101
|
Expression of inhibitor of growth 4 by HSV1716 improves oncolytic potency and enhances efficacy. Cancer Gene Ther 2012; 19:499-507. [PMID: 22595793 DOI: 10.1038/cgt.2012.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have isolated and characterized a novel variant of the replication-competent oncolytic HSV1716 that expresses inhibitor of growth 4 (Ing4) (HSV1716Ing4). We demonstrate that Ing4 expression enhances progeny output during HSV1716 infection of human tumor cells both in vitro and in vivo, thereby significantly augmenting its oncolytic potency. In tissue culture, compared with HSV1716, HSV1716Ing4 produced significantly higher numbers of infectious progeny in human squamous cell carcinoma (SCC), breast, ovarian, prostate and colorectal cancer cell lines. Immediate-early expression of Ing4 was crucial for this effect and an intact Ing4 was required as there was no enhanced progeny production with HSV1716 variants that expressed Ing4 mutants lacking the C-terminal plant homeodomain domain or conserved nuclear localization signals. In mouse xenograft models of SCC, ovarian and breast cancer, HSV1716Ing4 was significantly more efficacious than HSV1716 with at least 1000-fold more infectious virus found in tumors after HSV1716Ing4 treatment compared with tumors from HSV1716 treatment. Using a sensitive herpes simplex virus type 1 (HSV-1) PCR, virus DNA was only detected in tumors and was not detected in the DNA extracted from any organs of the injected mice demonstrating that, like HSV1716, HSV1716Ing4 replication is exclusively restricted to tumor cells. Our results suggest that the potential for enhanced tumor destruction by oncolytic HSV expressing Ing4 merits clinical investigation.
Collapse
|
102
|
The histone deacetylase inhibitor valproic acid lessens NK cell action against oncolytic virus-infected glioblastoma cells by inhibition of STAT5/T-BET signaling and generation of gamma interferon. J Virol 2012; 86:4566-77. [PMID: 22318143 DOI: 10.1128/jvi.05545-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor virotherapy has been and continues to be used in clinical trials. One barrier to effective viral oncolysis, consisting of the interferon (IFN) response induced by viral infection, is inhibited by valproic acid (VPA) and other histone deacetylase inhibitors (HDACi). Innate immune cell recruitment and activation have been shown to be deleterious to the efficacy of oncolytic herpes simplex virus (oHSV) infection, and in this report we demonstrate that VPA limits this deleterious response. VPA, administered prior to oHSV inoculation in an orthotopic glioblastoma mouse model, resulted in a decline in NK and macrophage recruitment into tumor-bearing brains at 6 and 24 h post-oHSV infection. Interestingly, there was a robust rebound of recruitment of these cells at 72 h post-oHSV infection. The observed initial decline in immune cell recruitment was accompanied by a reduction in their activation status. VPA was also found to have a profound immunosuppressive effect on human NK cells in vitro. NK cytotoxicity was abrogated following exposure to VPA, consistent with downmodulation of cytotoxic gene expression of granzyme B and perforin at the mRNA and protein levels. In addition, suppression of gamma IFN (IFN-γ) production by VPA was associated with decreased STAT5 phosphorylation and dampened T-BET expression. Despite VPA-mediated immune suppression, mice were not at significantly increased risk for HSV encephalitis. These findings indicate that one of the avenues by which VPA enhances oHSV efficacy is through initial suppression of immune cell recruitment and inhibition of inflammatory cell pathways within NK cells.
Collapse
|
103
|
Systemic delivery of oncolytic viruses: hopes and hurdles. Adv Virol 2012; 2012:805629. [PMID: 22400027 PMCID: PMC3287020 DOI: 10.1155/2012/805629] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/18/2011] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in both surgery and chemoradiotherapy, mortality rates for advanced cancer remain high. There is a pressing need for novel therapeutic strategies; one option is systemic oncolytic viral therapy. Intravenous administration affords the opportunity to treat both the primary tumour and any metastatic deposits simultaneously. Data from clinical trials have shown that oncolytic viruses can be systemically delivered safely with limited toxicity but the results are equivocal in terms of efficacy, particularly when delivered with adjuvant chemotherapy. A key reason for this is the rapid clearance of the viruses from the circulation before they reach their targets. This phenomenon is mainly mediated through neutralising antibodies, complement activation, antiviral cytokines, and tissue-resident macrophages, as well as nonspecific uptake by other tissues such as the lung, liver and spleen, and suboptimal viral escape from the vascular compartment. A range of methods have been reported in the literature, which are designed to overcome these hurdles in preclinical models. In this paper, the potential advantages of, and obstacles to, successful systemic delivery of oncolytic viruses are discussed. The next stage of development will be the commencement of clinical trials combining these novel approaches for overcoming the barriers with systemically delivered oncolytic viruses.
Collapse
|
104
|
Haseley A, Boone S, Wojton J, Yu L, Yoo JY, Yu J, Kurozumi K, Glorioso JC, Caligiuri MA, Kaur B. Extracellular matrix protein CCN1 limits oncolytic efficacy in glioma. Cancer Res 2012; 72:1353-62. [PMID: 22282654 DOI: 10.1158/0008-5472.can-11-2526] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oncolytic viral therapy has been explored widely as an option for glioma treatment but its effectiveness has remained limited. Cysteine rich 61 (CCN1) is an extracellular matrix (ECM) protein elevated in cancer cells that modulates their adhesion and migration by binding cell surface receptors. In this study, we examined a hypothesized role for CCN1 in limiting the efficacy of oncolytic viral therapy for glioma, based on evidence of CCN1 induction that occurs in this setting. Strikingly, we found that exogenous CCN1 in glioma ECM orchestrated a cellular antiviral response that reduced viral replication and limited cytolytic efficacy. Gene expression profiling and real-time PCR analysis revealed a significant induction of type-I interferon responsive genes in response to CCN1 exposure. This induction was accompanied by activation of the Jak/Stat signaling pathway, consistent with induction of an innate antiviral cellular response. Both effects were mediated by the binding of CCN1 to the cell surface integrin α6β1, activating its signaling and leading to rapid secretion of interferon-α, which was essential for the innate antiviral effect. Together, our findings reveal how an integrin signaling pathway mediates activation of a type-I antiviral interferon response that can limit the efficacy of oncolytic viral therapy. Furthermore, they suggest therapeutic interventions to inhibit CCN1-integrin α6 interactions to sensitize gliomas to viral oncolysis.
Collapse
Affiliation(s)
- Amy Haseley
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Deciphering the Multifaceted Relationship between Oncolytic Viruses and Natural Killer Cells. Adv Virol 2011; 2012:702839. [PMID: 22312364 PMCID: PMC3263705 DOI: 10.1155/2012/702839] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/14/2011] [Indexed: 12/23/2022] Open
Abstract
Despite active research in virotherapy, this apparently safe modality has not achieved widespread success. The immune response to viral infection appears to be an essential factor that determines the efficacy of oncolytic viral therapy. The challenge is determining whether the viral-elicited immune response is a hindrance or a tool for viral treatment. NK cells are a key component of innate immunity that mediates antiviral immunity while also coordinating tumor clearance. Various reports have suggested that the NK response to oncolytic viral therapy is a critical factor in premature viral clearance while also mediating downstream antitumor immunity. As a result, particular attention should be given to the NK cell response to various oncolytic viral vectors and how their antiviral properties can be suppressed while maintaining tumor clearance. In this review we discuss the current literature on the NK response to oncolytic viral infection and how future studies clarify this intricate response.
Collapse
|
106
|
Altomonte J, Ebert O. Replicating viral vectors for cancer therapy: strategies to synergize with host immune responses. Microb Biotechnol 2011; 5:251-9. [PMID: 21923638 PMCID: PMC3815785 DOI: 10.1111/j.1751-7915.2011.00296.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tumour‐specific replicating (oncolytic) viruses are novel anticancer agents, currently under intense investigation in preclinical studies and phase I–III clinical trials. Until recently, most studies have focused on the direct antitumour properties of these viruses. There is now an increasing body of evidence indicating that host immune responses may be critical to the efficacy of oncolytic virotherapy. Although the immune response to oncolytic viruses can rapidly restrict viral replication, thereby limiting the efficacy of therapy, oncolytic virotherapy also has the potential to induce potent antitumoural immune effectors that destroy those cancer cells, which are not directly lysed by virus. In this review, we discuss the role of the immune system in terms of antiviral and antitumoural responses, as well as strategies to evade or promote these responses in favour of improved therapeutic potentials.
Collapse
Affiliation(s)
- Jennifer Altomonte
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | |
Collapse
|
107
|
Bevacizumab with angiostatin-armed oHSV increases antiangiogenesis and decreases bevacizumab-induced invasion in U87 glioma. Mol Ther 2011; 20:37-45. [PMID: 21915104 DOI: 10.1038/mt.2011.187] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bevacizumab (BEV) is an antiangiogenic drug approved for glioblastoma (GBM) treatment. However, it does not increase survival and is associated with glioma invasion. Angiostatin is an antiangiogenic polypeptide that also inhibits migration of cancer cells, but is difficult to deliver. Oncolytic viruses (OV) can potentially spread throughout the tumor, reach isolated infiltrating cells, kill them and deliver anticancer agents to uninfected cells. We have tested a combination treatment of BEV plus an OV expressing angiostatin (G47Δ-mAngio) in mice-bearing human GBM. Using a vascular intracranial human glioma model (U87) in athymic mice, we performed histopathological analysis of tumors treated with G47Δ-mAngio or BEV alone or in combination, followed tumor response by magnetic resonance imaging (MRI), and assessed animal survival. Our results indicate that injection of G47Δ-mAngio during BEV treatment allows increased virus spread, tumor lysis, and angiostatin-mediated inhibition of vascular endothelial growth factor (VEGF) expression and of BEV-induced invasion markers (matrix metalloproteinases-2 (MMP2), MMP9, and collagen). This leads to increased survival and antiangiogenesis and decreased invasive phenotypes. We show for the first time the possibility of improving the antiangiogenic effect of BEV while decreasing the tumor invasive-like phenotype induced by this drug, and demonstrate the therapeutic advantage of combining systemic and local antiangiogenic treatments with viral oncolytic therapy.
Collapse
|
108
|
Nevels M, Nitzsche A, Paulus C. How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol 2011; 21:154-80. [PMID: 21538665 DOI: 10.1002/rmv.690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpesvirus infections of humans can cause a broad variety of symptoms ranging from mild afflictions to life-threatening disease. During infection, the large double-stranded DNA genomes of all herpesviruses are transcribed, replicated and encapsidated in the host cell nucleus, where DNA is typically structured and manoeuvred through nucleosomes. Nucleosomes individually assemble DNA around core histone octamers to form 'beads-on-a-string' chromatin fibres. Herpesviruses have responded to the advantages and challenges of chromatin formation in biologically unique ways. Although herpesvirus DNA is devoid of histones within nucleocapsids, nuclear viral genomes most likely form irregularly arranged or unstable nucleosomes during productive infection, and regular nucleosomal arrays resembling host cell chromatin in latently infected cells. Besides variations in nucleosome density, herpesvirus chromatin 'bead strings' undergo dynamic changes in histone composition and modification during the different stages of productive replication, latent infection and reactivation from latency, raising the likely possibility that epigenetic processes may dictate, at least in part, the outcome of infection and ensuing pathogenesis. Here, we summarise and discuss several new and important aspects regarding the nucleosome-based mechanisms that regulate herpesvirus chromatin structure and function in infected cells. Special emphasis is given to processes of histone deposition, histone variant exchange and covalent histone modification in relation to the transcription from the viral genome during productive and latent infections by human cytomegalovirus and herpes simplex virus type 1. We also present an overview on emerging histone-directed antiviral strategies that may be developed into 'epigenetic therapies' to improve current prevention and treatment options targeting herpesvirus infection and disease.
Collapse
Affiliation(s)
- Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Germany.
| | | | | |
Collapse
|
109
|
Ogbomo H, Cinatl J, Mody CH, Forsyth PA. Immunotherapy in gliomas: limitations and potential of natural killer (NK) cell therapy. Trends Mol Med 2011; 17:433-41. [DOI: 10.1016/j.molmed.2011.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 12/23/2022]
|
110
|
Vesicular stomatitis virus has extensive oncolytic activity against human sarcomas: rare resistance is overcome by blocking interferon pathways. J Virol 2011; 85:9346-58. [PMID: 21734048 DOI: 10.1128/jvi.00723-11] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Oncolytic viruses have been tested against many carcinomas of ectodermal and endodermal origin; however, sarcomas, arising from mesoderm, have received relatively little attention. Using 13 human sarcomas representing seven tumor types, we assessed the efficiency of infection, cytolysis, and replication of green fluorescent protein (GFP)-expressing vesicular stomatitis virus (VSV) and its oncolytically enhanced mutant VSV-rp30a. Both viruses efficiently infected and killed 12 of 13 sarcomas. VSV-rp30a showed a faster rate of infection and replication. In vitro and in vivo, VSV was selective for sarcomas compared with normal mesoderm. A single intravenous injection of VSV-rp30a selectively infected all subcutaneous human sarcomas tested in mice and arrested the growth of tumors that otherwise grew 11-fold. In contrast to other sarcomas, synovial sarcoma SW982 demonstrated remarkable resistance, even to high titers of virus (multiplicity of infection [MOI] of 100). We found no dysfunction in VSV binding or internalization. SW982 also resisted infection by human cytomegalovirus and Sindbis virus, suggesting a virus resistance mechanism based on an altered antiviral state. Quantitative reverse transcriptase (qRT)-PCR analysis revealed a heightened basal expression of interferon-stimulated genes (ISGs). Pretreatment, but not cotreatment, with interferon attenuators valproate, Jak1 inhibitor, or vaccinia virus B18R protein rendered SW982 highly susceptible, and this correlated with downregulation of ISG expression. Jak1 inhibitor pretreatment also enhanced susceptibility in moderately VSV-resistant liposarcoma and bladder carcinoma. Overall, we find that the potential efficacy of VSV as an oncolytic agent extends to nonhematologic mesodermal tumors and that unusually strong resistance to VSV oncolysis can be overcome with interferon attenuators.
Collapse
|
111
|
Campadelli-Fiume G, De Giovanni C, Gatta V, Nanni P, Lollini PL, Menotti L. Rethinking herpes simplex virus: the way to oncolytic agents. Rev Med Virol 2011; 21:213-26. [PMID: 21626603 DOI: 10.1002/rmv.691] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/22/2022]
Abstract
Oncolytic viruses infect, replicate in and kill cancer cells. HSV has emerged as a most promising candidate because it exerts a generally moderate pathogenicity in humans; it is amenable to attenuation and tropism retargeting; the ample genome provides space for heterologous genes; specific antiviral therapy is available in a worst case scenario. The first strategy to convert HSV into an oncolytic agent consisted in deletion of the γ(1) 34.5 gene which counteracts the protein kinase R (PKR) response, and of the UL39 gene which encodes the large ribonucleotide reductase subunit. Tumor specificity resided in low PKR activity, and high deoxyribonucleotides content of cancer cells. These highly attenuated viruses have been and presently are in clinical trials with encouraging results. The preferred route of administration has been intratumor or in tissues adjacent to resected tumors. Although the general population has a high seroprevalence of antibodies to HSV, studies in animals and humans demonstrate that prior immunity is not an obstacle to systemic routes of administration, and that oncolytic HSV (o-HSVs) do populate tumors. As the attenuated viruses undergo clinical experimentation, the research pipeline is developing novel, more potent and highly tumor-specific o-HSVs. These include viruses which overcome tumor heterogeneity in PKR level by insertion of anti-PKR genes, viruses which reinforce the host tumor clearance capacity by encoding immune cytokines (IL-12 or granulocyte-macrophage colony-stimulating factor), and non-attenuated viruses fully retargeted to tumor specific receptors. A strategy to generate o-HSVs fully retargeted to human epidermal growth factor receptor-2 (HER-2) or other cancer-specific surface receptors is detailed.
Collapse
Affiliation(s)
- Gabriella Campadelli-Fiume
- Department of Experimental Pathology, Section on Microbiology and Virology, Alma Mater Studiorum - University of Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
112
|
Clement C, Bhattacharjee PS, Kumar M, Foster TP, Thompson HW, Hill JM. Upregulation of mouse genes in HSV-1 latent TG after butyrate treatment implicates the multiple roles of the LAT-ICP0 locus. Invest Ophthalmol Vis Sci 2011; 52:1770-9. [PMID: 20881297 DOI: 10.1167/iovs.09-5019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine host response by gene expression in HSV-1 latent trigeminal ganglia (TG) after sodium butyrate (NaBu) treatment. METHODS Corneas of 6-week-old female BALB/c mice were scarified and inoculated with HSV-1 17Syn(+) (high phenotypic reactivator) or its mutant 17ΔPst(LAT(-)) (low phenotypic reactivator) at 10(4) plaque-forming units/eye. NaBu-induced viral reactivation was by intraperitoneal (IP) administration at postinfection (PI) day 28, followed by euthanasia after 1 hour. NaBu-treated, uninfected mice served as the control. The resultant labeled cRNA from TG isolated total RNA was hybridized to gene microarray chips containing 14,000 mouse genes. Quantitative real-time PCR was performed to confirm gene expression. RESULTS Differential induction of gene expression between 17Syn(+) and its mutant 17ΔPst(LAT(-)) was designated as NaBu-induced gene expression and yielded significant upregulation of 2- to 16-fold of 0.4% (56/14,000) host genes probed, comprising mainly nucleosome assembly and binding, central nervous system structural activity, hormonal activity, and signaling activity. Approximately 0.2% (24/14,000) of the host genes, mainly of the same functional categories were downregulated 3- to 11-fold. Immune activity was minor in comparison to our reports on gene expression during latency and heat stress induction. Euchromatin analysis revealed that the LAT-ICP0 locus is amenable to the effects of NaBu. Histone activity was detected by early transcription of histone cluster 2 H2be (Hist2h2be). CONCLUSIONS NaBu-induced reactivation of HSV-1 is twofold: drug action involving significant moderation of specific host epigenetic changes and failure to elicit or suppress immune activity at the early time point of 1 hour.
Collapse
Affiliation(s)
- Christian Clement
- Department of Ophthalmology, LSU Eye Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
113
|
Gaston DC, Whitley RJ, Parker JN. Engineered herpes simplex virus vectors for antitumor therapy and vaccine delivery. Future Virol 2011. [DOI: 10.2217/fvl.11.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetically modified herpes simplex viruses (HSVs) have been exploited for both antitumor therapy and vaccine delivery. These mutant viruses retain their ability to replicate and lyse permissive cells, including many tumor types, and are referred to as oncolytic HSVs. In addition, deletion of nonessential genes permits the introduction of foreign genes to augment the antitumor effect by either immune stimulation, targeting for select tumors, or expression of tumor or vaccine antigens. This article reviews the development of oncolytic HSVs as an anticancer therapy, as well as the application of HSV-1 vectors for delivery of targeted antigens or as vaccine adjuvants. The impact of these novel vectors with respect to enhanced antitumor activity and development of antitumor vaccination strategies is discussed.
Collapse
Affiliation(s)
- David C Gaston
- Medical Scientist Training Program, Department of Cell Biology, CHB 130, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Richard J Whitley
- Departments of Pediatrics, Microbiology, Medicine & Neurosurgery, CHB 303, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jacqueline N Parker
- Departments of Pediatrics & Cell Biology, CHB 118B, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
114
|
Enhancement of vaccinia virus based oncolysis with histone deacetylase inhibitors. PLoS One 2010; 5:e14462. [PMID: 21283510 PMCID: PMC3012680 DOI: 10.1371/journal.pone.0014462] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/08/2010] [Indexed: 12/21/2022] Open
Abstract
Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells.
Collapse
|
115
|
Maldonado AR, Klanke C, Jegga AG, Aronow BJ, Mahller YY, Cripe TP, Crombleholme TM. Molecular engineering and validation of an oncolytic herpes simplex virus type 1 transcriptionally targeted to midkine-positive tumors. J Gene Med 2010; 12:613-23. [PMID: 20603890 DOI: 10.1002/jgm.1479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Expression profile analyses of midkine (MDK), a multifunctional protein important in development but repressed postnataly, indicate that it is highly expressed in approximately 80% of adult carcinomas and many childhood cancers including malignant peripheral nerve sheath tumors (MPNST). In the present study, we sought to leverage its selective expression to develop a novel oncolytic herpes simplex virus (oHSV) capable of targeting developmentally primitive cancers that express MDK. METHODS We sought to increase the oncolytic efficacy of the virus by fusing the human MDK promoter to the HSV type 1 neurovirulence gene, gamma(1)34.5, whose protein product increases viral replication. RESULTS Tissue-specific MDK promoter activity in human tumor cells and transgene biological activity was confirmed in human MPNST tumor cells. In vitro replication and cytotoxicity in human fibroblasts and MPNST cells by plaque and MTT assays showed that oHSV-MDK-34.5 increased replication and cytotoxicity compared to oHSV-MDK-Luc. By contrast, no significant difference in cytotoxicity was detected between these viruses in normal human fibroblasts. oHSV-MDK-34.5 impaired in vivo tumor growth and increased median survival of MPNST tumor-bearing nude mice. CONCLUSIONS The transcriptional targeting of HSV lytic infection to MDK-expressing tumor cells is feasible. oHSV-MDK-34.5 shows enhanced anti-tumor effects both in vitro and in vivo. Further studies are warranted and may lead to its use in clinical trials.
Collapse
Affiliation(s)
- Arturo R Maldonado
- Division of Pediatric General and Thoracic Surgery, The Center For Molecular Fetal Therapy, Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Mitchell AM, Nicolson SC, Warischalk JK, Samulski RJ. AAV's anatomy: roadmap for optimizing vectors for translational success. Curr Gene Ther 2010; 10:319-340. [PMID: 20712583 PMCID: PMC3920455 DOI: 10.2174/156652310793180706] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 07/20/2010] [Indexed: 12/14/2022]
Abstract
Adeno-Associated Virus based vectors (rAAV) are advantageous for human gene therapy due to low inflammatory responses, lack of toxicity, natural persistence, and ability to transencapsidate the genome allowing large variations in vector biology and tropism. Over sixty clinical trials have been conducted using rAAV serotype 2 for gene delivery with a number demonstrating success in immunoprivileged sites, including the retina and the CNS. Furthermore, an increasing number of trials have been initiated utilizing other serotypes of AAV to exploit vector tropism, trafficking, and expression efficiency. While these trials have demonstrated success in safety with emerging success in clinical outcomes, one benefit has been identification of issues associated with vector administration in humans (e.g. the role of pre-existing antibody responses, loss of transgene expression in non-immunoprivileged sites, and low transgene expression levels). For these reasons, several strategies are being used to optimize rAAV vectors, ranging from addition of exogenous agents for immune evasion to optimization of the transgene cassette for enhanced therapeutic output. By far, the vast majority of approaches have focused on genetic manipulation of the viral capsid. These methods include rational mutagenesis, engineering of targeting peptides, generation of chimeric particles, library and directed evolution approaches, as well as immune evasion modifications. Overall, these modifications have created a new repertoire of AAV vectors with improved targeting, transgene expression, and immune evasion. Continued work in these areas should synergize strategies to improve capsids and transgene cassettes that will eventually lead to optimized vectors ideally suited for translational success.
Collapse
Affiliation(s)
- Angela M. Mitchell
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah C. Nicolson
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jayme K. Warischalk
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - R. Jude Samulski
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
117
|
Herbein G, Wendling D. Histone deacetylases in viral infections. Clin Epigenetics 2010; 1:13-24. [PMID: 22704086 PMCID: PMC3365363 DOI: 10.1007/s13148-010-0003-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 05/10/2010] [Indexed: 02/07/2023] Open
Abstract
Chromatin remodeling and gene expression are regulated by histone deacetylases (HDACs) that condense the chromatin structure by deacetylating histones. HDACs comprise a group of enzymes that are responsible for the regulation of both cellular and viral genes at the transcriptional level. In mammals, a total of 18 HDACs have been identified and grouped into four classes, i.e., class I (HDACs 1, 2, 3, 8), class II (HDACs 4, 5, 6, 7, 9, 10), class III (Sirt1–Sirt7), and class IV (HDAC11). We review here the role of HDACs on viral replication and how HDAC inhibitors could potentially be used as new therapeutic tools in several viral infections.
Collapse
Affiliation(s)
- Georges Herbein
- Department of Virology, UPRES EA 4266, IFR 133 INSERM, Franche-Comte University, CHU Besançon, 2 place Saint-Jacques, 25030 Besancon, France
| | - Daniel Wendling
- Department of Rheumatology, UPRES EA4266, IFR 133 INSERM, Franche-Comte University, CHU Besançon, 25030 Besancon, France
| |
Collapse
|
118
|
Kanai R, Wakimoto H, Cheema T, Rabkin SD. Oncolytic herpes simplex virus vectors and chemotherapy: are combinatorial strategies more effective for cancer? Future Oncol 2010; 6:619-34. [PMID: 20373873 PMCID: PMC2904234 DOI: 10.2217/fon.10.18] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite aggressive treatments, including chemotherapy and radiotherapy, cancers often recur owing to resistance to conventional therapies. Oncolytic viruses such as oncolytic herpes simplex virus (oHSV) represent an exciting biological approach to cancer therapy. A range of viral mutations has been engineered into HSV to engender oncolytic activity. While oHSV as a single agent has been tested in a number of cancer clinical trials, preclinical studies have demonstrated enhanced efficacy when it is combined with cytotoxic anticancer drugs. Among the strategies that will be discussed in this article are combinations with standard-of-care chemotherapeutics, expression of prodrug-activating enzymes to enhance chemotherapy and small-molecule inhibitors. The combination of oHSV and chemotherapy can achieve much more efficient cancer cell killing than either single agent alone, often through synergistic interactions. This can be clinically important not just for improving efficacy but also for permitting lower and less toxic chemotherapeutic doses. The viral mutations in an oHSV vector often determine the favorability of its interactions with chemotherapy, just as different cancer cells, due to genetic alterations, vary in their response to chemotherapy. As chemotherapeutics are often the standard of care, combining them with an investigational new drug, such as oHSV, is clinically easier than combining multiple novel agents. As has become clear for most cancer therapies, multimodal treatments are usually more effective. In this article, we will discuss the recent progress of these combinatorial strategies between virotherapy and chemotherapy and future directions.
Collapse
Affiliation(s)
- Ryuichi Kanai
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, & Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, & Harvard Medical School, Boston, MA, USA
| | - Tooba Cheema
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, & Harvard Medical School, Boston, MA, USA
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, & Harvard Medical School, Boston, MA, USA, Tel.: +1 617 726 6817, Fax: +1 617 643 3422
| |
Collapse
|
119
|
Abstract
Interactions between tumor cells and their microenvironment have been shown to play a very significant role in the initiation, progression, and invasiveness of cancer. These tumor-stromal interactions are capable of altering the delivery and effectiveness of therapeutics into the tumor and are also known to influence future resistance and re-growth after treatment. Here we review recent advances in the understanding of the tumor microenvironment and its response to oncolytic viral therapy. The multifaceted environmental response to viral therapy can influence viral infection, replication, and propagation within the tumor. Recent studies have unveiled the complicated temporal changes in the tumor vasculature post-oncolytic virus (OV) treatment, and their impact on tumor biology. Similarly, the secreted extracellular matrix in solid tumors can affect both infection and spread of the therapeutic virus. Together, these complex changes in the tumor microenvironment also modulate the activation of the innate antiviral host immune response, leading to quick and efficient viral clearance. In order to combat these detrimental responses, viruses have been combined with pharmacological adjuvants and "armed" with therapeutic genes in order to suppress the pernicious environmental conditions following therapy. In this review we will discuss the impact of the tumor environment on viral therapy and examine some of the recent literature investigating methods of modulating this environment to enhance oncolysis.
Collapse
Affiliation(s)
- Jeffrey Wojton
- Dardinger Laboratory for Neuro-oncology and Neurosciences; Department of Neurological Surgery, James Comprehensive Cancer Center and The Ohio State University Medical center, Columbus, OH
- Neuroscience Graduate Studies Program, The Ohio State University Medical Center, Columbus, OH 43210
| | - Balveen Kaur
- Dardinger Laboratory for Neuro-oncology and Neurosciences; Department of Neurological Surgery, James Comprehensive Cancer Center and The Ohio State University Medical center, Columbus, OH
| |
Collapse
|
120
|
Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Mol Ther 2009; 18:251-63. [PMID: 20029399 DOI: 10.1038/mt.2009.283] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Metastatic cancer remains an incurable disease in the majority of cases and thus novel treatment strategies such as oncolytic virotherapy are rapidly advancing toward clinical use. In order to be successful, it is likely that some type of combination therapy will be necessary to have a meaningful impact on this disease. Although it may be tempting to simply combine an oncolytic virus with the existing standard radiation or chemotherapeutics, the long-term goal of such treatments must be to have a rational, potentially synergistic combination strategy that can be safely and easily used in the clinical setting. The combination of oncolytic virotherapy with existing radiotherapy and chemotherapy modalities is reviewed along with novel biologic therapies including immunotherapies, in order to help investigators make intelligent decisions during the clinical development of these products.
Collapse
Affiliation(s)
- Kathryn Ottolino-Perry
- Division of Experimental Therapeutics, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
121
|
Abstract
Recent studies in a variety of leukemias and solid tumors indicate that there is significant heterogeneity with respect to tumor-forming ability within a given population of tumor cells, suggesting that only a subpopulation of cells is responsible for tumorigenesis. These cells have been commonly referred to as cancer stem cells (CSCs) or cancer-initiating cells (CICs). CICs have been shown to be relatively resistant to conventional anticancer therapies and are thus thought to be responsible for disease relapse. As such, they represent a potentially critical therapeutic target. Oncolytic viruses are in clinical trials for cancer and kill cells through mechanisms different from conventional therapeutics. Because these viruses are not susceptible to the same pathways of drug or radiation resistance, it is important to learn whether CICs are susceptible to oncolytic virus infection. Here we review the available data regarding the ability of several different oncolytic virus types to target CICs for destruction.
Collapse
|
122
|
Abstract
Cancer gene therapy is based on the transfer of genetic material to cancer cells to modify a normal or abnormal cellular function, or to induce cell death. Modified viruses or stem cells have been used as carriers to transfer the genetic material to cancer cells avoiding trafficking through normal cells. However, although the current vectors have been successful in delivering genes in vitro and in vivo, little has been achieved with human cerebral gliomas. Poor transduction efficiency of viruses in human glioma cells and limited spread and distribution to the tumor limits our current expectations for successful gene therapy of central nervous system cancer until and if effective transfer vehicles are available. Nevertheless, continuing research in better vector development may overcome these limitations and offer a therapeutic advantage over the standard therapies for glioma.
Collapse
|
123
|
Alvarez-Breckenridge C, Kaur B, Chiocca EA. Pharmacologic and chemical adjuvants in tumor virotherapy. Chem Rev 2009; 109:3125-40. [PMID: 19462957 PMCID: PMC2790404 DOI: 10.1021/cr900048k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christopher Alvarez-Breckenridge
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Comprehensive Cancer Center and The Ohio State University Medical Center, Columbus, Ohio
| | - Balveen Kaur
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Comprehensive Cancer Center and The Ohio State University Medical Center, Columbus, Ohio
| | - E. Antonio Chiocca
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, James Comprehensive Cancer Center and The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|
124
|
Nguyen TLA, Tumilasci VF, Singhroy D, Arguello M, Hiscott J. The emergence of combinatorial strategies in the development of RNA oncolytic virus therapies. Cell Microbiol 2009; 11:889-97. [PMID: 19388908 DOI: 10.1111/j.1462-5822.2009.01317.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oncolytic viruses (OVs) represent an exciting new biological approach to cancer therapy. In particular, RNA viruses have emerged as potent agents for oncolytic virotherapy because of their capacity to specifically target and destroy tumour cells while sparing normal cells and tissues. Several barriers remain in the development of OV therapy, including poor penetration into the tumour mass, inefficient virus replication in primary cancers, and tumour-specific resistance to OV-mediated killing. The combination of OVs with cytotoxic agents, such as small molecule inhibitors of signalling or immunomodulators, as well as stealth delivery of therapeutic viruses have shown promise as novel experimental strategies to overcome resistance to viral oncolysis. These agents complement OV therapy by unblocking host pathways, delivering viruses with greater efficiency and/or increasing virus proliferation at the tumour site. In this review, we summarize recent development of these concepts, the potential obstacles, and future prospects for the clinical utilization of RNA OVs in cancer therapy.
Collapse
Affiliation(s)
- Thi Lien-Anh Nguyen
- Terry Fox Molecular Oncology Group, Lady Davis Institute - Jewish General Hospital, Montreal, Quebec, Canada H3T1E2
| | | | | | | | | |
Collapse
|
125
|
Wakimoto H, Kesari S, Farrell CJ, Curry WT, Zaupa C, Aghi M, Kuroda T, Stemmer-Rachamimov A, Shah K, Liu TC, Jeyaretna DS, Debasitis J, Pruszak J, Martuza RL, Rabkin SD. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res 2009; 69:3472-81. [PMID: 19351838 PMCID: PMC2785462 DOI: 10.1158/0008-5472.can-08-3886] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glioblastoma, the most malignant type of primary brain tumor, is one of the solid cancers where cancer stem cells have been isolated, and studies have suggested resistance of those cells to chemotherapy and radiotherapy. Here, we report the establishment of CSC-enriched cultures derived from human glioblastoma specimens. They grew as neurospheres in serum-free medium with epidermal growth factor and fibroblast growth factor 2, varied in the level of CD133 expression and very efficiently formed highly invasive and/or vascular tumors upon intracerebral implantation into immunodeficient mice. As a novel therapeutic strategy for glioblastoma-derived cancer stem-like cells (GBM-SC), we have tested oncolytic herpes simplex virus (oHSV) vectors. We show that although ICP6 (UL39)-deleted mutants kill GBM-SCs as efficiently as wild-type HSV, the deletion of gamma34.5 significantly attenuated the vectors due to poor replication. However, this was significantly reversed by the additional deletion of alpha47. Infection with oHSV G47Delta (ICP6(-), gamma34.5(-), alpha47(-)) not only killed GBM-SCs but also inhibited their self-renewal as evidenced by the inability of viable cells to form secondary tumor spheres. Importantly, despite the highly invasive nature of the intracerebral tumors generated by GBM-SCs, intratumoral injection of G47Delta significantly prolonged survival. These results for the first time show the efficacy of oHSV against human GBM-SCs, and correlate this cytotoxic property with specific oHSV mutations. This is important for designing new oHSV vectors and clinical trials. Moreover, the new glioma models described in this study provide powerful tools for testing experimental therapeutics and studying invasion and angiogenesis.
Collapse
Affiliation(s)
- Hiroaki Wakimoto
- Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Friedman GK, Pressey JG, Reddy AT, Markert JM, Gillespie GY. Herpes simplex virus oncolytic therapy for pediatric malignancies. Mol Ther 2009; 17:1125-35. [PMID: 19367259 DOI: 10.1038/mt.2009.73] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite improving survival rates for children with cancer, a subset of patients exist with disease resistant to traditional therapies such as surgery, chemotherapy, and radiation. These patients require newer, targeted treatments used alone or in combination with more traditional approaches. Oncolytic herpes simplex virus (HSV) is one of these newer therapies that offer promise for several difficult to treat pediatric malignancies. The potential benefit of HSV therapy in pediatric solid tumors including brain tumors, neuroblastomas, and sarcomas is reviewed along with the many challenges that need to be addressed prior to moving oncolytic HSV therapy from the laboratory to the beside in the pediatric population.
Collapse
Affiliation(s)
- Gregory K Friedman
- Department of Pediatrics, Children's Hospital of Alabama, University of Alabama at Birmingham, USA.
| | | | | | | | | |
Collapse
|
127
|
Grandi P, Peruzzi P, Reinhart B, Cohen JB, Chiocca EA, Glorioso JC. Design and application of oncolytic HSV vectors for glioblastoma therapy. Expert Rev Neurother 2009; 9:505-17. [PMID: 19344302 PMCID: PMC3219506 DOI: 10.1586/ern.09.9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme is one of the most common human brain tumors. The tumor is generally highly infiltrative, making it extremely difficult to treat by surgical resection or radiotherapy. This feature contributes to recurrence and a very poor prognosis. Few anticancer drugs have been shown to alter rapid tumor growth and none are ultimately effective. Oncolytic vectors have been employed as a treatment alternative based on the ability to tailor virus replication to tumor cells. The human neurotropic herpes simplex virus (HSV) is especially attractive for development of oncolytic vectors (oHSV) because this virus is highly infectious, replicates rapidly and can be readily modified to achieve vector attenuation in normal brain tissue. Tumor specificity can be achieved by deleting viral genes that are only required for virus replication in normal cells and permit mutant virus replication selectively in tumor cells. The anti-tumor activity of oHSV can be enhanced by arming the vector with genes that either activate chemotherapeutic drugs within the tumor tissue or promote anti-tumor immunity. In this review, we describe current designs of oHSV and the experience thus far with their potential utility for glioblastoma therapy. In addition, we discuss the impediments to vector effectiveness and describe our view of future developments in vector improvement.
Collapse
Affiliation(s)
- Paola Grandi
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA,
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Ohio State University School of medicine, Columbus, OH, USA
| | - Bonnie Reinhart
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA, Tel.: +1 412 648 9097,
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA,
| | - E Antonio Chiocca
- Department of Neurosurgery, Ohio State University School of medicine, Columbus, OH, USA,
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA, Tel.: +1 412 648 8106, Fax: +1 412 624 8997,
| |
Collapse
|
128
|
Haseley A, Alvarez-Breckenridge C, Chaudhury AR, Kaur B. Advances in oncolytic virus therapy for glioma. RECENT PATENTS ON CNS DRUG DISCOVERY 2009; 4:1-13. [PMID: 19149710 PMCID: PMC2720101 DOI: 10.2174/157488909787002573] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The World Health Organization grossly classifies the various types of astrocytomas using a grade system with grade IV gliomas having the worst prognosis. Oncolytic virus therapy is a novel treatment option for GBM patients. Several patents describe various oncolytic viruses used in preclinical and clinical trials to evaluate safety and efficacy. These viruses are natural or genetically engineered from different viruses such as HSV-1, Adenovirus, Reovirus, and New Castle Disease Virus. While several anecdotal studies have indicated therapeutic advantage, recent clinical trials have revealed the safety of their usage, but demonstration of significant efficacy remains to be established. Oncolytic viruses are being redesigned with an interest in combating the tumor microenvironment in addition to defeating the cancerous cells. Several patents describe the inclusion of tumor microenvironment modulating genes within the viral backbone and in particular those which attack the tumor angiotome. The very innovative approaches being used to improve therapeutic efficacy include: design of viruses which can express cytokines to activate a systemic antitumor immune response, inclusion of angiostatic genes to combat tumor vasculature, and also enzymes capable of digesting tumor extra cellular matrix (ECM) to enhance viral spread through solid tumors. As increasingly more novel viruses are being tested and patented, the future battle against glioma looks promising.
Collapse
Affiliation(s)
- Amy Haseley
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery; College of Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Neuroscience Graduate Studies Program; The James Comprehensive Cancer Center, and The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Christopher Alvarez-Breckenridge
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery; College of Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Integrated Biomedical Graduate Program, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Abhik Ray Chaudhury
- Department of Pathology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Balveen Kaur
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery; College of Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|