101
|
Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med 2020; 46:637-653. [PMID: 32076765 PMCID: PMC7224132 DOI: 10.1007/s00134-020-05944-4] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/16/2020] [Indexed: 01/04/2023]
Abstract
Critically ill patients often acquire neuropathy and/or myopathy labeled ICU-acquired weakness. The current insights into incidence, pathophysiology, diagnostic tools, risk factors, short- and long-term consequences and management of ICU-acquired weakness are narratively reviewed. PubMed was searched for combinations of “neuropathy”, “myopathy”, “neuromyopathy”, or “weakness” with “critical illness”, “critically ill”, “ICU”, “PICU”, “sepsis” or “burn”. ICU-acquired weakness affects limb and respiratory muscles with a widely varying prevalence depending on the study population. Pathophysiology remains incompletely understood but comprises complex structural/functional alterations within myofibers and neurons. Clinical and electrophysiological tools are used for diagnosis, each with advantages and limitations. Risk factors include age, weight, comorbidities, illness severity, organ failure, exposure to drugs negatively affecting myofibers and neurons, immobility and other intensive care-related factors. ICU-acquired weakness increases risk of in-ICU, in-hospital and long-term mortality, duration of mechanical ventilation and of hospitalization and augments healthcare-related costs, increases likelihood of prolonged care in rehabilitation centers and reduces physical function and quality of life in the long term. RCTs have shown preventive impact of avoiding hyperglycemia, of omitting early parenteral nutrition use and of minimizing sedation. Results of studies investigating the impact of early mobilization, neuromuscular electrical stimulation and of pharmacological interventions were inconsistent, with recent systematic reviews/meta-analyses revealing no or only low-quality evidence for benefit. ICU-acquired weakness predisposes to adverse short- and long-term outcomes. Only a few preventive, but no therapeutic, strategies exist. Further mechanistic research is needed to identify new targets for interventions to be tested in adequately powered RCTs.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123, Brescia, Italy.,Department of Anesthesia, Intensive Care and Emergency, ASST Spedali Civili University Hospital, Piazzale Ospedali Civili, 1, 25123, Brescia, Italy
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
102
|
Peripheral Blood Mononuclear Cells Demonstrate Mitochondrial Damage Clearance During Sepsis. Crit Care Med 2020; 47:651-658. [PMID: 30730439 DOI: 10.1097/ccm.0000000000003681] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Metabolic derangements in sepsis stem from mitochondrial injury and contribute significantly to organ failure and mortality; however, little is known about mitochondrial recovery in human sepsis. We sought to test markers of mitochondrial injury and recovery (mitochondrial biogenesis) noninvasively in peripheral blood mononuclear cells from patients with sepsis and correlate serial measurements with clinical outcomes. DESIGN Prospective case-control study. SETTING Academic Medical Center and Veterans Affairs Hospital. PATIENTS Uninfected control patients (n = 20) and septic ICU patients (n = 37). INTERVENTIONS Blood samples were collected once from control patients and serially with clinical data on days 1, 3, and 5 from septic patients. Gene products for HMOX1, NRF1, PPARGC1A, and TFAM, and mitochondrial DNA ND1 and D-loop were measured by quantitative reverse transcriptase-polymerase chain reaction. Proinflammatory cytokines were measured in plasma and neutrophil lysates. MEASUREMENTS AND MAIN RESULTS Median (interquartile range) Acute Physiology and Chronic Health Evaluation II and Sequential Organ Failure Assessment scores were 21 (8) and 10 (4), respectively, and 90-day mortality was 19%. Transcript levels of all four genes in peripheral blood mononuclear cells were significantly reduced in septic patients on day 1 (p < 0.05), whereas mitochondrial DNA copy number fell and plasma D-loop increased (both p < 0.05), indicative of mitochondrial damage. D-loop content was directly proportional to tumor necrosis factor-α and high-mobility group protein B1 cytokine expression. By day 5, we observed transcriptional activation of mitochondrial biogenesis and restoration of mitochondrial DNA copy number (p < 0.05). Patients with early activation of mitochondrial biogenesis were ICU-free by 1 week. CONCLUSIONS Our findings support data that sepsis-induced mitochondrial damage is reversed by activation of mitochondrial biogenesis and that gene transcripts measured noninvasively in peripheral blood mononuclear cells can serve as novel biomarkers of sepsis recovery.
Collapse
|
103
|
Supinski GS, Schroder EA, Callahan LA. Mitochondria and Critical Illness. Chest 2020; 157:310-322. [PMID: 31494084 PMCID: PMC7005375 DOI: 10.1016/j.chest.2019.08.2182] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/18/2019] [Accepted: 08/18/2019] [Indexed: 12/14/2022] Open
Abstract
Classically, mitochondria have largely been believed to influence the development of illness by modulating cell metabolism and determining the rate of production of high-energy phosphate compounds (eg, adenosine triphosphate). It is now recognized that this view is simplistic and that mitochondria play key roles in many other processes, including cell signaling, regulating gene expression, modulating cellular calcium levels, and influencing the activation of cell death pathways (eg, caspase activation). Moreover, these multiple mitochondrial functional characteristics are now known to influence the evolution of cellular and organ function in many disease states, including sepsis, ICU-acquired skeletal muscle dysfunction, acute lung injury, acute renal failure, and critical illness-related immune function dysregulation. In addition, diseased mitochondria generate toxic compounds, most notably released mitochondrial DNA, which can act as danger-associated molecular patterns to induce systemic toxicity and damage multiple organs throughout the body. This article reviews these evolving concepts relating mitochondrial function and acute illness. The discussion is organized into four sections: (1) basics of mitochondrial physiology; (2) cellular mechanisms of mitochondrial pathophysiology; (3) critical care disease processes whose initiation and evolution are shaped by mitochondrial pathophysiology; and (4) emerging treatments for mitochondrial dysfunction in critical illness.
Collapse
Affiliation(s)
- Gerald S Supinski
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Elizabeth A Schroder
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY
| | - Leigh Ann Callahan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, Lexington, KY.
| |
Collapse
|
104
|
Owen AM, Patel SP, Smith JD, Balasuriya BK, Mori SF, Hawk GS, Stromberg AJ, Kuriyama N, Kaneki M, Rabchevsky AG, Butterfield TA, Esser KA, Peterson CA, Starr ME, Saito H. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. eLife 2019; 8:e49920. [PMID: 31793435 PMCID: PMC6890461 DOI: 10.7554/elife.49920] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/19/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic critical illness is a global clinical issue affecting millions of sepsis survivors annually. Survivors report chronic skeletal muscle weakness and development of new functional limitations that persist for years. To delineate mechanisms of sepsis-induced chronic weakness, we first surpassed a critical barrier by establishing a murine model of sepsis with ICU-like interventions that allows for the study of survivors. We show that sepsis survivors have profound weakness for at least 1 month, even after recovery of muscle mass. Abnormal mitochondrial ultrastructure, impaired respiration and electron transport chain activities, and persistent protein oxidative damage were evident in the muscle of survivors. Our data suggest that sustained mitochondrial dysfunction, rather than atrophy alone, underlies chronic sepsis-induced muscle weakness. This study emphasizes that conventional efforts that aim to recover muscle quantity will likely remain ineffective for regaining strength and improving quality of life after sepsis until deficiencies in muscle quality are addressed.
Collapse
Affiliation(s)
- Allison M Owen
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Samir P Patel
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonUnited States
| | - Jeffrey D Smith
- Department of Biosystems and Agricultural EngineeringUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
| | - Beverly K Balasuriya
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Stephanie F Mori
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
| | - Gregory S Hawk
- Department of StatisticsUniversity of KentuckyLexingtonUnited States
| | | | - Naohide Kuriyama
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical SchoolCharlestownUnited States
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain MedicineMassachusetts General Hospital, Shriners Hospitals for Children, Harvard Medical SchoolCharlestownUnited States
| | - Alexander G Rabchevsky
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Spinal Cord and Brain Injury Research CenterUniversity of KentuckyLexingtonUnited States
| | - Timothy A Butterfield
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
| | - Karyn A Esser
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Charlotte A Peterson
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Center for Muscle BiologyUniversity of KentuckyLexingtonUnited States
- Department of Rehabilitation SciencesUniversity of KentuckyLexingtonUnited States
| | - Marlene E Starr
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonUnited States
| | - Hiroshi Saito
- Aging and Critical Care Research LaboratoryUniversity of KentuckyLexingtonUnited States
- Department of PhysiologyUniversity of KentuckyLexingtonUnited States
- Department of SurgeryUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
| |
Collapse
|
105
|
The Pathogenesis of Sepsis and Potential Therapeutic Targets. Int J Mol Sci 2019; 20:ijms20215376. [PMID: 31671729 PMCID: PMC6862039 DOI: 10.3390/ijms20215376] [Citation(s) in RCA: 467] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Sepsis is defined as “a life-threatening organ dysfunction caused by a host’s dysfunctional response to infection”. Although the treatment of sepsis has developed rapidly in the past few years, sepsis incidence and mortality in clinical treatment is still climbing. Moreover, because of the diverse manifestations of sepsis, clinicians continue to face severe challenges in the diagnosis, treatment, and management of patients with sepsis. Here, we review the recent development in our understanding regarding the cellular pathogenesis and the target of clinical diagnosis of sepsis, with the goal of enhancing the current understanding of sepsis. The present state of research on targeted therapeutic drugs is also elaborated upon to provide information for the treatment of sepsis.
Collapse
|
106
|
Pseudomonas aeruginosa Quorum Sensing Molecule Alters Skeletal Muscle Protein Homeostasis by Perturbing the Antioxidant Defense System. mBio 2019; 10:mBio.02211-19. [PMID: 31575771 PMCID: PMC6775459 DOI: 10.1128/mbio.02211-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle function is compromised in many illnesses, including chronic infections. The Pseudomonas aeruginosa quorum sensing (QS) signal, 2-amino acetophenone (2-AA), is produced during acute and chronic infections and excreted in human tissues, including the lungs of cystic fibrosis patients. We have shown that 2-AA facilitates pathogen persistence, likely via its ability to promote the formation of bacterial persister cells, and that it acts as an interkingdom immunomodulatory signal that epigenetically reprograms innate immune functions. Moreover, 2-AA compromises muscle contractility and impacts the expression of genes involved in reactive oxygen species (ROS) homeostasis in skeletal muscle and in mitochondrial functions. Here, we elucidate the molecular mechanisms of 2-AA's impairment of skeletal muscle function and ROS homeostasis. Murine in vivo and differentiated C2C12 myotube cell studies showed that 2-AA promotes ROS generation in skeletal muscle via the modulation of xanthine oxidase (XO) activity, NAD(P)H oxidase2 (NOX2) protein level, and the activity of antioxidant enzymes. ROS accumulation triggers the activity of AMP-activated protein kinase (AMPK), likely upstream of the observed locations of induction of ubiquitin ligases Muscle RING Finger 1 (MuRF1) and Muscle Atrophy F-box (MAFbx), and induces autophagy-related proteins. The protein-level perturbation in skeletal muscle of silent mating type information regulation 2 homolog 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1), and uncoupling protein 3 (UCP3) is rescued by the antioxidant N-acetyl-l-cysteine (NAC). Together, these results unveil a novel form of action of a QS bacterial molecule and provide molecular insights into the 2-AA-mediated skeletal muscle dysfunction caused by P. aeruginosa IMPORTANCE Pseudomonas aeruginosa, a bacterium that is resistant to treatment, causes serious acute, persistent, and relapsing infections in humans. There is increasing evidence that bacterial excreted small molecules play a critical role during infection. We have shown that a quorum sensing (QS)-regulated excreted small molecule, 2-AA, which is abundantly produced by P. aeruginosa, promotes persistent infections, dampens host inflammation, and triggers mitochondrial dysfunction in skeletal muscle. QS is a cell-to-cell communication system utilized by bacteria to promote collective behaviors. The significance of our study in identifying a mechanism that leads to skeletal muscle dysfunction, via the action of a QS molecule, is that it may open new avenues in the control of muscle loss as a result of infection and sepsis. Given that QS is a common characteristic of prokaryotes, it is possible that 2-AA-like molecules promoting similar effects may exist in other pathogens.
Collapse
|
107
|
Mitochondrial dysfunction is associated with long-term cognitive impairment in an animal sepsis model. Clin Sci (Lond) 2019; 133:1993-2004. [DOI: 10.1042/cs20190351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022]
Abstract
Abstract
Background: Several different mechanisms have been proposed to explain long-term cognitive impairment in sepsis survivors. The role of persisting mitochondrial dysfunction is not known. We thus sought to determine whether stimulation of mitochondrial dynamics improves mitochondrial function and long-term cognitive impairment in an experimental model of sepsis.
Methods: Sepsis was induced in adult Wistar rats by cecal ligation and perforation (CLP). Animals received intracerebroventricular injections of either rosiglitazone (biogenesis activator), rilmenidine, rapamycin (autophagy activators), or n-saline (sham control) once a day on days 7–9 after the septic insult. Cognitive impairment was assessed by inhibitory avoidance and object recognition tests. Animals were killed 24 h, 3 and 10 days after sepsis with the hippocampus and prefrontal cortex removed to determine mitochondrial function.
Results: Sepsis was associated with both acute (24 h) and late (10 days) brain mitochondrial dysfunction. Markers of mitochondrial biogenesis, autophagy and mitophagy were not up-regulated during these time points. Activation of biogenesis (rosiglitazone) or autophagy (rapamycin and rilmenidine) improved brain ATP levels and ex vivo oxygen consumption and the long-term cognitive impairment observed in sepsis survivors.
Conclusion: Long-term impairment of brain function is temporally related to mitochondrial dysfunction. Activators of autophagy and mitochondrial biogenesis could rescue animals from cognitive impairment.
Collapse
|
108
|
Wang HY, Li C, Liu WH, Deng FM, Ma Y, Guo LN, Kong DH, Hu KA, Liu Q, Wu J, Sun J, Liu YL. Autophagy inhibition via Becn1 downregulation improves the mesenchymal stem cells antifibrotic potential in experimental liver fibrosis. J Cell Physiol 2019; 235:2722-2737. [PMID: 31508820 PMCID: PMC6916329 DOI: 10.1002/jcp.29176] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
Liver fibrosis (LF) is the result of a vicious cycle between inflammation-induced chronic hepatocyte injury and persistent activation of hepatic stellate cells (HSCs). Mesenchymal stem cell (MSC)-based therapy may represent a potential remedy for treatment of LF. However, the fate of transplanted MSCs in LF remains largely unknown. In the present study, the fate and antifibrotic effect of MSCs were explored in a LF model induced by CCl4 in mouse. Additionally, MSCs were stimulated in vitro with LF-associated factors, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and transforming growth factor-β1 (TGF-β1), to mimic the LF microenvironment. We unveiled that MSCs exhibited autophagy in response to the LF microenvironment through Becn1 upregulation both in vivo and in vitro. However, autophagy suppression induced by Becn1 knockdown in MSCs resulted in enhanced antifibrotic effects on LF. The improved antifibrotic potential of MSCs may be attributable to their inhibitory effects on T lymphocyte infiltration, HSCs proliferation, as well as production of TNF-α, IFN-γ, and TGF-β1, which may be partially mediated by elevated paracrine secretion of PTGS2/PGE2 . Thus, autophagy manipulation in MSCs may be a novel strategy to promote their antifibrotic efficacy.
Collapse
Affiliation(s)
- Hang Yu Wang
- Key Laboratory of Xingjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Can Li
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Hua Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Feng Mei Deng
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yan Ma
- Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Li Na Guo
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - De Hua Kong
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Kang An Hu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Qin Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiang Wu
- Deep-Underground Medicine Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Sun
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China.,Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Lun Liu
- Sichuan Clinical Research Center for Geriatrics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
109
|
Li F, Sheng Z, Lan H, Xu J, Li J. Downregulated CHI3L1 alleviates skeletal muscle stem cell injury in a mouse model of sepsis. IUBMB Life 2019; 72:214-225. [PMID: 31463997 DOI: 10.1002/iub.2156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 08/05/2019] [Indexed: 01/03/2023]
Abstract
Sepsis is an acute systemic inflammatory response of the body to microbial infection and a life-threatening condition associated with multiple organ failure. Recent data suggest that sepsis survivors present with long-term myopathy due to the dysfunction of skeletal muscle stem cells and satellite cells. Accumulating studies have implicated chitinase-3-like-1 protein (CHI3L1) in a variety of infectious diseases, specifically sepsis. Therefore, the aim of the present study is to elucidate the potential mechanism by which CHI3L1 is involved in the injury of skeletal muscle stem cells in mouse models of sepsis. An in vitro cell model was developed by lipopolysaccharide (LPS) and in vivo mouse model of sepsis was induced by CRP-like protein (CLP). To elucidate the biological significance behind the silencing of CHI3L1, modeled skeletal muscle stem cells and mice were treated with siRNA against CHI3L1 or overexpressed CHI3L1. Highly expressed CHI3L1 was found in skeletal muscle tissues of mice with sepsis. Besides, siRNA-mediated silencing of CHI3L1 was revealed to increase Bcl-2 expression along with cell proliferation, while diminishing Bax expression, cell apopstosis as well as serum levels of TNF-α, IL-1β, INF-γ, IL-10, and IL-6. Taken conjointly, this present study provided evidence suggesting that downregulation of CHI3L1 has the potential to prevent the injury of skeletal muscle stem cells in mice with sepsis. Collectively, CHI3L1 may serve as a valuable therapeutic strategy in alleviating sepsis.
Collapse
Affiliation(s)
- Fuxing Li
- Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhiyong Sheng
- Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Haibing Lan
- Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jianning Xu
- Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Juxiang Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
110
|
Batt J, Herridge MS, Dos Santos CC. From skeletal muscle weakness to functional outcomes following critical illness: a translational biology perspective. Thorax 2019; 74:1091-1098. [PMID: 31431489 DOI: 10.1136/thoraxjnl-2016-208312] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/23/2022]
Abstract
Intensive care unit acquired weakness (ICUAW) is now a well-known entity complicating critical illness. It increases mortality and in the critical illness survivor it is associated with physical disability, substantially increased health resource utilisation and healthcare costs. Skeletal muscle wasting is a key driver of ICUAW and physical functional outcomes in both the short and long term. To date, there is no intervention that can universally and consistently prevent muscle loss during critical illness, or enhance its recovery following intensive care unit discharge, to improve physical function. Clinical trials of early mobilisation or exercise training, or enhanced nutritional support have generated inconsistent results and we have no effective pharmacological interventions. This review will delineate our current understanding of the mechanisms underpinning the development and persistence of skeletal muscle loss and dysfunction in the critically ill individual, highlighting recent discoveries and clinical observations, and utilisation of this knowledge in the development of novel therapeutics.
Collapse
Affiliation(s)
- Jane Batt
- Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada .,Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Margaret S Herridge
- Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Claudia C Dos Santos
- Keenan Research Center for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
111
|
Human Adipose Tissue-Derived Stromal Cells Attenuate the Multiple Organ Injuries Induced by Sepsis and Mechanical Ventilation in Mice. Inflammation 2019; 42:485-495. [PMID: 30317531 DOI: 10.1007/s10753-018-0905-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mechanical ventilation (MV) can augment sepsis-induced organ injury. Previous studies indicate that human mesenchymal stem cells (hMSCs) have immune-modulatory effect. We hypothesize that human adipose tissue-derived stromal cells (hADSCs) could attenuate MV and sepsis-induced organ injury. Male C57BL/6 mice were randomized to five groups: Sham group; MV group; cecal ligation and puncture (CLP) group; CLP + MV group; and CLP + MV + hADSC group. Anesthetized mice were subjected to cecal ligation and puncture surgery. The mice then received mechanical ventilation (12 ml/kg), with or without the intervention of hADSCs. The survival rate, organ injury of the liver and kidney, total protein and cells in bronchoalveolar lavage fluid (BALF), and histological changes of the lung and liver were examined. The level of IL-6 in BALF was measured by ELISA. Real-time quantitative PCR was used to analyze mRNA of IL-6 and tumor necrosis factor-α (TNF-α). hADSC treatment increased survival rate of septic mice with MV. hADSCs attenuated dysfunction of the liver and kidney and decreased lung inflammation and tissue injury of the liver and lung. IL-6 level in BALF and TNF-α and IL-6 mRNA expression in the tissue of the lung, liver, and kidney were significantly reduced by hADSC treatment. MV with conventional tidal volume aggravates CLP-induced multiple organ injuries. hADSCs inhibited the compound injuries possibly through modulation of immune responses.
Collapse
|
112
|
Laroye C, Boufenzer A, Jolly L, Cunat L, Alauzet C, Merlin JL, Yguel C, Bensoussan D, Reppel L, Gibot S. Bone marrow vs Wharton's jelly mesenchymal stem cells in experimental sepsis: a comparative study. Stem Cell Res Ther 2019; 10:192. [PMID: 31248453 PMCID: PMC6598309 DOI: 10.1186/s13287-019-1295-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The use of mesenchymal stem cells (MSCs) is being extensively studied in clinical trials in the setting of various diseases including diabetes, stroke, and progressive multiple sclerosis. The unique immunomodulatory properties of MSCs also point them as a possible therapeutic tool during sepsis and septic shock, a devastating syndrome associated with 30-35% mortality. However, MSCs are not equal regarding their activity, depending on their tissue origin. Here, we aimed at comparing the in vivo properties of MSCs according to their tissue source (bone marrow (BM) versus Wharton's jelly (WJ)) in a murine cecal ligation and puncture (CLP) model of sepsis that mimics a human peritonitis. We hypothesized that MSC properties may vary depending on their tissue source in the setting of sepsis. METHODS CLP, adult, male, C57BL/6 mice were randomized in 3 groups receiving respectively 0.25 × 106 BM-MSCs, 0.25 × 106 WJ-MSCs, or 150 μL phosphate-buffered saline (PBS) intravenously 24 h after the CLP procedure. RESULTS We observed that both types of MSCs regulated leukocyte trafficking and reduced organ dysfunction, while only WJ-MSCs were able to improve bacterial clearance and survival. CONCLUSION This study highlights the importance to determine the most appropriate source of MSCs for a given therapeutic indication and suggests a better profile for WJ-MSCs during sepsis.
Collapse
Affiliation(s)
- Caroline Laroye
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de Tissus, Allée du Morvan, 54500 Vandoeuvre-lès-Nancy, France
- INSERM UMRS-1116, Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | | | - Lucie Jolly
- INSERM UMRS-1116, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- INOTREM, 54500 Vandoeuvre-lès-Nancy, France
| | - Lisiane Cunat
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 vandoeuvre-lès-Nancy, France
| | - Corentine Alauzet
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 vandoeuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, 54000 Nancy, France
- Service de Biopathologie - Unité de Biologie des Tumeurs, Institut de Cancérologie de Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Clémence Yguel
- CHRU de Nancy, laboratoire anatomie et cytologie pathologiques, 54500 Vandoeuvre-lès-Nancy, France
| | - Danièle Bensoussan
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de Tissus, Allée du Morvan, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Loïc Reppel
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de Tissus, Allée du Morvan, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Sébastien Gibot
- INSERM UMRS-1116, Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| |
Collapse
|
113
|
Custodero C, Wu Q, Ghita GL, Anton SD, Brakenridge SC, Brumback BA, Efron PA, Gardner AK, Leeuwenburgh C, Moldawer LL, Petersen JW, Moore FA, Mankowski RT. Prognostic value of NT-proBNP levels in the acute phase of sepsis on lower long-term physical function and muscle strength in sepsis survivors. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:230. [PMID: 31234943 PMCID: PMC6589880 DOI: 10.1186/s13054-019-2505-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022]
Abstract
Background Sepsis survivors often develop chronic critical illness (CCI) and demonstrate the persistent inflammation, immunosuppression, and catabolism syndrome predisposing them to long-term functional limitations and higher mortality. There is a need to identify biomarkers that can predict long-term worsening of physical function to be able to act early and prevent mobility loss. N-terminal pro-brain natriuretic peptide (NT-proBNP) is a well-accepted biomarker of cardiac overload, but it has also been shown to be associated with long-term physical function decline. We explored whether NT-proBNP blood levels in the acute phase of sepsis are associated with physical function and muscle strength impairment at 6 and 12 months after sepsis onset. Methods This is a retrospective analysis conducted in 196 sepsis patients (aged 18–86 years old) as part of the University of Florida (UF) Sepsis and Critical Illness Research Center (SCIRC) who consented to participate in the 12-month follow-up study. NT-proBNP was measured at 24 h after sepsis onset. Patients were followed to determine physical function by short physical performance battery (SPPB) test score (scale 0 to12—higher score corresponds with better physical function) and upper limb muscle strength by hand grip strength test (kilograms) at 6 and 12 months. We used a multivariate linear regression model to test an association between NT-proBNP levels, SPPB, and hand grip strength scores. Missing follow-up data or absence due to death was accounted for by using inverse probability weighting based on concurrent health performance status scores. Statistical significance was set at p ≤ 0.05. Results After adjusting for covariates (age, gender, race, Charlson comorbidity index, APACHE II score, and presence of CCI condition), higher levels of NT-proBNP at 24 h after sepsis onset were associated with lower SPPB scores at 12 months (p < 0.05) and lower hand grip strength at 6-month (p < 0.001) and 12-month follow-up (p < 0.05). Conclusions NT-proBNP levels during the acute phase of sepsis may be a useful indicator of higher risk of long-term impairments in physical function and muscle strength in sepsis survivors.
Collapse
Affiliation(s)
- Carlo Custodero
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL, 32611, USA.,Dipartimento Interdisciplinare di Medicina, Clinica Medica Cesare Frugoni, University of Bari Aldo Moro, Bari, Italy
| | - Quran Wu
- Department of Surgery, University of Florida, Gainesville, FL, USA.,Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Gabriela L Ghita
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Stephen D Anton
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL, 32611, USA
| | | | - Babette A Brumback
- Department of Surgery, University of Florida, Gainesville, FL, USA.,Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Anna K Gardner
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL, 32611, USA.,Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL, 32611, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - John W Petersen
- Department of Cardiology, University of Florida, Gainesville, FL, USA
| | | | - Robert T Mankowski
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Road, Gainesville, FL, 32611, USA.
| |
Collapse
|
114
|
García-Martínez MÁ, Montejo González JC, García-de-Lorenzo Y Mateos A, Teijeira S. Muscle weakness: Understanding the principles of myopathy and neuropathy in the critically ill patient and the management options. Clin Nutr 2019; 39:1331-1344. [PMID: 31255348 DOI: 10.1016/j.clnu.2019.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/12/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Myo-neuropathy of the critically ill patient is a difficult nosological entity to understand and manage. It appears soon after injury, and it is estimated that 20-30% of patients admitted to Intensive Care Units will develop it in some degree. Although muscular and nervous involvement are related, the former has a better prognosis. Myo-neuropathy associates to more morbidity, longer stay in Intensive Care Unit and in hospital, and also to higher costs and mortality. It is considered part of the main determinants of the new entities: the Chronic Critical Patient and the Post Intensive Care Syndrome. This update focuses on aetiology, pathophysiology, diagnosis and strategies that can prevent, alleviate and/or improve muscle (or muscle-nerve) weakness.
Collapse
Affiliation(s)
- Miguel Ángel García-Martínez
- Department of Intensive Care Medicine, Hospital Universitario de Torrevieja, Ctra. Torrevieja a San Miguel de Salinas s/n, 03186, Torrevieja, Alicante, Spain.
| | - Juan Carlos Montejo González
- Department of Intensive Care Medicine, Hospital Universitario, 12 de Octubre, Av. Cordoba, s/n, 28041, Madrid, Spain
| | | | - Susana Teijeira
- Rare Diseases & Pediatric Medicine Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Complejo Hospitalario Universitario de Vigo, Calle de Clara Campoamor, 341, 36312, Vigo, Pontevedra, Spain
| |
Collapse
|
115
|
Mignemi NA, McClatchey PM, Kilchrist KV, Williams IM, Millis BA, Syring KE, Duvall CL, Wasserman DH, McGuinness OP. Rapid changes in the microvascular circulation of skeletal muscle impair insulin delivery during sepsis. Am J Physiol Endocrinol Metab 2019; 316:E1012-E1023. [PMID: 30860883 PMCID: PMC6620574 DOI: 10.1152/ajpendo.00501.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/21/2019] [Accepted: 03/07/2019] [Indexed: 01/07/2023]
Abstract
Sepsis costs the healthcare system $23 billion annually and has a mortality rate between 10 and 40%. An early indication of sepsis is the onset of hyperglycemia, which is the result of sepsis-induced insulin resistance in skeletal muscle. Previous investigations have focused on events in the myocyte (e.g., insulin signaling and glucose transport and subsequent metabolism) as the causes for this insulin-resistant state. However, the delivery of insulin to the skeletal muscle is also an important determinant of insulin action. Skeletal muscle microvascular blood flow, which delivers the insulin to the muscle, is known to be decreased during sepsis. Here we test whether the reduced capillary blood flow to skeletal muscle belies the sepsis-induced insulin resistance by reducing insulin delivery to the myocyte. We hypothesize that decreased capillary flow and consequent decrease in insulin delivery is an early event that precedes gross cardiovascular alterations seen with sepsis. This hypothesis was examined in mice treated with either lipopolysaccharide (LPS) or polymicrobial sepsis followed by intravital microscopy of the skeletal muscle microcirculation. We calculated insulin delivery to the myocyte using two independent methods and found that LPS and sepsis rapidly reduce insulin delivery to the skeletal muscle by ~50%; this was driven by decreases in capillary flow velocity and the number of perfused capillaries. Furthermore, the changes in skeletal muscle microcirculation occur before changes in both cardiac output and arterial blood pressure. These data suggest that a rapid reduction in skeletal muscle insulin delivery contributes to the induction of insulin resistance during sepsis.
Collapse
Affiliation(s)
- Nicholas A Mignemi
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - P Mason McClatchey
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Kameron V Kilchrist
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Ian M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
- Vanderbilt Biophotonics Center, Vanderbilt University , Nashville, Tennessee
| | - Kristen E Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Vanderbilt Mouse Metabolic Phenotyping Center , Nashville, Tennessee
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Vanderbilt Mouse Metabolic Phenotyping Center , Nashville, Tennessee
| |
Collapse
|
116
|
Li S, Hu Q, Huang J, Wu X, Ren J. Mitochondria-Derived Damage-Associated Molecular Patterns in Sepsis: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6914849. [PMID: 31205588 PMCID: PMC6530230 DOI: 10.1155/2019/6914849] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Sepsis is one of the most serious health hazards. Current research suggests that the pathogenesis of sepsis is mediated by both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Mitochondria are among the most important organelles in cells and determine their life and death. A variety of mitochondria-derived DAMPs (mtDAMPs) are similar to bacteria because mitochondria are derived from bacteria according to the mitochondrial endosymbiotic theory. Their activated signaling pathways extensively affect organ functions, the immune system, and metabolic functions in sepsis. In this review, we describe the essential roles of mtDAMPs in sepsis and discuss their research prospects and clinical importance.
Collapse
Affiliation(s)
- Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China
- Lab for Trauma and Surgical Infections, China
| | - Qiongyuan Hu
- Lab for Trauma and Surgical Infections, China
- Medical School of Nanjing University, Nanjing 210093, China
| | - Jinjian Huang
- Lab for Trauma and Surgical Infections, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China
- Lab for Trauma and Surgical Infections, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China
- Lab for Trauma and Surgical Infections, China
- Medical School of Nanjing University, Nanjing 210093, China
- School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
117
|
Mitchell R, Mellows B, Sheard J, Antonioli M, Kretz O, Chambers D, Zeuner MT, Tomkins JE, Denecke B, Musante L, Joch B, Debacq-Chainiaux F, Holthofer H, Ray S, Huber TB, Dengjel J, De Coppi P, Widera D, Patel K. Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res Ther 2019; 10:116. [PMID: 30953537 PMCID: PMC6451311 DOI: 10.1186/s13287-019-1213-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The mechanisms underpinning the regenerative capabilities of mesenchymal stem cells (MSC) were originally thought to reside in their ability to recognise damaged tissue and to differentiate into specific cell types that would replace defective cells. However, recent work has shown that molecules produced by MSCs (secretome), particularly those packaged in extracellular vesicles (EVs), rather than the cells themselves are responsible for tissue repair. METHODS Here we have produced a secretome from adipose-derived mesenchymal stem cells (ADSC) that is free of exogenous molecules by incubation within a saline solution. Various in vitro models were used to evaluate the effects of the secretome on cellular processes that promote tissue regeneration. A cardiotoxin-induced skeletal muscle injury model was used to test the regenerative effects of the whole secretome or isolated extracellular vesicle fraction in vivo. This was followed by bioinformatic analysis of the components of the protein and miRNA content of the secretome and finally compared to a secretome generated from a secondary stem cell source. RESULTS Here we have demonstrated that the secretome from adipose-derived mesenchymal stem cells shows robust effects on cellular processes that promote tissue regeneration. Furthermore, we show that the whole ADSC secretome is capable of enhancing the rate of skeletal muscle regeneration following acute damage. We assessed the efficacy of the total secretome compared with the extracellular vesicle fraction on a number of assays that inform on tissue regeneration and demonstrate that both fractions affect different aspects of the process in vitro and in vivo. Our in vitro, in vivo, and bioinformatic results show that factors that promote regeneration are distributed both within extracellular vesicles and the soluble fraction of the secretome. CONCLUSIONS Taken together, our study implies that extracellular vesicles and soluble molecules within ADSC secretome act in a synergistic manner to promote muscle generation.
Collapse
Affiliation(s)
- Robert Mitchell
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ben Mellows
- School of Biological Sciences, University of Reading, Reading, UK
| | - Jonathan Sheard
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
- Sheard BioTech Ltd, 20-22 Wenlock Road, London, N1 7GU UK
| | | | - Oliver Kretz
- Department of Medicine III, Faculty of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Renal Division, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King’s College, London, UK
| | - Marie-Theres Zeuner
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - James E. Tomkins
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - Bernd Denecke
- Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University, Aachen, Germany
| | - Luca Musante
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
| | - Barbara Joch
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Harry Holthofer
- Centre for Bioanalytical Sciences (CBAS), Dublin City University, Dublin, Ireland
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Steve Ray
- Micregen, Alderley Edge, Manchester, UK
| | - Tobias B. Huber
- Department of Medicine III, Faculty of Medicine University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Renal Division, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and Centre for Systems Biology (ZBSA), Albert-Ludwigs-University, Freiburg, Germany
| | - Joern Dengjel
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Paolo De Coppi
- Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Darius Widera
- Stem Cell Biology and Regenerative Biology Group, School of Pharmacy, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
- FRIAS Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
118
|
Beljanski V, Grinnemo KH, Österholm C. Pleiotropic roles of autophagy in stem cell-based therapies. Cytotherapy 2019; 21:380-392. [PMID: 30876741 DOI: 10.1016/j.jcyt.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/25/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Stem cells (SCs) have been proven to possess regenerative and immunomodulatory properties and can be used to treat diseases that involve loss of cells due to tissue damage or inflammation. For this approach to succeed, SCs or their derivatives should be able to engraft in the target tissue at least for a short period of time. Unfortunately, once injected, therapeutic SCs will encounter a hostile environment, including hypoxia, lack of nutrients and stromal support, and cells may also be targeted and rejected by the immune system. Therefore, SC's stress-response mechanisms likely play a significant role in survival of injected cells and possibly contribute to their therapeutic efficacy. Autphagy, a stress-response pathway, is involved in many different cellular processes, such as survival during hypoxia and nutrient deprivation, cellular differentiation and de-differentiation, and it can also contribute to their immunovisibility by regulating antigen presentation and cytokine secretion. Autophagy machinery interacts with many proteins and signaling pathways that regulate SC properties, including PI3K/Akt, mammalian target of rapamycin (mTOR), Wnt, Hedgehog and Notch, and it is also involved in regulating intracellular reactive oxygen species (ROS) levels. In this review, we contend that autophagy is an important therapeutic target that can be used to improve the outcome of SC-based tissue repair and regeneration. Further research should reveal whether inhibition or stimulation of autophagy increases the therapeutic utility of SCs and it should also identify appropriate therapeutic regimens that can be applied in the clinic.
Collapse
Affiliation(s)
- Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA.
| | - Karl-Henrik Grinnemo
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anesthesiology, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
119
|
Preau S, Ambler M, Sigurta A, Kleyman A, Dyson A, Hill NE, Boulanger E, Singer M. Protein recycling and limb muscle recovery after critical illness in slow- and fast-twitch limb muscle. Am J Physiol Regul Integr Comp Physiol 2019; 316:R584-R593. [PMID: 30789789 DOI: 10.1152/ajpregu.00221.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An impaired capacity of muscle to regenerate after critical illness results in long-term functional disability. We previously described in a long-term rat peritonitis model that gastrocnemius displays near-normal histology whereas soleus demonstrates a necrotizing phenotype. We thus investigated the link between the necrotizing phenotype of critical illness myopathy and proteasome activity in these two limb muscles. We studied male Wistar rats that underwent an intraperitoneal injection of the fungal cell wall constituent zymosan or n-saline as a sham-treated control. Rats (n = 74) were killed at 2, 7, and 14 days postintervention with gastrocnemius and soleus muscle removed and studied ex vivo. Zymosan-treated animals displayed an initial reduction of body weight but a persistent decrease in mass of both lower hindlimb muscles. Zymosan increased chymotrypsin- and trypsin-like proteasome activities in gastrocnemius at days 2 and 7 but in soleus at day 2 only. Activated caspases-3 and -9, polyubiquitin proteins, and 14-kDa fragments of myofibrillar actin (proteasome substrates) remained persistently increased from day 2 to day 14 in soleus but not in gastrocnemius. These results suggest that a relative proteasome deficiency in soleus is associated with a necrotizing phenotype during long-term critical illness. Rescuing proteasome clearance may offer a potential therapeutic option to prevent long-term functional disability in critically ill patients.
Collapse
Affiliation(s)
- Sebastien Preau
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom.,Université de Lille, Centre Hospitalier et Universitaire de Lille, INSERM, Lille Inflammation Research International Center, Lille, France
| | - Michael Ambler
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| | - Anna Sigurta
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| | - Anna Kleyman
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| | - Neil E Hill
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| | - Eric Boulanger
- Université de Lille, Centre Hospitalier et Universitaire de Lille, INSERM, Lille Inflammation Research International Center, Lille, France
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London , London , United Kingdom
| |
Collapse
|
120
|
Sepsis-Induced Channelopathy in Skeletal Muscles is Associated with Expression of Non-Selective Channels. Shock 2019; 49:221-228. [PMID: 28562477 DOI: 10.1097/shk.0000000000000916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscles (∼50% of the body weight) are affected during acute and late sepsis and represent one sepsis associate organ dysfunction. Cell membrane changes have been proposed to result from a channelopathy of yet unknown cause associated with mitochondrial dysfunction and muscle atrophy. We hypothesize that the channelopathy might be explained at least in part by the expression of non-selective channels. Here, this possibility was studied in a characterized mice model of late sepsis with evident skeletal muscle atrophy induced by cecal ligation and puncture (CLP). At day seven after CLP, skeletal myofibers were found to present de novo expression (immunofluorescence) of connexins 39, 43, and 45 and P2X7 receptor whereas pannexin1 did not show significant changes. These changes were associated with increased sarcolemma permeability (∼4 fold higher dye uptake assay), ∼25% elevated in intracellular free-Ca concentration (FURA-2), activation of protein degradation via ubiquitin proteasome pathway (Murf and Atrogin 1 reactivity), moderate reduction in oxygen consumption not explained by changes in levels of relevant respiratory proteins, ∼3 fold decreased mitochondrial membrane potential (MitoTracker Red CMXRos) and ∼4 fold increased mitochondrial superoxide production (MitoSox). Since connexin hemichannels and P2X7 receptors are permeable to ions and small molecules, it is likely that they are main protagonists in the channelopathy by reducing the electrochemical gradient across the cell membrane resulting in detrimental metabolic changes and muscular atrophy.
Collapse
|
121
|
Prabhakar H, Ali Z. Intensive Care Management of the Neuromuscular Patient. TEXTBOOK OF NEUROANESTHESIA AND NEUROCRITICAL CARE 2019. [PMCID: PMC7120052 DOI: 10.1007/978-981-13-3390-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuromuscular emergencies are a distinct group of acute neurological diseases with distinct characteristic presentations. Patients who suffer from this group of diseases are at immediate risk of losing protection of their native airway as well as aspirating orogastric contents. This is secondary to weakness of the muscles of the oropharynx and respiratory muscles. Although some neuromuscular emergencies such as myasthenia gravis or Guillain-Barré syndrome are well understood, others such as critical illness myopathy and neuropathy are less well characterized. In this chapter, we have discussed the pathophysiology, diagnostic evaluation, and management options in patients who are admitted to the intensive care unit. We have also emphasized the importance of a thorough understanding of the use of pharmacological anesthetic agents in this patient population.
Collapse
Affiliation(s)
- Hemanshu Prabhakar
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Zulfiqar Ali
- Division of Neuroanesthesiology, Department of Anesthesiology, Sher-i-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir India
| |
Collapse
|
122
|
Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2018; 20:1-16. [PMID: 30229407 DOI: 10.1007/s10522-018-9769-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023]
Abstract
Aging is a biological process characterized by a progressive functional decline in tissues and organs, which eventually leads to mortality. Telomeres, the repetitive DNA repeat sequences at the end of linear eukaryotic chromosomes protecting chromosome ends from degradation and illegitimate recombination, play a crucial role in cell fate and aging. Due to the mechanism of replication, telomeres shorten as cells proliferate, which consequently contributes to cellular senescence and mitochondrial dysfunction. Cells are the basic unit of organismal structure and function, and mitochondria are the powerhouse and metabolic center of cells. Therefore, cellular senescence and mitochondrial dysfunction would result in tissue or organ degeneration and dysfunction followed by somatic aging through multiple pathways. In this review, we summarized the main mechanisms of cellular senescence, mitochondrial malfunction and aging triggered by telomere attrition. Understanding the molecular mechanisms involved in the aging process may elicit new strategies for improving health and extending lifespan.
Collapse
Affiliation(s)
- Yukun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuewen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuelu Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
123
|
Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr 2018; 38:982-995. [PMID: 30201141 DOI: 10.1016/j.clnu.2018.08.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 12/30/2022]
Abstract
Persistent physical impairment is frequently encountered after critical illness. Recent data point towards mitochondrial dysfunction as an important determinant of this phenomenon. This narrative review provides a comprehensive overview of the present knowledge of mitochondrial function during and after critical illness and the role and potential therapeutic applications of specific micronutrients to restore mitochondrial function. Increased lactate levels and decreased mitochondrial ATP-production are common findings during critical illness and considered to be associated with decreased activity of muscle mitochondrial complexes in the electron transfer system. Adequate nutrient levels are essential for mitochondrial function as several specific micronutrients play crucial roles in energy metabolism and ATP-production. We have addressed the role of B vitamins, ascorbic acid, α-tocopherol, selenium, zinc, coenzyme Q10, caffeine, melatonin, carnitine, nitrate, lipoic acid and taurine in mitochondrial function. B vitamins and lipoic acid are essential in the tricarboxylic acid cycle, while selenium, α-tocopherol, Coenzyme Q10, caffeine, and melatonin are suggested to boost the electron transfer system function. Carnitine is essential for fatty acid beta-oxidation. Selenium is involved in mitochondrial biogenesis. Notwithstanding the documented importance of several nutritional components for optimal mitochondrial function, at present, there are no studies providing directions for optimal requirements during or after critical illness although deficiencies of these specific micronutrients involved in mitochondrial metabolism are common. Considering the interplay between these specific micronutrients, future research should pay more attention to their combined supply to provide guidance for use in clinical practise. REVISION NUMBER: YCLNU-D-17-01092R2.
Collapse
Affiliation(s)
- E Wesselink
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - W A C Koekkoek
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| | - S Grefte
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 DW, Wageningen, The Netherlands.
| | - R F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - A R H van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| |
Collapse
|
124
|
Klein O, Strohschein K, Nebrich G, Fuchs M, Thiele H, Giavalisco P, Duda GN, Winkler T, Kobarg JH, Trede D, Geissler S. Unraveling local tissue changes within severely injured skeletal muscles in response to MSC-based intervention using MALDI Imaging mass spectrometry. Sci Rep 2018; 8:12677. [PMID: 30140012 PMCID: PMC6107672 DOI: 10.1038/s41598-018-30990-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 08/09/2018] [Indexed: 12/11/2022] Open
Abstract
Pre-clinical and clinical studies are now beginning to demonstrate the high potential of cell therapies in enhancing muscle regeneration. We previously demonstrated functional benefit after the transplantation of autologous bone marrow mesenchymal stromal cells (MSC-TX) into a severe muscle crush trauma model. Despite our increasing understanding of the molecular and cellular mechanisms underlying MSC's regenerative function, little is known about the local molecular alterations and their spatial distribution within the tissue after MSC-TX. Here, we used MALDI imaging mass spectrometry (MALDI-IMS) in combination with multivariate statistical strategies to uncover previously unknown peptide alterations within severely injured skeletal muscles. Our analysis revealed that very early molecular alterations in response to MSC-TX occur largely in the region adjacent to the trauma and only to a small extent in the actual trauma region. Using "bottom up" mass spectrometry, we subsequently identified the proteins corresponding to the differentially expressed peptide intensity distributions in the specific muscle regions and used immunohistochemistry to validate our results. These findings extend our current understanding about the early molecular processes of muscle healing and highlights the critical role of trauma adjacent tissue during the early therapeutic response upon treatment with MSC.
Collapse
Affiliation(s)
- Oliver Klein
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Kristin Strohschein
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Grit Nebrich
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Fuchs
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Herbert Thiele
- Fraunhofer - Inst. Medical Image Computing MEVIS, Maria-Goeppert-Straße 3, 23562, Lübeck, Germany
| | - Patrick Giavalisco
- Experimental Systems Biology Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg, 14476, Golm, Germany
| | - Georg N Duda
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias Winkler
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jan Hendrik Kobarg
- SCiLS, Zweigniederlassung Bremen der Bruker Daltonik, Fahrenheitstr. 1, 28359, Bremen, Germany
| | - Dennis Trede
- SCiLS, Zweigniederlassung Bremen der Bruker Daltonik, Fahrenheitstr. 1, 28359, Bremen, Germany
| | - Sven Geissler
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
125
|
Parotto M, Batt J, Herridge M. The Pathophysiology of Neuromuscular Dysfunction in Critical Illness. Crit Care Clin 2018; 34:549-556. [PMID: 30223993 DOI: 10.1016/j.ccc.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disability after critical illness is heterogeneous and related to multiple morbidities. Muscle and nerve injury represent prevalent and important determinants of long-term disability. As the population ages and accrues a greater burden of comorbid illness and medical complexity, those patients admitted to an intensive care unit will be challenged in their recovery because of diminished organ reserve and variable tissue resiliency. This represents a significant burgeoning public health concern. This article presents a brief overview of the pathophysiology and the emerging basic science of neuromuscular dysfunction in critical illness.
Collapse
Affiliation(s)
- Matteo Parotto
- Department of Anesthesia, University of Toronto, 123 Edward Street, Toronto, ON M5G 1E2, Canada; Department of Anesthesia and Pain Management, Toronto General Hospital, EN 442 - 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada; Interdepartmental Division of Critical Care Medicine, University of Toronto, 209 Victoria Street, Toronto, ON M5B 1T8, Canada.
| | - Jane Batt
- Department of Medicine, University of Toronto, 1 King's College Cir, Toronto, ON M5S 1A8, Canada; Keenan Research Centre for Biomedical Research, 30 Bond St, Toronto, ON M5B 1W8, Canada
| | - Margaret Herridge
- Interdepartmental Division of Critical Care Medicine, University of Toronto, 209 Victoria Street, Toronto, ON M5B 1T8, Canada; Department of Medicine, University Health Network, 190 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
126
|
Laroye C, Lemarié J, Boufenzer A, Labroca P, Cunat L, Alauzet C, Groubatch F, Cailac C, Jolly L, Bensoussan D, Reppel L, Gibot S. Clinical-grade mesenchymal stem cells derived from umbilical cord improve septic shock in pigs. Intensive Care Med Exp 2018; 6:24. [PMID: 30091119 PMCID: PMC6082751 DOI: 10.1186/s40635-018-0194-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Septic shock is the leading cause of death in intensive care units. The pathophysiological complexity of this syndrome contributes to an absence of specific treatment. Several preclinical studies in murine models of septic shock have shown improvements to organ injury and survival after administration of mesenchymal stem cells (MSCs). To better mimic a clinical approach in humans, we investigated the impact of randomized controlled double-blind administration of clinical-grade umbilical cord-derived MSCs to a relevant pig model of septic shock. METHODS Septic shock was induced by fecal peritonitis in 12 male domestic pigs. Animals were resuscitated by an experienced intensivist including fluid administration and vasopressors. Four hours after the induction of peritonitis, pigs were randomized to receive intravenous injection of thawed umbilical cord-derived MSCs (UCMSC) (1 × 106 UCMSCs/kg diluted in 75 mL hydroxyethyl starch (HES), (n = 6) or placebo (HES alone, n = 6). Researchers were double-blinded to the treatment administered. Hemodynamic parameters were continuously recorded. Gas exchange, acid-base status, organ function, and plasma cytokine concentrations were assessed at regular intervals until 24 h after the onset of peritonitis when animals were sacrificed under anesthesia. RESULTS Peritonitis induced profound hypotension, hyperlactatemia, and multiple organ failure. These disorders were significantly attenuated when animals were treated with UCMSCs. In particular, cardiovascular failure was attenuated, as attested by a better mean arterial pressure and reduced lactatemia, despite lower norepinephrine requirements. As such, UCMSCs improved survival in this very severe model (60% survival vs. 0% at 24 h). CONCLUSION UCMSCs administration is beneficial in this pig model of polymicrobial septic shock.
Collapse
Affiliation(s)
- Caroline Laroye
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Jérémie Lemarié
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| | | | - Pierre Labroca
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| | - Lisiane Cunat
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 Vandoeuvre-lès-Nancy, France
| | - Corentine Alauzet
- Université de Lorraine, 54000 Nancy, France
- EA 7300 Stress Immunité Pathogènes, 54500 Vandoeuvre-lès-Nancy, France
| | - Frédérique Groubatch
- Université de Lorraine, 54000 Nancy, France
- Ecole de chirurgie, 54500 Vandoeuvre-lès-Nancy, France
| | - Clémence Cailac
- CHRU de Nancy, laboratoire anatomie et cytologie pathologiques, 54000 Nancy, France
| | - Lucie Jolly
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- INOTREM, 54500 Vandoeuvre-lès-Nancy, France
| | - Danièle Bensoussan
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Loïc Reppel
- CHRU de Nancy, Unité de Thérapie Cellulaire et banque de tissus, 54500 Vandoeuvre-lès-Nancy, France
- CNRS, UMR 7365, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
| | - Sébastien Gibot
- INSERM, U1116, 54500 Vandoeuvre-lès-Nancy, France
- Université de Lorraine, 54000 Nancy, France
- CHRU de Nancy, Service de Réanimation Médicale, Hôpital Central, 54000 Nancy, France
| |
Collapse
|
127
|
Mechanical ventilation and Streptococcus pneumoniae pneumonia alter mitochondrial homeostasis. Sci Rep 2018; 8:11718. [PMID: 30082877 PMCID: PMC6078986 DOI: 10.1038/s41598-018-30226-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Required mechanical ventilation (MV) may contribute to bacterial dissemination in patients with Streptococcus pneumoniae pneumonia. Significant variations in plasma mitochondrial DNA (mtDNA) have been reported in sepsis according to the outcome. The impact of lung stretch during MV was addressed in a model of pneumonia. Healthy or S. pneumoniae infected rabbits were submitted to MV or kept spontaneously breathing (SB). Bacterial burden, cytokines release, mitochondrial DNA levels, integrity and transcription were assessed along with 48-hour mortality. Compared with infected SB rabbits, MV rabbits developed more severe pneumonia with greater concentrations of bacteria in the lungs, higher rates of systemic dissemination, higher levels of circulating inflammatory mediators and decreased survival. Pulmonary mtDNA levels were significantly lower in infected animals as compared to non-infected ones, whenever they were SB or MV. After a significant early drop, circulating mtDNA levels returned to baseline values in the infected SB rabbits, but remained low until death in the MV ones. Whole blood ex-vivo stimulation with Streptococcus pneumoniae resulted in a reduction of polymorphonuclear leukocytes mitochondrial density and plasma mtDNA concentrations. Thus, persistent mitochondrial depletion and dysfunction in the infected animals submitted to MV could account for their less efficient immune response against S. pneumoniae.
Collapse
|
128
|
Van Wyngene L, Vandewalle J, Libert C. Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last? EMBO Mol Med 2018; 10:e8712. [PMID: 29976786 PMCID: PMC6079534 DOI: 10.15252/emmm.201708712] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/27/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a highly lethal and urgent unmet medical need. It is the result of a complex interplay of several pathways, including inflammation, immune activation, hypoxia, and metabolic reprogramming. Specifically, the regulation and the impact of the latter have become better understood in which the highly catabolic status during sepsis and its similarity with starvation responses appear to be essential in the poor prognosis in sepsis. It seems logical that new interventions based on the recognition of new therapeutic targets in the key metabolic pathways should be developed and may have a good chance to penetrate to the bedside. In this review, we concentrate on the pathological changes in metabolism, observed during sepsis, and the presumed underlying mechanisms, with a focus on the level of the organism and the interplay between different organ systems.
Collapse
Affiliation(s)
- Lise Van Wyngene
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
129
|
Langley RJ, Wong HR. Early Diagnosis of Sepsis: Is an Integrated Omics Approach the Way Forward? Mol Diagn Ther 2018. [PMID: 28624903 DOI: 10.1007/s40291-017-0282-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sepsis remains one of the leading causes of death in the USA and it is expected to get worse as the population ages. Moreover, the standard of care, which recommends aggressive treatment with appropriate antibiotics, has led to an increase in multiple drug-resistant organisms. There is a dire need for the development of new antibiotics, improved antibiotic stewardship, and therapies that treat the host response. Development of new sepsis therapeutics has been a disappointment as no drugs are currently approved to treat the various complications from sepsis. Much of the failure has been blamed on animal models that do not accurately reflect the course of the disease. However, recent improvements in metabolomic, transcriptomic, genomic, and proteomic platforms have allowed for a broad-spectrum look at molecular changes in the host response using clinical samples. Integration of these multi-omic datasets allows researchers to perform systems biology approaches to identify novel pathophysiology of the disease. In this review, we highlight what is currently known about sepsis and how integrative omics has identified new diagnostic and predictive models of sepsis as well as novel mechanisms. These changes may improve patient care as well as guide future preclinical analysis of sepsis.
Collapse
Affiliation(s)
- Raymond J Langley
- Department of Pharmacology, University of South Alabama, Mobile, AL, USA
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
130
|
Paternal sepsis induces alterations of the sperm methylome and dampens offspring immune responses-an animal study. Clin Epigenetics 2018; 10:89. [PMID: 29988283 PMCID: PMC6022485 DOI: 10.1186/s13148-018-0522-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022] Open
Abstract
Background Sepsis represents the utmost severe consequence of infection, involving a dysregulated and self-damaging immune response of the host. While different environmental exposures like chronic stress or malnutrition have been well described to reprogram the germline and subsequently offspring attributes, the intergenerational impact of sepsis as a tremendous immunological stressor has not been examined yet. Methods Polymicrobial sepsis in 12-week-old male C57BL/6 mice was induced by cecal ligation and puncture (CLP), followed by a mating of the male survivors (or appropriate sham control animals) 6 weeks later with healthy females. Alveolar macrophages of offspring animals were isolated and stimulated with either LPS or Zymosan, and supernatant levels of TNF-α were quantified by ELISA. Furthermore, systemic cytokine response to intraperitoneally injected LPS was assessed after 24 h. Also, morphology, motility, and global DNA methylation of the sepsis survivors’ sperm was examined. Results Comparative reduced reduction bisulfite sequencing (RRBS) of sperm revealed changes of DNA methylation (n = 381), most pronounced in the intergenic genome as well as within introns of developmentally relevant genes. Offspring of sepsis fathers exhibited a slight decrease in body weight, with a more pronounced weight difference in male animals (CLP vs. sham). Male descendants of sepsis fathers, but not female descendants, exhibited lower plasma concentrations of IL-6, TNF-alpha, and IL-10 24 h after injection of LPS. In line, only alveolar macrophages of male descendants of sepsis fathers produced less TNF-alpha upon Zymosan stimulation compared to sham descendants, while LPS responses kept unchanged. Conclusion We can prove that male—but surprisingly not female—descendants of post-sepsis fathers show a dampened systemic as well as pulmonary immune response. Based on this observation of an immune hypo-responsivity, we propose that male descendants of sepsis fathers are at risk to develop fungal and bacterial infections and might benefit from therapeutic immune modulation. Electronic supplementary material The online version of this article (10.1186/s13148-018-0522-z) contains supplementary material, which is available to authorized users.
Collapse
|
131
|
Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res 2018; 374:1-15. [PMID: 29955951 DOI: 10.1007/s00441-018-2871-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal (stem) cells (MSCs) have multipotent differentiation capacity and exist in nearly all forms of post-natal organs and tissues. The immunosuppressive and anti-inflammatory properties of MSCs have made them an ideal candidate in the treatment of diseases, such as sepsis, in which inflammation plays a critical role. One of the key mechanisms of MSCs appears to derive from their paracrine activity. Recent studies have demonstrated that MSC-derived extracellular vesicles (MSC-EVs) are at least partially responsible for the paracrine effect. MSC-EVs transfer molecules (such as proteins/peptides, mRNA, microRNA and lipids) with immunoregulatory properties to recipient cells. MSC-EVs have been shown to mimic MSCs in alleviating sepsis and may serve as an alternative to whole cell therapy. Compared with MSCs, MSC-EVs may offer specific advantages due to lower immunogenicity and higher safety profile. The first two sections of the review discuss the preclinical and clinical findings of MSCs in sepsis. Next, we review the characteristics of EVs and MSC-EVs. Then, we summarize the mechanisms of MSC-EVs, including tissue regeneration and immunomodulation. Finally, our review presents the evidences that MSC-EVs are effective in treating models of sepsis. In conclusion, MSC-EVs may have the potential to become a novel therapeutic strategy for sepsis.
Collapse
|
132
|
Yorulmaz H, Ozkok E, Ates G, Aksu A, Balkıs N, Tamer S. Ghrelin: Impact on Muscle Energy Metabolism in Sepsis. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-017-9610-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
133
|
Bouglé A, Rocheteau P, Hivelin M, Haroche A, Briand D, Tremolada C, Mantz J, Chrétien F. Micro-fragmented fat injection reduces sepsis-induced acute inflammatory response in a mouse model. Br J Anaesth 2018; 121:1249-1259. [PMID: 30442252 DOI: 10.1016/j.bja.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Severe sepsis has a high mortality rate. There is increasing evidence that human mesenchymal stem cells possess immunomodulatory properties in sepsis, particularly those from adipose tissue. We hypothesised that micro-fragmented human fat, obtained with minimal alteration of the stromal vascular niche, attenuates the inflammatory response and improves outcome in a murine model of sepsis. METHODS Micro-fragmented fat, lipoaspirate, or saline was administered intraperitoneally 2 h after caecal ligation and puncture (CLP) in C57Bl/6RJ ketamine-xylazine anaesthetised mice. The primary endpoint was the inflammatory score. Secondary endpoints included survival, physiological, histological, and biological parameters. RESULTS In CLP mice, micro-fragmented fat administration significantly decreased the median (range) inflammatory score compared with saline [17 (14-20) vs 9 (8-12), P=0.006]. Secondary endpoints were also significantly improved in micro-fragmented fat-treated compared with saline-treated CLP mice. Improvement in inflammatory score and in survival was suppressed when micro-fragmented fat was co-administered with liposomes loaded with clodronate (macrophage toxin) or NS-398 (cyclo-oxygenase 2 inhibitor), but not with SC-560 (cyclo-oxygenase 1 inhibitor). CONCLUSIONS In a murine model of severe sepsis, micro-fragmented fat improved early inflammatory status and outcome, at least in part, by a cyclo-oxygenase-2-mediated mechanism. The potential therapeutic value of micro-fragmented fat in severe sepsis warrants further investigation.
Collapse
Affiliation(s)
- A Bouglé
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Anesthesiology and Critical Care Medicine, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - P Rocheteau
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; Centre Hospitalier Sainte-Anne, Service Hospitalo Universitaire, Paris, France
| | - M Hivelin
- Department of Plastic Surgery, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (APHP), PRES Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - A Haroche
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France
| | - D Briand
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France
| | | | - J Mantz
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; Department of Anesthesiology and Critical Care Medicine, Hôpital Européen Georges-Pompidou, Université Paris-Descartes Sorbonne Paris Cité, France
| | - F Chrétien
- Infection and Epidemiology Department, Institut Pasteur Human Histopathology and Animal Models Unit, Paris, France; TRIGGERSEP, F-CRIN Network, Versailles, France; Neuropathology Laboratory, Sainte-Anne Hospital, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
134
|
Wiehe RS, Gole B, Chatre L, Walther P, Calzia E, Ricchetti M, Wiesmüller L. Endonuclease G promotes mitochondrial genome cleavage and replication. Oncotarget 2018; 9:18309-18326. [PMID: 29719607 PMCID: PMC5915074 DOI: 10.18632/oncotarget.24822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022] Open
Abstract
Endonuclease G (EndoG) is a nuclear-encoded endonuclease, mostly localised in mitochondria. In the nucleus EndoG participates in site-specific cleavage during replication stress and genome-wide DNA degradation during apoptosis. However, the impact of EndoG on mitochondrial DNA (mtDNA) metabolism is poorly understood. Here, we investigated whether EndoG is involved in the regulation of mtDNA replication and removal of aberrant copies. We applied the single-cell mitochondrial Transcription and Replication Imaging Protocol (mTRIP) and PCR-based strategies on human cells after knockdown/knockout and re-expression of EndoG. Our analysis revealed that EndoG stimulates both mtDNA replication initiation and mtDNA depletion, the two events being interlinked and dependent on EndoG's nuclease activity. Stimulation of mtDNA replication by EndoG was independent of 7S DNA processing at the replication origin. Importantly, both mtDNA-directed activities of EndoG were promoted by oxidative stress. Inhibition of base excision repair (BER) that repairs oxidative stress-induced DNA damage unveiled a pronounced effect of EndoG on mtDNA removal, reminiscent of recently discovered links between EndoG and BER in the nucleus. Altogether with the downstream effects on mitochondrial transcription, protein expression, redox status and morphology, this study demonstrates that removal of damaged mtDNA by EndoG and compensatory replication play a critical role in mitochondria homeostasis.
Collapse
Affiliation(s)
| | - Boris Gole
- Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075, Germany
- Present address: Centre for Human Molecular Genetics and Pharmacogenomics, Medical Faculty, University of Maribor, Maribor, SI-2000, Slovenia
| | - Laurent Chatre
- Department of Developmental and Stem Cell Biology, Institute Pasteur, Stem Cells and Development, 75724 Cedex 15, Paris, France
- Team Stability of Nuclear and Mitochondrial DNA, Unit of Stem Cells and Development, CNRS UMR 3738, 75724 Cedex 15, Paris, France
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, 89081, Germany
| | - Enrico Calzia
- Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University Hospital, Ulm, 89081, Germany
| | - Miria Ricchetti
- Department of Developmental and Stem Cell Biology, Institute Pasteur, Stem Cells and Development, 75724 Cedex 15, Paris, France
- Team Stability of Nuclear and Mitochondrial DNA, Unit of Stem Cells and Development, CNRS UMR 3738, 75724 Cedex 15, Paris, France
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075, Germany
| |
Collapse
|
135
|
Yang F, Wang Y. Systemic bioinformatics analysis of skeletal muscle gene expression profiles of sepsis. Exp Ther Med 2018; 15:4637-4642. [PMID: 29805480 PMCID: PMC5952067 DOI: 10.3892/etm.2018.6026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/10/2017] [Indexed: 11/06/2022] Open
Abstract
Sepsis is a type of systemic inflammatory response syndrome with high morbidity and mortality. Skeletal muscle dysfunction is one of the major complications of sepsis that may also influence the outcome of sepsis. The aim of the present study was to explore and identify potential mechanisms and therapeutic targets of sepsis. Systemic bioinformatics analysis of skeletal muscle gene expression profiles from the Gene Expression Omnibus was performed. Differentially expressed genes (DEGs) in samples from patients with sepsis and control samples were screened out using the limma package. Differential co-expression and coregulation (DCE and DCR, respectively) analysis was performed based on the Differential Co-expression Analysis package to identify differences in gene co-expression and coregulation patterns between the control and sepsis groups. Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways of DEGs were identified using the Database for Annotation, Visualization and Integrated Discovery, and inflammatory, cancer and skeletal muscle development-associated biological processes and pathways were identified. DCE and DCR analysis revealed several potential therapeutic targets for sepsis, including genes and transcription factors. The results of the present study may provide a basis for the development of novel therapeutic targets and treatment methods for sepsis.
Collapse
Affiliation(s)
- Fang Yang
- Department of Critical Care Medicine, Central Hospital of Weihai, Weihai, Shandong 264400, P.R. China
| | - Yumei Wang
- Department of Critical Care Medicine, Central Hospital of Weihai, Weihai, Shandong 264400, P.R. China
| |
Collapse
|
136
|
Bacterial capture efficiency in fluid bloodstream improved by bendable nanowires. Nat Commun 2018; 9:444. [PMID: 29410412 PMCID: PMC5802748 DOI: 10.1038/s41467-018-02879-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Bacterial infectious diseases, such as sepsis, can lead to impaired function in the lungs, kidneys, and other vital organs. Although established technologies have been designed for the extracorporeal removal of bacteria, a high flow velocity of the true bloodstream might result in low capture efficiency and prevent the realization of their full clinical potential. Here, we develop a dialyzer made by three-dimensional carbon foam pre-grafted with nanowires to isolate bacteria from unprocessed blood. The tip region of polycrystalline nanowires is bent readily to form three-dimensional nanoclaws when dragged by the molecular force of ligand-receptor, because of a decreasing Young’s moduli from the bottom to the tip. The bacterial capture efficiency was improved from ~10% on carbon foam and ~40% on unbendable single-crystalline nanowires/carbon foam to 97% on bendable polycrystalline nanowires/carbon foam in a fluid bloodstream of 10 cm s−1 velocity. Bacteria and other pathogens entering the blood stream can have serious consequences, which can even lead to death. Here, the authors developed a sieve containing nano-sized claws that capture and hold these intruders, thus aiding their removal from patient’s blood
Collapse
|
137
|
Abstract
Mitochondrial DNA (mtDNA), which is essential for mitochondrial and cell function, is replicated and transcribed in the organelle by proteins that are entirely coded in the nucleus. Replication of mtDNA is challenged not only by threats related to the replication machinery and orchestration of DNA synthesis, but also by factors linked to the peculiarity of this genome. Indeed the architecture, organization, copy number, and location of mtDNA, which are markedly distinct from the nuclear genome, require ad hoc and complex regulation to ensure coordinated replication. As a consequence sub-optimal mtDNA replication, which results from compromised regulation of these factors, is generally associated with mitochondrial dysfunction and disease. Mitochondrial DNA replication should be considered in the context of the organelle and the whole cell, and not just a single genome or a single replication event. Major threats to mtDNA replication are linked to its dependence on both mitochondrial and nuclear factors, which require exquisite coordination of these crucial subcellular compartments. Moreover, regulation of replication events deals with a dynamic population of multiple mtDNA molecules rather than with a fixed number of genome copies, as it is the case for nuclear DNA. Importantly, the mechanistic aspects of mtDNA replication are still debated. We describe here major challenges for human mtDNA replication, the mechanistic aspects of the process that are to a large extent original, and their consequences on disease.
Collapse
Affiliation(s)
- Miria Ricchetti
- Institut Pasteur, Department of Developmental and Stem Cell Biology, Stem Cells and Development, 75724 Cedex15, Paris, France; Team Stability of Nuclear and Mitochondrial DNA, CNRS UMR 3738, 75724, Cedex15, Paris, France.
| |
Collapse
|
138
|
Azoulay E, Vincent JL, Angus DC, Arabi YM, Brochard L, Brett SJ, Citerio G, Cook DJ, Curtis JR, Dos Santos CC, Ely EW, Hall J, Halpern SD, Hart N, Hopkins RO, Iwashyna TJ, Jaber S, Latronico N, Mehta S, Needham DM, Nelson J, Puntillo K, Quintel M, Rowan K, Rubenfeld G, Van den Berghe G, Van der Hoeven J, Wunsch H, Herridge M. Recovery after critical illness: putting the puzzle together-a consensus of 29. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:296. [PMID: 29208005 PMCID: PMC5718148 DOI: 10.1186/s13054-017-1887-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
In this review, we seek to highlight how critical illness and critical care affect longer-term outcomes, to underline the contribution of ICU delirium to cognitive dysfunction several months after ICU discharge, to give new insights into ICU acquired weakness, to emphasize the importance of value-based healthcare, and to delineate the elements of family-centered care. This consensus of 29 also provides a perspective and a research agenda about post-ICU recovery.
Collapse
Affiliation(s)
- Elie Azoulay
- Medical Intensive Care Unit, Hôpital Saint-Louis, ECSTRA team, Biostatistics and clinical epidemiology, UMR 1153 (Center of Epidemiology and Biostatistics Sorbonne Paris Cité, CRESS), INSERM, Paris Diderot Sorbonne University, Paris, France.
| | | | - Derek C Angus
- The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yaseen M Arabi
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | | | - Stephen J Brett
- Department of Surgery and Cancer Imperial College, London, UK
| | | | - Deborah J Cook
- McMaster University Medical Center, Hamilton, ON, Canada
| | | | | | - E Wesley Ely
- Vanderbilt University School of Medicine, and TN Valley Veteran's Affairs Geriatric Research Education Clinical Center (GRECC), Nashville, TN, USA
| | - Jesse Hall
- The University of Chicago, Chicago, IL, USA
| | | | | | - Ramona O Hopkins
- Intermountain Medical Center, Murray, UT, USA.,Psychology Department and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Theodore J Iwashyna
- University of Michigan Health System, and Ann Arbor Veterans Affairs Healthcare System, Ann Arbor, MI, USA
| | | | | | | | - Dale M Needham
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Judith Nelson
- Memorial Sloan Kettering Cancer Center, and Weill Cornell Medical College New York, New York, NY, USA
| | | | | | - Kathy Rowan
- Intensive Care National Audit & Research Centre, London, UK
| | | | | | | | - Hannah Wunsch
- Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Margaret Herridge
- Toronto General Research Institute, University of Toronto, UHN - University Health Network, Toronto, ON, Canada
| |
Collapse
|
139
|
|
140
|
Chatre L, Fernandes J, Michel V, Fiette L, Avé P, Arena G, Jain U, Haas R, Wang TC, Ricchetti M, Touati E. Helicobacter pylori targets mitochondrial import and components of mitochondrial DNA replication machinery through an alternative VacA-dependent and a VacA-independent mechanisms. Sci Rep 2017; 7:15901. [PMID: 29162845 PMCID: PMC5698309 DOI: 10.1038/s41598-017-15567-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Targeting mitochondria is a powerful strategy for pathogens to subvert cell physiology and establish infection. Helicobacter pylori is a bacterial pathogen associated with gastric cancer development that is known to target mitochondria directly and exclusively through its pro-apoptotic and vacuolating cytotoxin VacA. By in vitro infection of gastric epithelial cells with wild-type and VacA-deficient H. pylori strains, treatment of cells with purified VacA proteins and infection of a mouse model, we show that H. pylori deregulates mitochondria by two novel mechanisms, both rather associated with host cell survival. First, early upon infection VacA induces transient increase of mitochondrial translocases and a dramatic accumulation of the mitochondrial DNA replication and maintenance factors POLG and TFAM. These events occur when VacA is not detected intracellularly, therefore do not require the direct interaction of the cytotoxin with the organelle, and are independent of the toxin vacuolating activity. In vivo, these alterations coincide with the evolution of gastric lesions towards severity. Second, H. pylori also induces VacA-independent alteration of mitochondrial replication and import components, suggesting the involvement of additional H. pylori activities in mitochondria-mediated effects. These data unveil two novel mitochondrial effectors in H. pylori-host interaction with links on gastric pathogenesis.
Collapse
Affiliation(s)
- Laurent Chatre
- Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Institut Pasteur, 25-28 Rue du Dr. Roux, Paris, France.,CNRS UMR3738, Paris, France
| | - Julien Fernandes
- Unit of Helicobacter Pathogenesis, Team Genotoxicity, Infection and Cancer, Institut Pasteur, 25-28 Rue du Dr. Roux, Paris, France.,CNRS ERL3526, Paris, France.,UTechS PBI-CiTech, Institut Pasteur, Paris, 75015, France
| | - Valérie Michel
- Unit of Helicobacter Pathogenesis, Team Genotoxicity, Infection and Cancer, Institut Pasteur, 25-28 Rue du Dr. Roux, Paris, France.,CNRS ERL3526, Paris, France
| | - Laurence Fiette
- Unit of Human Pathology and Animal Models, Institut Pasteur, 25-28 Rue du Dr. Roux, Paris, France.,Paris Descartes University, PRES Sorbonne-Paris-Cité, Paris, France
| | - Patrick Avé
- Unit of Human Pathology and Animal Models, Institut Pasteur, 25-28 Rue du Dr. Roux, Paris, France.,Paris Descartes University, PRES Sorbonne-Paris-Cité, Paris, France
| | - Giuseppe Arena
- Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Institut Pasteur, 25-28 Rue du Dr. Roux, Paris, France.,IRCM (Institut de Recherche en Cancérologie de Montpellier), Université de Montpellier, 34298, Montpellier, France.,INSERM U1194, Montpellier, France
| | - Utkarsh Jain
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University, Pettenkoferstraße 9a, D-80336, Munich, Germany.,Amity Institute of Nanotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Rainer Haas
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Ludwig-Maximilians-University, Pettenkoferstraße 9a, D-80336, Munich, Germany.,German Center for Infection Research [DZIF], LMU, Munich, Germany
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Miria Ricchetti
- Stem Cells and Development, Team Stability of Nuclear and Mitochondrial DNA, Institut Pasteur, 25-28 Rue du Dr. Roux, Paris, France. .,CNRS UMR3738, Paris, France.
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Team Genotoxicity, Infection and Cancer, Institut Pasteur, 25-28 Rue du Dr. Roux, Paris, France. .,CNRS ERL3526, Paris, France.
| |
Collapse
|
141
|
Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance. mBio 2017; 8:mBio.01680-17. [PMID: 29042502 PMCID: PMC5646255 DOI: 10.1128/mbio.01680-17] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We identified a crypt-specific core microbiota (CSCM) dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC) crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter, Delftia, and Stenotrophomonas). Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS), through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4)-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage. The LPS from crypt-specific core microbiota controls intestinal epithelium proliferation through necroptosis of stem cells and enhances cell differentiation, mainly the goblet cell lineage.
Collapse
|
142
|
Xu Y, Wang H, Luan C, Liu Y, Chen B, Zhao Y. Aptamer-based hydrogel barcodes for the capture and detection of multiple types of pathogenic bacteria. Biosens Bioelectron 2017; 100:404-410. [PMID: 28957705 DOI: 10.1016/j.bios.2017.09.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022]
Abstract
Rapid and sensitive diagnosing hematological infections based on the separation and detection of pathogenic bacteria in the patient's blood is a significant challenge. To address this, we herein present a new barcodes technology that can simultaneously capture and detect multiple types of pathogenic bacteria from a complex sample. The barcodes are poly (ethylene glycol) (PEG) hydrogel inverse opal particles with characteristic reflection peak codes that remain stable during bacteria capture on their surfaces. As the spherical surface of the particles has ordered porous nanostructure, the barcodes can provide not only more surface area for probe immobilization and reaction, but also a nanopatterned platform for highly efficient bioreactions. In addition, the PEG hydrogel scaffold could decrease the non-specificity adsorption by its anti-adhesive effect, and the decorated aptamer probes in the scaffolds could increase the sensitivity, reliability, and specificity of the bacteria capture and detection. Moreover, the tagged magnetic nanoparticles in the PEG scaffold could impart the barcodes with controllable movement under magnetic fields, which can be used to significantly increase the reaction speed and simplify the processing of the bioassays. Based on the describe barcodes, it was demonstrated that the bacteria could be captured and identified even at low bacterial concentrations (100 CFU mL-1) within 2.5h, which is effectively shortened in comparison with the "gold standard" in clinic. These features make the barcodes ideal for capturing and detecting multiple bacteria from clinical samples for hematological infection diagnostics.
Collapse
Affiliation(s)
- Yueshuang Xu
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chengxin Luan
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuxiao Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yuanjin Zhao
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
143
|
Laroye C, Gibot S, Reppel L, Bensoussan D. Concise Review: Mesenchymal Stromal/Stem Cells: A New Treatment for Sepsis and Septic Shock? Stem Cells 2017; 35:2331-2339. [PMID: 28856759 DOI: 10.1002/stem.2695] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
Abstract
Sepsis and septic shock are the leading cause of admission and mortality in non-coronary intensive care units. Currently, however, no specific treatments are available for this syndrome. Due to the failure of conventional treatments in recent years, research is focusing on innovative therapeutic agents, including cell therapy. One particular type of cell, mesenchymal stromal/stem cells (MSCs), has raised hopes for the treatment of sepsis. Indeed, their immunomodulatory properties, antimicrobial activity and capacity of protection against organ failure confer MSCs with a major advantage to treat the immune and inflammatory dysfunctions associated with sepsis and septic shock. After a brief description of the pathophysiology of sepsis and septic shock, the latest advances in the use of MSCs to treat sepsis will be presented. Stem Cells 2017;35:2331-2339.
Collapse
Affiliation(s)
- Caroline Laroye
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,INSERM, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Sébastien Gibot
- INSERM, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France.,CHRU Nancy, Service de Réanimation Médicale, Hôpital Central, Nancy, France
| | - Loïc Reppel
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Danièle Bensoussan
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| |
Collapse
|
144
|
Latronico N, Herridge M, Hopkins RO, Angus D, Hart N, Hermans G, Iwashyna T, Arabi Y, Citerio G, Ely EW, Hall J, Mehta S, Puntillo K, Van den Hoeven J, Wunsch H, Cook D, Dos Santos C, Rubenfeld G, Vincent JL, Van den Berghe G, Azoulay E, Needham DM. The ICM research agenda on intensive care unit-acquired weakness. Intensive Care Med 2017; 43:1270-1281. [PMID: 28289812 DOI: 10.1007/s00134-017-4757-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/02/2017] [Indexed: 12/23/2022]
Abstract
We present areas of uncertainty concerning intensive care unit-acquired weakness (ICUAW) and identify areas for future research. Age, pre-ICU functional and cognitive state, concurrent illness, frailty, and health trajectories impact outcomes and should be assessed to stratify patients. In the ICU, early assessment of limb and diaphragm muscle strength and function using nonvolitional tests may be useful, but comparison with established methods of global and specific muscle strength and physical function and determination of their reliability and normal values would be important to advance these techniques. Serial measurements of limb and respiratory muscle strength, and systematic screening for dysphagia, would be helpful to clarify if and how weakness of these muscle groups is independently associated with outcome. ICUAW, delirium, and sedatives and analgesics may interact with each other, amplifying the effects of each individual factor. Reduced mobility in patients with hypoactive delirium needs investigations into dysfunction of central and peripheral nervous system motor pathways. Interventional nutritional studies should include muscle mass, strength, and physical function as outcomes, and prioritize elucidation of mechanisms. At follow-up, ICU survivors may suffer from prolonged muscle weakness and wasting and other physical impairments, as well as fatigue without demonstrable weakness on examination. Further studies should evaluate the prevalence and severity of fatigue in ICU survivors and define its association with psychiatric disorders, pain, cognitive impairment, and axonal loss. Finally, methodological issues, including accounting for baseline status, handling of missing data, and inclusion of patient-centered outcome measures should be addressed in future studies.
Collapse
Affiliation(s)
- Nicola Latronico
- Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy.
| | - Margaret Herridge
- Interdepartmental Division of Critical Care Medicine, Institute of Medical Science, Toronto General Research Institute, University of Toronto, University Health Network, Toronto, Canada
| | - Ramona O Hopkins
- Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Murray, UT, USA
- Psychology Department and Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Derek Angus
- Department of Critical Care Medicine, University of Pittsburgh Schools of Medicine, Pittsburgh, PA, USA
| | - Nicholas Hart
- St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Greet Hermans
- Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven, Louvain, Belgium
- Medical Intensive-Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Louvain, Belgium
| | - Theodore Iwashyna
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Center for Clinical Management Research, VA Ann Arbor Health System, Ann Arbor, MI, USA
| | - Yaseen Arabi
- Intensive Care Department, Respiratory Services, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Neurointensive Care, San Gerardo Hospital, ASST-Monza, Monza, Italy
| | - E. Wesley Ely
- Department of Medicine, Pulmonary and Critical Care and Health Services, Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- The Tennessee Valley Veteran's Affairs Geriatric Research Education, Clinical Center (GRECC), Nashville, TN, USA
| | | | - Sangeeta Mehta
- Department of Medicine, Sinai Health System, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Kathleen Puntillo
- Department of Physiological Nursing, University of California, San Francisco, USA
| | | | - Hannah Wunsch
- Department of Critical Care Medicine, Sunnybrook Health Sciences Center, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, Department of Anesthesia, University of Toronto, Toronto, ON, Canada
| | - Deborah Cook
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Critical Care, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Claudia Dos Santos
- Keenan and Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
- Interdepartmental Division of Critical Care, Department of Medicine and Institute of Medical Sciences, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gordon Rubenfeld
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- Program in Trauma, Emergency and Critical Care, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Canada
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Greet Van den Berghe
- Department and Laboratory of Intensive Care Medicine, KU Leuven, Louvain, Belgium
| | - Elie Azoulay
- Medical Intensive Care Unit, Hôpital Saint-Louis, ECSTRA Team, Biostatistics and Clinical Epidemiology, UMR 1153 (Center of Epidemiology and Biostatistics Sorbonne Paris Cité, CRESS), INSERM, Paris Diderot Sorbonne University, Paris, France
| | - Dale M Needham
- Division of Pulmonary and Critical Care Medicine, Outcomes After Critical Illness and Surgery (OACIS) Group, Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
145
|
Improved Survival in a Long-Term Rat Model of Sepsis Is Associated With Reduced Mitochondrial Calcium Uptake Despite Increased Energetic Demand. Crit Care Med 2017; 45:e840-e848. [PMID: 28410346 DOI: 10.1097/ccm.0000000000002448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES To investigate the relationship between prognosis, changes in mitochondrial calcium uptake, and bioenergetic status in the heart during sepsis. DESIGN In vivo and ex vivo controlled experimental studies. SETTING University research laboratory. SUBJECTS Male adult Wistar rats. INTERVENTIONS Sepsis was induced by intraperitoneal injection of fecal slurry. Sham-operated animals served as controls. Confocal microscopy was used to study functional and bioenergetic parameters in cardiomyocytes isolated after 24-hour sepsis. Electron microscopy was used to characterize structural changes in mitochondria and sarcoplasmic reticulum. The functional response to dobutamine was assessed in vivo by echocardiography. MEASUREMENTS AND MAIN RESULTS Peak aortic blood flow velocity measured at 24 hours was a good discriminator for 72-hour survival (area under the receiver operator characteristic, 0.84 ± 0.1; p = 0.03) and was used in ex vivo experiments at 24 hours to identify septic animals with good prognosis. Measurements from animals with good prognostic showed 1) a smaller increase in mitochondrial calcium content and in nicotinamide adenine dinucleotide fluorescence following pacing and 2) increased distance between mitochondria and sarcoplasmic reticulum on electron microscopy, and 3) nicotinamide adenine dinucleotide redox potential and adenosine triphosphate/adenosine diphosphate failed to reach a new steady state following pacing, suggesting impaired matching of energy supply and demand. In vivo, good prognosis animals had a blunted response to dobutamine with respect to stroke volume and kinetic energy. CONCLUSIONS In situations of higher energetic demand decreased mitochondrial calcium uptake may constitute an adaptive cellular response that confers a survival advantage in response to sepsis at a cost of decreased oxidative capacity.
Collapse
|
146
|
Lee HJ, Jung YH, Choi GE, Ko SH, Lee SJ, Lee SH, Han HJ. BNIP3 induction by hypoxia stimulates FASN-dependent free fatty acid production enhancing therapeutic potential of umbilical cord blood-derived human mesenchymal stem cells. Redox Biol 2017; 13:426-443. [PMID: 28704726 PMCID: PMC5508529 DOI: 10.1016/j.redox.2017.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 02/08/2023] Open
Abstract
Mitophagy under hypoxia is an important factor for maintaining and regulating stem cell functions. We previously demonstrated that fatty acid synthase (FASN) induced by hypoxia is a critical lipid metabolic factor determining the therapeutic efficacy of umbilical cord blood-derived human mesenchymal stem cells (UCB-hMSCs). Therefore, we investigated the mechanism of a major mitophagy regulator controlling lipid metabolism and therapeutic potential of UCB-hMSCs. This study revealed that Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)-dependent mitophagy is important for reducing mitochondrial reactive oxygen species accumulation, anti-apoptosis, and migration under hypoxia. And, BNIP3 expression was regulated by CREB binding protein-mediated transcriptional actions of HIF-1α and FOXO3. Silencing of BNIP3 suppressed free fatty acid (FFA) synthesis regulated by SREBP1/FASN pathway, which is involved in UCB-hMSC apoptosis via caspases cleavage and migration via cofilin-1-mediated F-actin reorganization in hypoxia. Moreover, reduced mouse skin wound-healing capacity of UCB-hMSC with hypoxia pretreatment by BNIP3 silencing was recovered by palmitic acid. Collectively, our findings suggest that BNIP3-mediated mitophagy under hypoxia leads to FASN-induced FFA synthesis, which is critical for therapeutic potential of UCB-hMSCs with hypoxia pretreatment. BNIP3 induction by hypoxia mainly controls mitophagy and mitochondrial ROS production in UCB-hMSCs. BNIP3 silencing impairs UCB-hMSC functions such as survival, migration and free fatty acid production under hypoxia. BNIP3 silencing suppresses SREBP1/FASN-mediated free fatty acid production via ROS regulation under hypoxia. BNIP3 silencing decreased skin wound healing potential of hypoxia-pretreated UCB-hMSCs. Palmitic acid addition recovers decreased therapeutic potential of UCB-hMSCs by BNIP3 silencing.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - So Hee Ko
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea; Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 330-930, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
147
|
A novel paradigm links mitochondrial dysfunction with muscle stem cell impairment in sepsis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2546-2553. [PMID: 28456665 DOI: 10.1016/j.bbadis.2017.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Sepsis is an acute systemic inflammatory response of the body to microbial infection and a life threatening condition associated with multiple organ failure. Survivors may display long-term disability with muscle weakness that remains poorly understood. Recent data suggest that long-term myopathy in sepsis survivors is due to failure of skeletal muscle stem cells (satellite cells) to regenerate the muscle. Satellite cells impairment in the acute phase of sepsis is linked to unusual mitochondrial dysfunctions, characterized by a dramatic reduction of the mitochondrial mass and hyperactivity of residual organelles. Survivors maintain the impairment of satellite cells, including alterations of the mitochondrial DNA (mtDNA), in the long-term. This condition can be rescued by treatment with mesenchymal stem cells (MSCs) that restore mtDNA alterations and mitochondrial function in satellite cells, and in fine their regenerative potential. Injection of MSCs in turn increases the force of isolated muscle fibers and of the whole animal, and improves the survival rate. These effects occur in the context of reduced inflammation markers that also raised during sepsis. Targeting muscle stem cells mitochondria, in a context of reduced inflammation, may represent a valuable strategy to reduce morbidity and long-term impairment of the muscle upon sepsis.
Collapse
|
148
|
Nascimento DC, Melo PH, Piñeros AR, Ferreira RG, Colón DF, Donate PB, Castanheira FV, Gozzi A, Czaikoski PG, Niedbala W, Borges MC, Zamboni DS, Liew FY, Cunha FQ, Alves-Filho JC. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nat Commun 2017; 8:14919. [PMID: 28374774 PMCID: PMC5382289 DOI: 10.1038/ncomms14919] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 02/09/2017] [Indexed: 12/29/2022] Open
Abstract
Patients who survive sepsis can develop long-term immune dysfunction, with expansion of the regulatory T (Treg) cell population. However, how Treg cells proliferate in these patients is not clear. Here we show that IL-33 has a major function in the induction of this immunosuppression. Mice deficient in ST2 (IL-33R) develop attenuated immunosuppression in cases that survive sepsis, whereas treatment of naive wild-type mice with IL-33 induces immunosuppression. IL-33, released during tissue injury in sepsis, activates type 2 innate lymphoid cells, which promote polarization of M2 macrophages, thereby enhancing expansion of the Treg cell population via IL-10. Moreover, sepsis-surviving patients have more Treg cells, IL-33 and IL-10 in their peripheral blood. Our study suggests that targeting IL-33 may be an effective treatment for sepsis-induced immunosuppression. Patients who survive sepsis are at increased risk of infection owing to long-term immunosuppression that is associated with an increase in Treg cell numbers. Here the authors show expansion of the Treg cell population in sepsis mice is driven by IL-33-induced ILC2 activation of IL-10 production by macrophages.
Collapse
Affiliation(s)
- Daniele C Nascimento
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Paulo H Melo
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Annie R Piñeros
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Raphael G Ferreira
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - David F Colón
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Paula B Donate
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Fernanda V Castanheira
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Aline Gozzi
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Paula G Czaikoski
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Wanda Niedbala
- Department of Immunology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Marcos C Borges
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Dario S Zamboni
- Departments of Cell Biology and Microbial Pathogenesis, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Foo Y Liew
- Department of Immunology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.,School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215006, China
| | - Fernando Q Cunha
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Jose C Alves-Filho
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
149
|
Batt J, Mathur S, Katzberg HD. Mechanism of ICU-acquired weakness: muscle contractility in critical illness. Intensive Care Med 2017; 43:584-586. [PMID: 28255615 DOI: 10.1007/s00134-017-4730-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Jane Batt
- Department of Medicine, Keenan Centre for Biomedical Research, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada.
| | - Sunita Mathur
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Hans D Katzberg
- Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
150
|
Berry M, Patel BV, Brett SJ. New Consensus Definitions for Sepsis and Septic Shock: Implications for Treatment Strategies and Drug Development? Drugs 2017; 77:353-361. [PMID: 28188516 DOI: 10.1007/s40265-017-0698-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sepsis continues to escape a precise diagnostic definition. The most recent consensus definition, termed Sepsis-3, highlights the importance of the maladaptive and potentially life-threatening host response to infection. After briefly reviewing the history and epidemiology of sepsis, we go on to describe some of the challenges encountered when classifying such a heterogenous disease state. In the context of these new definitions for sepsis and septic shock, we explore current and potentially novel therapies, and conclude by mentioning some of the controversies of this most recent framework.
Collapse
Affiliation(s)
| | - Brijesh V Patel
- Adult ICU, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- Section of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen J Brett
- Section of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London, UK
- Centre for Perioperative Medicine and Critical Care Research, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|