101
|
Mohan S, R PRM, Brown L, Ayyappan P, G RK. Endoplasmic reticulum stress: A master regulator of metabolic syndrome. Eur J Pharmacol 2019; 860:172553. [PMID: 31325433 DOI: 10.1016/j.ejphar.2019.172553] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress, a change in the ER homeostasis, leads to initiation of the unfolded protein response (UPR). The primary functions of the UPR are to restore the ER's physiological activity and coordinate the apoptotic and adaptive responses. Pathophysiological conditions that augment ER stress include hypoxia, misfolded and/or mutated protein accumulation, and high glucose. Prolonged ER stress is a critical factor in the pathogenesis of metabolic syndrome including type 2 diabetes mellitus, cardiovascular diseases, atherosclerosis, obesity, and fatty liver disease. UPR is a complex homeostatic pathway between newly synthesized proteins and their maturation, although the regulatory mechanisms contributing to the UPR and the possible therapeutic strategies are yet to be clarified. Therefore, a comprehensive understanding of the underlying molecular mechanisms is necessary to develop therapeutic interventions targeting ER stress response. In this review, we discuss the role of ER stress and UPR signaling in the pathogenesis of metabolic syndrome, highlighting the main functions of UPR components. We have emphasized the use of novel small molecular chemical chaperones, considered as modulators of ER stress. The initial studies with these chemical chaperones are promising, but detailed studies are required to define their efficacy and adverse effects during therapeutic use in humans.
Collapse
Affiliation(s)
- Sreelekshmi Mohan
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
| | - Preetha Rani M R
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India
| | - Lindsay Brown
- School of Health and Wellbeing/Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Prathapan Ayyappan
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, USA
| | - Raghu K G
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate, Thiruvananthapuram, 695019, Kerala, India; Academy of Scientific & Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
102
|
Peli1 induction impairs cardiac microvascular endothelium through Hsp90 dissociation from IRE1α. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2606-2617. [PMID: 31260751 DOI: 10.1016/j.bbadis.2019.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022]
Abstract
Ameliorating cardiac microvascular injury is the most effective means to mitigate diabetes-induced cardiovascular complications. Inositol-requiring 1α (IRE1α), a sensor of endoplasmic reticulum stress, is activated by Toll like receptors (TLRs), and then promotes cardiac microvascular injury. Peli1 is a master regulator of TLRs and activates IRE1α. This study aims to investigate whether Peli1 in endothelial cells promotes diabetes-induced cardiac microvascular injury through activating IRE1α. Here we found that Peli1 was markedly up-regulated in cardiac endothelial cells of both diabetic mice and in AGEs-treated cardiac microvascular endothelial cells (CMECs). Peli1 deficiency in endothelial cells significantly alleviated diabetes-induced cardiac microvascular permeability, promoted microvascular regeneration, and suppressed apoptosis, accompanied by the attenuation of adverse cardiac remodeling. Furthermore, Peli1 deletion in CMECs ameliorated AGEs-induced damages in vitro. We identified heat shock protein 90 (Hsp90) as a potential binding partner for Peli1, and the Ring domain of Peli1 directly bound with Hsp90 to enhance IRE1α phosphorylation. Our study suggests that blocking Peli1 in endothelial cells may protect against diabetes-induced cardiac microvascular injury by restraining ER stress.
Collapse
|
103
|
Lin R, Sun Y, Ye W, Zheng T, Wen J, Deng Y. T-2 toxin inhibits the production of mucin via activating the IRE1/XBP1 pathway. Toxicology 2019; 424:152230. [PMID: 31170431 DOI: 10.1016/j.tox.2019.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 01/07/2023]
Abstract
T-2 toxin is a trichothecene mycotoxin that widely contaminates food and has a variety of toxic effects. However, the underlying mechanism of T-2 toxin on intestinal mucin remains unclear. In present study, human intestinal Caco-2 cells and HT-29 cells were treated with 100 ng/mL T-2 toxin at one-quarter of the IC50 for 24 h, which caused the inhibition of MUC2 and adhesion of E. coli O157:H7. We found T-2 toxin induced endoplasmic reticulum stress and activated the IRE1/XBP1 pathway, which may be related to the inhibition of MUC2. Interestingly, T-2 toxin activated IRE1α to inhibit IRE1β, which optimized mucin production. Furthermore, overexpression of IRE1β in the cells apparently alleviated the inhibition of MUC2 caused by T-2 toxin. IRE1α knock-down blocked the down-regulation of IRE1β and MUC2 induced by T-2 toxin. We revealed the critical role of IRE1α in the inhibition of intestinal mucin. This finding was confirmed in BALB/c mice which were exposed to T-2 toxin (0.5 mg/kg bw) for 4 weeks. T-2 toxin activated the IRE1/XBP1 pathway to disrupt intestinal mucin, which lead to the imbalance of gut microbiota and an increased risk of host infection by E. coli O157:H7. T-2 toxin exposure also increased the expressions of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α in mice, which might respond to IRE1α activation. Importantly, IRE1α activation was a therapeutic target for intestinal inflammation caused by T-2 toxin. This study provided a new perspective to understand the intestinal toxicity of T-2 toxin.
Collapse
Affiliation(s)
- Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Ting Zheng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, PR China.
| |
Collapse
|
104
|
Clément M, Chappell J, Raffort J, Lareyre F, Vandestienne M, Taylor AL, Finigan A, Harrison J, Bennett MR, Bruneval P, Taleb S, Jørgensen HF, Mallat Z. Vascular Smooth Muscle Cell Plasticity and Autophagy in Dissecting Aortic Aneurysms. Arterioscler Thromb Vasc Biol 2019; 39:1149-1159. [PMID: 30943775 PMCID: PMC6544538 DOI: 10.1161/atvbaha.118.311727] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/21/2019] [Indexed: 12/21/2022]
Abstract
Objective- Recent studies suggested the occurrence of phenotypic switching of vascular smooth muscle cells (VSMCs) during the development of aortic aneurysm (AA). However, lineage-tracing studies are still lacking, and the behavior of VSMCs during the formation of dissecting AA is poorly understood. Approach and Results- We used multicolor lineage tracing of VSMCs to track their fate after injury in murine models of Ang II (angiotensin II)-induced dissecting AA. We also addressed the direct impact of autophagy on the response of VSMCs to AA dissection. Finally, we studied the relevance of these processes to human AAs. Here, we show that a subset of medial VSMCs undergoes clonal expansion and that VSMC outgrowths are observed in the adventitia and borders of the false channel during Ang II-induced development of dissecting AA. The clonally expanded VSMCs undergo phenotypic switching with downregulation of VSMC differentiation markers and upregulation of phagocytic markers, indicative of functional changes. In particular, autophagy and endoplasmic reticulum stress responses are activated in the injured VSMCs. Loss of autophagy in VSMCs through deletion of autophagy protein 5 gene ( Atg5) increases the susceptibility of VSMCs to death, enhances endoplasmic reticulum stress activation, and promotes IRE (inositol-requiring enzyme) 1α-dependent VSMC inflammation. These alterations culminate in increased severity of aortic disease and higher incidence of fatal AA dissection in mice with VSMC-restricted deletion of Atg5. We also report increased expression of autophagy and endoplasmic reticulum stress markers in VSMCs of human dissecting AAs. Conclusions- VSMCs undergo clonal expansion and phenotypic switching in Ang II-induced dissecting AAs in mice. We also identify a critical role for autophagy in regulating VSMC death and endoplasmic reticulum stress-dependent inflammation with important consequences for aortic wall homeostasis and repair.
Collapse
MESH Headings
- Adult
- Aged
- Aortic Dissection/chemically induced
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Angiotensin II
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Aneurysm/chemically induced
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/pathology
- Autophagy
- Autophagy-Related Protein 5/genetics
- Autophagy-Related Protein 5/metabolism
- Cell Lineage
- Cell Plasticity
- Cells, Cultured
- Disease Models, Animal
- Endoribonucleases/metabolism
- Female
- Humans
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Marc Clément
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)
| | - Joel Chappell
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)
| | - Juliette Raffort
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)
- Clinical Chemistry Laboratory (J.R.), University Hospital of Nice, and Université Côte d’Azur, France
| | - Fabien Lareyre
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)
- Department of Vascular Surgery (F.L.), University Hospital of Nice, and Université Côte d’Azur, France
| | - Marie Vandestienne
- Institut National de la Santé et de la Recherche Médicale, Universite Paris-Descartes, Paris Cardiovascular Research Center, and Université Paris-Descartes, Paris, France (M.V., P.B., S.T., Z.M.)
| | - Annabel L. Taylor
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)
| | - Alison Finigan
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)
| | - James Harrison
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)
| | - Martin R. Bennett
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)
| | - Patrick Bruneval
- Institut National de la Santé et de la Recherche Médicale, Universite Paris-Descartes, Paris Cardiovascular Research Center, and Université Paris-Descartes, Paris, France (M.V., P.B., S.T., Z.M.)
| | - Soraya Taleb
- Institut National de la Santé et de la Recherche Médicale, Universite Paris-Descartes, Paris Cardiovascular Research Center, and Université Paris-Descartes, Paris, France (M.V., P.B., S.T., Z.M.)
| | - Helle F. Jørgensen
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)
| | - Ziad Mallat
- From the Division of Cardiovascular Medicine, University of Cambridge, United Kingdom (M.C., J.C., J.R., F.L., A.L.T., A.F., J.H., M.R.B., H.F.J., Z.M.)
- Institut National de la Santé et de la Recherche Médicale, Universite Paris-Descartes, Paris Cardiovascular Research Center, and Université Paris-Descartes, Paris, France (M.V., P.B., S.T., Z.M.)
| |
Collapse
|
105
|
Colla E. Linking the Endoplasmic Reticulum to Parkinson's Disease and Alpha-Synucleinopathy. Front Neurosci 2019; 13:560. [PMID: 31191239 PMCID: PMC6550095 DOI: 10.3389/fnins.2019.00560] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/15/2019] [Indexed: 11/13/2022] Open
Abstract
Accumulation of misfolded proteins is a central paradigm in neurodegeneration. Because of the key role of the endoplasmic reticulum (ER) in regulating protein homeostasis, in the last decade multiple reports implicated this organelle in the progression of Parkinson's Disease (PD) and other neurodegenerative illnesses. In PD, dopaminergic neuron loss or more broadly neurodegeneration has been improved by overexpression of genes involved in the ER stress response. In addition, toxic alpha-synuclein (αS), the main constituent of proteinaceous aggregates found in tissue samples of PD patients, has been shown to cause ER stress by altering intracellular protein traffic, synaptic vesicles transport, and Ca2+ homeostasis. In this review, we will be summarizing evidence correlating impaired ER functionality to PD pathogenesis, focusing our attention on how toxic, aggregated αS can promote ER stress and cell death.
Collapse
Affiliation(s)
- Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
106
|
Xu Y, Melo-Cardenas J, Zhang Y, Gau I, Wei J, Montauti E, Zhang Y, Gao B, Jin H, Sun Z, Lee SM, Fang D. The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine-induced ER stress response. JCI Insight 2019; 4:121887. [PMID: 30843874 DOI: 10.1172/jci.insight.121887] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/09/2019] [Indexed: 12/23/2022] Open
Abstract
Treg differentiation, maintenance, and function are controlled by the transcription factor FoxP3, which can be destabilized under inflammatory or other pathological conditions. Tregs can be destabilized under inflammatory or other pathological conditions, but the underlying mechanisms are not fully defined. Herein, we show that inflammatory cytokines induce ER stress response, which destabilizes Tregs by suppressing FoxP3 expression, suggesting a critical role of the ER stress response in maintaining Treg stability. Indeed, genetic deletion of Hrd1, an E3 ligase critical in suppressing the ER stress response, leads to elevated expression of ER stress-responsive genes in Treg and largely diminishes Treg suppressive functions under inflammatory condition. Mice with Treg-specific ablation of Hrd1 displayed massive multiorgan lymphocyte infiltration, body weight loss, and the development of severe small intestine inflammation with aging. At the molecular level, the deletion of Hrd1 led to the activation of both the ER stress sensor IRE1α and its downstream MAPK p38. Pharmacological suppression of IRE1α kinase, but not its endoribonuclease activity, diminished the elevated p38 activation and fully rescued the stability of Hrd1-null Tregs. Taken together, our studies reveal ER stress response as a previously unappreciated mechanism underlying Treg instability and that Hrd1 is crucial for maintaining Treg stability and functions through suppressing the IRE1α-mediated ER stress response.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Isabella Gau
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yusi Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hongjian Jin
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zhaolin Sun
- Department of Pharmacology School of Pharmacy, Dalian Medical University, Dalian, China
| | - Sang-Myeong Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, South Korea
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
107
|
Rahman S, Archana A, Jan AT, Dutta D, Shankar A, Kim J, Minakshi R. Molecular Insights Into the Relationship Between Autoimmune Thyroid Diseases and Breast Cancer: A Critical Perspective on Autoimmunity and ER Stress. Front Immunol 2019; 10:344. [PMID: 30881358 PMCID: PMC6405522 DOI: 10.3389/fimmu.2019.00344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
The etiopathologies behind autoimmune thyroid diseases (AITDs) unravel misbehavior of immune components leading to the corruption of immune homeostasis where thyroid autoantigens turn foe to the self. In AITDs lymphocytic infiltration in the thyroid shows up a deranged immune system charging the follicular cells of the thyroid gland (thyrocytes) leading to the condition of either hyperthyroidism or hypothyroidism. The inflammation in AITDs consistently associate with ER function due to which disturbances in the ER protein homeostasis leads to unfolded protein response (UPR) that promotes pathogenesis of autoimmunity. The roles of ER stress in the instantaneous downregulation of MHC class I molecules on thyrocytes and the relevance of IFN γ in the pathogenesis of AITD has been well-documented. Thyroglobulin being the major target of autoantibodies in most of the AITDs is because of its unusual processing in the ER. Autoimmune disorders display a conglomeration of ER stress-induced UPR activated molecules. Several epidemiological data highlight the preponderance of AITDs in women as well as its concurrence with breast cancer. Both being an active glandular system displaying endocrine activity, thyroid as well as breast tissue show various commonalities in the expression pattern of heterogenous molecules that not only participate in the normal functioning but at the same time share the blame during disease establishment. Studies on the development and progression of breast carcinoma display a deranged and uncontrolled immune response, which is meticulously exploited during tumor metastasis. The molecular crosstalks between AITDs and breast tumor microenvironment rely on active participation of immune cells. The induction of ER stress by Tunicamycin advocates to provide a model for cancer therapy by intervening glycosylation. Therefore, this review attempts to showcase the molecules that are involved in feeding up the relationship between breast carcinoma and AITDs.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Durgashree Dutta
- Department of Biochemistry, Jan Nayak Chaudhary Devilal Dental College, Sirsa, India
| | - Abhishek Shankar
- Department of Preventive Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Rinki Minakshi
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| |
Collapse
|
108
|
Cao X, He Y, Li X, Xu Y, Liu X. The IRE1α-XBP1 pathway function in hypoxia-induced pulmonary vascular remodeling, is upregulated by quercetin, inhibits apoptosis and partially reverses the effect of quercetin in PASMCs. Am J Transl Res 2019; 11:641-654. [PMID: 30899368 PMCID: PMC6413268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Hypoxia is a common cause of pulmonary vascular remodeling and endoplasmic reticulum stress (ERS). Upon ER stress, the unfolded protein response (UPR) which activates the IRE1α, PERK and ATF6 signaling pathways is activated to cope with ERS in mammalian cells; however, the role of the three UPR arms in pulmonary vascular remodeling has not been defined. The present study showed that GRP78, a marker of ERS, was upregulated in hypoxic pulmonary artery smooth muscle cells (PASMCs). Among the three arms of the UPR, the IRE1α pathway was noticeably upregulated in hypoxic PASMCs. An inhibitor of IRE1α/XBP1 pathway, 4u8c, inhibited hypoxia-induced cell proliferation and migration and increased cell apoptosis by downregulating PCNA and MMP9 and activating mitochondrial apoptosis by enhancing the expression of BAX, activating caspase-9 and caspase-3, and eventually cleaving PARP. Quercetin affects ERS in many cell types and was shown to relieve hypoxic pulmonary hypertension (HPH) in our previous study. We demonstrated that quercetin evoked excessive GRP78 expression in hypoxic PASMCs compared with hypoxia alone by evaluating the expression of GRP78. The expression of IRE1α and XBP1s, a cleavage form of XBP1u, was upregulated by quercetin in a dose-dependent manner. Pretreatment with 4u8c reversed the apoptosis-promoting effect of quercetin by inhibiting mitochondrial apoptosis. However, 4u8c amplified the effect of quercetin on proliferation and migration in hypoxic PASMCs. In conclusion, the study demonstrated that the IRE1α-XBP1 pathway is involved in the process of hypoxia-induced pulmonary vascular remodeling; 4u8c could restrain hypoxia-induced cell proliferation and migration and reverse the hypoxia-induced apoptosis arrest, while quercetin excited excessive ERS and the IRE1α pathway in hypoxic PASMCs and promoted apoptosis. Our data suggest that intervening the IRE1α-XBP1 pathway may be useful for hypoxia-induced pulmonary arterial hypertension therapy.
Collapse
Affiliation(s)
- Xiaopei Cao
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan, China
| | - Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan, China
| | - Yongjian Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Pulmonary Diseases, National Ministry of Health of The People’s Republic of ChinaWuhan, China
| |
Collapse
|
109
|
Rosen DA, Seki SM, Fernández-Castañeda A, Beiter RM, Eccles JD, Woodfolk JA, Gaultier A. Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci Transl Med 2019; 11:eaau5266. [PMID: 30728287 PMCID: PMC6936250 DOI: 10.1126/scitranslmed.aau5266] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/15/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Sepsis is an often deadly complication of infection in which systemic inflammation damages the vasculature, leading to tissue hypoperfusion and multiple organ failure. Currently, the standard of care for sepsis is predominantly supportive, with few therapeutic options available. Because of increased sepsis incidence worldwide, there is an urgent need for discovery of novel therapeutic targets and development of new treatments. The recently discovered function of the endoplasmic reticulum (ER) in regulation of inflammation offers a potential avenue for sepsis control. Here, we identify the ER-resident protein sigma-1 receptor (S1R) as an essential inhibitor of cytokine production in a preclinical model of septic shock. Mice lacking S1R succumb quickly to hypercytokinemia induced by a sublethal challenge in two models of acute inflammation. Mechanistically, we find that S1R restricts the endonuclease activity of the ER stress sensor IRE1 and cytokine expression but does not inhibit the classical inflammatory signaling pathways. These findings could have substantial clinical implications, as we further find that fluvoxamine, an antidepressant therapeutic with high affinity for S1R, protects mice from lethal septic shock and dampens the inflammatory response in human blood leukocytes. Our data reveal the contribution of S1R to the restraint of the inflammatory response and place S1R as a possible therapeutic target to treat bacterial-derived inflammatory pathology.
Collapse
Affiliation(s)
- Dorian A Rosen
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Graduate Program in Pharmacological Sciences, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Scott M Seki
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Anthony Fernández-Castañeda
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Rebecca M Beiter
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jacob D Eccles
- Division of Asthma, Allergy and Immunology, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Judith A Woodfolk
- Division of Asthma, Allergy and Immunology, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
110
|
Poe C, Youngblood C, Hodge K, Kemp K. Treatment of established TH2 cells with 4μ8c, an inhibitor of IRE1α, blocks IL-5 but not IL-4 secretion. BMC Immunol 2019; 20:3. [PMID: 30630412 PMCID: PMC6327572 DOI: 10.1186/s12865-018-0283-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND T cell activation induces ER stress and upregulates Inositol Requiring Enzyme 1 alpha (IRE1α), an activator of the unfolded protein response (UPR) pathway. Inhibition of IRE1α RNase activity in activated CD4+ splenocytes from naïve mice, via treatment of the cells with the commercially available drug 4μ8c upon activation, results in the reduction of the secretion of proteins IL-5, IL-4, and IL-13. Prior to this work, it was unknown if 4μ8c could inhibit TH2 cytokines in established TH2 cells, cells that are crucial in promoting disease in severe asthma. RESULTS Treatment of a mouse T helper (TH)2 cell line and differentiated human TH2 cells with 4μ8c resulted in inhibition of IL-5, but not IL-4, as measured by ELISA. The reduced cytokine expression was not due to differences in mRNA stability or mRNA levels; it appears to be due to a defect in secretion, as the cells produce cytokines IL-5 as measured by flow cytometry and western blot. CONCLUSION These data suggest that the inhibition of IL-5 was due to post-translational processes. IL-5 promotes chronic, inflammatory asthma, and 4μ8c blocks its expression in T cells in vitro. Future studies will determine if 4μ8c treatment can ameliorate the effects of the cytokine IL-5 in a disease model.
Collapse
Affiliation(s)
- Cody Poe
- Department of Natural Sciences, Northeastern State University, 3100 New Orleans Street, Broken Arrow, OK, 74014, USA
| | - Cheyanne Youngblood
- Department of Natural Sciences, Northeastern State University, 3100 New Orleans Street, Broken Arrow, OK, 74014, USA
| | - Karissa Hodge
- Department of Natural Sciences, Northeastern State University, 3100 New Orleans Street, Broken Arrow, OK, 74014, USA
| | - Kyeorda Kemp
- Department of Natural Sciences, Northeastern State University, 3100 New Orleans Street, Broken Arrow, OK, 74014, USA. .,Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, 586 Pioneer Drive, Rochester, MI, 48309, USA.
| |
Collapse
|
111
|
Govindarajan S, Gaublomme D, Van der Cruyssen R, Verheugen E, Van Gassen S, Saeys Y, Tavernier S, Iwawaki T, Bloch Y, Savvides SN, Lambrecht BN, Janssens S, Elewaut D, Drennan MB. Stabilization of cytokine mRNAs in iNKT cells requires the serine-threonine kinase IRE1alpha. Nat Commun 2018; 9:5340. [PMID: 30559399 PMCID: PMC6297233 DOI: 10.1038/s41467-018-07758-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 11/21/2018] [Indexed: 01/10/2023] Open
Abstract
Activated invariant natural killer T (iNKT) cells rapidly produce large amounts of cytokines, but how cytokine mRNAs are induced, stabilized and mobilized following iNKT activation is still unclear. Here we show that an endoplasmic reticulum stress sensor, inositol-requiring enzyme 1α (IRE1α), links key cellular processes required for iNKT cell effector functions in specific iNKT subsets, in which TCR-dependent activation of IRE1α is associated with downstream activation of p38 MAPK and the stabilization of preformed cytokine mRNAs. Importantly, genetic deletion of IRE1α in iNKT cells reduces cytokine production and protects mice from oxazolone colitis. We therefore propose that an IRE1α-dependent signaling cascade couples constitutive cytokine mRNA expression to the rapid induction of cytokine secretion and effector functions in activated iNKT cells. Invariant natural killer T (iNKT) cells rapidly enhance cytokine secretion and effector function following activation, but the underlying mechanism is still unclear. Here the authors show that an endoplasmic reticulum stress sensor, inositol-requiring enzyme 1α, activates the p38 kinase to stabilize cytokine mRNA for enhanced iNKT functions.
Collapse
Affiliation(s)
- Srinath Govindarajan
- Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium.,Department of Rheumatology, Ghent University, Ghent University Hospital, Ghent, 9000, Belgium
| | - Djoere Gaublomme
- Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium.,Department of Rheumatology, Ghent University, Ghent University Hospital, Ghent, 9000, Belgium
| | - Renée Van der Cruyssen
- Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium.,Department of Rheumatology, Ghent University, Ghent University Hospital, Ghent, 9000, Belgium
| | - Eveline Verheugen
- Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium.,Department of Rheumatology, Ghent University, Ghent University Hospital, Ghent, 9000, Belgium
| | - Sofie Van Gassen
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, 9000, Belgium.,Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, 9000, Belgium.,Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium
| | - Simon Tavernier
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark 927, 9052 Zwijnaarde (Ghent), Belgium.,Department of Respiratory Medicine, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kanazawa, 920-0856, Japan
| | - Yehudi Bloch
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium.,Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde, (Ghent), Belgium
| | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium.,Unit for Structural Biology, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde, (Ghent), Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Technologiepark 927, 9052 Zwijnaarde (Ghent), Belgium.,Department of Respiratory Medicine, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Department of Pulmonary Medicine, Ghent University, ErasmusMC, Rotterdam, 2040, Netherlands
| | - Sophie Janssens
- Laboratory of ER Stress and Inflammation, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, 9000, Belgium
| | - Dirk Elewaut
- Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium. .,Department of Rheumatology, Ghent University, Ghent University Hospital, Ghent, 9000, Belgium.
| | - Michael B Drennan
- Unit for Molecular Immunology and Inflammation, VIB Center for Inflammation Research, Technologiepark 927, 9052, Zwijnaarde (Ghent), Belgium.,Department of Rheumatology, Ghent University, Ghent University Hospital, Ghent, 9000, Belgium
| |
Collapse
|
112
|
Angeles-Han ST, Yeh S, Patel P, Duong D, Jenkins K, Rouster-Stevens KA, Altaye M, Fall N, Thornton S, Prahalad S, Holland GN. Discovery of tear biomarkers in children with chronic non-infectious anterior uveitis: a pilot study. J Ophthalmic Inflamm Infect 2018; 8:17. [PMID: 30327966 PMCID: PMC6191408 DOI: 10.1186/s12348-018-0156-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Biomarkers in easily obtained specimens that accurately predict uveitis in children with juvenile idiopathic arthritis (JIA) are needed. Aqueous humor has been studied for biomarkers, but is not routinely available. We evaluated tears from children with chronic anterior uveitis (CAU) for biomarkers reported in aqueous humor. In this pilot study, we used Schirmer strips to collect tears from seven children (nine eyes); three children had JIA- associated uveitis (JIA-U) and four had idiopathic disease (I-CAU). Liquid chromatography-tandem mass spectrometry was used to identify and quantify tear proteins. The Mann-Whitney U test identified differential tear protein expression between children with JIA-U and those with I-CAU. RESULTS S100A9, LAP3, TTR, MIF, sCD14, S100A8, and SAA1 were detected in tears of all children; the same cytokines have been reported in aqueous humor of children with JIA-U. Tears from children with JIA-U had higher expression of proteins associated with inflammatory arthritis (SEMA3G, TIMP1, HEXB, ERN1, and SAA1) than tears from those with I-CAU. In addition, we found higher expression of sCD14, S100A8, and SAA1, but lower expression of S100A9, LAP3, TTR, and MIF, in tears from children with JIA-U compared to tears from those with I-CAU. CONCLUSIONS Tears contain similar cytokine profiles to aqueous humor in children with CAU and may be a clinically useful source of disease biomarkers. Tears from children with JIA-U also contain cytokines associated with inflammatory arthritis; furthermore, differential expression of other tear proteins as well may provide clues to intrinsic differences between JIA-U and I-CAU, despite their similar clinical phenotypes.
Collapse
Affiliation(s)
- Sheila T Angeles-Han
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 4010, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - Steven Yeh
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, 1365 Clifton Rd B, Atlanta, GA, 30322, USA
| | - Purnima Patel
- Department of Ophthalmology, Emory Eye Center, Emory University School of Medicine, 1365 Clifton Rd B, Atlanta, GA, 30322, USA
| | - Duc Duong
- Emory Integrated Proteomics Core, Emory University, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kirsten Jenkins
- Childrens Healthcare of Atlanta, Emory Children's Center, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
| | - Kelly A Rouster-Stevens
- Childrens Healthcare of Atlanta, Emory Children's Center, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Mekibib Altaye
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, MLC 5041, Cincinnati, OH, 45229, USA
| | - Ndate Fall
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 4010, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Sherry Thornton
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 4010, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Sampath Prahalad
- Childrens Healthcare of Atlanta, Emory Children's Center, 2015 Uppergate Drive, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary N Holland
- UCLA Stein Eye Institute and David Geffen School of Medicine at University of California, 100 Stein Plaza, Los Angeles, CA, 90095-7000, USA
| |
Collapse
|
113
|
Lang E, Pozdeev VI, Shinde PV, Xu HC, Sundaram B, Zhuang Y, Poschmann G, Huang J, Stühler K, Pandyra AA, Keitel V, Häussinger D, Lang KS, Lang PA. Cholestasis induced liver pathology results in dysfunctional immune responses after arenavirus infection. Sci Rep 2018; 8:12179. [PMID: 30111770 PMCID: PMC6093869 DOI: 10.1038/s41598-018-30627-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Immune responses are critical for defense against pathogens. However, prolonged viral infection can result in defective T cell immunity, leading to chronic viral infection. We studied immune activation in response to arenavirus infection during cholestasis using bile duct ligation (BDL). We monitored T cell responses, virus load and liver pathology markers after infection with lymphocytic choriomeningitis virus (LCMV). BDL mice failed to induce protective anti-viral immunity against LCMV and consequently exhibited chronic viral infection. BDL mice exhibited reduced anti-viral T cell immunity as well as reduced type 1 interferon production early after LCMV infection. Consistently, the presence of serum from BDL mice reduced the responsiveness of dendritic cell (DC) and T cell cultures when compared to Sham controls. Following fractionation and mass spectrometry analyses of sera, we identified several serum factors to be upregulated following BDL including bilirubin, bile acids, 78 kDa Glucose regulated protein (GRP78) and liver enzymes. Bilirubin and GRP78 were capable of inhibiting DC and T cell activation. In this work, we demonstrate that liver damage mediated by cholestasis results in defective immune induction following arenavirus infection.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Vitaly I Pozdeev
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.,Laboratory of Oncolytic-Virus-Immuno-Therapeutics (LOVIT), German Cancer Research Center (DKFZ), Im Neunheimer Feld 242, 69120, Heidelberg, Germany.,Laboratory of Oncolytic-Virus-Immuno-Therapeutics (LOVIT), Luxembourg Institute of Health (LIH), 84, rue Val Fleuri, L-1526, Strassen, Luxembourg
| | - Prashant V Shinde
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Balamurugan Sundaram
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Yuan Zhuang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-Universität, Düsseldorf, Medical Faculty, Duesseldorf, Germany
| | - Jun Huang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Center (BMFZ), Heinrich-Heine-Universität, Düsseldorf, Medical Faculty, Duesseldorf, Germany.,Institute for Molecular Medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.,Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Universitätsstrasse. 1, 40225, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse. 55, Essen, 45147, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Universitätsstrasse. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
114
|
Sapieha P, Mallette FA. Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends Cell Biol 2018; 28:595-607. [DOI: 10.1016/j.tcb.2018.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
|
115
|
Liu X, Guo GL, Kong B, Hilburn DB, Hubchak SC, Park S, LeCuyer B, Hsieh A, Wang L, Fang D, Green RM. Farnesoid X receptor signaling activates the hepatic X-box binding protein 1 pathway in vitro and in mice. Hepatology 2018; 68:304-316. [PMID: 29377207 PMCID: PMC6033648 DOI: 10.1002/hep.29815] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022]
Abstract
UNLABELLED Bile acids are endogenous ligands of the nuclear receptor, farnesoid X receptor (FXR), and pharmacological FXR modulators are under development for the treatment of several liver disorders. The inositol-requiring enzyme 1α/X-box binding protein 1 (IRE1α/XBP1) pathway of the unfolded protein response (UPR) is a protective cellular signaling pathway activated in response to endoplasmic reticulum (ER) stress. We investigated the role of FXR signaling in activation of the hepatic XBP1 pathway. Mice were treated with deoxycholic acid (DCA), cholestyramine, GW4064, or underwent bile duct ligation (BDL), and hepatic UPR activation was measured. Huh7-Ntcp and HepG2 cells were treated with FXR agonists, inhibitor, small interfering RNA (siRNA), or small heterodimer partner (SHP) siRNA to determine the mechanisms of IRE1α/XBP1 pathway activation. DCA feeding and BDL increased and cholestyramine decreased expression of hepatic XBP1 spliced (XBP1s). XBP1 pathway activation increased in Huh7-Ntcp and HepG2 cells treated with bile acids, 6α-ethyl-chenodeoxycholic acid (6-ECDCA) or GW4064. This effect decreased with FXR knockdown and treatment with the FXR inhibitor guggulsterone. FXR agonists increased XBP1 splicing and phosphorylated IRE1α (p-IRE1α) expression. Overexpression of SHP similarly increased XBP1 splicing, XBP1s, and p-IRE1α protein expression. SHP knockdown attenuated FXR agonist-induced XBP1s and p-IRE1α protein expression. Co-immunoprecipitation (Co-IP) assays demonstrate a physical interaction between overexpressed green fluorescent protein (GFP)-SHP and FLAG-IRE1α in HEK293T cells. Mice treated with GW4064 had increased, and FXR and SHP null mice had decreased, basal Xbp1s gene expression. CONCLUSION FXR signaling activates the IRE1α/XBP1 pathway in vivo and in vitro. FXR pathway activation increases XBP1 splicing and enhances p-IRE1α expression. These effects are mediated, at least in part, by SHP. IRE1α/XBP1 pathway activation by bile acids and pharmacological FXR agonists may be protective during liver injury and may have therapeutic implications for liver diseases. (Hepatology 2018;68:304-316).
Collapse
Affiliation(s)
- Xiaoying Liu
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Grace L. Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Bo Kong
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, NJ
| | - David B. Hilburn
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Susan C. Hubchak
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Seong Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Brian LeCuyer
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Antony Hsieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| | - Li Wang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT,Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT,Veterans Affairs Connecticut Healthcare System, West Haven, CT
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Richard M. Green
- Division of Gastroenterology and Hepatology, Department of Medicine, Chicago, IL
| |
Collapse
|
116
|
Junjappa RP, Patil P, Bhattarai KR, Kim HR, Chae HJ. IRE1α Implications in Endoplasmic Reticulum Stress-Mediated Development and Pathogenesis of Autoimmune Diseases. Front Immunol 2018; 9:1289. [PMID: 29928282 PMCID: PMC5997832 DOI: 10.3389/fimmu.2018.01289] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) is the most prominent and evolutionarily conserved endoplasmic reticulum (ER) membrane protein. This transduces the signal of misfolded protein accumulation in the ER, named as ER stress, to the nucleus as “unfolded protein response (UPR).” The ER stress-mediated IRE1α signaling pathway arbitrates the yin and yang of cell life. IRE1α has been implicated in several physiological as well as pathological conditions, including immune disorders. Autoimmune diseases are caused by abnormal immune responses that develop due to genetic mutations and several environmental factors, including infections and chemicals. These factors dysregulate the cell immune reactions, such as cytokine secretion, antigen presentation, and autoantigen generation. However, the mechanisms involved, in which these factors induce the onset of autoimmune diseases, are remaining unknown. Considering that these environmental factors also induce the UPR, which is expected to have significant role in secretory cells and immune cells. The role of the major UPR molecule, IRE1α, in causing immune responses is well identified, but its role in inducing autoimmunity and the pathogenesis of autoimmune diseases has not been clearly elucidated. Hence, a better understanding of the role of IRE1α and its regulatory mechanisms in causing autoimmune diseases could help to identify and develop the appropriate therapeutic strategies. In this review, we mainly center the discussion on the molecular mechanisms of IRE1α in the pathophysiology of autoimmune diseases.
Collapse
Affiliation(s)
- Raghu Patil Junjappa
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Chonbuk National University, Jeonju, South Korea
| | - Prakash Patil
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Chonbuk National University, Jeonju, South Korea
| | - Kashi Raj Bhattarai
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Chonbuk National University, Jeonju, South Korea
| | - Hyung-Ryong Kim
- Graduate School, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
117
|
Wang JM, Qiu Y, Yang Z, Kim H, Qian Q, Sun Q, Zhang C, Yin L, Fang D, Back SH, Kaufman RJ, Yang L, Zhang K. IRE1α prevents hepatic steatosis by processing and promoting the degradation of select microRNAs. Sci Signal 2018; 11:11/530/eaao4617. [PMID: 29764990 DOI: 10.1126/scisignal.aao4617] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity or a high-fat diet represses the endoribonuclease activity of inositol-requiring enzyme 1α (IRE1α), a transducer of the unfolded protein response (UPR) in cells under endoplasmic reticulum (ER) stress. An impaired UPR is associated with hepatic steatosis and nonalcoholic fatty liver disease (NAFLD), which is caused by lipid accumulation in the liver. We found that IRE1α was critical to maintaining lipid homeostasis in the liver by repressing the biogenesis of microRNAs (miRNAs) that regulate lipid mobilization. In mice fed normal chow, the endoribonuclease function of IRE1α processed a subset of precursor miRNAs in the liver, including those of the miR-200 and miR-34 families, such that IRE1α promoted their degradation through the process of regulated IRE1-dependent decay (RIDD). A high-fat diet in mice or hepatic steatosis in patients was associated with the S-nitrosylation of IRE1α and inactivation of its endoribonuclease activity. This resulted in an increased abundance of these miRNA families in the liver and, consequently, a decreased abundance of their targets, which included peroxisome proliferator-activated receptor α (PPARα) and the deacetylase sirtuin 1 (SIRT1), regulators of fatty acid oxidation and triglyceride lipolysis. IRE1α deficiency exacerbated hepatic steatosis in mice. The abundance of the miR-200 and miR-34 families was also increased in cultured, lipid-overloaded hepatocytes and in the livers of patients with hepatic steatosis. Our findings reveal a mechanism by which IRE1α maintains lipid homeostasis through its regulation of miRNAs, a regulatory pathway distinct from the canonical IRE1α-UPR pathway under acute ER stress.
Collapse
Affiliation(s)
- Jie-Mei Wang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA. .,Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, MI 48201, USA
| | - Yining Qiu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zhao Yang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH 43210, USA
| | - Chunbin Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sung Hong Back
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA. .,Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
118
|
Rahmati M, Moosavi MA, McDermott MF. ER Stress: A Therapeutic Target in Rheumatoid Arthritis? Trends Pharmacol Sci 2018; 39:610-623. [PMID: 29691058 DOI: 10.1016/j.tips.2018.03.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Diverse physiological and pathological conditions that impact on protein folding of the endoplasmic reticulum (ER) cause ER stress. The unfolded protein response (UPR) and the ER-associated degradation (ERAD) pathway are activated to cope with ER stress. In rheumatoid arthritis (RA), inflammation and ER stress work in parallel by driving inflammatory cells to release cytokines that induce chronic ER stress pathways. This chronic ER stress may contribute to the pathogenesis of RA through synoviocyte proliferation and proinflammatory cytokine production. Therefore, ER stress pathways and their constituent elements are attractive targets for RA drug development. In this review, we integrate current knowledge of the contribution of ER stress to the overall pathogenesis of RA, and suggest some therapeutic implications of these discoveries.
Collapse
Affiliation(s)
- Marveh Rahmati
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran; These authors contributed equally to this work.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O Box:14965/161, Tehran, Iran; These authors contributed equally to this work
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| |
Collapse
|
119
|
Shen C, Ma W, Ding L, Li S, Dou X, Song Z. The TLR4-IRE1α pathway activation contributes to palmitate-elicited lipotoxicity in hepatocytes. J Cell Mol Med 2018; 22:3572-3581. [PMID: 29673059 PMCID: PMC6010797 DOI: 10.1111/jcmm.13636] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/10/2018] [Indexed: 02/06/2023] Open
Abstract
Lipotoxicity induced by saturated fatty acids (SFAs) plays a pathological role in the development of non‐alcoholic fatty liver disease (NAFLD); however, the exact mechanism(s) remain to be clearly elucidated. Toll‐like receptor (TLR) 4 plays a fundamental role in activating the innate immune system. Intriguingly, hepatocytes express TLR4 and machinery for TLR4 signalling pathway. That liver‐specific TLR4 knockout mice are protective against diet‐induced NAFLD suggests that hepatocyte TLR4 signalling pathway plays an important role in NAFLD pathogenesis. Herein, using cultured hepatocytes, we sought to directly examine the role of TLR4 signalling pathway in palmitate‐elicited hepatotoxicity and to elucidate underlying mechanism(s). Our data reveal that palmitate exposure up‐regulates TLR4 expression at both mRNA and protein levels in hepatocytes, which are associated with NF‐κB activation. The inhibition of TLR4 signalling pathway through both pharmacological and genetic approaches abolished palmitate‐induced cell death, suggesting that TLR4 signalling pathway activation contributes to palmitate‐induced hepatotoxicity. Mechanistic investigations demonstrate that inositol‐requiring enzyme 1α (IRE1α), one of three major signal transduction pathways activated during endoplasmic reticulum (ER) stress, is the downstream target of palmitate‐elicited TLR4 activation and mechanistically implicated in TLR4 activation‐triggered cell death in response to palmitate exposure. Collectively, our data identify that the TLR4‐IRE1α pathway activation contributes to palmitate‐elicited lipotoxicity in hepatocytes. Our findings suggest that targeting TLR4‐IRE1α pathway can be a potential therapeutic choice for the treatment of NAFLD as well as other metabolic disorders, with lipotoxicity being the principal pathomechanism.
Collapse
Affiliation(s)
- Chen Shen
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Wang Ma
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lei Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songtao Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Xiaobing Dou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Pathology, University of Illinois, Medical Center, Chicago, IL, USA
| |
Collapse
|
120
|
Jennelle LT, Dandekar AP, Magoro T, Hahn YS. Immunometabolic Signaling Pathways Contribute to Macrophage and Dendritic Cell Function. Crit Rev Immunol 2018; 36:379-394. [PMID: 28605345 DOI: 10.1615/critrevimmunol.2017018803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Understanding of antigen-presenting cell (APC) participation in tissue inflammation and metabolism has advanced through numerous studies using systems biology approaches. Previously unrecognized connections between these research areas have been elucidated in the context of inflammatory disease involving innate and adaptive immune responses. A new conceptual framework bridges APC biology, metabolism, and cytokines in the generation of effective T-cell responses. Exploring these connections is paramount to addressing the rising tide of multi-organ system diseases, particularly chronic diseases associated with metabolic syndrome, infection, and cancer. Focused research in these areas will aid the development of strategies to harness and manipulate innate immunology to improve vaccine development, anti-viral, anti-inflammatory, and anti-tumor therapies. This review highlights recent advances in APC "immunometabolism" specifically related to chronic viral and metabolic disease in humans. The goal of this review is to develop an abridged and consolidated outlook on recent thematic updates to APC immunometabolism in the areas of regulation and crosstalk between metabolic and inflammatory signaling and the integrated stress response and how these signals dictate APC function in providing T-cell activation Signal 3.
Collapse
Affiliation(s)
- Lucas T Jennelle
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Aditya P Dandekar
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Tshifhiwa Magoro
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Young S Hahn
- Department of Microbiology, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
121
|
Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. ACTA ACUST UNITED AC 2017. [PMID: 29527458 DOI: 10.1007/s40495-017-0117-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review presents an overview of the current knowledge of TRAF molecules in inflammation with an emphasis on available human evidence and direct in vivo evidence of mouse models that demonstrate the contribution of TRAF molecules in the pathogenesis of inflammatory diseases. Recent Findings The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic proteins was initially identified as signaling adaptors that bind directly to the intracellular domains of receptors of the TNF-R superfamily. It is now appreciated that TRAF molecules are widely employed in signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Most of these signaling pathways have been linked to inflammation, and therefore TRAF molecules were expected to regulate inflammation and inflammatory responses since their discovery in 1990s. However, direct in vivo evidence of TRAFs in inflammation and especially in inflammatory diseases had been lacking for many years, partly due to the difficulty imposed by early lethality of TRAF2-/-, TRAF3-/-, and TRAF6-/- mice. With the creation of conditional knockout and lineage-specific transgenic mice of different TRAF molecules, our understanding about TRAFs in inflammation and inflammatory responses has rapidly advanced during the past decade. Summary Increasing evidence indicates that TRAF molecules are versatile and indispensable regulators of inflammation and inflammatory responses and that aberrant expression or function of TRAFs contributes to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Pharmacology, Anhui Medical University, Meishan Road 81st, Shushan District, Hefei, Anhui province, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Member, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
122
|
Oubaha M, Miloudi K, Dejda A, Guber V, Mawambo G, Germain MA, Bourdel G, Popovic N, Rezende FA, Kaufman RJ, Mallette FA, Sapieha P. Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Sci Transl Med 2017; 8:362ra144. [PMID: 27797960 DOI: 10.1126/scitranslmed.aaf9440] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
Abstract
Pathological angiogenesis is the hallmark of diseases such as cancer and retinopathies. Although tissue hypoxia and inflammation are recognized as central drivers of vessel growth, relatively little is known about the process that bridges the two. In a mouse model of ischemic retinopathy, we found that hypoxic regions of the retina showed only modest rates of apoptosis despite severely compromised metabolic supply. Using transcriptomic analysis and inducible loss-of-function genetics, we demonstrated that ischemic retinal cells instead engage the endoplasmic reticulum stress inositol-requiring enzyme 1α (IRE1α) pathway that, through its endoribonuclease activity, induces a state of senescence in which cells adopt a senescence-associated secretory phenotype (SASP). We also detected SASP-associated cytokines (plasminogen activator inhibitor 1, interleukin-6, interleukin-8, and vascular endothelial growth factor) in the vitreous humor of patients suffering from proliferative diabetic retinopathy. Therapeutic inhibition of the SASP through intravitreal delivery of metformin or interference with effectors of senescence (semaphorin 3A or IRE1α) in mice reduced destructive retinal neovascularization in vivo. We conclude that the SASP contributes to pathological vessel growth, with ischemic retinal cells becoming prematurely senescent and secreting inflammatory cytokines that drive paracrine senescence, exacerbate destructive angiogenesis, and hinder reparative vascular regeneration. Reversal of this process may be therapeutically beneficial.
Collapse
Affiliation(s)
- Malika Oubaha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4 Canada
| | - Khalil Miloudi
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4 Canada
| | - Agnieszka Dejda
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada
| | - Vera Guber
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada
| | - Gaëlle Mawambo
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada
| | - Marie-Anne Germain
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada.,Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada
| | - Guillaume Bourdel
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada
| | - Natalija Popovic
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada
| | - Flavio A Rezende
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Frédérick A Mallette
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada. .,Department of Medicine, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada
| | - Przemyslaw Sapieha
- Department of Biochemistry, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4 Canada.,Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, Université de Montréal, Montreal, Quebec H1T 2M4, Canada
| |
Collapse
|
123
|
Ko JS, Koh JM, So JS, Jeon YK, Kim HY, Chung DH. Palmitate inhibits arthritis by inducing t-bet and gata-3 mRNA degradation in iNKT cells via IRE1α-dependent decay. Sci Rep 2017; 7:14940. [PMID: 29097726 PMCID: PMC5668299 DOI: 10.1038/s41598-017-14780-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
Long chain fatty acids (LCFAs) exert pro-inflammatory effects in vivo. However, little is known regarding the effect of LCFAs on invariant (i) NKT cell functions. Here, we report an inhibitory effect of saturated LCFAs on transcription factors in iNKT cells. Among the saturated LCFAs, palmitic acid (PA) specifically inhibited IL-4 and IFN-γ production and reduced gata-3 and t-bet transcript levels in iNKT cells during TCR-mediated activation. In iNKT cells, PA was localized and induced dilation in the endoplasmic reticulum and increased the mRNA levels of downstream molecules of IRE1α RNase. Moreover, PA increased the degradation rates of gata-3 and t-bet mRNA, which was restored by IRE1α inhibition or transfection with mutant gata-3 or t-bet, indicating that gata-3 and t-bet are cleaved via regulated IRE1α-dependent decay (RIDD). A PA-rich diet and PA injection suppressed IL-4 and IFN-γ production by iNKT cells in C57BL/6, but not Jα18 knockout mice, which was restored by injection of STF083010, an IRE1α-specific inhibitor. Furthermore, a PA-rich diet and PA injection attenuated arthritis in an iNKT cell-dependent manner. Taken together, our experiments demonstrate that a saturated LCFA induced RIDD-mediated t-bet and gata-3 mRNA degradation in iNKT cells, thereby suppressing arthritis.
Collapse
Affiliation(s)
- Jae Sung Ko
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Moon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Seon So
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea. .,Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
124
|
Kabala PA, Angiolilli C, Yeremenko N, Grabiec AM, Giovannone B, Pots D, Radstake TR, Baeten D, Reedquist KA. Endoplasmic reticulum stress cooperates with Toll-like receptor ligation in driving activation of rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Res Ther 2017; 19:207. [PMID: 28923079 PMCID: PMC5604427 DOI: 10.1186/s13075-017-1386-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has proinflammatory properties, and transgenic animal studies of rheumatoid arthritis (RA) indicate its relevance in the process of joint destruction. Because currently available studies are focused primarily on myeloid cells, we assessed how ER stress might affect the inflammatory responses of stromal cells in RA. METHODS ER stress was induced in RA fibroblast-like synoviocytes (FLS), dermal fibroblasts, and macrophages with thapsigargin or tunicamycin alone or in combination with Toll-like receptor (TLR) ligands, and gene expression and messenger RNA (mRNA) stability was measured by quantitative polymerase chain reaction. Cellular viability was measured using cell death enzyme-linked immunosorbent assays and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, and signaling pathway activation was analyzed by immunoblotting. RESULTS No cytotoxicity was observed in FLS exposed to thapsigargin, despite significant induction of ER stress markers. Screening of 84 proinflammatory genes revealed minor changes in their expression (fold change 90th percentile range 2.8-8.3) by thapsigargin alone, but the vast majority were hyperinduced during combined stimulation with thapsigargin and TLR ligands (35% greater than fivefold vs lipopolysaccharide alone). The synergistic response could not be explained by quantitative effects on nuclear factor-κB and mitogen-activated protein kinase pathways alone, but it was dependent on increased mRNA stability. mRNA stabilization was similarly enhanced by ER stress in dermal fibroblasts but not in macrophages, correlating with minimal cooperative effects on gene induction in macrophages. CONCLUSIONS RA FLS are resistant to apoptosis induced by ER stress, but ER stress potentiates their activation by multiple TLR ligands. Interfering with downstream signaling pathway components of ER stress may be of therapeutic potential in the treatment of RA.
Collapse
Affiliation(s)
- Pawel A Kabala
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Immunology and Rheumatology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Chiara Angiolilli
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Immunology and Rheumatology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nataliya Yeremenko
- Department of Clinical Immunology and Rheumatology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
| | - Aleksander M Grabiec
- Department of Clinical Immunology and Rheumatology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Barbara Giovannone
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Internal Medicine and Dermatology, Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Desiree Pots
- Department of Clinical Immunology and Rheumatology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
- Department of Experimental Immunology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands
| | - Timothy R Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dominique Baeten
- Department of Clinical Immunology and Rheumatology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands.
- Department of Experimental Immunology, Academic Medical Centre/University of Amsterdam, Amsterdam, The Netherlands.
| | - Kris A Reedquist
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
125
|
Suppression of IgE-mediated mast cell activation and mouse anaphylaxis via inhibition of Syk activation by 8-formyl-7-hydroxy-4-methylcoumarin, 4μ8C. Toxicol Appl Pharmacol 2017; 332:25-31. [PMID: 28736076 DOI: 10.1016/j.taap.2017.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 01/09/2023]
Abstract
Mast cells trigger IgE-mediated allergic reactions by releasing various allergic mediators. 8-Formyl-7-hydroxy-4-methylcoumarin, also called 4μ8C, was originally known as an inositol-requiring enzyme 1 (IRE1) suppressant, but no study has examined its relationship with mast cells and allergic diseases. Therefore, the purpose of this study was to determine whether 4μ8C is effective in suppressing allergic reactions in mast cells and in IgE-mediated allergic animal model. 4μ8C suppressed the degranulation of IgE-mediated mast cells (IC50=3.2μM) and the production of cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) in a dose-dependent manner. 4μ8C also suppressed passive cutaneous anaphylaxis (PCA) in mice (ED50=25.1mg/kg). In an experiment on mast cell signaling pathways stimulated by antigen, the phosphorylation and activation of Syk was decreased by 4μ8C, and phosphorylation of downstream signaling molecules, such as linker for activated T cells (LAT), Akt, and the three MAP kinases, ERK, p38, and JNK, were suppressed. Mechanistic studies showed that 4μ8C inhibited the activity of Lyn and Fyn in vitro. Based on the results of those experiments, the suppressor mechanism of allergic reaction by 4μ8C involved reduced activity of Lyn and Fyn, which is pivotal in an IgE-mediated signaling pathway. In summary, for the first time, this study shows that 4μ8C inhibits Lyn and Fyn, thus suppressing allergic reaction by reducing the degranulation and the production of inflammatory cytokines. This suggests that 4μ8C can be used as a new medicinal candidate to control allergic diseases such as seasonal allergies and atopic dermatitis.
Collapse
|
126
|
Abstract
Numerous environmental, physiological, and pathological insults disrupt protein-folding homeostasis in the endoplasmic reticulum (ER), referred to as ER stress. Eukaryotic cells evolved a set of intracellular signaling pathways, collectively termed the unfolded protein response (UPR), to maintain a productive ER protein-folding environment through reprogramming gene transcription and mRNA translation. The UPR is largely dependent on transcription factors (TFs) that modulate expression of genes involved in many physiological and pathological conditions, including development, metabolism, inflammation, neurodegenerative diseases, and cancer. Here we summarize the current knowledge about these mechanisms, their impact on physiological/pathological processes, and potential therapeutic applications.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92307 USA
| |
Collapse
|
127
|
Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell 2017; 168:692-706. [PMID: 28187289 DOI: 10.1016/j.cell.2016.12.004] [Citation(s) in RCA: 649] [Impact Index Per Article: 81.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Abstract
Malignant cells utilize diverse strategies that enable them to thrive under adverse conditions while simultaneously inhibiting the development of anti-tumor immune responses. Hostile microenvironmental conditions within tumor masses, such as nutrient deprivation, oxygen limitation, high metabolic demand, and oxidative stress, disturb the protein-folding capacity of the endoplasmic reticulum (ER), thereby provoking a cellular state of "ER stress." Sustained activation of ER stress sensors endows malignant cells with greater tumorigenic, metastatic, and drug-resistant capacity. Additionally, recent studies have uncovered that ER stress responses further impede the development of protective anti-cancer immunity by manipulating the function of myeloid cells in the tumor microenvironment. Here, we discuss the tumorigenic and immunoregulatory effects of ER stress in cancer, and we explore the concept of targeting ER stress responses to enhance the efficacy of standard chemotherapies and evolving cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| | | | - Laurie H Glimcher
- Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
128
|
Lindholm D, Korhonen L, Eriksson O, Kõks S. Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease. Front Cell Dev Biol 2017; 5:48. [PMID: 28540288 PMCID: PMC5423914 DOI: 10.3389/fcell.2017.00048] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Unfolded stress response (UPR) is a conserved cellular pathway involved in protein quality control to maintain homeostasis under different conditions and disease states characterized by cell stress. Although three general schemes of and genes induced by UPR are rather well-established, open questions remain including the precise role of UPR in human diseases and the interactions between different sensor systems during cell stress signaling. Particularly, the issue how the normally adaptive and pro-survival UPR pathway turns into a deleterious process causing sustained endoplasmic reticulum (ER) stress and cell death requires more studies. UPR is also named a friend with multiple personalities that we need to understand better to fully recognize its role in normal physiology and in disease pathology. UPR interacts with other organelles including mitochondria, and with cell stress signals and degradation pathways such as autophagy and the ubiquitin proteasome system. Here we review current concepts and mechanisms of UPR as studied in different cells and model systems and highlight the relevance of UPR and related stress signals in various human diseases.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland.,Minerva Foundation Institute for Medical ResearchHelsinki, Finland
| | - Laura Korhonen
- Minerva Foundation Institute for Medical ResearchHelsinki, Finland.,Division of Child Psychiatry, Helsinki University Central HospitalHelsinki, Finland
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of HelsinkiHelsinki, Finland
| | - Sulev Kõks
- Department of Pathophysiology, University of TartuTartu, Estonia.,Department of Reproductive Biology, Estonian University of Life SciencesTartu, Estonia
| |
Collapse
|
129
|
Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci U S A 2017; 114:E1395-E1404. [PMID: 28137856 DOI: 10.1073/pnas.1621188114] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metaflammation, an atypical, metabolically induced, chronic low-grade inflammation, plays an important role in the development of obesity, diabetes, and atherosclerosis. An important primer for metaflammation is the persistent metabolic overloading of the endoplasmic reticulum (ER), leading to its functional impairment. Activation of the unfolded protein response (UPR), a homeostatic regulatory network that responds to ER stress, is a hallmark of all stages of atherosclerotic plaque formation. The most conserved ER-resident UPR regulator, the kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1), is activated in lipid-laden macrophages that infiltrate the atherosclerotic lesions. Using RNA sequencing in macrophages, we discovered that IRE1 regulates the expression of many proatherogenic genes, including several important cytokines and chemokines. We show that IRE1 inhibitors uncouple lipid-induced ER stress from inflammasome activation in both mouse and human macrophages. In vivo, these IRE1 inhibitors led to a significant decrease in hyperlipidemia-induced IL-1β and IL-18 production, lowered T-helper type-1 immune responses, and reduced atherosclerotic plaque size without altering the plasma lipid profiles in apolipoprotein E-deficient mice. These results show that pharmacologic modulation of IRE1 counteracts metaflammation and alleviates atherosclerosis.
Collapse
|
130
|
Khan MM, Yang WL, Brenner M, Bolognese AC, Wang P. Cold-inducible RNA-binding protein (CIRP) causes sepsis-associated acute lung injury via induction of endoplasmic reticulum stress. Sci Rep 2017; 7:41363. [PMID: 28128330 PMCID: PMC5269663 DOI: 10.1038/srep41363] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP), released into the circulation during sepsis, causes lung injury via an as yet unknown mechanism. Since endoplasmic reticulum (ER) stress is associated with acute lung injury (ALI), we hypothesized that CIRP causes ALI via induction of ER stress. To test this hypothesis, we studied the lungs of wild-type (WT) and CIRP knockout (KO) mice at 20 h after induction of sepsis by cecal ligation and puncture (CLP). WT mice had significantly more severe ALI than CIRP KO mice. Lung ER stress markers (BiP, pIRE1α, sXBP1, CHOP, cleaved caspase-12) were increased in septic WT mice, but not in septic CIRP KO mice. Effector pathways downstream from ER stress – apoptosis, NF-κB (p65), proinflammatory cytokines (IL-6, IL-1β), neutrophil chemoattractants (MIP-2, KC), neutrophil infiltration (MPO activity), lipid peroxidation (4-HNE), and nitric oxide (iNOS) – were significantly increased in WT mice, but only mildly elevated in CIRP KO mice. ER stress markers were increased in the lungs of healthy WT mice treated with recombinant murine CIRP, but not in the lungs of TLR4 KO mice. This suggests CIRP directly induces ER stress via TLR4 activation. In summary, CIRP induces lung ER stress and downstream responses to cause sepsis-associated ALI.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Alexandra Cerutti Bolognese
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| |
Collapse
|
131
|
Peckham D, Scambler T, Savic S, McDermott MF. The burgeoning field of innate immune-mediated disease and autoinflammation. J Pathol 2016; 241:123-139. [PMID: 27682255 DOI: 10.1002/path.4812] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023]
Abstract
Immune-mediated autoinflammatory diseases are occupying an increasingly prominent position among the pantheon of debilitating conditions that afflict humankind. This review focuses on some of the key developments that have occurred since the original description of autoinflammatory disease in 1999, and focuses on underlying mechanisms that trigger autoinflammation. The monogenic autoinflammatory disease range has expanded considerably during that time, and now includes a broad spectrum of disorders, including relatively common conditions such as cystic fibrosis and subsets of systemic lupus erythematosus. The innate immune system also plays a key role in the pathogenesis of complex inflammatory disorders. We have proposed a new nomenclature to accommodate the rapidly increasing number of monogenic disorders, which predispose to either autoinflammation or autoimmunity or, indeed, combinations of both. This new terminology also encompasses a wide spectrum of genetically determined autoinflammatory diseases, with variable clinical manifestations of immunodeficiency and immune dysregulation/autoimmunity. We also explore some of the ramifications of the breakthrough discovery of the physiological role of pyrin and the search for identifiable factors that may serve to trigger attacks of autoinflammation. The evidence that pyrin, as part of the pyrin inflammasome, acts as a sensor of different inactivating bacterial modification Rho GTPases, rather than interacting directly with these microbial products, sets the stage for a better understanding of the role of microorganisms and infections in the autoinflammatory disorders. Finally, we discuss some of the triggers of autoinflammation as well as potential therapeutic interventions aimed at enhancing autophagy and proteasome degradation pathways. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Daniel Peckham
- Leeds Centre for Cystic Fibrosis, St James's University Hospital, Leeds, UK
| | - Thomas Scambler
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU) and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | - Sinisa Savic
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU) and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Michael F McDermott
- National Institute for Health Research-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU) and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| |
Collapse
|
132
|
Yue S, Zhu J, Zhang M, Li C, Zhou X, Zhou M, Ke M, Busuttil RW, Ying QL, Kupiec-Weglinski JW, Xia Q, Ke B. The myeloid heat shock transcription factor 1/β-catenin axis regulates NLR family, pyrin domain-containing 3 inflammasome activation in mouse liver ischemia/reperfusion injury. Hepatology 2016; 64:1683-1698. [PMID: 27474884 PMCID: PMC5074868 DOI: 10.1002/hep.28739] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Heat shock transcription factor 1 (HSF1) has been implicated in the differential regulation of cell stress and disease states. β-catenin activation is essential for immune homeostasis. However, little is known about the role of macrophage HSF1-β-catenin signaling in the regulation of NLRP3 inflammasome activation during ischemia/reperfusion (I/R) injury (IRI) in the liver. This study investigated the functions and molecular mechanisms by which HSF1-β-catenin signaling influenced NLRP3-mediated innate immune response in vivo and in vitro. Using a mouse model of IR-induced liver inflammatory injury, we found that mice with a myeloid-specific HSF1 knockout (HSF1M-KO ) displayed exacerbated liver damage based on their increased serum alanine aminotransferase levels, intrahepatic macrophage/neutrophil trafficking, and proinflammatory interleukin (IL)-1β levels compared to the HSF1-proficient (HSF1FL/FL ) controls. Disruption of myeloid HSF1 markedly increased transcription factor X-box-binding protein (XBP1), NLR family, pyrin domain-containing 3 (NLRP3), and cleaved caspase-1 expression, which was accompanied by reduced β-catenin activity. Knockdown of XBP1 in HSF1-deficient livers using a XBP1 small interfering RNA ameliorated hepatocellular functions and reduced NLRP3/cleaved caspase-1 and IL-1β protein levels. In parallel in vitro studies, HSF1 overexpression increased β-catenin (Ser552) phosphorylation and decreased reactive oxygen species (ROS) production in bone-marrow-derived macrophages. However, myeloid HSF1 ablation inhibited β-catenin, but promoted XBP1. Furthermore, myeloid β-catenin deletion increased XBP1 messenger RNA splicing, whereas a CRISPR/CRISPR-associated protein 9-mediated XBP1 knockout diminished NLRP3/caspase-1. CONCLUSION The myeloid HSF1-β-catenin axis controlled NLRP3 activation by modulating the XBP1 signaling pathway. HSF1 activation promoted β-catenin, which, in turn, inhibited XBP1, leading to NLRP3 inactivation and reduced I/R-induced liver injury. These findings demonstrated that HSF1/β-catenin signaling is a novel regulator of innate immunity in liver inflammatory injury and implied the therapeutic potential for management of sterile liver inflammation in transplant recipients. (Hepatology 2016;64:1683-1698).
Collapse
Affiliation(s)
- Shi Yue
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jianjun Zhu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Zhang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Changyong Li
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xingliang Zhou
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Min Zhou
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ronald W. Busuttil
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qi-Long Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology & Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA.
| |
Collapse
|
133
|
Dandekar A, Qiu Y, Kim H, Wang J, Hou X, Zhang X, Zheng Z, Mendez R, Yu FS, Kumar A, Fang D, Sun F, Zhang K. Toll-like Receptor (TLR) Signaling Interacts with CREBH to Modulate High-density Lipoprotein (HDL) in Response to Bacterial Endotoxin. J Biol Chem 2016; 291:23149-23158. [PMID: 27637329 DOI: 10.1074/jbc.m116.755728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 12/13/2022] Open
Abstract
Bacterial endotoxin can induce inflammatory and metabolic changes in the host. In this study, we revealed a molecular mechanism by which a stress-inducible, liver-enriched transcription factor, cAMP-responsive element-binding protein hepatic-specific (CREBH), modulates lipid profiles to protect the liver from injuries upon the bacterial endotoxin lipopolysaccharide (LPS). LPS challenge can activate CREBH in mouse liver tissues in a toll-like receptor (TLR)/MyD88-dependent manner. Upon LPS challenge, CREBH interacts with TNF receptor-associated factor 6 (TRAF6), an E3 ubiquitin ligase that functions as a key mediator of TLR signaling, and this interaction relies on MyD88. Further analysis demonstrated that TRAF6 mediates K63-linked ubiquitination of CREBH to facilitate CREBH cleavage and activation. CREBH directly activates expression of the gene encoding Apolipoprotein A4 (ApoA4) under LPS challenge, leading to modulation of high-density lipoprotein (HDL) in animals. CREBH deficiency led to reduced production of circulating HDL and increased liver damage upon high-dose LPS challenge. Therefore, TLR/MyD88-dependent, TRAF6-facilitated CREBH activation represents a mammalian hepatic defense response to bacterial endotoxin by modulating HDL.
Collapse
Affiliation(s)
| | - Yining Qiu
- From the Center for Molecular Medicine and Genetics
| | - Hyunbae Kim
- From the Center for Molecular Medicine and Genetics
| | - Jiemei Wang
- From the Center for Molecular Medicine and Genetics
| | - Xia Hou
- Department of Physiology, and
| | - Xuebao Zhang
- From the Center for Molecular Medicine and Genetics
| | - Ze Zheng
- From the Center for Molecular Medicine and Genetics
| | | | - Fu-Shin Yu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201 and
| | - Ashok Kumar
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201 and
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Fei Sun
- Department of Physiology, and
| | - Kezhong Zhang
- Department of Immunology and Microbiology, .,From the Center for Molecular Medicine and Genetics
| |
Collapse
|
134
|
Duffy L, O'Reilly SC. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments. Immunotargets Ther 2016; 5:69-80. [PMID: 27579291 PMCID: PMC5001654 DOI: 10.2147/itt.s89795] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autoinflammatory diseases are defined as the loss of self-tolerance in which an inflammatory response to self-antigens occurs, which are a significant global burden. Toll-like receptors are key pattern recognition receptors, which integrate signals leading to the activation of transcription factors and ultimately proinflammatory cytokines. Recently, it has become apparent that these are at the nexus of autoinflammatory diseases making them viable and attractive drug targets. The aim of this review was to evaluate the role of innate immunity in autoinflammatory conditions alongside the role of negative regulation while suggesting possible therapeutic targets.
Collapse
Affiliation(s)
- Laura Duffy
- Immunology and Cell Biology Group, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Steven C O'Reilly
- Immunology and Cell Biology Group, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
135
|
Xu Y, Zhao F, Qiu Q, Chen K, Wei J, Kong Q, Gao B, Melo-Cardenas J, Zhang B, Zhang J, Song J, Zhang DD, Zhang J, Fan Y, Li H, Fang D. The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity. Nat Commun 2016; 7:12073. [PMID: 27417417 PMCID: PMC4947160 DOI: 10.1038/ncomms12073] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/25/2016] [Indexed: 01/16/2023] Open
Abstract
Identification of positive regulators of T-cell immunity induced during autoimmune diseases is critical for developing novel therapies. The endoplasmic reticulum resident ubiquitin ligase Hrd1 has recently emerged as a critical regulator of dendritic cell antigen presentation, but its role in T-cell immunity is unknown. Here we show that genetic deletion of Hrd1 in mice inhibits T-cell proliferation, production of IL-2, and differentiation of Th1 and Th17 cells, and consequently protects mice from experimental autoimmune encephalomyelitis. Hrd1 facilitates T-cell proliferation by the destruction of cyclin-dependent kinase inhibitor p27(kip1), and deletion of p27(kip1) in Hrd1-null T-cells rescues proliferative capacity but not the production of cytokines, including IL-2, IFN-γ and IL-17. T-cell expression of Hrd1 is higher in patients with multiple sclerosis than in healthy individuals, and knockdown of Hrd1 in human CD4(+) T cells inhibits activation and differentiation to Th1 and Th17 cells. Our study identifies Hrd1 as a previously unappreciated positive regulator of T cells and implies that Hrd1 is a potential therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Fang Zhao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Quan Qiu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Kun Chen
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Juncheng Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Qingfei Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| | - Bin Zhang
- Robert H. Lurie Comprehensive Cancer Center, Department of Medicine-Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizon 85721, USA
| | - Jianing Zhang
- Department of Biochemistry, School of Life Science and Medicine, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Yunping Fan
- Guangdong Provincial Engineering Research Center for Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Huabin Li
- Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
- Guangdong Provincial Engineering Research Center for Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, Illinois 60611, USA
| |
Collapse
|
136
|
Tan HY, Wang N, Tsao SW, Che CM, Yuen MF, Feng Y. IRE1α inhibition by natural compound genipin on tumour associated macrophages reduces growth of hepatocellular carcinoma. Oncotarget 2016; 7:43792-43804. [PMID: 27270308 PMCID: PMC5190060 DOI: 10.18632/oncotarget.9696] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/27/2016] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidences postulated the influential roles of macrophages in mediating hepatocellular carcinoma (HCC) initiation and progression. In this study, we demonstrate that a small molecule, genipin reduced HCC growth through suppressing IRE1α-mediated infiltration and priming of tumour associated macrophages (TAMs). Oral administration of genipin (30mg/kg/2days) suppressed orthotopic HCC tumour growth without challenging the viability and proliferation of HCC cells. Genipin reduced infiltration of inflammatory monocytes into liver and tumour thereby suppressed TAMs presence in HCC microenvironment. Suppression of HCC growth was diminished in HCC-implanted mice with depletion of TAMs by liposome clodronate. Genipin inhibited the TAMs migration, and reduced expression of TAMs-derived inflammatory cytokines that favors HCC proliferation. This is revealed by the in vivo deletion of IRE1α on TAMs in genipin-treated HCC-implanted mice. Diminishing IRE1α neutralised the inhibitory effect of genipin on TAMs. Silencing the expression of IRE1α greatly reduced TAMs migration and expression of inflammatory cytokines that prime HCC proliferation. Suppression of IRE1α led to reduced XBP-1 splicing and NF-κB activation. The reduced association of IRE1α with TRAF2 and IKK complex may be responsible for the genipin-mediated inactivation of NF-κB. The findings show the important role of TAMs in inhibitory effect of genipin on HCC, and TAMs-expressing IRE1α as a promising target for disrupting the tumour environment that favor of HCC development.
Collapse
Affiliation(s)
- Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, P.R. of China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, P.R. of China
| | - Sai-Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, P.R. of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Chemical Biology Centre, and Department of Chemistry, The University of Hong Kong, Hong Kong S.A.R, P. R. China
| | - Man-Fung Yuen
- Division of Gastroenterology and Hepatology, Queen Mary Hospital and Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, P. R. of China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R, P.R. of China
| |
Collapse
|
137
|
Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol 2016; 16:469-84. [PMID: 27346803 DOI: 10.1038/nri.2016.62] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.
Collapse
Affiliation(s)
- Joep Grootjans
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| | - Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
138
|
Abstract
Sepsis is an enormous public health issue and the leading cause of death in critically ill patients in intensive care units. Overwhelming inflammation, characterized by cytokine storm, oxidative threats, and neutrophil sequestration, is an underlying component of sepsis-associated organ failure. Despite recent advances in sepsis research, there is still no effective treatment available beyond the standard of care and supportive therapy. To reduce sepsis-related mortality, a better understanding of the biological mechanism associated with sepsis is essential. Endoplasmic reticulum (ER), a subcellular organelle, is responsible for the facilitation of protein folding and assembly and involved in several other physiological activities. Under stress and inflammatory conditions, ER loses homeostasis in its function, which is termed ER stress. During ER stress, unfolded protein response (UPR) is activated to restore ER function to its normal balance. However, once stress is beyond the compensatory capacity of UPR or protracted, apoptosis would be initiated by triggering cell injuries, even cell death. As such, ER stress and UPR are reported to be implicated in several pathological and inflammatory conditions. Although the detrimental role of ER stress during infections has been demonstrated, there is growing evidence that ER stress participates in the pathogenesis of sepsis. In this review, we summarize current research in the context of ER stress and UPR signaling associated with sepsis and its related clinical conditions, such as trauma-hemorrhage and ischemia/reperfusion injury. We also discuss the potential implications of ER stress as a novel therapeutic target and prognostic marker in patients with sepsis.
Collapse
|
139
|
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57:1329-38. [PMID: 27146479 DOI: 10.1194/jlr.r067595] [Citation(s) in RCA: 452] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a cellular organelle important for regulating calcium homeostasis, lipid metabolism, protein synthesis, and posttranslational modification and trafficking. Numerous environmental, physiological, and pathological insults disturb ER homeostasis, referred to as ER stress, in which a collection of conserved intracellular signaling pathways, termed the unfolded protein response (UPR), are activated to maintain ER function for cell survival. However, excessive and/or prolonged UPR activation leads to initiation of self-destruction through apoptosis. Excessive accumulation of lipids and their intermediate products causes metabolic abnormalities and cell death, called lipotoxicity, in peripheral organs, including the pancreatic islets, liver, muscle, and heart. Because accumulating evidence links chronic ER stress and defects in UPR signaling to lipotoxicity in peripheral tissues, understanding the role of ER stress in cell physiology is a topic under intense investigation. In this review, we highlight recent findings that link ER stress and UPR signaling to the pathogenesis of peripheral organs due to lipotoxicity.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do, 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307
| |
Collapse
|
140
|
Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 2016; 529:326-35. [PMID: 26791723 DOI: 10.1038/nature17041] [Citation(s) in RCA: 1161] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/11/2015] [Indexed: 12/18/2022]
Abstract
In eukaryotic cells, the endoplasmic reticulum is essential for the folding and trafficking of proteins that enter the secretory pathway. Environmental insults or increased protein synthesis often lead to protein misfolding in the organelle, the accumulation of misfolded or unfolded proteins - known as endoplasmic reticulum stress - and the activation of the adaptive unfolded protein response to restore homeostasis. If protein misfolding is not resolved, cells die. Endoplasmic reticulum stress and activation of the unfolded protein response help to determine cell fate and function. Furthermore, endoplasmic reticulum stress contributes to the aetiology of many human diseases.
Collapse
Affiliation(s)
- Miao Wang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
141
|
Tan J, Zhou L, Xue P, An Y, Luo L, Zhang R, Wu G, Wang Y, Zhu H, Wang Q. Tumor Necrosis Factor-α Attenuates the Osteogenic Differentiation Capacity of Periodontal Ligament Stem Cells by Activating PERK Signaling. J Periodontol 2016; 87:e159-71. [PMID: 27086613 DOI: 10.1902/jop.2016.150718] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Human periodontal ligament stem cells (PDLSCs) display efficient osteogenic differentiation capacity but fail to rescue bone breakdown associated with periodontitis. Endoplasmic reticulum (ER) stress and the unfolded protein response have recently been linked to inflammation and osteogenic differentiation. Therefore, the role of the double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK) pathway in the impaired osteogenic differentiation ability of PDLSCs treated with tumor necrosis factor (TNF)-α was investigated. METHODS PDLSCs were isolated and stimulated with osteogenic media containing 1, 10, or 20 ng/mL TNF-α. Assessment included: 1) expression of runt-related transcription factor 2 and osteocalcin; 2) mRNA expression and activity of alkaline phosphatase; and 3) formation of mineralization nodules. Furthermore, expression of PERK pathway-related factors: 1) glucose-regulated protein (GRP) 78; 2) PERK; 3) activating transcription factor (ATF) 4; and 4) CCAAT-enhancer-binding proteins (C/EBP) homologous protein were also measured. Osteogenic differentiation and inhibition of the PERK pathway were also examined in cells pretreated with an inhibitor of ER stress, 4-phenylbutyric acid (PBA), followed by TNF-α stimulation. Finally, PERK small interfering RNA was used to examine osteogenic differentiation attenuated by TNF-α. RESULTS Higher concentrations of TNF-α (10 and 20 ng/mL) impaired osteogenic differentiation of PDLSCs but activated the PERK pathway. Pretreatment of PDLSCs with lower concentrations of 4-PBA prevented the TNF-α-induced upregulation of GRP78, PERK, and ATF4 and recovered differentiation ability. Finally, PERK knockdown also restored osteogenic differentiation. CONCLUSION TNF-α attenuates osteogenic differentiation ability of PDLSCs through activation of the PERK pathway.
Collapse
Affiliation(s)
- Jun Tan
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China.,Department of Stomatology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Lihua Zhou
- Department of Stomatology, General Hospital of Beijing Military Area, Beijing, China
| | - Peng Xue
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Ying An
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Lankun Luo
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Rong Zhang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Guangsheng Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China.,Department of Stomatology, Qingdao First Sanatorium of Jinan Military Area Command, Qingdao, Shandong, China
| | - Ying Wang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Hong Zhu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| | - Qintao Wang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi Key Laboratory of Stomatology, Xi'an, Shaanxi, China
| |
Collapse
|
142
|
Lubamba BA, Jones LC, O'Neal WK, Boucher RC, Ribeiro CMP. X-Box-Binding Protein 1 and Innate Immune Responses of Human Cystic Fibrosis Alveolar Macrophages. Am J Respir Crit Care Med 2016; 192:1449-61. [PMID: 26331676 DOI: 10.1164/rccm.201504-0657oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Alveolar macrophages (AMs) play a key role in host defense to inhaled bacterial pathogens, in part by secreting inflammatory mediators. Cystic fibrosis (CF) airways exhibit a persistent, robust inflammatory response that may contribute to the pathophysiology of CF. Recent findings have linked endoplasmic reticulum stress responses mediated by inositol-requiring enzyme 1α-dependent messenger RNA splicing (activation) of X-box-binding protein-1 (XBP-1s) to inflammation in peripheral macrophages. However, the role of XBP-1s in CF AM function is not known. OBJECTIVES To evaluate inflammatory responses of AMs from chronically infected/inflamed human CF lungs and test whether XBP-1s is required for AM-mediated inflammation. METHODS Basal and LPS-induced inflammatory responses were evaluated in primary cultures of non-CF versus CF AMs. XBP-1s was measured and its function was evaluated in AMs using 8-formyl-7-hydroxy-4-methylcoumarin (4μ8C), an inhibitor of inositol-requiring enzyme 1α-dependent XBP-1s, and in THP-1 cells stably expressing XBP-1 shRNA, XBP-1s, or a dominant-negative XBP-1. MEASUREMENTS AND MAIN RESULTS CF AMs exhibited exaggerated basal and LPS-induced production of tumor necrosis factor-α and IL-6, and these responses were coupled to increased levels of XBP-1s. In non-CF and CF AMs, LPS-induced cytokine production was blunted by 4µ8C. A role for XBP-1s in AM inflammatory responses was further established by data from dTHP-1 cells indicating that expression of XBP-1 shRNA reduced XBP-1s levels and LPS-induced inflammatory responses; and LPS-induced inflammation was up-regulated by expression of XBP-1s and inhibited by dominant-negative XBP-1. CONCLUSIONS These findings suggest that AMs contribute to the robust inflammation of CF airways via an up-regulation of XBP-1s-mediated cytokine production.
Collapse
Affiliation(s)
- Bob A Lubamba
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Lisa C Jones
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center
| | - Wanda K O'Neal
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center.,2 Department of Medicine, and
| | - Richard C Boucher
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center.,2 Department of Medicine, and
| | - Carla M P Ribeiro
- 1 Marsico Lung Institute/Cystic Fibrosis Research Center.,2 Department of Medicine, and.,3 Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
143
|
Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Molecular Pathways: Immunosuppressive Roles of IRE1α-XBP1 Signaling in Dendritic Cells of the Tumor Microenvironment. Clin Cancer Res 2016; 22:2121-6. [PMID: 26979393 DOI: 10.1158/1078-0432.ccr-15-1570] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/04/2016] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a massive cytoplasmic membrane network that functions primarily to ensure proper folding and posttranslational modification of newly synthesized secreted and transmembrane proteins. Abnormal accumulation of unfolded proteins in this organelle causes a state of "ER stress," which is a hallmark feature of various diseases, including cancer, neurodegeneration, and metabolic dysfunction. Cancer cells exploit the IRE1α-XBP1 arm of the ER stress response to efficiently adjust their protein-folding capacity and ensure survival under hostile tumor microenvironmental conditions. However, we recently found that dendritic cells (DC) residing in the ovarian cancer microenvironment also experience sustained ER stress and demonstrate persistent activation of the IRE1α-XBP1 pathway. This previously unrecognized process disrupts metabolic homeostasis and antigen-presenting capacity in DCs, thereby crippling their natural ability to support the protective functions of infiltrating antitumor T cells. In this review, we briefly discuss some of the mechanisms that fuel ER stress in tumor-associated DCs, the biologic processes altered by aberrant IRE1α-XBP1 signaling in these innate immune cells, and the unique immunotherapeutic potential of targeting this pathway in cancer hosts. Clin Cancer Res; 22(9); 2121-6. ©2016 AACR.
Collapse
Affiliation(s)
- Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, New York. Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York.
| | - Sarah E Bettigole
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York. Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Laurie H Glimcher
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York. Department of Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
144
|
Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 2016; 167:228-56. [PMID: 26408801 DOI: 10.1016/j.trsl.2015.08.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Obesity is a major public health problem worldwide, and it is associated with an increased risk of developing type 2 diabetes. It is now commonly accepted that chronic inflammation associated with obesity induces insulin resistance and β-cell dysfunction in diabetic patients. Obesity-associated inflammation is characterized by increased abundance of macrophages and enhanced production of inflammatory cytokines in adipose tissue. Adipose tissue macrophages are suggested to be the major source of local and systemic inflammatory mediators such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. These cytokines induce insulin resistance in insulin target tissues by activating the suppressors of cytokine signaling proteins, several kinases such as c-Jun N-terminal kinase, IκB kinase β, and protein kinase C, inducible nitric oxide synthase, extracellular signal-regulated kinase, and protein tyrosine phosphatases such as protein tyrosine phosphatase 1B. These activated factors impair the insulin signaling at the insulin receptor and the insulin receptor substrates levels. The same process most likely occurs in the pancreas as it contains a pool of tissue-resident macrophages. High concentrations of glucose or palmitate via the chemokine production promote further immune cell migration and infiltration into the islets. These events ultimately induce inflammatory responses leading to the apoptosis of the pancreatic β cells. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation are discussed, with particular attention being placed on the roles of the molecular players linking inflammation to insulin resistance and β-cell dysfunction.
Collapse
Affiliation(s)
- Hadi Khodabandehloo
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
145
|
Dandekar A, Mendez R, Zhang K. Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol 2015; 1292:205-14. [PMID: 25804758 DOI: 10.1007/978-1-4939-2522-3_15] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, endoplasmic reticulum (ER) stress, oxidative stress, and inflammatory responses compose the major defense networks that help the cells adapt to and survive stress conditions caused by biochemical, physiological and pathological stimuli. However, chronic ER stress, oxidative stress, or inflammation have been found to be associated with the initiation and progression of a variety of human diseases in the modern world. Under many pathophysiologic conditions, ER stress response, oxidative stress, and inflammatory responses are integrated and amplified in specialized cell types to facilitate the progression of disease. In the past few decades, ER stress response, oxidative stress, and inflammation as well as their interactive relationships have been hot research topics in biomedicine. In this review, we summarize the recent advance in our understanding of the cross talk between ER stress response, oxidative stress, and inflammation in immunity and in inflammatory and metabolic diseases.
Collapse
Affiliation(s)
- Aditya Dandekar
- Department of Immunology and Microbiology, Karmanos Cancer Institute, Wayne State University School of Medicine, 3202 Scott Hall, 540 East Canfield, Detroit, MI, 48201, USA
| | | | | |
Collapse
|
146
|
Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response. Proc Natl Acad Sci U S A 2015; 112:E6790-7. [PMID: 26598709 DOI: 10.1073/pnas.1508716112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.
Collapse
|
147
|
Hassler JR, Scheuner DL, Wang S, Han J, Kodali VK, Li P, Nguyen J, George JS, Davis C, Wu SP, Bai Y, Sartor M, Cavalcoli J, Malhi H, Baudouin G, Zhang Y, Yates III JR, Itkin-Ansari P, Volkmann N, Kaufman RJ. The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells. PLoS Biol 2015; 13:e1002277. [PMID: 26469762 PMCID: PMC4607427 DOI: 10.1371/journal.pbio.1002277] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/08/2015] [Indexed: 12/11/2022] Open
Abstract
Although glucose uniquely stimulates proinsulin biosynthesis in β cells, surprisingly little is known of the underlying mechanism(s). Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α) to initiate X-box-binding protein 1 (Xbp1) mRNA splicing in adult primary β cells. Using mRNA sequencing (mRNA-Seq), we show that unconventional Xbp1 mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated Ire1α deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective β cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, Ire1α deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, β cell failure upon Ire1α deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP), SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, Ire1α deletion in β cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with β cell-specific Ire1α deletion. The results demonstrate that glucose activates IRE1α-mediated Xbp1 splicing to expand the secretory capacity of the β cell for increased proinsulin synthesis and to limit oxidative stress that leads to β cell failure.
Collapse
Affiliation(s)
- Justin R. Hassler
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Donalyn L. Scheuner
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- Lilly Research Laboratories, Eli Lilly & Company, Lilly Corporate Center, Indianapolis, Indiana, United States of America
| | - Shiyu Wang
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Jaeseok Han
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Vamsi K. Kodali
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Philip Li
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Julie Nguyen
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Jenny S. George
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Cory Davis
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Shengyang P. Wu
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Yongsheng Bai
- NCIBI Department of Bioinformatics, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- Department of Biology, Indiana State University, Terre Haute, Indiana, United States of America
| | - Maureen Sartor
- NCIBI Department of Bioinformatics, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - James Cavalcoli
- NCIBI Department of Bioinformatics, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Harmeet Malhi
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Gregory Baudouin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Yaoyang Zhang
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates III
- Department of Chemical Physiology and Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pamela Itkin-Ansari
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Niels Volkmann
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
148
|
Bronner DN, Abuaita BH, Chen X, Fitzgerald KA, Nuñez G, He Y, Yin XM, O'Riordan MXD. Endoplasmic Reticulum Stress Activates the Inflammasome via NLRP3- and Caspase-2-Driven Mitochondrial Damage. Immunity 2015; 43:451-62. [PMID: 26341399 DOI: 10.1016/j.immuni.2015.08.008] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 06/01/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023]
Abstract
Endoplasmic reticulum (ER) stress is observed in many human diseases, often associated with inflammation. ER stress can trigger inflammation through nucleotide-binding domain and leucine-rich repeat containing (NLRP3) inflammasome, which might stimulate inflammasome formation by association with damaged mitochondria. How ER stress triggers mitochondrial dysfunction and inflammasome activation is ill defined. Here we have used an infection model to show that the IRE1α ER stress sensor regulates regulated mitochondrial dysfunction through an NLRP3-mediated feed-forward loop, independently of ASC. IRE1α activation increased mitochondrial reactive oxygen species, promoting NLRP3 association with mitochondria. NLRP3 was required for ER stress-induced cleavage of caspase-2 and the pro-apoptotic factor, Bid, leading to subsequent release of mitochondrial contents. Caspase-2 and Bid were necessary for activation of the canonical inflammasome by infection-associated or general ER stress. These data identify an NLRP3-caspase-2-dependent mechanism that relays ER stress to the mitochondria to promote inflammation, integrating cellular stress and innate immunity.
Collapse
Affiliation(s)
- Denise N Bronner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Basel H Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xiaoyun Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katherine A Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Yongqun He
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109 USA; Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109 USA.
| |
Collapse
|
149
|
Varga G, Gattorno M, Foell D, Rubartelli A. Redox distress and genetic defects conspire in systemic autoinflammatory diseases. Nat Rev Rheumatol 2015; 11:670-80. [PMID: 26241183 DOI: 10.1038/nrrheum.2015.105] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is initiated by innate immune cell activation after contact with pathogens or tissue injury. An increasing number of observations have suggested that cellular stress, in the absence of infection or evident damage, can also induce inflammation. Thus, inflammation can be triggered by exogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs)-so-called classic inflammation-or by endogenous stress resulting from tissue or cellular dysfunction. External triggers and cellular stress activate the same molecular pathways, possibly explaining why classic and stress-induced inflammation have similar clinical manifestations. In some systemic autoinflammatory diseases (SAIDs), inflammatory cells exhibit reduction-oxidation (redox) distress, having high levels of reactive oxygen species (ROS), which promote proinflammatory cytokine production and contribute to the subversion of mechanisms that self-limit inflammation. Thus, SAIDs can be viewed as a paradigm of stress-related inflammation, being characterized by recurrent flares or chronic inflammation (with no recognizable external triggers) and by a failure to downmodulate this inflammation. Here, we review SAID pathophysiology, focusing on the major cytokines and DAMPs, and on the key roles of redox distress. New therapeutic opportunities to tackle SAIDs by blocking stress-induced pathways and control the response to stress in patients are also discussed.
Collapse
Affiliation(s)
- Georg Varga
- Department of Paediatric Rheumatology and Immunology, University Children's Hospital Münster, Domagkstrasse 3, 48149 Münster, Germany
| | - Marco Gattorno
- Second Division of Paediatrics, G. Gaslini Institute, 16145 Genova, Italy
| | - Dirk Foell
- Department of Paediatric Rheumatology and Immunology, University Children's Hospital Münster, Domagkstrasse 3, 48149 Münster, Germany
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS Azienda Ospedaliera Universitaria San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
150
|
Jia G, Xiaoxiang W, Ruijie L, Xiaoxin Z, Xiaonan Y, Qing X, Ping X. Effect of Chaiqinchengqi decoction on inositol requiring enzyme 1α in alveolar macrophages of dogs with acute necrotising pancreatitis induced by sodium taurocholate. J TRADIT CHIN MED 2015; 35:434-9. [DOI: 10.1016/s0254-6272(15)30121-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|