FGL2 expression on MoMFs maintains the proinflammatory phenotype via p38-dependent positive feedback, contributing to VFH pathogenesis.
Collapse
Affiliation(s)
- Fang Xiao
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Department of Infectious Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning 530000, Guangxi Province, China
| | - Hong-Wu Wang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Jun-Jian Hu
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ran Tao
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xin-Xin Weng
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Peng Wang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Di Wu
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Jing Wang
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wei-Ming Yan
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dong Xi
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiao-Ping Luo
- Department of Pediatrics, Tongji Hospital, Wuhan 430030, Hubei Province, China
| | - Xiao-Yang Wan
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
148
|
Wang Z, Li H, Fang J, Wang X, Dai S, Cao W, Guo Y, Li Z, Zhu H. Comparative Analysis of the Therapeutic Effects of Amniotic Membrane and Umbilical Cord Derived Mesenchymal Stem Cells for the Treatment of Type 2 Diabetes. Stem Cell Rev Rep 2022; 18:1193-1206. [PMID: 35015214 PMCID: PMC8749914 DOI: 10.1007/s12015-021-10320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM), one of the most common carbohydrate metabolism disorders, is characterized by chronic hyperglycemia and insulin resistance (IR), and has become an urgent global health challenge. Mesenchymal stem cells (MSCs) originating from perinatal tissues such as umbilical cord (UC) and amniotic membrane (AM) serve as ideal candidates for the treatment of T2DM due to their great advantages in terms of abundant source, proliferation capacity, immunomodulation and plasticity for insulin-producing cell differentiation. However, the optimally perinatal MSC source to treat T2DM remains elusive. This study aims to compare the therapeutic efficacy of MSCs derived from AM and UC (AMMSCs and UCMSCs) of the same donor in the alleviation of T2DM symptoms and explore the underlying mechanisms. Our results showed that AMMSCs and UCMSCs displayed indistinguishable immunophenotype and multi-lineage differentiation potential, but UCMSCs had a much higher expansion capacity than AMMSCs. Moreover, we uncovered that single-dose intravenous injection of either AMMSCs or UCMSCs could comparably reduce hyperglycemia and improve IR in T2DM db/db mice. Mechanistic investigations revealed that either AMMSC or UCMSC infusion could greatly improve glycolipid metabolism in the liver of db/db mice, which was evidenced by decreased liver to body weight ratio, reduced lipid accumulation, upregulated glycogen synthesis, and increased Akt phosphorylation. Taken together, these data indicate that the same donor-derived AMMSCs and UCMSCs possessed comparable effects and shared a similar hepatoprotective mechanism on the alleviation of T2DM symptoms.
Collapse
Affiliation(s)
- Zhifeng Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Haisen Li
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Jingmeng Fang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Xiaoyu Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Shuhang Dai
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Wei Cao
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Yinhong Guo
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Zhe Li
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China.
| |
Collapse
|
149
|
Alshoubaki YK, Nayer B, Das S, Martino MM. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:248-258. [PMID: 35303109 PMCID: PMC8968657 DOI: 10.1093/stcltm/szab022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
Numerous components of the immune system, including inflammatory mediators, immune cells and cytokines, have a profound modulatory effect on the homeostatic regulation and regenerative activity of endogenous stem cells and progenitor cells. Thus, understanding how the immune system interacts with stem/progenitor cells could build the foundation to design novel and more effective regenerative therapies. Indeed, utilizing and controlling immune system components may be one of the most effective approaches to promote tissue regeneration. In this review, we first summarize the effects of various immune cell types on endogenous stem/progenitor cells, focusing on the tissue healing context. Then, we present interesting regenerative strategies that control or mimic the effect of immune components on stem/progenitor cells, in order to enhance the regenerative capacity of endogenous and transplanted stem cells. We highlight the potential clinical translation of such approaches for multiple tissues and organ systems, as these novel regenerative strategies could considerably improve or eventually substitute stem cell-based therapies. Overall, harnessing the power of the cross-talk between the immune system and stem/progenitor cells holds great potential for the development of novel and effective regenerative therapies.
Collapse
Affiliation(s)
- Yasmin K Alshoubaki
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Bhavana Nayer
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Surojeet Das
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Corresponding author: Mikaël M. Martino, Martino Lab, Australian Regenerative Medicine Institute, 15 Innovation Walk, Level 1, Monash University, Victoria 3800, Australia;
| |
Collapse
|
150
|
Yuan S, Wu Q, Wang Z, Che Y, Zheng S, Chen Y, Zhong X, Shi F. miR-223: An Immune Regulator in Infectious Disorders. Front Immunol 2021; 12:781815. [PMID: 34956210 PMCID: PMC8702553 DOI: 10.3389/fimmu.2021.781815] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are diminutive noncoding RNAs that can influence disease development and progression by post-transcriptionally regulating gene expression. The anti-inflammatory miRNA, miR-223, was first identified as a regulator of myelopoietic differentiation in 2003. This miR-223 exhibits multiple regulatory functions in the immune response, and abnormal expression of miR-223 is shown to be associated with multiple infectious diseases, including viral hepatitis, human immunodeficiency virus type 1 (HIV-1), and tuberculosis (TB) by influencing neutrophil infiltration, macrophage function, dendritic cell (DC) maturation and inflammasome activation. This review summarizes the current understanding of miR-223 physiopathology and highlights the molecular mechanism by which miR-223 regulates immune responses to infectious diseases and how it may be targeted for diagnosis and treatment.
Collapse
Affiliation(s)
- Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sihao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaohan Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|