101
|
Nadeau NJ, Kawakami T. Population Genomics of Speciation and Admixture. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_24] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
102
|
Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proc Natl Acad Sci U S A 2017; 115:E236-E243. [PMID: 29279400 PMCID: PMC5777044 DOI: 10.1073/pnas.1713288114] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the outstanding questions in understanding how new species form is how reproductive isolation arises. In particular, the relative roles of gene flow and natural selection in creating two separate species remains open for debate. Here we show within the four continuously speciating lineages of a poplar that local genomic differentiation of populations is not associated with either rate of recent gene flow or time of species divergence. By contrast, we found that these genomic islands of divergence most likely came about by selective processes—sorting of ancient genetic polymorphisms and the incidental hitchhiking of linked variations. These findings substantially enhance our understanding of genomic changes in speciation. How genome divergence eventually leads to speciation is a topic of prime evolutionary interest. Genomic islands of elevated divergence are frequently reported between diverging lineages, and their size is expected to increase with time and gene flow under the speciation-with-gene-flow model. However, such islands can also result from divergent sorting of ancient polymorphisms, recent ecological selection regardless of gene flow, and/or recurrent background selection and selective sweeps in low-recombination regions. It is challenging to disentangle these nonexclusive alternatives, but here we attempt to do this in an analysis of what drove genomic divergence between four lineages comprising a species complex of desert poplar trees. Within this complex we found that two morphologically delimited species, Populus euphratica and Populus pruinosa, were paraphyletic while the four lineages exhibited contrasting levels of gene flow and divergence times, providing a good system for testing hypotheses on the origin of divergence islands. We show that the size and number of genomic islands that distinguish lineages are not associated with either rate of recent gene flow or time of divergence. Instead, they are most likely derived from divergent sorting of ancient polymorphisms and divergence hitchhiking. We found that highly diverged genes under lineage-specific selection and putatively involved in ecological and morphological divergence occur both within and outside these islands. Our results highlight the need to incorporate demography, absolute divergence measurement, and gene flow rate to explain the formation of genomic islands and to identify potential genomic regions involved in speciation.
Collapse
|
103
|
Reeve J, Ortiz-Barrientos D, Engelstädter J. The evolution of recombination rates in finite populations during ecological speciation. Proc Biol Sci 2017; 283:rspb.2016.1243. [PMID: 27798297 DOI: 10.1098/rspb.2016.1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/04/2016] [Indexed: 11/12/2022] Open
Abstract
Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations.
Collapse
Affiliation(s)
- James Reeve
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
104
|
Heterogeneous Patterns of Genetic Diversity and Differentiation in European and Siberian Chiffchaff ( Phylloscopus collybita abietinus/P. tristis). G3-GENES GENOMES GENETICS 2017; 7:3983-3998. [PMID: 29054864 PMCID: PMC5714495 DOI: 10.1534/g3.117.300152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Identification of candidate genes for trait variation in diverging lineages and characterization of mechanistic underpinnings of genome differentiation are key steps toward understanding the processes underlying the formation of new species. Hybrid zones provide a valuable resource for such investigations, since they allow us to study how genomes evolve as species exchange genetic material and to associate particular genetic regions with phenotypic traits of interest. Here, we use whole-genome resequencing of both allopatric and hybridizing populations of the European (Phylloscopus collybita abietinus) and the Siberian chiffchaff (P. tristis)—two recently diverged species which differ in morphology, plumage, song, habitat, and migration—to quantify the regional variation in genome-wide genetic diversity and differentiation, and to identify candidate regions for trait variation. We find that the levels of diversity, differentiation, and divergence are highly heterogeneous, with significantly reduced global differentiation, and more pronounced differentiation peaks in sympatry than in allopatry. This pattern is consistent with regional differences in effective population size and recurrent background selection or selective sweeps reducing the genetic diversity in specific regions prior to lineage divergence, but the data also suggest that postdivergence selection has resulted in increased differentiation and fixed differences in specific regions. We find that hybridization and backcrossing is common in sympatry, and that phenotype is a poor predictor of the genomic composition of sympatric birds. The combination of a differentiation scan approach with identification of fixed differences pinpoint a handful of candidate regions that might be important for trait variation between the two species.
Collapse
|
105
|
Foote AD. Sympatric Speciation in the Genomic Era. Trends Ecol Evol 2017; 33:85-95. [PMID: 29198471 DOI: 10.1016/j.tree.2017.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
Sympatric speciation has been of key interest to biologists investigating how natural and sexual selection drive speciation without the confounding variable of geographic isolation. The advent of the genomic era has provided a more nuanced and quantitative understanding of the different and often complex modes of speciation by which sympatric sister taxa arose, and a reassessment of some of the most compelling empirical case studies of sympatric speciation. However, I argue that genomic studies based on contemporary populations may never be able to provide unequivocal evidence of true primary sympatric speciation, and there is a need to incorporate palaeogenomic studies into this field. This inability to robustly distinguish cases of primary and secondary 'divergence with gene flow' may be inconsequential, as both are useful for understanding the role of large effect barrier loci in the progression from localised genic isolation to genome-wide reproductive isolation. I argue that they can be of equivalent interest due to shared underlying mechanisms driving divergence and potentially leaving similar patterns of coalescence.
Collapse
Affiliation(s)
- Andrew D Foote
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK.
| |
Collapse
|
106
|
Schmickl R, Marburger S, Bray S, Yant L. Hybrids and horizontal transfer: introgression allows adaptive allele discovery. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5453-5470. [PMID: 29096001 DOI: 10.1093/jxb/erx297] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolution has devised countless remarkable solutions to diverse challenges. Understanding the mechanistic basis of these solutions provides insights into how biological systems can be subtly tweaked without maladaptive consequences. The knowledge gained from illuminating these mechanisms is equally important to our understanding of fundamental evolutionary mechanisms as it is to our hopes of developing truly rational plant breeding and synthetic biology. In particular, modern population genomic approaches are proving very powerful in the detection of candidate alleles for mediating consequential adaptations that can be tested functionally. Especially striking are signals gained from contexts involving genetic transfers between populations, closely related species, or indeed between kingdoms. Here we discuss two major classes of these scenarios, adaptive introgression and horizontal gene flow, illustrating discoveries made across kingdoms.
Collapse
Affiliation(s)
- Roswitha Schmickl
- Institute of Botany, The Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague, Czech Republic
| | - Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sian Bray
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
107
|
Berner D, Roesti M. Genomics of adaptive divergence with chromosome-scale heterogeneity in crossover rate. Mol Ecol 2017; 26:6351-6369. [PMID: 28994152 DOI: 10.1111/mec.14373] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Genetic differentiation between divergent populations is often greater in chromosome centres than peripheries. Commonly overlooked, this broadscale differentiation pattern is sometimes ascribed to heterogeneity in crossover rate and hence linked selection within chromosomes, but the underlying mechanisms remain incompletely understood. A literature survey across 46 organisms reveals that most eukaryotes indeed exhibit a reduced crossover rate in chromosome centres relative to the peripheries. Using simulations of populations diverging into ecologically different habitats through sorting of standing genetic variation, we demonstrate that such chromosome-scale heterogeneity in crossover rate, combined with polygenic divergent selection, causes stronger hitchhiking and especially barriers to gene flow across chromosome centres. Without requiring selection on new mutations, this rapidly leads to elevated population differentiation in the low-crossover centres relative to the high-crossover peripheries of chromosomes ("Chromosome Centre-Biased Differentiation", CCBD). Using simulated and empirical data, we then show that strong CCBD between populations can provide evidence of polygenic adaptive divergence with a phase of gene flow. We further demonstrate that chromosome-scale heterogeneity in crossover rate impacts analyses beyond that of population differentiation, including the inference of phylogenies and parallel adaptive evolution among populations, the detection of genetic loci under selection, and the interpretation of the strength of selection on genomic regions. Overall, our results call for a greater appreciation of chromosome-scale heterogeneity in crossover rate in evolutionary genomics.
Collapse
Affiliation(s)
- Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Marius Roesti
- Zoological Institute, University of Basel, Basel, Switzerland.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
108
|
Zhang D, Song G, Gao B, Cheng Y, Qu Y, Wu S, Shao S, Wu Y, Alström P, Lei F. Genomic differentiation and patterns of gene flow between two long-tailed tit species (Aegithalos). Mol Ecol 2017; 26:6654-6665. [PMID: 29055167 DOI: 10.1111/mec.14383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 11/29/2022]
Abstract
Patterns of heterogeneous genomic differentiation have been well documented between closely related species, with some highly differentiated genomic regions ("genomic differentiation islands") spread throughout the genome. Differential levels of gene flow are proposed to account for this pattern, as genomic differentiation islands are suggested to be resistant to gene flow. Recent studies have also suggested that genomic differentiation islands could be explained by linked selection acting on genomic regions with low recombination rates. Here, we investigate genomic differentiation and gene-flow patterns for autosomes using RAD-seq data between two closely related species of long-tailed tits (Aegithalos bonvaloti and A. fuliginosus) in both allopatric and contact zone populations. The results confirm recent or ongoing gene flow between these two species. However, there is little evidence that the genomic regions that were found to be highly differentiated between the contact zone populations are resistant to gene flow, suggesting that differential levels of gene flow is not the cause of the heterogeneous genomic differentiation. Linked selection may be the cause of genomic differentiation islands between the allopatric populations with no or very limited gene flow, but this could not account for the heterogeneous genomic differentiation between the contact zone populations, which show evidence of recent or ongoing gene flow.
Collapse
Affiliation(s)
- Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Gao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shaoyuan Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Shimiao Shao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yongjie Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Bio-resources and Eco-environment of Ministry of education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Per Alström
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Ecology and Genetics, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
109
|
Egger B, Roesti M, Böhne A, Roth O, Salzburger W. Demography and genome divergence of lake and stream populations of an East African cichlid fish. Mol Ecol 2017; 26:5016-5030. [DOI: 10.1111/mec.14248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Bernd Egger
- Zoological Institute; University of Basel; Basel Switzerland
| | - Marius Roesti
- Zoological Institute; University of Basel; Basel Switzerland
- Department of Zoology; Biodiversity Research Centre; University of British Columbia; Vancouver BC Canada
| | - Astrid Böhne
- Zoological Institute; University of Basel; Basel Switzerland
| | - Olivia Roth
- Evolutionary Ecology of Marine Fishes; Helmholtz Zentrum für Ozeanforschung Kiel (GEOMAR); Kiel Germany
| | | |
Collapse
|
110
|
Johannesen J, Fabritzek AG, Ebner B, Bikar SE. Characterisation of microsatellite and SNP markers from Miseq and genotyping-by-sequencing data among parapatric Urophora cardui (Tephritidae) populations. PeerJ 2017; 5:e3582. [PMID: 28828237 PMCID: PMC5560233 DOI: 10.7717/peerj.3582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/25/2017] [Indexed: 11/20/2022] Open
Abstract
Phylogeographic analyses of the gall fly Urophora cardui have in earlier studies based on allozymes and mtDNA identified small-scale, parapatrically diverged populations within an expanding Western Palearctic population. However, the low polymorphism of these markers prohibited an accurate delimitation of the evolutionary origin of the parapatric divergence. Urophora cardui from the Western Palearctic have been introduced into Canada as biological control agents of the host plant Cirsium arvense. Here, we characterise 12 microsatellite loci with hexa-, penta- and tetra-nucleotide repeat motifs and report a genotyping-by-sequencing SNP protocol. We test the markers for genetic variation among three parapatric U. cardui populations. Microsatellite variability (N = 59 individuals) was high: expected heterozygosity/locus/population (0.60–0.90), allele number/locus/population (5–21). One locus was alternatively sex-linked in males or females. Cross-species amplification in the sister species U. stylata was successful or partially successful for seven loci. For genotyping-by-sequencing (N = 18 individuals), different DNA extraction methods did not affect data quality. Depending on sequence sorting criteria, 1,177–2,347 unlinked SNPs and 1,750–4,469 parsimony informative sites were found in 3,514–5,767 loci recovered after paralog filtering. Both marker systems quantified the same population partitions with high probabilities. Many and highly differentiated loci in both marker systems indicate genome-wide diversification and genetically distinct populations.
Collapse
Affiliation(s)
- Jes Johannesen
- Institute of Organismic and Molecular Evolution, Mainz University, Mainz, Germany
| | - Armin G Fabritzek
- Institute of Organismic and Molecular Evolution, Mainz University, Mainz, Germany
| | | | | |
Collapse
|
111
|
Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M, Noor MAF, Mehlig B, Westram AM. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J Evol Biol 2017; 30:1450-1477. [DOI: 10.1111/jeb.13047] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- M. Ravinet
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; Oslo Norway
- National Institute of Genetics; Mishima Shizuoka Japan
| | - R. Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos; InBIO, Laboratório Associado; Universidade do Porto; Vairão Portugal
- Department of Experimental and Health Sciences; IBE, Institute of Evolutionary Biology (CSIC-UPF); Pompeu Fabra University; Barcelona Spain
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| | - R. K. Butlin
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
- Department of Marine Sciences; Centre for Marine Evolutionary Biology; University of Gothenburg; Gothenburg Sweden
| | - J. Galindo
- Department of Biochemistry, Genetics and Immunology; University of Vigo; Vigo Spain
| | - N. Bierne
- CNRS; Université Montpellier; ISEM; Station Marine Sète France
| | - M. Rafajlović
- Department of Physics; University of Gothenburg; Gothenburg Sweden
| | | | - B. Mehlig
- Department of Physics; University of Gothenburg; Gothenburg Sweden
| | - A. M. Westram
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield UK
| |
Collapse
|
112
|
Burri R. Dissecting differentiation landscapes: a linked selection's perspective. J Evol Biol 2017; 30:1501-1505. [DOI: 10.1111/jeb.13108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 02/01/2023]
Affiliation(s)
- R. Burri
- Department of Population Ecology; Institute of Ecology; Friedrich Schiller University Jena; Jena Germany
| |
Collapse
|
113
|
Wagner CE, Mandeville EG. Speciation, species persistence and the goals of studying genomic barriers to gene flow. J Evol Biol 2017; 30:1512-1515. [DOI: 10.1111/jeb.13112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 01/06/2023]
Affiliation(s)
- C. E. Wagner
- Department of Botany University of Wyoming Laramie WY USA
- Biodiversity Institute University of Wyoming Laramie WY USA
| | - E. G. Mandeville
- Department of Botany University of Wyoming Laramie WY USA
- Wyoming Cooperative Fish and Wildlife Research Unit University of Wyoming Laramie WY USA
| |
Collapse
|
114
|
Ortiz‐Barrientos D, James ME. Evolution of recombination rates and the genomic landscape of speciation. J Evol Biol 2017; 30:1519-1521. [DOI: 10.1111/jeb.13116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/07/2017] [Accepted: 05/08/2017] [Indexed: 01/02/2023]
Affiliation(s)
- D. Ortiz‐Barrientos
- School of Biological Sciences The University of Queensland St Lucia Qld Australia
| | - M. E. James
- School of Biological Sciences The University of Queensland St Lucia Qld Australia
| |
Collapse
|
115
|
Southcott L, Kronforst MR. A neutral view of the evolving genomic architecture of speciation. Ecol Evol 2017; 7:6358-6366. [PMID: 28861239 PMCID: PMC5574762 DOI: 10.1002/ece3.3190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 11/18/2022] Open
Abstract
Analyses of genomewide polymorphism data have begun to shed light on speciation and adaptation. Genome scans to identify regions of the genome that are unusually different between populations or species, possibly due to divergent natural or sexual selection, are widespread in speciation genomics. Theoretical and empirical work suggests that such outlier regions may grow faster than linearly during speciation with gene flow due to a rapid transition between low and high reproductive isolation. We investigate whether this pattern could be attributed to neutral processes by simulating genomes under neutral evolution with varying amounts and timing of gene flow. Under both neutral evolution and divergent selection, simulations with little or no gene flow, or with a long allopatric period after its cessation, resulted in faster than linear growth of the proportion of the genome lying in outlier regions. Without selection, higher recent gene flow erased differentiation; with divergent selection, these same scenarios produced nonlinear growth to a plateau. Our results suggest that, given a history of gene flow, the growth of the divergent genome is informative about selection during divergence, but that in many scenarios, this pattern does not easily distinguish neutral and non-neutral processes during speciation with gene flow.
Collapse
Affiliation(s)
- Laura Southcott
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoILUSA
| | - Marcus R. Kronforst
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoILUSA
- Department of Ecology and EvolutionUniversity of ChicagoChicagoILUSA
| |
Collapse
|
116
|
Samuk K, Owens GL, Delmore KE, Miller SE, Rennison DJ, Schluter D. Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol Ecol 2017; 26:4378-4390. [DOI: 10.1111/mec.14226] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/02/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Kieran Samuk
- Department of Zoology; Biodiversity Research Centre; University of British Columbia; Vancouver BC Canada
| | - Gregory L. Owens
- Department of Botany; University of British Columbia; Vancouver BC Canada
| | | | - Sara E. Miller
- Department of Neurobiology and Behavior; Cornell University; Ithaca NY USA
| | - Diana J. Rennison
- Institut fur Okologie und Evolution; Universitat Bern; Bern Switzerland
| | - Dolph Schluter
- Department of Zoology; Biodiversity Research Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
117
|
Burri R. Interpreting differentiation landscapes in the light of long-term linked selection. Evol Lett 2017. [DOI: 10.1002/evl3.14] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Reto Burri
- Department of Population Ecology; Friedrich Schiller University Jena; Dornburger Strasse 159 D-07743 Jena Germany
| |
Collapse
|
118
|
Plekhanova E, Vishnyakova MA, Bulyntsev S, Chang PL, Carrasquilla-Garcia N, Negash K, Wettberg EV, Noujdina N, Cook DR, Samsonova MG, Nuzhdin SV. Genomic and phenotypic analysis of Vavilov's historic landraces reveals the impact of environment and genomic islands of agronomic traits. Sci Rep 2017; 7:4816. [PMID: 28684880 PMCID: PMC5500531 DOI: 10.1038/s41598-017-05087-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
The Vavilov Institute of Plant Genetic Resources (VIR), in St. Petersburg, Russia, houses a unique genebank, with historical collections of landraces. When they were collected, the geographical distribution and genetic diversity of most crops closely reflected their historical patterns of cultivation established over the preceding millennia. We employed a combination of genomics, computational biology and phenotyping to characterize VIR's 147 chickpea accessions from Turkey and Ethiopia, representing chickpea's center of origin and a major location of secondary diversity. Genotyping by sequencing identified 14,059 segregating polymorphisms and genome-wide association studies revealed 28 GWAS hits in potential candidate genes likely to affect traits of agricultural importance. The proportion of polymorphisms shared among accessions is a strong predictor of phenotypic resemblance, and of environmental similarity between historical sampling sites. We found that 20 out of 28 polymorphisms, associated with multiple traits, including days to maturity, plant phenology, and yield-related traits such as pod number, localized to chromosome 4. We hypothesize that selection and introgression via inadvertent hybridization between more and less advanced morphotypes might have resulted in agricultural improvement genes being aggregated to genomic 'agro islands', and in genotype-to-phenotype relationships resembling widespread pleiotropy.
Collapse
Affiliation(s)
- Elena Plekhanova
- Department of Applied Mathematics, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| | - Margarita A Vishnyakova
- Federal Research Centre All-Russian N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - Sergey Bulyntsev
- Federal Research Centre All-Russian N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - Peter L Chang
- Department of Plant Pathology, University of California, Davis, CA, USA.,Program Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
| | | | - Kassaye Negash
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Eric von Wettberg
- Department of Biological Sciences and International Center for Tropical Botany, Florida International University, Miami, FL, USA
| | - Nina Noujdina
- School of Architecture, University of Southern California, Los Angeles, CA, USA
| | - Douglas R Cook
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Maria G Samsonova
- Department of Applied Mathematics, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| | - Sergey V Nuzhdin
- Department of Applied Mathematics, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia. .,Program Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
119
|
Vijay N, Weissensteiner M, Burri R, Kawakami T, Ellegren H, Wolf JBW. Genomewide patterns of variation in genetic diversity are shared among populations, species and higher-order taxa. Mol Ecol 2017; 26:4284-4295. [PMID: 28570015 DOI: 10.1111/mec.14195] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 12/15/2022]
Abstract
Genomewide screens of genetic variation within and between populations can reveal signatures of selection implicated in adaptation and speciation. Genomic regions with low genetic diversity and elevated differentiation reflective of locally reduced effective population sizes (Ne ) are candidates for barrier loci contributing to population divergence. Yet, such candidate genomic regions need not arise as a result of selection promoting adaptation or advancing reproductive isolation. Linked selection unrelated to lineage-specific adaptation or population divergence can generate comparable signatures. It is challenging to distinguish between these processes, particularly when diverging populations share ancestral genetic variation. In this study, we took a comparative approach using population assemblages from distant clades assessing genomic parallelism of variation in Ne . Utilizing population-level polymorphism data from 444 resequenced genomes of three avian clades spanning 50 million years of evolution, we tested whether population genetic summary statistics reflecting genomewide variation in Ne would covary among populations within clades, and importantly, also among clades where lineage sorting has been completed. All statistics including population-scaled recombination rate (ρ), nucleotide diversity (π) and measures of genetic differentiation between populations (FST , PBS, dxy ) were significantly correlated across all phylogenetic distances. Moreover, genomic regions with elevated levels of genetic differentiation were associated with inferred pericentromeric and subtelomeric regions. The phylogenetic stability of diversity landscapes and stable association with genomic features support a role of linked selection not necessarily associated with adaptation and speciation in shaping patterns of genomewide heterogeneity in genetic diversity.
Collapse
Affiliation(s)
- Nagarjun Vijay
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Lab of Molecular and Genomic Evolution, Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Weissensteiner
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Reto Burri
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Department of Population Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Takeshi Kawakami
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hans Ellegren
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Jochen B W Wolf
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
120
|
Singhal S, Bi K. History cleans up messes: The impact of time in driving divergence and introgression in a tropical suture zone. Evolution 2017; 71:1888-1899. [DOI: 10.1111/evo.13278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/04/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Sonal Singhal
- Department of Ecology and Evolutionary Biology University of Michigan, 830 North University Ann Arbor Michigan 48109
- Museum of Zoology University of Michigan, 1109 Geddes Avenue Ann Arbor Michigan 48109
| | - Ke Bi
- Museum of Vertebrate Zoology University of California, Berkeley, 3101 Valley Life Sciences Building Berkeley California 94720
- Computational Genomics Resource Laboratory, California Institute for Quantitative Biosciences University of California Berkeley California 94720
| |
Collapse
|
121
|
Chong X, Zhang F, Wu Y, Yang X, Zhao N, Wang H, Guan Z, Fang W, Chen F. A SNP-Enabled Assessment of Genetic Diversity, Evolutionary Relationships and the Identification of Candidate Genes in Chrysanthemum. Genome Biol Evol 2017; 8:3661-3671. [PMID: 28082602 PMCID: PMC5521737 DOI: 10.1093/gbe/evw270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2016] [Indexed: 12/11/2022] Open
Abstract
Varieties of the economically important ornamental species chrysanthemum have been bred to fit a number of market niches, but the genetic basis and evolutionary relationships among various cultivated types are poorly understood. Here, a DNA marker-based analysis of 199 chrysanthemum entries representing each of the five cultivated types is presented. A set of >90,000 single nucleotide polymorphisms (SNPs) associated with a minor allele frequency of at least 5% was defined, and used to perform a phylogenetic analysis which corresponded well with the phenotypic classification. The analysis revealed that the small-flowered types, spray cut chrysanthemum (SCC) and potted and ground chrysanthemum (PGC), are more closely related to the wild progenitor species (WC) than are the large-flowered ones, disbud cut chrysanthemum (DCC) and traditional chrysanthemum (TC); and the PGC type was closest. Some 550 genetic regions appeared to have experienced selection in the separation of potted and ground-cover types from disbud cut types, and that between potted and ground-cover types from traditional types. A genome-wide association analysis revealed that seven SNPs lying within six genes were predictive of three important traits (ray floret type, cultivated type and flower shape), but no association with flower color was detected. The study has provided a number of novel insights into evolutionary relationships, the population structure and the genetic basis of some key ornamental traits.
Collapse
Affiliation(s)
- Xinran Chong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaodong Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Nan Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haibin Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhiyong Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
122
|
Han F, Lamichhaney S, Grant BR, Grant PR, Andersson L, Webster MT. Gene flow, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence among Darwin's finches. Genome Res 2017; 27:1004-1015. [PMID: 28442558 PMCID: PMC5453315 DOI: 10.1101/gr.212522.116] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Genomic comparisons of closely related species have identified “islands” of locally elevated sequence divergence. Genomic islands may contain functional variants involved in local adaptation or reproductive isolation and may therefore play an important role in the speciation process. However, genomic islands can also arise through evolutionary processes unrelated to speciation, and examination of their properties can illuminate how new species evolve. Here, we performed scans for regions of high relative divergence (FST) in 12 species pairs of Darwin's finches at different genetic distances. In each pair, we identify genomic islands that are, on average, elevated in both relative divergence (FST) and absolute divergence (dXY). This signal indicates that haplotypes within these genomic regions became isolated from each other earlier than the rest of the genome. Interestingly, similar numbers of genomic islands of elevated dXY are observed in sympatric and allopatric species pairs, suggesting that recent gene flow is not a major factor in their formation. We find that two of the most pronounced genomic islands contain the ALX1 and HMGA2 loci, which are associated with variation in beak shape and size, respectively, suggesting that they are involved in ecological adaptation. A subset of genomic island regions, including these loci, appears to represent anciently diverged haplotypes that evolved early during the radiation of Darwin's finches. Comparative genomics data indicate that these loci, and genomic islands in general, have exceptionally low recombination rates, which may play a role in their establishment.
Collapse
Affiliation(s)
- Fan Han
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| | - Sangeet Lamichhaney
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544-2016, USA
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544-2016, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4461, USA
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
123
|
Yang M, He Z, Shi S, Wu CI. Can genomic data alone tell us whether speciation happened with gene flow? Mol Ecol 2017; 26:2845-2849. [PMID: 28345182 DOI: 10.1111/mec.14117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 01/02/2023]
Abstract
The allopatric model, which requires a period of geographical isolation for speciation to complete, has been the standard model in the modern era. Recently, "speciation with gene flow" has been widely discussed in relation to the model of "strict allopatry" and the level of DNA divergence across genomic regions. We wish to caution that genomic data by themselves may only permit the rejection of the simplest form of allopatry. Even a slightly more complex and realistic model that starts with subdivided populations would be impossible to reject by the genomic data alone. To resolve this central issue of speciation, other forms of observations such as the sequencing of reproductive isolation genes or the identification of geographical barrier(s) will be necessary.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
124
|
Tipping points in the dynamics of speciation. Nat Ecol Evol 2017; 1:1. [DOI: 10.1038/s41559-016-0001] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/11/2016] [Indexed: 01/06/2023]
|
125
|
Gilbert KJ, Whitlock MC. The genetics of adaptation to discrete heterogeneous environments: frequent mutation or large-effect alleles can allow range expansion. J Evol Biol 2017; 30:591-602. [PMID: 27992089 DOI: 10.1111/jeb.13029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/17/2016] [Accepted: 12/05/2016] [Indexed: 01/01/2023]
Abstract
Range expansions are complex evolutionary and ecological processes. From an evolutionary standpoint, a populations' adaptive capacity can determine the success or failure of expansion. Using individual-based simulations, we model range expansion over a two-dimensional, approximately continuous landscape. We investigate the ability of populations to adapt across patchy environmental gradients and examine how the effect sizes of mutations influence the ability to adapt to novel environments during range expansion. We find that genetic architecture and landscape patchiness both have the ability to change the outcome of adaptation and expansion over the landscape. Adaptation to new environments succeeds via many mutations of small effect or few of large effect, but not via the intermediate between these cases. Higher genetic variance contributes to increased ability to adapt, but an alternative route of successful adaptation can proceed from low genetic variance scenarios with alleles of sufficiently large effect. Steeper environmental gradients can prevent adaptation and range expansion on both linear and patchy landscapes. When the landscape is partitioned into local patches with sharp changes in phenotypic optimum, the local magnitude of change between subsequent patches in the environment determines the success of adaptation to new patches during expansion.
Collapse
Affiliation(s)
- K J Gilbert
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - M C Whitlock
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
126
|
Ortego J, Gugger PF, Sork VL. Impacts of human-induced environmental disturbances on hybridization between two ecologically differentiated Californian oak species. THE NEW PHYTOLOGIST 2017; 213:942-955. [PMID: 27621132 DOI: 10.1111/nph.14182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/04/2016] [Indexed: 05/15/2023]
Abstract
Natural hybridization, which can be involved in local adaptation and in speciation processes, has been linked to different sources of anthropogenic disturbance. Here, we use genotypic data to study range-wide patterns of genetic admixture between the serpentine-soil specialist leather oak (Quercus durata) and the widespread Californian scrub oak (Quercus berberidifolia). First, we estimated hybridization rates and the direction of gene flow. Second, we tested the hypothesis that genetic admixture increases with different sources of environmental disturbance, namely anthropogenic destruction of natural habitats and wildfire frequency estimated from long-term records of fire occurrence. Our analyses indicate considerable rates of hybridization (> 25%), asymmetric gene flow from Q. durata into Q. berberidifolia, and a higher occurrence of hybrids in areas where both species live in close parapatry. In accordance with the environmental disturbance hypothesis, we found that genetic admixture increases with wildfire frequency, but we did not find a significant effect of other sources of human-induced habitat alteration (urbanization, land clearing for agriculture) or a suite of ecological factors (climate, elevation, soil type). Our findings highlight that wildfires constitute an important source of environmental disturbance, promoting hybridization between two ecologically well-differentiated native species.
Collapse
Affiliation(s)
- Joaquín Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio s/n, E-41092, Seville, Spain
| | - Paul F Gugger
- Appalachian Laboratory, University of Maryland Center for Environmental Science, 301 Braddock Road, Frostburg, MD, 21532, USA
| | - Victoria L Sork
- Department of Ecology and Evolutionary Biology, University of California, Box 957239, Los Angeles, CA, 90095, USA
- Institute of the Environment and Sustainability, University of California, Box 951496, Los Angeles, CA, 90095-1496, USA
| |
Collapse
|
127
|
Künstner A, Hoffmann M, Fraser BA, Kottler VA, Sharma E, Weigel D, Dreyer C. The Genome of the Trinidadian Guppy, Poecilia reticulata, and Variation in the Guanapo Population. PLoS One 2016; 11:e0169087. [PMID: 28033408 PMCID: PMC5199103 DOI: 10.1371/journal.pone.0169087] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
For over a century, the live bearing guppy, Poecilia reticulata, has been used to study sexual selection as well as local adaptation. Natural guppy populations differ in many traits that are of intuitively adaptive significance such as ornamentation, age at maturity, brood size and body shape. Water depth, light supply, food resources and predation regime shape these traits, and barrier waterfalls often separate contrasting environments in the same river. We have assembled and annotated the genome of an inbred single female from a high-predation site in the Guanapo drainage. The final assembly comprises 731.6 Mb with a scaffold N50 of 5.3 MB. Scaffolds were mapped to linkage groups, placing 95% of the genome assembly on the 22 autosomes and the X-chromosome. To investigate genetic variation in the population used for the genome assembly, we sequenced 10 wild caught male individuals. The identified 5 million SNPs correspond to an average nucleotide diversity (π) of 0.0025. The genome assembly and SNP map provide a rich resource for investigating adaptation to different predation regimes. In addition, comparisons with the genomes of other Poeciliid species, which differ greatly in mechanisms of sex determination and maternal resource allocation, as well as comparisons to other teleost genera can begin to reveal how live bearing evolved in teleost fish.
Collapse
Affiliation(s)
- Axel Künstner
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Margarete Hoffmann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Bonnie A. Fraser
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Verena A. Kottler
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eshita Sharma
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christine Dreyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
128
|
Larson WA, Limborg MT, McKinney GJ, Schindler DE, Seeb JE, Seeb LW. Genomic islands of divergence linked to ecotypic variation in sockeye salmon. Mol Ecol 2016; 26:554-570. [PMID: 27864910 DOI: 10.1111/mec.13933] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 10/14/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
Regions of the genome displaying elevated differentiation (genomic islands of divergence) are thought to play an important role in local adaptation, especially in populations experiencing high gene flow. However, the characteristics of these islands as well as the functional significance of genes located within them remain largely unknown. Here, we used data from thousands of SNPs aligned to a linkage map to investigate genomic islands of divergence in three ecotypes of sockeye salmon (Oncorhynchus nerka) from a single drainage in southwestern Alaska. We found ten islands displaying high differentiation among ecotypes. Conversely, neutral structure observed throughout the rest of the genome was low and not partitioned by ecotype. One island on linkage group So13 was particularly large and contained six SNPs with FST > 0.14 (average FST of neutral SNPs = 0.01). Functional annotation revealed that the peak of this island contained a nonsynonymous mutation in a gene involved in growth in other species (TULP4). The islands that we discovered were relatively small (80-402 Kb), loci found in islands did not show reduced levels of diversity, and loci in islands displayed slightly elevated linkage disequilibrium. These attributes suggest that the islands discovered here were likely generated by divergence hitchhiking; however, we cannot rule out the possibility that other mechanisms may have produced them. Our results suggest that islands of divergence serve an important role in local adaptation with gene flow and represent a significant advance towards understanding the genetic basis of ecotypic differentiation.
Collapse
Affiliation(s)
- Wesley A Larson
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| | - Morten T Limborg
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| | - Garrett J McKinney
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| | - Daniel E Schindler
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| |
Collapse
|
129
|
|
130
|
Vijay N, Bossu CM, Poelstra JW, Weissensteiner MH, Suh A, Kryukov AP, Wolf JBW. Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. Nat Commun 2016; 7:13195. [PMID: 27796282 PMCID: PMC5095515 DOI: 10.1038/ncomms13195] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
Uncovering the genetic basis of species diversification is a central goal in evolutionary biology. Yet, the link between the accumulation of genomic changes during population divergence and the evolutionary forces promoting reproductive isolation is poorly understood. Here, we analysed 124 genomes of crow populations with various degrees of genome-wide differentiation, with parallelism of a sexually selected plumage phenotype, and ongoing hybridization. Overall, heterogeneity in genetic differentiation along the genome was best explained by linked selection exposed on a shared genome architecture. Superimposed on this common background, we identified genomic regions with signatures of selection specific to independent phenotypic contact zones. Candidate pigmentation genes with evidence for divergent selection were only partly shared, suggesting context-dependent selection on a multigenic trait architecture and parallelism by pathway rather than by repeated single-gene effects. This study provides insight into how various forms of selection shape genome-wide patterns of genomic differentiation as populations diverge.
Collapse
Affiliation(s)
- Nagarjun Vijay
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Christen M Bossu
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden.,Department of Zoology, Population Genetics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jelmer W Poelstra
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Matthias H Weissensteiner
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Alexander Suh
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Alexey P Kryukov
- Laboratory of Evolutionary Zoology and Genetics, Institute of Biology and Soil Science, Far East Branch Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Jochen B W Wolf
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden.,Division of Evolutionary Biology, Ludwig Maximilian University of Munich, Grosshaderner Street 2, Planegg-Martinsried 82152, Germany
| |
Collapse
|
131
|
Dennenmoser S, Vamosi SM, Nolte AW, Rogers SM. Adaptive genomic divergence under high gene flow between freshwater and brackish-water ecotypes of prickly sculpin (Cottus asper) revealed by Pool-Seq. Mol Ecol 2016; 26:25-42. [DOI: 10.1111/mec.13805] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/29/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Stefan Dennenmoser
- Max-Planck Institute for Evolutionary Biology; August Thienemann Strasse 2 24306 Plön Germany
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| | - Steven M. Vamosi
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| | - Arne W. Nolte
- Max-Planck Institute for Evolutionary Biology; August Thienemann Strasse 2 24306 Plön Germany
- Institute for Biology; Carl von Ossietzky University Oldenburg; Carl von Ossietzky Str. 9-11 26111 Oldenburg Germany
| | - Sean M. Rogers
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary AB Canada T2N 1N4
| |
Collapse
|
132
|
Irwin DE, Alcaide M, Delmore KE, Irwin JH, Owens GL. Recurrent selection explains parallel evolution of genomic regions of high relative but low absolute differentiation in a ring species. Mol Ecol 2016; 25:4488-507. [PMID: 27484941 DOI: 10.1111/mec.13792] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
Recent technological developments allow investigation of the repeatability of evolution at the genomic level. Such investigation is particularly powerful when applied to a ring species, in which spatial variation represents changes during the evolution of two species from one. We examined genomic variation among three subspecies of the greenish warbler ring species, using genotypes at 13 013 950 nucleotide sites along a new greenish warbler consensus genome assembly. Genomic regions of low within-group variation are remarkably consistent between the three populations. These regions show high relative differentiation but low absolute differentiation between populations. Comparisons with outgroup species show the locations of these peaks of relative differentiation are not well explained by phylogenetically conserved variation in recombination rates or selection. These patterns are consistent with a model in which selection in an ancestral form has reduced variation at some parts of the genome, and those same regions experience recurrent selection that subsequently reduces variation within each subspecies. The degree of heterogeneity in nucleotide diversity is greater than explained by models of background selection, but is consistent with selective sweeps. Given the evidence that greenish warblers have had both population differentiation for a long period of time and periods of gene flow between those populations, we propose that some genomic regions underwent selective sweeps over a broad geographic area followed by within-population selection-induced reductions in variation. An important implication of this 'sweep-before-differentiation' model is that genomic regions of high relative differentiation may have moved among populations more recently than other genomic regions.
Collapse
Affiliation(s)
- Darren E Irwin
- Department of Zoology and Biodiversity Research Center, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.
| | - Miguel Alcaide
- Department of Zoology and Biodiversity Research Center, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Kira E Delmore
- Department of Zoology and Biodiversity Research Center, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Jessica H Irwin
- Department of Zoology and Biodiversity Research Center, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Gregory L Owens
- Department of Zoology and Biodiversity Research Center, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
133
|
Christe C, Stölting KN, Paris M, Fraїsse C, Bierne N, Lexer C. Adaptive evolution and segregating load contribute to the genomic landscape of divergence in two tree species connected by episodic gene flow. Mol Ecol 2016; 26:59-76. [PMID: 27447453 DOI: 10.1111/mec.13765] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/09/2016] [Accepted: 07/14/2016] [Indexed: 12/18/2022]
Abstract
Speciation often involves repeated episodes of genetic contact between divergent populations before reproductive isolation (RI) is complete. Whole-genome sequencing (WGS) holds great promise for unravelling the genomic bases of speciation. We have studied two ecologically divergent, hybridizing species of the 'model tree' genus Populus (poplars, aspens, cottonwoods), Populus alba and P. tremula, using >8.6 million single nucleotide polymorphisms (SNPs) from WGS of population pools. We used the genomic data to (i) scan these species' genomes for regions of elevated and reduced divergence, (ii) assess key aspects of their joint demographic history based on genomewide site frequency spectra (SFS) and (iii) infer the potential roles of adaptive and deleterious coding mutations in shaping the genomic landscape of divergence. We identified numerous small, unevenly distributed genome regions without fixed polymorphisms despite high overall genomic differentiation. The joint SFS was best explained by ancient and repeated gene flow and allowed pinpointing candidate interspecific migrant tracts. The direction of selection (DoS) differed between genes in putative migrant tracts and the remainder of the genome, thus indicating the potential roles of adaptive divergence and segregating deleterious mutations on the evolution and breakdown of RI. Genes affected by positive selection during divergence were enriched for several functionally interesting groups, including well-known candidate 'speciation genes' involved in plant innate immunity. Our results suggest that adaptive divergence affects RI in these hybridizing species mainly through intrinsic and demographic processes. Integrating genomic with molecular data holds great promise for revealing the effects of particular genetic pathways on speciation.
Collapse
Affiliation(s)
- Camille Christe
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Kai N Stölting
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Margot Paris
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Christelle Fraїsse
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugene Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200, Séte, France
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugene Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université Montpellier 2, 2 Rue des Chantiers, F-34200, Séte, France
| | - Christian Lexer
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland.,Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030, Vienna, Austria
| |
Collapse
|
134
|
Marques DA, Lucek K, Haesler MP, Feller AF, Meier JI, Wagner CE, Excoffier L, Seehausen O. Genomic landscape of early ecological speciation initiated by selection on nuptial colour. Mol Ecol 2016; 26:7-24. [DOI: 10.1111/mec.13774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/30/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Affiliation(s)
- David Alexander Marques
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Kay Lucek
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
- University of Sheffield; Sheffield UK
| | - Marcel Philipp Haesler
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Anna Fiona Feller
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Joana Isabel Meier
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| | - Catherine E. Wagner
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
- Department of Botany, Biodiversity Institute; University of Wyoming; Laramie WY USA
| | - Laurent Excoffier
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Swiss Institute of Bioinformatics; Lausanne Switzerland
| | - Ole Seehausen
- Institute of Ecology & Evolution; University of Bern; Bern Switzerland
- Eawag: Swiss Federal Institute of Aquatic Science and Technology; Kastanienbaum Switzerland
| |
Collapse
|
135
|
Grossen C, Seneviratne SS, Croll D, Irwin DE. Strong reproductive isolation and narrow genomic tracts of differentiation among three woodpecker species in secondary contact. Mol Ecol 2016; 25:4247-66. [DOI: 10.1111/mec.13751] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 06/25/2016] [Accepted: 06/27/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Christine Grossen
- Department of Zoology and Biodiversity Research Centre; University of British Columbia; 6270 University Blvd. Vancouver BC V6T 1Z4 Canada
- Institute of Evolutionary Biology and Environmental Studies; University of Zürich; Winterthurerstrasse 190 CH-8057 Zürich Switzerland
| | - Sampath S. Seneviratne
- Department of Zoology and Biodiversity Research Centre; University of British Columbia; 6270 University Blvd. Vancouver BC V6T 1Z4 Canada
- Avian Evolution Node; Department of Zoology; University of Colombo; PO Box 1490 Colombo 03 Sri Lanka
| | - Daniel Croll
- Integrative Biology; ETH Zürich; Universitätstrasse 2 CH-8092 Zürich Switzerland
| | - Darren E. Irwin
- Department of Zoology and Biodiversity Research Centre; University of British Columbia; 6270 University Blvd. Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
136
|
Ostevik KL, Andrew RL, Otto SP, Rieseberg LH. Multiple reproductive barriers separate recently diverged sunflower ecotypes. Evolution 2016; 70:2322-2335. [PMID: 27479368 DOI: 10.1111/evo.13027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/12/2016] [Accepted: 06/27/2016] [Indexed: 01/17/2023]
Abstract
Measuring reproductive barriers between groups of organisms is an effective way to determine the traits and mechanisms that impede gene flow. However, to understand the ecological and evolutionary factors that drive speciation, it is important to distinguish between the barriers that arise early in the speciation process and those that arise after speciation is largely complete. In this article, we comprehensively test for reproductive isolation between recently diverged (<10,000 years bp) dune and nondune ecotypes of the prairie sunflower, Helianthus petiolaris. We find reproductive barriers acting at multiple stages of hybridization, including premating, postmating-prezygotic, and postzygotic barriers, despite the recent divergence. Barriers include extrinsic selection against immigrants and hybrids, a shift in pollinator assemblage, and postpollination assortative mating. Together, these data suggest that multiple barriers can be important for reducing gene flow in the earliest stages of speciation.
Collapse
Affiliation(s)
- Katherine L Ostevik
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Sarah P Otto
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
137
|
Malukiewicz J, Guschanski K, Grativol AD, Oliveira MAB, Ruiz-Miranda CR, Stone AC. Application of PE-RADSeq to the study of genomic diversity and divergence of two Brazilian marmoset species (Callithrix jacchusandC. penicillata). Am J Primatol 2016; 79:1-12. [DOI: 10.1002/ajp.22587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 07/03/2016] [Accepted: 07/10/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Joanna Malukiewicz
- Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Viçosa; Viçosa MG Brazil
- School of Life Sciences; Arizona State University; Tempe Arizona
| | - Katerina Guschanski
- Department of Animal Ecology, Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Adriana D. Grativol
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes RJ Brazil
| | - Maria Adélia B. Oliveira
- Departamento de Morfologia e Fisiologia Animal; Universidade Federal Rural de Pernambuco; Recife PE Brazil
| | - Carlos R. Ruiz-Miranda
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes RJ Brazil
| | - Anne C. Stone
- School of Human Evolution and Social Change; Arizona State University; Tempe Arizona
| |
Collapse
|
138
|
Rougemont Q, Gagnaire PA, Perrier C, Genthon C, Besnard AL, Launey S, Evanno G. Inferring the demographic history underlying parallel genomic divergence among pairs of parasitic and nonparasitic lamprey ecotypes. Mol Ecol 2016; 26:142-162. [PMID: 27105132 DOI: 10.1111/mec.13664] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/22/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
Understanding the evolutionary mechanisms generating parallel genomic divergence patterns among replicate ecotype pairs remains an important challenge in speciation research. We investigated the genomic divergence between the anadromous parasitic river lamprey (Lampetra fluviatilis) and the freshwater-resident nonparasitic brook lamprey (Lampetra planeri) in nine population pairs displaying variable levels of geographic connectivity. We genotyped 338 individuals with RAD sequencing and inferred the demographic divergence history of each population pair using a diffusion approximation method. Divergence patterns in geographically connected population pairs were better explained by introgression after secondary contact, whereas disconnected population pairs have retained a signal of ancient migration. In all ecotype pairs, models accounting for differential introgression among loci outperformed homogeneous migration models. Generating neutral predictions from the inferred divergence scenarios to detect highly differentiated markers identified greater proportions of outliers in disconnected population pairs than in connected pairs. However, increased similarity in the most divergent genomic regions was found among connected ecotype pairs, indicating that gene flow was instrumental in generating parallelism at the molecular level. These results suggest that heterogeneous genomic differentiation and parallelism among replicate ecotype pairs have partly emerged through restricted introgression in genomic islands.
Collapse
Affiliation(s)
- Quentin Rougemont
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l'Evolution (UMR 5554), CNRS-UM2-IRD, Place Eugène Bataillon, F-34095, Montpellier, France.,Station Méditerranéenne de l'Environnement Littoral, Université de Montpellier, 2 Rue des Chantiers, F-34200, Sète, France
| | - Charles Perrier
- CEFE-CNRS, Centre D'Ecologie Fonctionnelle et Evolutive, Route de Mende, 34090, Montpellier, France
| | - Clémence Genthon
- Plateforme génomique INRA GenoToul Chemin de Borderouge - Auzeville, 31320, Castanet-Tolosan, France
| | - Anne-Laure Besnard
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| | - Sophie Launey
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| | - Guillaume Evanno
- INRA, UMR 985 Ecologie et Santé des Ecosystèmes, 35042, Rennes, France.,Agrocampus Ouest, UMR ESE, 65 rue de Saint-Brieuc, 35042, Rennes, France
| |
Collapse
|
139
|
Genetic Mapping of Millions of SNPs in Safflower (Carthamus tinctorius L.) via Whole-Genome Resequencing. G3-GENES GENOMES GENETICS 2016; 6:2203-11. [PMID: 27226165 PMCID: PMC4938673 DOI: 10.1534/g3.115.026690] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Accurate assembly of complete genomes is facilitated by very high density genetic maps. We performed low-coverage, whole-genome shotgun sequencing on 96 F6 recombinant inbred lines (RILs) of a cross between safflower (Carthamus tinctorius L.) and its wild progenitor (C. palaestinus Eig). We also produced a draft genome assembly of C. tinctorius covering 866 million bp (∼two-thirds) of the expected 1.35 Gbp genome after sequencing a single, short insert library to ∼21 × depth. Sequence reads from the RILs were mapped to this genome assembly to facilitate SNP identification, and the resulting polymorphisms were used to construct a genetic map. The resulting map included 2,008,196 genetically located SNPs in 1178 unique positions. A total of 57,270 scaffolds, each containing five or more mapped SNPs, were anchored to the map. This resulted in the assignment of sequence covering 14% of the expected genome length to a genetic position. Comparison of this safflower map to genetic maps of sunflower and lettuce revealed numerous chromosomal rearrangements, and the resulting patterns were consistent with a whole-genome duplication event in the lineage leading to sunflower. This sequence-based genetic map provides a powerful tool for the assembly of a low-cost draft genome of safflower, and the same general approach is expected to work for other species.
Collapse
|
140
|
Stuglik MT, Babik W. Genomic heterogeneity of historical gene flow between two species of newts inferred from transcriptome data. Ecol Evol 2016; 6:4513-25. [PMID: 27386093 PMCID: PMC4930998 DOI: 10.1002/ece3.2152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 01/31/2023] Open
Abstract
The role of gene flow in species formation is a major unresolved issue in speciation biology. Progress in this area requires information on the long-term patterns of gene flow between diverging species. Here, we used thousands of single-nucleotide polymorphisms derived from transcriptome resequencing and a method modeling the joint frequency spectrum of these polymorphisms to reconstruct patterns of historical gene flow between two Lissotriton newts: L. vulgaris (Lv) and L. montandoni (Lm). We tested several models of divergence including complete isolation and various scenarios of historical gene flow. The model of secondary contact received the highest support. According to this model, the species split from their common ancestor ca. 5.5 million years (MY) ago, evolved in isolation for ca. 2 MY, and have been exchanging genes for the last 3.5 MY Demographic changes have been inferred in both species, with the current effective population size of ca. 0.7 million in Lv and 0.2 million in Lm. The postdivergence gene flow resulted in two-directional introgression which affected the genomes of both species, but was more pronounced from Lv to Lm. Interestingly, we found evidence for genomic heterogeneity of interspecific gene flow. This study demonstrates the complexity of long-term gene flow between distinct but incompletely reproductively isolated taxa which divergence was initiated millions of years ago.
Collapse
Affiliation(s)
- Michał T. Stuglik
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa 730387KrakowPoland
| | - Wiesław Babik
- Institute of Environmental SciencesJagiellonian UniversityGronostajowa 730387KrakowPoland
| |
Collapse
|
141
|
Wang J, Street NR, Scofield DG, Ingvarsson PK. Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens. Mol Biol Evol 2016; 33:1754-1767. [PMID: 26983554 DOI: 10.1101/029561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2-3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE, Sweden
| | - Douglas G Scofield
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden
| |
Collapse
|
142
|
Stankowski S, Sobel JM, Streisfeld MA. Geographic cline analysis as a tool for studying genome‐wide variation: a case study of pollinator‐mediated divergence in a monkeyflower. Mol Ecol 2016; 26:107-122. [DOI: 10.1111/mec.13645] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Sean Stankowski
- Institute of Ecology and Evolution 335 Pacific Hall 5289 University of Oregon, Eugene OR 97403‐5289 USA
| | - James M. Sobel
- Department of Biological Sciences Binghamton University PO Box 6000, Binghamton NY 13902 USA
| | - Matthew A. Streisfeld
- Institute of Ecology and Evolution 335 Pacific Hall 5289 University of Oregon, Eugene OR 97403‐5289 USA
| |
Collapse
|
143
|
Westram AM, Panova M, Galindo J, Butlin RK. Targeted resequencing reveals geographical patterns of differentiation for loci implicated in parallel evolution. Mol Ecol 2016; 25:3169-86. [PMID: 27061172 DOI: 10.1111/mec.13640] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 03/08/2016] [Accepted: 03/23/2016] [Indexed: 01/03/2023]
Abstract
Parallel divergence and speciation provide evidence for the role of divergent selection in generating biological diversity. Recent studies indicate that parallel phenotypic divergence may not have the same genetic basis in different geographical locations - 'outlier loci' (loci potentially affected by divergent selection) are often not shared among parallel instances of phenotypic divergence. However, limited sharing may be due, in part, to technical issues if false-positive outliers occur. Here, we test this idea in the marine snail Littorina saxatilis, which has evolved two partly isolated ecotypes (adapted to crab predation vs. wave action) in multiple locations independently. We argue that if the low extent of sharing observed in earlier studies in this system is due to sampling effects, we expect outliers not to show elevated FST when sequenced in new samples from the original locations and also not to follow predictable geographical patterns of elevated FST . Following a hierarchical sampling design (within vs. between country), we applied capture sequencing, targeting outliers from earlier studies and control loci. We found that outliers again showed elevated levels of FST in their original location, suggesting they were not generated by sampling effects. Outliers were also likely to show increased FST in geographically close locations, which may be explained by higher levels of gene flow or shared ancestral genetic variation compared with more distant locations. However, in contrast to earlier findings, we also found some outlier types to show elevated FST in geographically distant locations. We discuss possible explanations for this unexpected result.
Collapse
Affiliation(s)
- Anja M Westram
- Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Marina Panova
- Department of Marine Sciences - Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Juan Galindo
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidade de Vigo, 36310, Vigo, Spain.,ECIMAT, Estación de Ciencias Mariñas de Toralla, Universidade de Vigo, Illa de Toralla, 36331, Vigo, Spain
| | - Roger K Butlin
- Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.,Department of Marine Sciences - Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| |
Collapse
|
144
|
Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Mol Ecol 2016; 25:2337-60. [PMID: 26836441 PMCID: PMC4915564 DOI: 10.1111/mec.13557] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
Hybridization among diverging lineages is common in nature. Genomic data provide a special opportunity to characterize the history of hybridization and the genetic basis of speciation. We review existing methods and empirical studies to identify recent advances in the genomics of hybridization, as well as issues that need to be addressed. Notable progress has been made in the development of methods for detecting hybridization and inferring individual ancestries. However, few approaches reconstruct the magnitude and timing of gene flow, estimate the fitness of hybrids or incorporate knowledge of recombination rate. Empirical studies indicate that the genomic consequences of hybridization are complex, including a highly heterogeneous landscape of differentiation. Inferred characteristics of hybridization differ substantially among species groups. Loci showing unusual patterns - which may contribute to reproductive barriers - are usually scattered throughout the genome, with potential enrichment in sex chromosomes and regions of reduced recombination. We caution against the growing trend of interpreting genomic variation in summary statistics across genomes as evidence of differential gene flow. We argue that converting genomic patterns into useful inferences about hybridization will ultimately require models and methods that directly incorporate key ingredients of speciation, including the dynamic nature of gene flow, selection acting in hybrid populations and recombination rate variation.
Collapse
Affiliation(s)
- Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Loren H. Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
145
|
Yeaman S, Aeschbacher S, Bürger R. The evolution of genomic islands by increased establishment probability of linked alleles. Mol Ecol 2016; 25:2542-58. [DOI: 10.1111/mec.13611] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Sam Yeaman
- Biological Sciences; University of Calgary; Calgary AB T2N 1N4 Canada
- Biodiversity Research Centre; University of British Columbia; Vancouver BC V6T 1Z4 Canada
| | - Simon Aeschbacher
- Department of Evolution and Ecology; University of California; Davis CA 95616 USA
| | - Reinhard Bürger
- Faculty of Mathematics; University of Vienna; Oskar-Morgenstern-Platz 1 A-1090 Vienna Austria
| |
Collapse
|
146
|
Kenney AM, Sweigart AL. Reproductive isolation and introgression between sympatric
Mimulus
species. Mol Ecol 2016; 25:2499-517. [DOI: 10.1111/mec.13630] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Amanda M. Kenney
- Department of Genetics University of Georgia Athens GA 30602 USA
- Department of Biological Sciences St. Edward's University Austin TX 78704 USA
| | | |
Collapse
|
147
|
McGaughran A, Rödelsperger C, Grimm DG, Meyer JM, Moreno E, Morgan K, Leaver M, Serobyan V, Rakitsch B, Borgwardt KM, Sommer RJ. Genomic Profiles of Diversification and Genotype–Phenotype Association in Island Nematode Lineages. Mol Biol Evol 2016; 33:2257-72. [DOI: 10.1093/molbev/msw093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
148
|
McGee MD, Neches RY, Seehausen O. Evaluating genomic divergence and parallelism in replicate ecomorphs from young and old cichlid adaptive radiations. Mol Ecol 2016; 25:260-8. [PMID: 26558354 DOI: 10.1111/mec.13463] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 01/22/2023]
Abstract
Comparative genomic studies of closely related species typically focus on single species pairs at one given stage of divergence. That makes it difficult to infer the continuum of evolutionary process during speciation and beyond. Here, we use whole-genome resequencing to examine genomic patterns of divergence in three sympatric cichlid species pairs with very similar functional and ecological differentiation, but different ages. We find a strong signature of increasing genomic divergence with time in both the mitochondrial genome and the nuclear genome. In contrast to many other systems, we find that in these cichlids, regions of elevated relative differentiation also exhibit increased absolute differentiation. We detect a signature of convergent evolution in a comparison of outlier regions across all three species pair comparisons, but the extent of it is modest, and regions that are strongly divergent in any one pair tend to be only slightly elevated in the other pairs, consistent with a repeatable but polygenic basis of traits that characterize the ecomorphs. Our results suggest that strong functional phenotypic differentiation, as seen in all three species pairs, is generally associated with a clear signature of genomic divergence, even in the youngest species pair.
Collapse
Affiliation(s)
- Matthew D McGee
- Institute of Ecology and Evolution, University of Bern, Bern, CH-3012, Switzerland.,Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, CH-6047, Switzerland
| | - Russell Y Neches
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA, 95616, USA
| | - Ole Seehausen
- Institute of Ecology and Evolution, University of Bern, Bern, CH-3012, Switzerland.,Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, CH-6047, Switzerland
| |
Collapse
|
149
|
Sodeland M, Jorde PE, Lien S, Jentoft S, Berg PR, Grove H, Kent MP, Arnyasi M, Olsen EM, Knutsen H. "Islands of Divergence" in the Atlantic Cod Genome Represent Polymorphic Chromosomal Rearrangements. Genome Biol Evol 2016; 8:1012-22. [PMID: 26983822 PMCID: PMC4860689 DOI: 10.1093/gbe/evw057] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In several species genetic differentiation across environmental gradients or between geographically separate populations has been reported to center at "genomic islands of divergence," resulting in heterogeneous differentiation patterns across genomes. Here, genomic regions of elevated divergence were observed on three chromosomes of the highly mobile fish Atlantic cod (Gadus morhua) within geographically fine-scaled coastal areas. The "genomic islands" extended at least 5, 9.5, and 13 megabases on linkage groups 2, 7, and 12, respectively, and coincided with large blocks of linkage disequilibrium. For each of these three chromosomes, pairs of segregating, highly divergent alleles were identified, with little or no gene exchange between them. These patterns of recombination and divergence mirror genomic signatures previously described for large polymorphic inversions, which have been shown to repress recombination across extensive chromosomal segments. The lack of genetic exchange permits divergence between noninverted and inverted chromosomes in spite of gene flow. For the rearrangements on linkage groups 2 and 12, allelic frequency shifts between coastal and oceanic environments suggest a role in ecological adaptation, in agreement with recently reported associations between molecular variation within these genomic regions and temperature, oxygen, and salinity levels. Elevated genetic differentiation in these genomic regions has previously been described on both sides of the Atlantic Ocean, and we therefore suggest that these polymorphisms are involved in adaptive divergence across the species distributional range.
Collapse
Affiliation(s)
- Marte Sodeland
- Institute of Marine Research, Flødevigen, Norway Department of Natural Sciences, Faculty of Engineering and Science, University of Agder, Kristiansand, Norway
| | - Per Erik Jorde
- Centre for Ecological and Evolutionary Syntheses, Department of Biosciences, University of Oslo, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Norway
| | - Sissel Jentoft
- Department of Natural Sciences, Faculty of Engineering and Science, University of Agder, Kristiansand, Norway Centre for Ecological and Evolutionary Syntheses, Department of Biosciences, University of Oslo, Norway
| | - Paul R Berg
- Centre for Ecological and Evolutionary Syntheses, Department of Biosciences, University of Oslo, Norway
| | - Harald Grove
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Norway
| | - Matthew P Kent
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Norway
| | - Mariann Arnyasi
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Norway
| | - Esben Moland Olsen
- Institute of Marine Research, Flødevigen, Norway Department of Natural Sciences, Faculty of Engineering and Science, University of Agder, Kristiansand, Norway
| | - Halvor Knutsen
- Institute of Marine Research, Flødevigen, Norway Department of Natural Sciences, Faculty of Engineering and Science, University of Agder, Kristiansand, Norway Centre for Ecological and Evolutionary Syntheses, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
150
|
Pfenninger M, Patel S, Arias-Rodriguez L, Feldmeyer B, Riesch R, Plath M. Unique evolutionary trajectories in repeated adaptation to hydrogen sulphide-toxic habitats of a neotropical fish (Poecilia mexicana). Mol Ecol 2016; 24:5446-59. [PMID: 26405850 DOI: 10.1111/mec.13397] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/05/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
Replicated ecological gradients are prime systems to study processes of molecular evolution underlying ecological divergence. Here, we investigated the repeated adaptation of the neotropical fish Poecilia mexicana to habitats containing toxic hydrogen sulphide (H2 S) and compared two population pairs of sulphide-adapted and ancestral fish by sequencing population pools of >200 individuals (Pool-Seq). We inferred the evolutionary processes shaping divergence and tested the hypothesis of increase of parallelism from SNPs to molecular pathways. Coalescence analyses showed that the divergence occurred in the face of substantial bidirectional gene flow. Population divergence involved many short, widely dispersed regions across the genome. Analyses of allele frequency spectra suggest that differentiation at most loci was driven by divergent selection, followed by a selection-mediated reduction of gene flow. Reconstructing allelic state changes suggested that selection acted mainly upon de novo mutations in the sulphide-adapted populations. Using a corrected Jaccard index to quantify parallel evolution, we found a negligible proportion of statistically significant parallel evolution of Jcorr = 0.0032 at the level of SNPs, divergent genome regions (Jcorr = 0.0061) and genes therein (Jcorr = 0.0091). At the level of metabolic pathways, the overlap was Jcorr = 0.2545, indicating increasing parallelism with increasing level of biological integration. The majority of pathways contained positively selected genes in both sulphide populations. Hence, adaptation to sulphidic habitats necessitated adjustments throughout the genome. The largely unique evolutionary trajectories may be explained by a high proportion of de novo mutations driving the divergence. Our findings favour Gould's view that evolution is often the unrepeatable result of stochastic events with highly contingent effects.
Collapse
Affiliation(s)
- Markus Pfenninger
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Hessen, Germany
| | - Simit Patel
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Hessen, Germany
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), Villahermosa, C.P. 86150 Tabasco, México
| | - Barbara Feldmeyer
- Molecular Ecology Group, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325 Frankfurt am Main, Hessen, Germany
| | - Rüdiger Riesch
- School of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22, 712100 Yangling, China
| |
Collapse
|