101
|
Janssen R, Budd GE. Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda. EvoDevo 2010; 1:4. [PMID: 20849647 PMCID: PMC2938723 DOI: 10.1186/2041-9139-1-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/05/2010] [Indexed: 01/28/2023] Open
Abstract
Antisense transcripts of Ultrabithorax (aUbx) in the millipede Glomeris and the centipede Lithobius are expressed in patterns complementary to that of the Ubx sense transcripts. A similar complementary expression pattern has been described for non-coding RNAs (ncRNAs) of the bithoraxoid (bxd) locus in Drosophila, in which the transcription of bxd ncRNAs represses Ubx via transcriptional interference. We discuss our findings in the context of possibly conserved mechanisms of Ubx regulation in myriapods and the fly. Bicistronic transcription of Ubx and Antennapedia (Antp) has been reported previously for a myriapod and a number of crustaceans. In this paper, we show that Ubx/Antp bicistronic transcripts also occur in Glomeris and an onychophoran, suggesting further conserved mechanisms of Hox gene regulation in arthropods. Myriapod monophyly is supported by the expression of aUbx in all investigated myriapods, whereas in other arthropod classes, including the Onychophora, aUbx is not expressed. Of the two splice variants of Ubx/Antp only one could be isolated from myriapods, representing a possible further synapomorphy of the Myriapoda.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-75236 Uppsala, Sweden.
| | | |
Collapse
|
102
|
O'Donnell BC, Jockusch EL. The expression of wingless and Engrailed in developing embryos of the mayfly Ephoron leukon (Ephemeroptera: Polymitarcyidae). Dev Genes Evol 2010; 220:11-24. [PMID: 20429012 DOI: 10.1007/s00427-010-0324-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/23/2010] [Indexed: 01/22/2023]
Abstract
The expression of the segment polarity genes wingless (wg) and engrailed (en) is highly conserved across arthropods, and these genes play a crucial role in patterning of the segmental body plan. Investigations of the expression and function of wg and en have focused primarily upon holometabolous insects, with the notable exception of recent detailed work in Oncopeltus (Hemiptera), Schistocerca, and Gryllus (Orthoptera). An increase in the phylogenetic breadth of our understanding of molecular patterning is crucial to ascertain the extent of conservation and divergence in molecular patterning mechanisms during insect embryogenesis. We examined the expression of wg mRNA transcripts and localization of En protein during embryogenesis in the mayfly Ephoron leukon (Ephemeroptera: Polymitarcyidae). These data represent one of the first embryonic gene expression pattern data for a mayfly, a lineage that may be the sister group to all other winged insects. Many aspects of wg and En expression are highly conserved, notably their expression in juxtaposed stripes in each parasegment, as well as expression domains in the procephalon, mouthparts, thoracic limbs, and nervous system. Future work in mayflies can be used to determine if conservation extends to other components of the segmentation hierarchy.
Collapse
Affiliation(s)
- Brigid C O'Donnell
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269, USA.
| | | |
Collapse
|
103
|
Uhl JD, Cook TA, Gebelein B. Comparing anterior and posterior Hox complex formation reveals guidelines for predicting cis-regulatory elements. Dev Biol 2010; 343:154-66. [PMID: 20398649 DOI: 10.1016/j.ydbio.2010.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/26/2010] [Accepted: 04/07/2010] [Indexed: 11/18/2022]
Abstract
Hox transcription factors specify numerous cell fates along the anterior-posterior axis by regulating the expression of downstream target genes. While expression analysis has uncovered large numbers of de-regulated genes in cells with altered Hox activity, determining which are direct versus indirect targets has remained a significant challenge. Here, we characterize the DNA binding activity of Hox transcription factor complexes on eight experimentally verified cis-regulatory elements. Hox factors regulate the activity of each element by forming protein complexes with two cofactor proteins, Extradenticle (Exd) and Homothorax (Hth). Using comparative DNA binding assays, we found that a number of flexible arrangements of Hox, Exd, and Hth binding sites mediate cooperative transcription factor complexes. Moreover, analysis of a Distal-less regulatory element (DMXR) that is repressed by abdominal Hox factors revealed that suboptimal binding sites can be combined to form high affinity transcription complexes. Lastly, we determined that the anterior Hox factors are more dependent upon Exd and Hth for complex formation than posterior Hox factors. Based upon these findings, we suggest a general set of guidelines to serve as a basis for designing bioinformatics algorithms aimed at identifying Hox regulatory elements using the wealth of recently sequenced genomes.
Collapse
Affiliation(s)
- Juli D Uhl
- Division of Developmental Biology, Cincinnati Children's Hospital, 3333 Burnet Ave, MLC 7007, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
104
|
Mularoni L, Ledda A, Toll-Riera M, Albà MM. Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Res 2010; 20:745-54. [PMID: 20335526 DOI: 10.1101/gr.101261.109] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amino acid tandem repeats are found in a large number of eukaryotic proteins. They are often encoded by trinucleotide repeats and exhibit high intra- and interspecies size variability due to the high mutation rate associated with replication slippage. The extent to which natural selection is important in shaping amino acid repeat evolution is a matter of debate. On one hand, their high frequency may simply reflect their high probability of expansion by slippage, and they could essentially evolve in a neutral manner. On the other hand, there is experimental evidence that changes in repeat size can influence protein-protein interactions, transcriptional activity, or protein subcellular localization, indicating that repeats could be functionally relevant and thus shaped by selection. To gauge the relative contribution of neutral and selective forces in amino acid repeat evolution, we have performed a comparative analysis of amino acid repeat conservation in a large set of orthologous proteins from 12 vertebrate species. As a neutral model of repeat evolution we have used sequences with the same DNA triplet composition as the coding sequences--and thus expected to be subject to the same mutational forces--but located in syntenic noncoding genomic regions. The results strongly indicate that selection has played a more important role than previously suspected in amino acid tandem repeat evolution, by increasing the repeat retention rate and by modulating repeat size. The data obtained in this study have allowed us to identify a set of 92 repeats that are postulated to play important functional roles due to their strong selective signature, including five cases with direct experimental evidence.
Collapse
Affiliation(s)
- Loris Mularoni
- Biomedical Informatics Research Programme (GRIB), Fundació Institut Municipal d'Investigació Mèdica, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
105
|
Reed HC, Hoare T, Thomsen S, Weaver TA, White RAH, Akam M, Alonso CR. Alternative splicing modulates Ubx protein function in Drosophila melanogaster. Genetics 2010; 184:745-58. [PMID: 20038634 PMCID: PMC2845342 DOI: 10.1534/genetics.109.112086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/17/2009] [Indexed: 01/02/2023] Open
Abstract
The Drosophila Hox gene Ultrabithorax (Ubx) produces a family of protein isoforms through alternative splicing. Isoforms differ from one another by the presence of optional segments-encoded by individual exons-that modify the distance between the homeodomain and a cofactor-interaction module termed the "YPWM" motif. To investigate the functional implications of Ubx alternative splicing, here we analyze the in vivo effects of the individual Ubx isoforms on the activation of a natural Ubx molecular target, the decapentaplegic (dpp) gene, within the embryonic mesoderm. These experiments show that the Ubx isoforms differ in their abilities to activate dpp in mesodermal tissues during embryogenesis. Furthermore, using a Ubx mutant that reduces the full Ubx protein repertoire to just one single isoform, we obtain specific anomalies affecting the patterning of anterior abdominal muscles, demonstrating that Ubx isoforms are not functionally interchangeable during embryonic mesoderm development. Finally, a series of experiments in vitro reveals that Ubx isoforms also vary in their capacity to bind DNA in presence of the cofactor Extradenticle (Exd). Altogether, our results indicate that the structural changes produced by alternative splicing have functional implications for Ubx protein function in vivo and in vitro. Since other Hox genes also produce splicing isoforms affecting similar protein domains, we suggest that alternative splicing may represent an underestimated regulatory system modulating Hox gene specificity during fly development.
Collapse
Affiliation(s)
- Hilary C. Reed
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Tim Hoare
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Stefan Thomsen
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Thomas A. Weaver
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Robert A. H. White
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Claudio R. Alonso
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom and School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
106
|
Yu JKS. The evolutionary origin of the vertebrate neural crest and its developmental gene regulatory network – insights from amphioxus. ZOOLOGY 2010; 113:1-9. [DOI: 10.1016/j.zool.2009.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/08/2009] [Accepted: 06/16/2009] [Indexed: 01/26/2023]
|
107
|
|
108
|
Merabet S, Sambrani N, Pradel J, Graba Y. Regulation of Hox activity: insights from protein motifs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:3-16. [PMID: 20795319 DOI: 10.1007/978-1-4419-6673-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Deciphering the molecular bases of animal body plan construction is a central question in developmental and evolutionary biology. Genome analyses of a number of metazoans indicate that widely conserved regulatory molecules underlie the amazing diversity of animal body plans, suggesting that these molecules are reiteratively used for multiple purposes. Hox proteins constitute a good example of such molecules and provide the framework to address the mechanisms underlying transcriptional specificity and diversity in development and evolution. Here we examine the current knowledge of the molecular bases of Hox-mediated transcriptional control, focusing on how this control is encoded within protein sequences and structures. The survey suggests that the homeodomain is part of an extended multifunctional unit coordinating DNA binding and activity regulation and highlights the need for further advances in our understanding of Hox protein activity.
Collapse
Affiliation(s)
- Samir Merabet
- Institute of Developmental Biology of Marseille Luminy, University of the Mediterranean, Marseille, France.
| | | | | | | |
Collapse
|
109
|
Masumoto M, Yaginuma T, Niimi T. Functional analysis of Ultrabithorax in the silkworm, Bombyx mori, using RNAi. Dev Genes Evol 2009; 219:437-44. [PMID: 19908062 DOI: 10.1007/s00427-009-0305-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
The formation of abdominal appendages in insects is suppressed by the Hox genes Ultrabithorax (Ubx) and abdominal-A (abd-A), but mechanisms of the suppression can differ among species. As the function of Ubx and abd-A has been described in only a few species, more data from various insects are necessary to elucidate the evolutionary transition of regulation on abdominal appendages. We examined the function of Ubx in the silkworm Bombyx mori (Bm-Ubx) by embryonic RNA interference (RNAi). This is the first case in which functional analysis for Ubx is performed in lepidopteran insects. Larvae treated with Bm-Ubx dsRNA displayed an additional pair of thoracic leg-like protuberances in A1, whereas the other abdominal segments had no transformation. Our results suggest that Bm-Ubx is a suppressor of leg development in A1.
Collapse
Affiliation(s)
- Mika Masumoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | | | | |
Collapse
|
110
|
Probing the evolution of appendage specialization by Hox gene misexpression in an emerging model crustacean. Proc Natl Acad Sci U S A 2009; 106:13897-902. [PMID: 19666530 DOI: 10.1073/pnas.0902804106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in the expression of Hox genes have been widely linked to the evolution of animal body plans, but functional demonstrations of this relationship have been impeded by the lack of suitable model organisms. A classic case study involves the repeated evolution of specialized feeding appendages, called maxillipeds, from anterior thoracic legs, in many crustacean lineages. These leg-to-maxilliped transformations correlate with the loss of Ultrabithorax (Ubx) expression from corresponding segments, which is proposed to be the underlying genetic cause. To functionally test this hypothesis, we establish tools for conditional misexpression and use these to misexpress Ubx in the crustacean Parhyale hawaiensis. Ectopic Ubx leads to homeotic transformations of anterior appendages toward more posterior thoracic fates, including maxilliped-to-leg transformations, confirming the capacity of Ubx to control thoracic (leg) versus gnathal (feeding) segmental identities. We find that maxillipeds not only are specified in the absence of Ubx, but also can develop in the presence of low/transient Ubx expression. Our findings suggest a path for the gradual evolutionary transition from thoracic legs to maxillipeds, in which stepwise changes in Hox gene expression have brought about this striking morphological and functional transformation.
Collapse
|
111
|
Jiménez-Delgado S, Pascual-Anaya J, Garcia-Fernàndez J. Implications of duplicated cis-regulatory elements in the evolution of metazoans: the DDI model or how simplicity begets novelty. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:266-75. [PMID: 19651705 DOI: 10.1093/bfgp/elp029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The discovery that most regulatory genes were conserved among animals from distant phyla challenged the ideas that gene duplication and divergence of homologous coding sequences were the basis for major morphological changes in metazoan evolution. In recent years, however, the interest for the roles, conservation and changes of non-coding sequences grew-up in parallel with genome sequencing projects. Presently, many independent studies are highlighting the importance that subtle changes in cis-regulatory regions had in the evolution of morphology trough the Animal Kingdom. Here we will show and discuss some of these studies, and underscore the future of cis-Evo-Devo research. Nevertheless, we would also explore how gene duplication, which includes duplication of regulatory regions, may have been critical for spatial or temporal co-option of new regulatory networks, causing the deployment of new transcriptome scenarios, and how these induced morphological changes were critical for the evolution of new forms. Forty years after Susumu Ohno famous sentence 'natural selection merely modifies, while redundancy creates', we suggest the alternative: 'natural selection modifies, while redundancy of cis-regulatory elements innovates', and propose the Duplication-Degeneration-Innovation model to explain the increased evolvability of duplicated cis-regulatory regions. Paradoxically, making regulation simpler by subfunctionalization paved the path for future complexity or, in other words, 'to make it simple to make it complex'.
Collapse
Affiliation(s)
- Senda Jiménez-Delgado
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | | | | |
Collapse
|
112
|
Jovelin R. Rapid sequence evolution of transcription factors controlling neuron differentiation in Caenorhabditis. Mol Biol Evol 2009; 26:2373-86. [PMID: 19589887 DOI: 10.1093/molbev/msp142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Whether phenotypic evolution proceeds predominantly through changes in regulatory sequences is a controversial issue in evolutionary genetics. Ample evidence indicates that the evolution of gene regulatory networks via changes in cis-regulatory sequences is an important determinant of phenotypic diversity. However, recent experimental work suggests that the role of transcription factor (TF) divergence in developmental evolution may be underestimated. In order to help understand what levels of constraints are acting on the coding sequence of developmental regulatory genes, evolutionary rates were investigated among 48 TFs required for neuronal development in Caenorhabditis elegans. Allelic variation was then sampled for 28 of these genes within a population of the related species Caenorhabditis remanei. Neuronal TFs are more divergent, both within and between species, than structural genes. TFs affecting different neuronal classes are under different levels of selective constraints. The regulatory genes controlling the differentiation of chemosensory neurons evolve particularly fast and exhibit higher levels of within- and between-species nucleotide variation than TFs required for the development of several neuronal classes and TFs required for motorneuron differentiation. The TFs affecting chemosensory neuron development are also more divergent than chemosensory genes expressed in the neurons they differentiate. These results illustrate that TFs are not as highly constrained as commonly thought and suggest that the role of divergence in developmental regulatory genes during the evolution of gene regulatory networks requires further attention.
Collapse
Affiliation(s)
- Richard Jovelin
- Center for Ecology and Evolutionary Biology, University of Oregon, Oregon, USA.
| |
Collapse
|
113
|
Merabet S, Hudry B, Saadaoui M, Graba Y. Classification of sequence signatures: a guide to Hox protein function. Bioessays 2009; 31:500-11. [PMID: 19334006 DOI: 10.1002/bies.200800229] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hox proteins are part of the conserved superfamily of homeodomain-containing transcription factors and play fundamental roles in shaping animal body plans in development and evolution. However, molecular mechanisms underlying their diverse and specific biological functions remain largely enigmatic. Here, we have analyzed Hox sequences from the main evolutionary branches of the Bilateria group. We have found that four classes of Hox protein signatures exist, which together provide sufficient support to explain how different Hox proteins differ in their control and function. The homeodomain and its surrounding sequences accumulate nearly all signatures, constituting an extended module where most of the information distinguishing Hox proteins is concentrated. Only a small fraction of these signatures has been investigated at the functional level, but these show that approaches relying on Hox protein alterations still have a large potential for deciphering molecular mechanisms of Hox differential control.
Collapse
Affiliation(s)
- Samir Merabet
- Institut de Biologie du Développement de Marseille Luminy, IBDML, UMR 6216, CNRS, Université de la Méditerranée, Parc Scientifique de Luminy, Case 907, Marseille Cedex 09, France.
| | | | | | | |
Collapse
|
114
|
Liu Y, Matthews KS, Bondos SE. Internal regulatory interactions determine DNA binding specificity by a Hox transcription factor. J Mol Biol 2009; 390:760-74. [PMID: 19481089 DOI: 10.1016/j.jmb.2009.05.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/24/2022]
Abstract
In developing bilaterans, the Hox transcription factor family regulates batteries of downstream genes to diversify serially repeated units. Given Hox homeodomains bind a wider array of DNA binding sites in vitro than are regulated by the full-length protein in vivo, regions outside the homeodomain must aid DNA site selection. Indeed, we find affinity for disparate DNA sequences varies less than 3-fold for the homeodomain isolated from the Drosophila Hox protein Ultrabithorax Ia (UbxHD), whereas for the full-length protein (UbxIa) affinity differs by more than 10-fold. The rank order of preferred DNA sequences also differs, further demonstrating distinct DNA binding preferences. The increased specificity of UbxIa can be partially attributed to the I1 region, which lies adjacent to the homeodomain and directly impacts binding energetics. Each of three segments within I1-the Extradenticle-binding YPWM motif, the six amino acids immediately N-terminal to this motif, and the eight amino acids abutting the YPWM C-terminus-uniquely contribute to DNA specificity. Combination of these regions synergistically modifies DNA binding to further enhance specificity. Intriguingly, the presence of the YPWM motif in UbxIa inhibits DNA binding only to Ubx-Extradenticle heterodimer binding sites, potentially functioning in vivo to prevent Ubx monomers from binding and misregulating heterodimer target genes. However, removal of the surrounding region allows the YPWM motif to also inhibit binding to Hox-only recognition sequences. Despite a modular domain design for Hox proteins, these results suggest that multiple Hox protein regions form a network of regulatory interactions that coordinate context- and gene-specific responses. Since most nonhomeodomain regions are not conserved between Hox family members, these regulatory interactions have the potential to diversify binding by the highly homologous Hox homeodomains.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | |
Collapse
|
115
|
Kawashima T, Kawashima S, Tanaka C, Murai M, Yoneda M, Putnam NH, Rokhsar DS, Kanehisa M, Satoh N, Wada H. Domain shuffling and the evolution of vertebrates. Genome Res 2009; 19:1393-403. [PMID: 19443856 DOI: 10.1101/gr.087072.108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolution of vertebrates has included a number of important events: the development of cartilage, the immune system, and complicated craniofacial structures. Here, we examine domain shuffling as one of the mechanisms that contributes novel genetic material required for vertebrate evolution. We mapped domain-shuffling events during the evolution of deuterostomes with a focus on how domain shuffling contributed to the evolution of vertebrate- and chordate-specific characteristics. We identified approximately 1000 new domain pairs in the vertebrate lineage, including approximately 100 that were shared by all seven of the vertebrate species examined. Some of these pairs occur in the protein components of vertebrate-specific structures, such as cartilage and the inner ear, suggesting that domain shuffling made a marked contribution to the evolution of vertebrate-specific characteristics. The evolutionary history of the domain pairs is traceable; for example, the Xlink domain of aggrecan, one of the major components of cartilage, was originally utilized as a functional domain of a surface molecule of blood cells in protochordate ancestors, and it was recruited by the protein of the matrix component of cartilage in the vertebrate ancestor. We also identified genes that were created as a result of domain shuffling in ancestral chordates. Some of these are involved in the functions of chordate structures, such as the endostyle, Reissner's fiber of the neural tube, and the notochord. Our analyses shed new light on the role of domain shuffling, especially in the evolution of vertebrates and chordates.
Collapse
|
116
|
Abstract
Do novel complex traits evolve when pre-existent complex developmental networks are recruited into new places in the body? Here we look closely at the genomic fingerprints that are produced as a result of gene network co-option.
Collapse
Affiliation(s)
- Antónia Monteiro
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
117
|
Woltering JM, Vonk FJ, Müller H, Bardine N, Tuduce IL, de Bakker MAG, Knöchel W, Sirbu IO, Durston AJ, Richardson MK. Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev Biol 2009; 332:82-9. [PMID: 19409887 DOI: 10.1016/j.ydbio.2009.04.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/17/2009] [Accepted: 04/24/2009] [Indexed: 11/17/2022]
Abstract
It is generally assumed that the characteristic deregionalized body plan of species with a snake-like morphology evolved through a corresponding homogenization of Hox gene expression domains along the primary axis. Here, we examine the expression of Hox genes in snake embryos and show that a collinear pattern of Hox expression is retained within the paraxial mesoderm of the trunk. Genes expressed at the anterior and most posterior, regionalized, parts of the skeleton correspond to the expected anatomical boundaries. Unexpectedly however, also the dorsal (thoracic), homogenous rib-bearing region of trunk, is regionalized by unconventional gradual anterior limits of Hox expression that are not obviously reflected in the skeletal anatomy. In the lateral plate mesoderm we also detect regionalized Hox expression yet the forelimb marker Tbx5 is not restricted to a rudimentary forelimb domain but is expressed throughout the entire flank region. Analysis of several Hox genes in a caecilian amphibian, which convergently evolved a deregionalized body plan, reveals a similar global collinear pattern of Hox expression. The differential expression of posterior, vertebra-modifying or even rib-suppressing Hox genes within the dorsal region is inconsistent with the homogeneity in vertebral identity. Our results suggest that the evolution of a deregionalized, snake-like body involved not only alterations in Hox gene cis-regulation but also a different downstream interpretation of the Hox code.
Collapse
Affiliation(s)
- Joost M Woltering
- Department of Molecular Cell Biology, Institute of Biology, Leiden University, 2333 AL, Leiden, the Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Tomita S, Kikuchi A. Abd-B suppresses lepidopteran proleg development in posterior abdomen. Dev Biol 2009; 328:403-9. [DOI: 10.1016/j.ydbio.2009.01.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 01/29/2009] [Accepted: 01/29/2009] [Indexed: 11/29/2022]
|
119
|
Greer AM, Huang Z, Oriakhi A, Lu Y, Lou J, Matthews KS, Bondos SE. The Drosophila Transcription Factor Ultrabithorax Self-Assembles into Protein-Based Biomaterials with Multiple Morphologies. Biomacromolecules 2009; 10:829-37. [DOI: 10.1021/bm801315v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Alexandra M. Greer
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Zhao Huang
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Ashley Oriakhi
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Yang Lu
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Jun Lou
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Kathleen S. Matthews
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| | - Sarah E. Bondos
- Departments of Biochemistry and Cell Biology and Mechanical Engineering and Materials Science, Rice University, 6100 South Main Street, Houston, Texas 77005, and Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, Texas 77843-1114
| |
Collapse
|
120
|
Analysis of the sequence and phenotype of Drosophila Sex combs reduced alleles reveals potential functions of conserved protein motifs of the Sex combs reduced protein. Genetics 2009; 182:191-203. [PMID: 19293143 DOI: 10.1534/genetics.109.100438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila Hox gene, Sex combs reduced (Scr), is required for patterning the larval and adult, labial and prothoracic segments. Fifteen Scr alleles were sequenced and the phenotypes analyzed in detail. Six null alleles were nonsense mutations (Scr(2), Scr(4), Scr(11), Scr(13), Scr(13A), and Scr(16)) and one was an intragenic deletion (Scr(17)). Five hypomorphic alleles were missense mutations (Scr(1), Scr(3), Scr(5), Scr(6), and Scr(8)) and one was a small protein deletion (Scr(15)). Protein sequence changes were found in four of the five highly conserved domains of SCR: the DYTQL motif (Scr(15)), YPWM motif (Scr(3)), Homeodomain (Scr(1)), and C-terminal domain (CTD) (Scr(6)), indicating importance for SCR function. Analysis of the pleiotropy of viable Scr alleles for the formation of pseudotracheae suggests that the DYTQL motif and the CTD mediate a genetic interaction with proboscipedia. One allele Scr(14), a missense allele in the conserved octapeptide, was an antimorphic allele that exhibited three interesting genetic properties. First, Scr(14)/Df had the same phenotype as Scr(+)/Df. Second, the ability of the Scr(14) allele to interact intragenetically with Scr alleles mapped to the first 82 amino acids of SCR, which contains the octapeptide motif. Third, Scr(6), which has two missense changes in the CTD, did not interact genetically with Scr(14).
Collapse
|
121
|
Abstract
Comparative developmental evidence indicates that reorganizations in developmental gene regulatory networks (GRNs) underlie evolutionary changes in animal morphology, including body plans. We argue here that the nature of the evolutionary alterations that arise from regulatory changes depends on the hierarchical position of the change within a GRN. This concept cannot be accomodated by microevolutionary nor macroevolutionary theory. It will soon be possible to investigate these ideas experimentally, by assessing the effects of GRN changes on morphological evolution.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology, MRC-121, National Museum of Natural History, PO BOX 37012, Washington, Washington DC 20013-7012, USA.
| | | |
Collapse
|
122
|
Mann RS, Lelli KM, Joshi R. Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009; 88:63-101. [PMID: 19651302 DOI: 10.1016/s0070-2153(09)88003-4] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hox proteins are well known for executing highly specific functions in vivo, but our understanding of the molecular mechanisms underlying gene regulation by these fascinating proteins has lagged behind. The premise of this review is that an understanding of gene regulation-by any transcription factor-requires the dissection of the cis-regulatory elements that they act upon. With this goal in mind, we review the concepts and ideas regarding gene regulation by Hox proteins and apply them to a curated list of directly regulated Hox cis-regulatory elements that have been validated in the literature. Our analysis of the Hox-binding sites within these elements suggests several emerging generalizations. We distinguish between Hox cofactors, proteins that bind DNA cooperatively with Hox proteins and thereby help with DNA-binding site selection, and Hox collaborators, proteins that bind in parallel to Hox-targeted cis-regulatory elements and dictate the sign and strength of gene regulation. Finally, we summarize insights that come from examining five X-ray crystal structures of Hox-cofactor-DNA complexes. Together, these analyses reveal an enormous amount of flexibility into how Hox proteins function to regulate gene expression, perhaps providing an explanation for why these factors have been central players in the evolution of morphological diversity in the animal kingdom.
Collapse
Affiliation(s)
- Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
123
|
Fidalgo M, Barrales RR, Jimenez J. Coding repeat instability in theFLO11gene ofSaccharomycesyeasts. Yeast 2008; 25:879-89. [DOI: 10.1002/yea.1642] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
124
|
Hittinger CT, Carroll SB. Evolution of an insect-specific GROUCHO-interaction motif in the ENGRAILED selector protein. Evol Dev 2008; 10:537-45. [PMID: 18803772 PMCID: PMC2597661 DOI: 10.1111/j.1525-142x.2008.00269.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Animal morphology evolves through alterations in the genetic regulatory networks that control development. Regulatory connections are commonly added, subtracted, or modified via mutations in cis-regulatory elements, but several cases are also known where transcription factors have gained or lost activity-modulating peptide motifs. In order to better assess the role of novel transcription factor peptide motifs in evolution, we searched for synapomorphic motifs in the homeotic selectors of Drosophila melanogaster and related insects. Here, we describe an evolutionarily novel GROUCHO (GRO)-interaction motif in the ENGRAILED (EN) selector protein. This "ehIFRPF" motif is not homologous to the previously characterized "engrailed homology 1" (eh1) GRO-interaction motif of EN. This second motif is an insect-specific "WRPW"-type motif that has been maintained by purifying selection in at least the dipteran/lepidopteran lineage. We demonstrate that this motif contributes to in vivo repression of the wingless (wg) target gene and to interaction with GRO in vitro. The acquisition and conservation of this auxiliary peptide motif shows how the number and activity of short peptide motifs can evolve in transcription factors while existing regulatory functions are maintained.
Collapse
Affiliation(s)
- Chris Todd Hittinger
- Laboratory of Genetics, Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706-1534, USA
| | | |
Collapse
|
125
|
Lelandais G, Tanty V, Geneix C, Etchebest C, Jacq C, Devaux F. Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata. Genome Biol 2008; 9:R164. [PMID: 19025642 PMCID: PMC2614496 DOI: 10.1186/gb-2008-9-11-r164] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/24/2008] [Indexed: 12/21/2022] Open
Abstract
Comparative transcriptomics of Saccharomyces cerevisiae and Candida glabrata revealed a remarkable conservation of response to drug-induced stress, despite underlying differences in the regulatory networks. Background Recent technical and methodological advances have placed microbial models at the forefront of evolutionary and environmental genomics. To better understand the logic of genetic network evolution, we combined comparative transcriptomics, a differential clustering algorithm and promoter analyses in a study of the evolution of transcriptional networks responding to an antifungal agent in two yeast species: the free-living model organism Saccharomyces cerevisiae and the human pathogen Candida glabrata. Results We found that although the gene expression patterns characterizing the response to drugs were remarkably conserved between the two species, part of the underlying regulatory networks differed. In particular, the roles of the oxidative stress response transcription factors ScYap1p (in S. cerevisiae) and Cgap1p (in C. glabrata) had diverged. The sets of genes whose benomyl response depends on these factors are significantly different. Also, the DNA motifs targeted by ScYap1p and Cgap1p are differently represented in the promoters of these genes, suggesting that the DNA binding properties of the two proteins are slightly different. Experimental assays of ScYap1p and Cgap1p activities in vivo were in accordance with this last observation. Conclusions Based on these results and recently published data, we suggest that the robustness of environmental stress responses among related species contrasts with the rapid evolution of regulatory sequences, and depends on both the coevolution of transcription factor binding properties and the versatility of regulatory associations within transcriptional networks.
Collapse
Affiliation(s)
- Gaëlle Lelandais
- Equipe de Bioinformatique Génomique et Moléculaire, INSERM UMR S726, Université Paris 7, INTS, 6 rue Alexandre Cabanel, 75015 Paris, France.
| | | | | | | | | | | |
Collapse
|
126
|
High nucleotide divergence in developmental regulatory genes contrasts with the structural elements of olfactory pathways in caenorhabditis. Genetics 2008; 181:1387-97. [PMID: 19001295 DOI: 10.1534/genetics.107.082651] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Almost all organismal function is controlled by pathways composed of interacting genetic components. The relationship between pathway structure and the evolution of individual pathway components is not completely understood. For the nematode Caenorhabditis elegans, chemosensory pathways regulate critical aspects of an individual's life history and development. To help understand how olfaction evolves in Caenorhabditis and to examine patterns of gene evolution within transduction pathways in general, we analyzed nucleotide variation within and between species across two well-characterized olfactory pathways, including regulatory genes controlling the fate of the cells in which the pathways are expressed. In agreement with previous studies, we found much higher levels of polymorphism within C. remanei than within the related species C. elegans and C. briggsae. There are significant differences in the rates of nucleotide evolution for genes across the two pathways but no particular association between evolutionary rate and gene position, suggesting that the evolution of functional pathways must be considered within the context of broader gene network structure. However, developmental regulatory genes show both higher levels of divergence and polymorphism than the structural genes of the pathway. These results show that, contrary to the emerging paradigm in the evolution of development, important structural changes can accumulate in transcription factors.
Collapse
|
127
|
Hrycaj S, Mihajlovic M, Mahfooz N, Couso JP, Popadić A. RNAi analysis of nubbin embryonic functions in a hemimetabolous insect, Oncopeltus fasciatus. Evol Dev 2008; 10:705-16. [DOI: 10.1111/j.1525-142x.2008.00284.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
128
|
Lin Z, Ma H, Nei M. Ultraconserved coding regions outside the homeobox of mammalian Hox genes. BMC Evol Biol 2008; 8:260. [PMID: 18816392 PMCID: PMC2566984 DOI: 10.1186/1471-2148-8-260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 09/24/2008] [Indexed: 01/03/2023] Open
Abstract
Background All bilaterian animals share a general genetic framework that controls the formation of their body structures, although their forms are highly diversified. The Hox genes that encode transcription factors play a central role in this framework. All Hox proteins contain a highly conserved homeodomain encoded by the homeobox motif, but the other regions are generally assumed to be less conserved. In this study, we used comparative genomic methods to infer possible functional elements in the coding regions of mammalian Hox genes. Results We identified a set of ultraconserved coding regions (UCRs) outside the homeobox of mammalian Hox genes. Here a UCR is defined as a region of at least 120 nucleotides without synonymous and nonsynonymous nucleotide substitutions among different orders of mammals. Further analysis has indicated that these UCRs occur only in placental mammals and they evolved apparently after the split of placental mammals from marsupials. Analysis of human SNP data suggests that these UCRs are maintained by strong purifying selection. Conclusion Although mammalian genomes are known to contain ultraconserved non-coding elements (UNEs), this paper seems to be the first to report the UCRs in protein coding genes. The extremely high degree of sequence conservation in non-homeobox regions suggests that they might have important roles for the functions of Hox genes. We speculate that UCRs have some gene regulatory functions possibly in relation to the development of the intra-uterus child-bearing system.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
129
|
Adaptive changes in the transcription factor HoxA-11 are essential for the evolution of pregnancy in mammals. Proc Natl Acad Sci U S A 2008; 105:14928-33. [PMID: 18809929 DOI: 10.1073/pnas.0802355105] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolutionary change in gene regulation can result from changes in cis-regulatory elements, leading to differences in the temporal and spatial expression of genes or in the coding region of transcription factors leading to novel functions or both. Although there is a growing body of evidence supporting the importance of cis-regulatory evolution, examples of protein-mediated evolution of novel developmental pathways have not been demonstrated. Here, we investigate the evolution of prolactin (PRL) expression in endometrial cells, which is essential for placentation/pregnancy in eutherian mammals and is a direct regulatory target of the transcription factor HoxA-11. Here, we show that (i) endometrial PRL expression is a derived feature of placental mammals, (ii) the PRL regulatory gene HoxA-11 experienced a period of strong positive selection in the stem-lineage of eutherian mammals, and (iii) only HoxA-11 proteins from placental mammals, including the reconstructed ancestral eutherian gene, are able to up-regulate PRL from the promoter used in endometrial cells. In contrast, HoxA-11 from the reconstructed therian ancestor, opossum, platypus, and chicken are unable to up-regulate PRL expression. These results demonstrate that the evolution of novel gene expression domains is not only mediated by the evolution of cis-regulatory elements but can also require evolutionary changes of transcription factor proteins themselves.
Collapse
|
130
|
Li-Kroeger D, Witt LM, Grimes HL, Cook TA, Gebelein B. Hox and senseless antagonism functions as a molecular switch to regulate EGF secretion in the Drosophila PNS. Dev Cell 2008; 15:298-308. [PMID: 18694568 DOI: 10.1016/j.devcel.2008.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/08/2008] [Accepted: 06/04/2008] [Indexed: 01/27/2023]
Abstract
Hox factors are key regulators of distinct cells, tissues, and organs along the body plan. However, little is known about how Hox factors regulate cell-specific gene expression to pattern diverse tissues. Here, we show an unexpected Hox transcriptional mechanism: the permissive regulation of EGF secretion, and thereby cell specification, by antagonizing the Senseless transcription factor in the peripheral nervous system. rhomboid expression in a subset of sensory cells stimulates EGF secretion to induce hepatocyte-like cell development. We identified a rhomboid enhancer that is active in these cells and show that an abdominal Hox complex directly competes with Senseless for enhancer binding, with the transcriptional outcome dependent upon their relative binding activities. Thus, Hox-Senseless antagonism forms a molecular switch that integrates neural and anterior-posterior positional information. As the vertebrate senseless homolog is essential for neural development as well as hematopoiesis, we propose Hox-Senseless antagonism will broadly control cell fate decisions.
Collapse
Affiliation(s)
- David Li-Kroeger
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
131
|
Abstract
The use of phylogenetic analysis to predict positive selection specific to human genes is complicated by the very close evolutionary relationship with our nearest extant primate relatives, chimpanzees. To assess the power and limitations inherent in use of maximum-likelihood (ML) analysis of codon substitution patterns in such recently diverged species, a series of simulations was performed to assess the impact of several parameters of the evolutionary model on prediction of human-specific positive selection, including branch length and d(N)/d(S) ratio. Parameters were varied across a range of values observed in alignments of 175 transcription factor (TF) genes that were sequenced in 12 primate species. The ML method largely lacks the power to detect positive selection that has occurred since the most recent common ancestor between humans and chimpanzees. An alternative null model was developed on the basis of gene-specific evaluation of the empirical distribution of ML results, using simulated neutrally evolving sequences. This empirical test provides greater sensitivity to detect lineage-specific positive selection in the context of recent evolutionary divergence.
Collapse
|
132
|
Liu Y, Matthews KS, Bondos SE. Multiple intrinsically disordered sequences alter DNA binding by the homeodomain of the Drosophila hox protein ultrabithorax. J Biol Chem 2008; 283:20874-87. [PMID: 18508761 PMCID: PMC2475714 DOI: 10.1074/jbc.m800375200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/21/2008] [Indexed: 12/21/2022] Open
Abstract
During animal development, distinct tissues, organs, and appendages are specified through differential gene transcription by Hox transcription factors. However, the conserved Hox homeodomains bind DNA with high affinity yet low specificity. We have therefore explored the structure of the Drosophila melanogaster Hox protein Ultrabithorax and the impact of its nonhomeodomain regions on DNA binding properties. Computational and experimental approaches identified several conserved, intrinsically disordered regions outside the homeodomain of Ultrabithorax that impact DNA binding by the homeodomain. Full-length Ultrabithorax bound to target DNA 2.5-fold weaker than its isolated homeodomain. Using N-terminal and C-terminal deletion mutants, we demonstrate that the YPWM region and the disordered microexons (termed the I1 region) inhibit DNA binding approximately 2-fold, whereas the disordered I2 region inhibits homeodomain-DNA interaction a further approximately 40-fold. Binding is restored almost to homeodomain affinity by the mostly disordered N-terminal 174 amino acids (R region) in a length-dependent manner. Both the I2 and R regions contain portions of the activation domain, functionally linking DNA binding and transcription regulation. Given that (i) the I1 region and a portion of the R region alter homeodomain-DNA binding as a function of pH and (ii) an internal deletion within I1 increases Ultrabithorax-DNA affinity, I1 must directly impact homeodomain-DNA interaction energetics. However, I2 appears to indirectly affect DNA binding in a manner countered by the N terminus. The amino acid sequences of I2 and much of the I1 and R regions vary significantly among Ultrabithorax orthologues, potentially diversifying Hox-DNA interactions.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biochemistry and Cell
Biology, Rice University, Houston, Texas 77005 and the
Department of Molecular and Cellular Medicine,
Texas A & M Health Science Center, College Station, Texas 77843-1114
| | - Kathleen S. Matthews
- Department of Biochemistry and Cell
Biology, Rice University, Houston, Texas 77005 and the
Department of Molecular and Cellular Medicine,
Texas A & M Health Science Center, College Station, Texas 77843-1114
| | - Sarah E. Bondos
- Department of Biochemistry and Cell
Biology, Rice University, Houston, Texas 77005 and the
Department of Molecular and Cellular Medicine,
Texas A & M Health Science Center, College Station, Texas 77843-1114
| |
Collapse
|
133
|
Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 2008; 134:25-36. [PMID: 18614008 DOI: 10.1016/j.cell.2008.06.030] [Citation(s) in RCA: 1306] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biologists have long sought to understand which genes and what kinds of changes in their sequences are responsible for the evolution of morphological diversity. Here, I outline eight principles derived from molecular and evolutionary developmental biology and review recent studies of species divergence that have led to a genetic theory of morphological evolution, which states that (1) form evolves largely by altering the expression of functionally conserved proteins, and (2) such changes largely occur through mutations in the cis-regulatory sequences of pleiotropic developmental regulatory loci and of the target genes within the vast networks they control.
Collapse
Affiliation(s)
- Sean B Carroll
- Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
134
|
The gene regulatory logic of transcription factor evolution. Trends Ecol Evol 2008; 23:377-85. [DOI: 10.1016/j.tree.2008.03.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/10/2008] [Accepted: 03/28/2008] [Indexed: 11/22/2022]
|
135
|
Abzhanov A, Extavour CG, Groover A, Hodges SA, Hoekstra HE, Kramer EM, Monteiro A. Are we there yet? Tracking the development of new model systems. Trends Genet 2008; 24:353-60. [DOI: 10.1016/j.tig.2008.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 12/20/2022]
|
136
|
Lynch VJ, Wagner GP. Resurrecting the role of transcription factor change in developmental evolution. Evolution 2008; 62:2131-54. [PMID: 18564379 DOI: 10.1111/j.1558-5646.2008.00440.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A long-standing question in evolutionary and developmental biology concerns the relative contribution of cis-regulatory and protein changes to developmental evolution. Central to this argument is which mutations generate evolutionarily relevant phenotypic variation? A review of the growing body of evolutionary and developmental literature supports the notion that many developmentally relevant differences occur in the cis-regulatory regions of protein-coding genes, generally to the exclusion of changes in the protein-coding region of genes. However, accumulating experimental evidence demonstrates that many of the arguments against a role for proteins in the evolution of gene regulation, and the developmental evolution in general, are no longer supported and there is an increasing number of cases in which transcription factor protein changes have been demonstrated in evolution. Here, we review the evidence that cis-regulatory evolution is an important driver of phenotypic evolution and provide examples of protein-mediated developmental evolution. Finally, we present an argument that the evolution of proteins may play a more substantial, but thus far underestimated, role in developmental evolution.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA.
| | | |
Collapse
|
137
|
Taghli-Lamallem O, Hsia C, Ronshaugen M, McGinnis W. Context-dependent regulation of Hox protein functions by CK2 phosphorylation sites. Dev Genes Evol 2008; 218:321-32. [PMID: 18504607 PMCID: PMC2443945 DOI: 10.1007/s00427-008-0224-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
Variations in Hox protein sequences and functions have been proposed to contribute to evolutionary changes in appendage shape and number in crustaceans and insects. One model is that insect Hox proteins of the Ultrabithorax (UBX) ortholog class evolved increased abilities to repress Distal-less (Dll) transcription and appendage development in part through the loss of serine and threonine residues in casein kinase 2 (CK2) phosphorylation sites. To explore this possibility, we constructed and tested the appendage repression function of chimeric proteins with insertions of different CK2 consensus sites or phosphomimetics of CK2 sites in C-terminal regions of Drosophila melanogaster UBX. Our results indicate that CK2 sites C-terminal to the homeodomain can inhibit the appendage repression functions of UBX proteins, but only in the context of specific amino acid sequences. Our results, combined with previous findings on evolutionary changes in Hox protein, suggest how intra-protein regulatory changes can diversify Hox protein function, and thus animal morphology.
Collapse
Affiliation(s)
- Ouarda Taghli-Lamallem
- Neuroscience & Aging Research Center, The Burnham Institute for Medical Research, 10901 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cheryl Hsia
- Section in Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA, e-mail:
| | - Matthew Ronshaugen
- The Healing Foundation Centre, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - William McGinnis
- Section in Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA, e-mail:
| |
Collapse
|
138
|
Abstract
The gradual modification of transcription circuits over evolutionary time scales is an important source of the diversity of life. Over the past decade, studies in animals have shown how seemingly small molecular changes in gene regulation can have large effects on morphology and physiology and how selective pressures can act on these changes. More recently, genome-wide studies, particularly those in single-cell yeasts, have uncovered evidence of extensive transcriptional rewiring, indicating that even closely related organisms regulate their genes using markedly different circuitries.
Collapse
Affiliation(s)
- Brian B Tuch
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
139
|
Fujimura K, Terai Y, Ishiguro N, Miya M, Nishida M, Okada N. Heterotypy in the N-terminal region of growth/differentiation factor 5 (GDF5) mature protein during teleost evolution. Mol Biol Evol 2008; 25:797-800. [PMID: 18296700 DOI: 10.1093/molbev/msn041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heterotypy is now recognized as a generative force in the formation of new proteins through modification of existing proteins. We report that heterotypy in the N-terminal region of the mature growth/differentiation factor 5 (GDF5) protein occurred during evolution of teleosts. N-terminal length variation of GDF5 was found among teleost interfamilies and interorders but not within teleost families or among tetrapods. We further show that increase of proline and glutamine to the N-terminal region of mature GDF5 occurred in Eurypterygii, the higher lineage of teleosts. Because the basic amino acids, believed to control diffusion, are conserved in this region across all species examined, we suggest that the N-terminal elongation of the mature GDF5 protein during evolution has altered the protein diffusion in Eurypterygii, leading to high concentrations of the protein in the joint of the pharyngeal skeleton, the location of cartilage formation during development.
Collapse
|
140
|
Sears KE, Goswami A, Flynn JJ, Niswander LA. The correlated evolution of Runx2 tandem repeats, transcriptional activity, and facial length in carnivora. Evol Dev 2008; 9:555-65. [PMID: 17976052 DOI: 10.1111/j.1525-142x.2007.00196.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To assess the ability of protein-coding mutations to contribute to subtle, inter-specific morphologic evolution, here, we test the hypothesis that mutations within the protein-coding region of runt-related transcription factor 2 (Runx2) have played a role in facial evolution in 30 species from a naturally evolving group, the mammalian order Carnivora. Consistent with this hypothesis, we find significant correlations between changes in Runx2 glutamine-alanine tandem-repeat ratio, and both Runx2 transcriptional activity and carnivoran facial length. Furthermore, we identify a potential evolutionary mechanism for the correlation between Runx2 tandem repeat ratio and facial length. Specifically, our results are consistent with the Runx2 tandem repeat system providing a flexible genetic mechanism to rapidly change the timing of ossification. These heterochronic changes, in turn, potentially act on existing allometric variation in carnivoran facial length to generate the disparity in adult facial lengths observed among carnivoran species. Our results suggest that despite potentially great pleiotropic effects, changes to the protein-coding regions of genes such as Runx2 do occur and have the potential to affect subtle morphologic evolution across a diverse array of species in naturally evolving lineages.
Collapse
Affiliation(s)
- K E Sears
- Pediatrics Department, Howard Hughes Medical Institute, University of Colorado at Denver and Health Sciences Center, 12800 East, 19th Avenue, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
141
|
Simpson P, Ayyar S. Chapter 3 Evolution of Cis‐Regulatory Sequences in Drosophila. LONG-RANGE CONTROL OF GENE EXPRESSION 2008; 61:67-106. [DOI: 10.1016/s0065-2660(07)00003-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
142
|
Regulatory evolution in proteins by turnover and lineage-specific changes of cyclin-dependent kinase consensus sites. Proc Natl Acad Sci U S A 2007; 104:17713-8. [PMID: 17978194 PMCID: PMC2077061 DOI: 10.1073/pnas.0700997104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Evolutionary change in gene regulation is a key mechanism underlying the genetic component of organismal diversity. Here, we study evolution of regulation at the posttranslational level by examining the evolution of cyclin-dependent kinase (CDK) consensus phosphorylation sites in the protein subunits of the pre-replicative complex (RC). The pre-RC, an assembly of proteins formed during an early stage of DNA replication, is believed to be regulated by CDKs throughout the animals and fungi. Interestingly, although orthologous pre-RC components often contain clusters of CDK consensus sites, the positions and numbers of sites do not seem conserved. By analyzing protein sequences from both distantly and closely related species, we confirm that consensus sites can turn over rapidly even when the local cluster of sites is preserved, consistent with the notion that precise positioning of phosphorylation events is not required for regulation. We also identify evolutionary changes in the clusters of sites and further examine one replication protein, Mcm3, where a cluster of consensus sites near a nucleocytoplasmic transport signal is confined to a specific lineage. We show that the presence or absence of the cluster of sites in different species is associated with differential regulation of the transport signal. These findings suggest that the CDK regulation of MCM nuclear localization was acquired in the lineage leading to Saccharomyces cerevisiae after the divergence with Candida albicans. Our results begin to explore the dynamics of regulatory evolution at the posttranslational level and show interesting similarities to recent observations of regulatory evolution at the level of transcription.
Collapse
|
143
|
A unique Extradenticle recruitment mode in the Drosophila Hox protein Ultrabithorax. Proc Natl Acad Sci U S A 2007; 104:16946-51. [PMID: 17942685 DOI: 10.1073/pnas.0705832104] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hox transcription factors are essential for shaping body morphology in development and evolution. The control of Hox protein activity in part arises from interaction with the PBC class of partners, pre-B cell transcription factor (Pbx) proteins in vertebrates and Extradenticle (Exd) in Drosophila. Characterized interactions occur through a single mode, involving a short hexapeptide motif in the Hox protein. This apparent uniqueness in Hox-PBC interaction provides little mechanistic insight in how the same cofactors endow Hox proteins with specific and diverse activities. Here, we identify in the Drosophila Ultrabithorax (Ubx) protein a short motif responsible for an alternative mode of Exd recruitment. Together with previous reports, this finding highlights that the Hox protein Ubx has multiple ways to interact with the Exd cofactor and suggests that flexibility in Hox-PBC contacts contributes to specify and diversify Hox protein function.
Collapse
|
144
|
Walsh CM, Carroll SB. Collaboration between Smads and a Hox protein in target gene repression. Development 2007; 134:3585-92. [PMID: 17855427 DOI: 10.1242/dev.009522] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox proteins control the differentiation of serially iterated structures in arthropods and chordates by differentially regulating many target genes. It is yet unclear to what extent Hox target gene selection is dependent upon other regulatory factors and how these interactions might affect target gene activation or repression. We find that two Smad proteins, effectors of the Drosophila Dpp/TGF-β pathway, that are genetically required for the activation of the spalt (sal) gene in the wing,collaborate with the Hox protein Ultrabithorax (Ubx) to directly repress sal in the haltere. The repression of sal is integrated by a cis-regulatory element (CRE) through a remarkably conserved set of Smad binding sites flanked by Ubx binding sites. If the Ubx binding sites are relocated at a distance from the Smad binding sites, the proteins no longer collaborate to repress gene expression. These results support an emerging view of Hox proteins acting in collaboration with a much more diverse set of transcription factors than has generally been appreciated.
Collapse
Affiliation(s)
- Christopher M Walsh
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, WI 53706, USA
| | | |
Collapse
|
145
|
Mahfooz N, Turchyn N, Mihajlovic M, Hrycaj S, Popadić A. Ubx regulates differential enlargement and diversification of insect hind legs. PLoS One 2007; 2:e866. [PMID: 17848997 PMCID: PMC1959121 DOI: 10.1371/journal.pone.0000866] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 08/20/2007] [Indexed: 11/21/2022] Open
Abstract
Differential enlargement of hind (T3) legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s) responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug) and Acheta domesticus (house cricket). In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx) is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs.
Collapse
Affiliation(s)
- Najmus Mahfooz
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Nataliya Turchyn
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Michelle Mihajlovic
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Steven Hrycaj
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Aleksandar Popadić
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
146
|
Landry CR, Hartl DL, Ranz JM. Genome clashes in hybrids: insights from gene expression. Heredity (Edinb) 2007; 99:483-93. [PMID: 17687247 DOI: 10.1038/sj.hdy.6801045] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In interspecific hybrids, novel phenotypes often emerge from the interaction of two divergent genomes. Interactions between the two transcriptional networks are assumed to contribute to these unpredicted new phenotypes by inducing novel patterns of gene expression. Here we provide a review of the recent literature on the accumulation of regulatory incompatibilities. We review specific examples of regulatory incompatibilities reported at particular loci as well as genome-scale surveys of gene expression in interspecific hybrids. Finally, we consider and preview novel technologies that could help decipher how divergent transcriptional networks interact in hybrids between species.
Collapse
Affiliation(s)
- C R Landry
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | | | | |
Collapse
|
147
|
Abstract
Recent studies of developmental biology have shown that the genes controlling phenotypic characters expressed in the early stage of development are highly conserved and that recent evolutionary changes have occurred primarily in the characters expressed in later stages of development. Even the genes controlling the latter characters are generally conserved, but there is a large component of neutral or nearly neutral genetic variation within and between closely related species. Phenotypic evolution occurs primarily by mutation of genes that interact with one another in the developmental process. The enormous amount of phenotypic diversity among different phyla or classes of organisms is a product of accumulation of novel mutations and their conservation that have facilitated adaptation to different environments. Novel mutations may be incorporated into the genome by natural selection (elimination of preexisting genotypes) or by random processes such as genetic and genomic drift. However, once the mutations are incorporated into the genome, they may generate developmental constraints that will affect the future direction of phenotypic evolution. It appears that the driving force of phenotypic evolution is mutation, and natural selection is of secondary importance.
Collapse
Affiliation(s)
- Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802, USA.
| |
Collapse
|
148
|
Polyglutamine variation in a flowering time protein correlates with island age in a Hawaiian plant radiation. BMC Evol Biol 2007; 7:105. [PMID: 17605781 PMCID: PMC1939987 DOI: 10.1186/1471-2148-7-105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 07/02/2007] [Indexed: 11/30/2022] Open
Abstract
Background A controversial topic in evolutionary developmental biology is whether morphological diversification in natural populations can be driven by expansions and contractions of amino acid repeats in proteins. To promote adaptation, selection on protein length variation must overcome deleterious effects of multiple correlated traits (pleiotropy). Thus far, systems that demonstrate this capacity include only ancient or artificial morphological diversifications. The Hawaiian Islands, with their linear geological sequence, present a unique environment to study recent, natural radiations. We have focused our research on the Hawaiian endemic mints (Lamiaceae), a large and diverse lineage with paradoxically low genetic variation, in order to test whether a direct relationship between coding-sequence repeat diversity and morphological change can be observed in an actively evolving system. Results Here we show that in the Hawaiian mints, extensive polyglutamine (CAG codon repeat) polymorphism within a homolog of the pleiotropic flowering time protein and abscisic acid receptor FCA tracks the natural environmental cline of the island chain, consequent with island age, across a period of 5 million years. CAG expansions, perhaps following their natural tendency to elongate, are more frequent in colonists of recently-formed, nutrient-rich islands than in their forebears on older, nutrient-poor islands. Values for several quantitative morphological variables related to reproductive investment, known from Arabidopsis fca mutant studies, weakly though positively correlate with increasing glutamine tract length. Together with protein modeling of FCA, which indicates that longer polyglutamine tracts could induce suboptimally mobile functional domains, we suggest that CAG expansions may form slightly deleterious alleles (with respect to protein function) that become fixed in founder populations. Conclusion In the Hawaiian mint FCA system, we infer that contraction of slightly deleterious CAG repeats occurred because of competition for resources along the natural environmental cline of the island chain. The observed geographical structure of FCA variation and its correlation with morphologies expected from Arabidopsis mutant studies may indicate that developmental pleiotropy played a role in the diversification of the mints. This discovery is important in that it concurs with other suggestions that repetitive amino acid motifs might provide a mechanism for driving morphological evolution, and that variation at such motifs might permit rapid tuning to environmental change.
Collapse
|
149
|
Taghli-Lamallem O, Gallet A, Leroy F, Malapert P, Vola C, Kerridge S, Fasano L. Direct interaction between Teashirt and Sex combs reduced proteins, via Tsh's acidic domain, is essential for specifying the identity of the prothorax in Drosophila. Dev Biol 2007; 307:142-51. [PMID: 17524390 DOI: 10.1016/j.ydbio.2007.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 04/11/2007] [Accepted: 04/23/2007] [Indexed: 11/25/2022]
Abstract
teashirt (tsh) encodes a zinc-finger protein that is thought to be part of a network that contributes to regionalization of the Drosophila embryo and establishes the domains of Hox protein function. tsh and the Hox gene Sex combs reduced (Scr) are essential to establish the identity of the first thoracic segment. We used the development of the first thoracic segment as a paradigm for Scr dependent regional morphological distinctions. In this specific context, we asked whether Tsh protein could have a direct influence on Scr activity. Here we present evidence that Tsh interacts directly with Scr and this interaction depends in part on the presence of a short domain located in the N-terminal half of Teashirt called "acidic domain". In vivo, expression of full length Tsh can rescue the tsh null phenotype throughout the trunk whereas Tsh lacking the Scr interacting domain rescues all the trunk defects except in the prothorax. We suggest this provides insights into the mechanism by which Tsh, in concert with Scr, specifies the prothoracic identity.
Collapse
Affiliation(s)
- Ouarda Taghli-Lamallem
- The Burnham Institute, Neuroscience and Aging Research Center, 10901 North Torrey Pines Rd, Building 7 room 7125, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Ryan JF, Burton PM, Mazza ME, Kwong GK, Mullikin JC, Finnerty JR. The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biol 2007; 7:R64. [PMID: 16867185 PMCID: PMC1779571 DOI: 10.1186/gb-2006-7-7-r64] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 07/24/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Homeodomain transcription factors are key components in the developmental toolkits of animals. While this gene superclass predates the evolutionary split between animals, plants, and fungi, many homeobox genes appear unique to animals. The origin of particular homeobox genes may, therefore, be associated with the evolution of particular animal traits. Here we report the first near-complete set of homeodomains from a basal (diploblastic) animal. RESULTS Phylogenetic analyses were performed on 130 homeodomains from the sequenced genome of the sea anemone Nematostella vectensis along with 228 homeodomains from human and 97 homeodomains from Drosophila. The Nematostella homeodomains appear to be distributed among established homeodomain classes in the following fashion: 72 ANTP class; one HNF class; four LIM class; five POU class; 33 PRD class; five SINE class; and six TALE class. For four of the Nematostella homeodomains, there is disagreement between neighbor-joining and Bayesian trees regarding their class membership. A putative Nematostella CUT class gene is also identified. CONCLUSION The homeodomain superclass underwent extensive radiations prior to the evolutionary split between Cnidaria and Bilateria. Fifty-six homeodomain families found in human and/or fruit fly are also found in Nematostella, though seventeen families shared by human and fly appear absent in Nematostella. Homeodomain loss is also apparent in the bilaterian taxa: eight homeodomain families shared by Drosophila and Nematostella appear absent from human (CG13424, EMXLX, HOMEOBRAIN, MSXLX, NK7, REPO, ROUGH, and UNC4), and six homeodomain families shared by human and Nematostella appear absent from fruit fly (ALX, DMBX, DUX, HNF, POU1, and VAX).
Collapse
Affiliation(s)
- Joseph F Ryan
- Bioinformatics Program, Boston University, Cummington Street, Boston, MA 02215, USA
- National Human Genome Research Institute, Fishers Lane, Bethesda, MD 20892, USA
| | - Patrick M Burton
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - Maureen E Mazza
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - Grace K Kwong
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| | - James C Mullikin
- National Human Genome Research Institute, Fishers Lane, Bethesda, MD 20892, USA
| | - John R Finnerty
- Bioinformatics Program, Boston University, Cummington Street, Boston, MA 02215, USA
- Department of Biology, Boston University, Cummington Street, Boston, MA 02215, USA
| |
Collapse
|