101
|
Skene PJ, Illingworth RS, Webb S, Kerr ARW, James KD, Turner DJ, Andrews R, Bird AP. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 2010; 37:457-68. [PMID: 20188665 PMCID: PMC4338610 DOI: 10.1016/j.molcel.2010.01.030] [Citation(s) in RCA: 511] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/17/2009] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
MeCP2 is a nuclear protein with an affinity for methylated DNA that can recruit histone deacetylases. Deficiency or excess of MeCP2 causes severe neurological problems, suggesting that the number of molecules per cell must be precisely regulated. We quantified MeCP2 in neuronal nuclei and found that it is nearly as abundant as the histone octamer. Despite this high abundance, MeCP2 associates preferentially with methylated regions, and high-throughput sequencing showed that its genome-wide binding tracks methyl-CpG density. MeCP2 deficiency results in global changes in neuronal chromatin structure, including elevated histone acetylation and a doubling of histone H1. Neither change is detectable in glia, where MeCP2 occurs at lower levels. The mutant brain also shows elevated transcription of repetitive elements. Our data argue that MeCP2 may not act as a gene-specific transcriptional repressor in neurons, but might instead dampen transcriptional noise genome-wide in a DNA methylation-dependent manner.
Collapse
Affiliation(s)
- Peter J Skene
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J, Wei CL. Dynamic changes in the human methylome during differentiation. Genome Res 2010; 20:320-31. [PMID: 20133333 DOI: 10.1101/gr.101907.109] [Citation(s) in RCA: 768] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA methylation is a critical epigenetic regulator in mammalian development. Here, we present a whole-genome comparative view of DNA methylation using bisulfite sequencing of three cultured cell types representing progressive stages of differentiation: human embryonic stem cells (hESCs), a fibroblastic differentiated derivative of the hESCs, and neonatal fibroblasts. As a reference, we compared our maps with a methylome map of a fully differentiated adult cell type, mature peripheral blood mononuclear cells (monocytes). We observed many notable common and cell-type-specific features among all cell types. Promoter hypomethylation (both CG and CA) and higher levels of gene body methylation were positively correlated with transcription in all cell types. Exons were more highly methylated than introns, and sharp transitions of methylation occurred at exon-intron boundaries, suggesting a role for differential methylation in transcript splicing. Developmental stage was reflected in both the level of global methylation and extent of non-CpG methylation, with hESC highest, fibroblasts intermediate, and monocytes lowest. Differentiation-associated differential methylation profiles were observed for developmentally regulated genes, including the HOX clusters, other homeobox transcription factors, and pluripotence-associated genes such as POU5F1, TCF3, and KLF4. Our results highlight the value of high-resolution methylation maps, in conjunction with other systems-level analyses, for investigation of previously undetectable developmental regulatory mechanisms.
Collapse
Affiliation(s)
- Louise Laurent
- UCSD Medical Center, Department of Reproductive Medicine, San Diego, California 92103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 2010; 11:191-203. [DOI: 10.1038/nrg2732] [Citation(s) in RCA: 1089] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
104
|
Medvedeva YA, Fridman MV, Oparina NJ, Malko DB, Ermakova EO, Kulakovskiy IV, Heinzel A, Makeev VJ. Intergenic, gene terminal, and intragenic CpG islands in the human genome. BMC Genomics 2010; 11:48. [PMID: 20085634 PMCID: PMC2817693 DOI: 10.1186/1471-2164-11-48] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 01/19/2010] [Indexed: 11/10/2022] Open
Abstract
Background Recently, it has been discovered that the human genome contains many transcription start sites for non-coding RNA. Regulatory regions related to transcription of this non-coding RNAs are poorly studied. Some of these regulatory regions may be associated with CpG islands located far from transcription start-sites of any protein coding gene. The human genome contains many such CpG islands; however, until now their properties were not systematically studied. Results We studied CpG islands located in different regions of the human genome using methods of bioinformatics and comparative genomics. We have observed that CpG islands have a preference to overlap with exons, including exons located far from transcription start site, but usually extend well into introns. Synonymous substitution rate of CpG-containing codons becomes substantially reduced in regions where CpG islands overlap with protein-coding exons, even if they are located far downstream from transcription start site. CAGE tag analysis displayed frequent transcription start sites in all CpG islands, including those found far from transcription start sites of protein coding genes. Computational prediction and analysis of published ChIP-chip data revealed that CpG islands contain an increased number of sites recognized by Sp1 protein. CpG islands containing more CAGE tags usually also contain more Sp1 binding sites. This is especially relevant for CpG islands located in 3' gene regions. Various examples of transcription, confirmed by mRNAs or ESTs, but with no evidence of protein coding genes, were found in CAGE-enriched CpG islands located far from transcription start site of any known protein coding gene. Conclusions CpG islands located far from transcription start sites of protein coding genes have transcription initiation activity and display Sp1 binding properties. In exons, overlapping with these islands, the synonymous substitution rate of CpG containing codons is decreased. This suggests that these CpG islands are involved in transcription initiation, possibly of some non-coding RNAs.
Collapse
Affiliation(s)
- Yulia A Medvedeva
- Research Institute for Genetics and Selection of Industrial Microorganisms, Genetika, 1st Dorozhny proezd, 1, Moscow, 117545, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. ADVANCES IN GENETICS 2010; 70:277-308. [PMID: 20920752 DOI: 10.1016/b978-0-12-380866-0.60010-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human cancer genomes are characterized by widespread aberrations in DNA methylation patterns including DNA hypomethylation of mostly repetitive sequences and hypermethylation of numerous CpG islands. The analysis of DNA methylation patterns in cancer has progressed from single gene studies examining potentially important candidate genes to a more global analysis where all or almost all promoter and CpG island sequences can be analyzed. We provide a brief overview of these genome-scale methylation-profiling techniques, summarize some of the information that has been obtained with these approaches, and discuss what we have learned about the specificity of methylation aberrations in cancer at a genome-wide level. The challenge is now to identify those methylation changes that are thought to be crucial for the processes of tumor initiation, tumor progression, or metastasis and distinguish these from methylation changes that are merely passenger events that accompany the transformation process but have no effect per se on the process of carcinogenesis.
Collapse
Affiliation(s)
- Satish Kalari
- Department of Cancer Biology, Beckman Research Institute of the Cityof Hope, Duarte, CA, USA
| | | |
Collapse
|
106
|
Mulligan EA, Hatchwell E, McCorkle SR, Dunn JJ. Differential binding of Escherichia coli McrA protein to DNA sequences that contain the dinucleotide m5CpG. Nucleic Acids Res 2009; 38:1997-2005. [PMID: 20015968 PMCID: PMC2847215 DOI: 10.1093/nar/gkp1120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Escherichia coli McrA protein, a putative C5-methylcytosine/C5-hydroxyl methylcytosine-specific nuclease, binds DNA with symmetrically methylated HpaII sequences (Cm5CGG), but its precise recognition sequence remains undefined. To determine McrA’s binding specificity, we cloned and expressed recombinant McrA with a C-terminal StrepII tag (rMcrA-S) to facilitate protein purification and affinity capture of human DNA fragments with m5C residues. Sequence analysis of a subset of these fragments and electrophoretic mobility shift assays with model methylated and unmethylated oligonucleotides suggest that N(Y > R) m5CGR is the canonical binding site for rMcrA-S. In addition to binding HpaII-methylated double-stranded DNA, rMcrA-S binds DNA containing a single, hemimethylated HpaII site; however, it does not bind if A, C, T or U is placed across from the m5C residue, but does if I is opposite the m5C. These results provide the first systematic analysis of McrA’s in vitro binding specificity.
Collapse
Affiliation(s)
- Elizabeth A Mulligan
- Department of Molecular Genetics and Microbiology, Genomics Core Facility, Stony Brook University, Stony Brook, NY, USA
| | | | | | | |
Collapse
|
107
|
Tzeng CC, Liou CP, Li CF, Lai MC, Tsai LP, Cho WC, Chang HT. Methyl-CpG-binding PCR of bloodspots for confirmation of fragile X syndrome in males. J Biomed Biotechnol 2009; 2009:643692. [PMID: 19893637 PMCID: PMC2773378 DOI: 10.1155/2009/643692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/30/2009] [Accepted: 08/10/2009] [Indexed: 11/18/2022] Open
Abstract
This study demonstrates that methyl-CpG-binding PCR (MB-PCR) is a rapid and simple method for detecting fragile X syndrome (FXS) in males, which is performed by verifying the methylation status of the FMR1 promoter in bloodspots. Proteins containing methyl-CpG-binding (MB) domains can be freeze-stored and used as stocks, and the entire test requires only a few hours. The minimum amount of DNA required for the test is 0.5 ng. At this amount, detection sensitivity is not hampered, even mixing with excess unmethylated alleles up to 320 folds. We examined bloodspots from 100 males, including 24 with FXS, in a blinded manner. The results revealed that the ability of MB-PCR to detect FMR1 promoter methylation was the same as that of Southern blot hybridization. Since individuals with 2 or more X chromosomes generally have methylated FMR1 alleles, MB-PCR cannot be used to detect FXS in females.
Collapse
|
108
|
Skvortsova YV, Azhikina TL, Stukacheva EA, Sverdlov ED. Studies on functional role of DNA methylation within the FXYD5-COX7A1 region of human chromosome 19. BIOCHEMISTRY (MOSCOW) 2009; 74:874-81. [PMID: 19817687 DOI: 10.1134/s0006297909080082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We used the Rapid Identification of Genomic Splits technique to get a detailed methylation landscape of a 1-megabase-long human genome region (FXYD5-COX7A1, chromosome 19) in normal and tumor lung tissues and in the A549 lung cancer cell line. All three samples were characterized by an essentially uneven density of unmethylated sites along the fragment. Strikingly enough, the distribution of hypomethylated regions did not correlate with gene locations within the fragment. We also demonstrated that the methylation pattern of this long genomic DNA fragment was rather stable and practically unchanged in human lung cancer tissue as compared with its normal counterpart. On the other hand, the methylation landscape obtained for the A549 cell line (human lung carcinoma) in the USF2-MAG locus showed clear differences from that of the tissues mentioned above. A comparative analysis of transcriptional activity of the genes in this region demonstrated the general absence of direct correlation between methylation and expression, although some data suggest a possible role of methylation in the regulation of MAG expression through cis-regulatory elements. In total, our data provide new evidence for the necessity of revising currently prevailing views on the functional significance of methyl groups in genomic DNA.
Collapse
Affiliation(s)
- Y V Skvortsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | | | | |
Collapse
|
109
|
Jensen TJ, Novak P, Wnek SM, Gandolfi AJ, Futscher BW. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells. Toxicol Appl Pharmacol 2009; 241:221-9. [PMID: 19716837 DOI: 10.1016/j.taap.2009.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/03/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
Aberrant DNA methylation participates in carcinogenesis and is a molecular hallmark of a tumor cell. Tumor cells generally exhibit a redistribution of DNA methylation resulting in global hypomethylation with regional hypermethylation; however, the speed in which these changes emerge has not been fully elucidated and may depend on the temporal location of the cell in the path from normal, finite lifespan to malignant transformation. We used a model of arsenical-induced malignant transformation of immortalized human urothelial cells and DNA methylation microarrays to examine the extent and temporal nature of changes in DNA methylation that occur during the transition from immortal to malignantly transformed. Our data presented herein suggest that during arsenical-induced malignant transformation, aberrant DNA methylation occurs non-randomly, progresses gradually at hundreds of gene promoters, and alters expression of the associated gene, and these changes are coincident with the acquisition of malignant properties, such as anchorage independent growth and tumor formation in immunocompromised mice. The DNA methylation changes appear stable, since malignantly transformed cells removed from the transforming arsenical exhibited no reversion in DNA methylation levels, associated gene expression, or malignant phenotype. These data suggest that arsenicals act as epimutagens and directly link their ability to induce malignant transformation to their actions on the epigenome.
Collapse
Affiliation(s)
- Taylor J Jensen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
110
|
Previti C, Harari O, Zwir I, del Val C. Profile analysis and prediction of tissue-specific CpG island methylation classes. BMC Bioinformatics 2009; 10:116. [PMID: 19383127 PMCID: PMC2683815 DOI: 10.1186/1471-2105-10-116] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 04/21/2009] [Indexed: 11/10/2022] Open
Abstract
Background The computational prediction of DNA methylation has become an important topic in the recent years due to its role in the epigenetic control of normal and cancer-related processes. While previous prediction approaches focused merely on differences between methylated and unmethylated DNA sequences, recent experimental results have shown the presence of much more complex patterns of methylation across tissues and time in the human genome. These patterns are only partially described by a binary model of DNA methylation. In this work we propose a novel approach, based on profile analysis of tissue-specific methylation that uncovers significant differences in the sequences of CpG islands (CGIs) that predispose them to a tissue- specific methylation pattern. Results We defined CGI methylation profiles that separate not only between constitutively methylated and unmethylated CGIs, but also identify CGIs showing a differential degree of methylation across tissues and cell-types or a lack of methylation exclusively in sperm. These profiles are clearly distinguished by a number of CGI attributes including their evolutionary conservation, their significance, as well as the evolutionary evidence of prior methylation. Additionally, we assess profile functionality with respect to the different compartments of protein coding genes and their possible use in the prediction of DNA methylation. Conclusion Our approach provides new insights into the biological features that determine if a CGI has a functional role in the epigenetic control of gene expression and the features associated with CGI methylation susceptibility. Moreover, we show that the ability to predict CGI methylation is based primarily on the quality of the biological information used and the relationships uncovered between different sources of knowledge. The strategy presented here is able to predict, besides the constitutively methylated and unmethylated classes, two more tissue specific methylation classes conserving the accuracy provided by leading binary methylation classification methods.
Collapse
Affiliation(s)
- Christopher Previti
- Department of Molecular Biophysics, DKFZ, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
111
|
Lai JP, Sandhu DS, Shire AM, Roberts LR. The tumor suppressor function of human sulfatase 1 (SULF1) in carcinogenesis. J Gastrointest Cancer 2009; 39:149-158. [PMID: 19373441 PMCID: PMC2925118 DOI: 10.1007/s12029-009-9058-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/18/2009] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Human sulfatase 1 (SULF1) was recently identified and shown to desulfate cellular heparan sulfate proteoglycans (HSPGs). Since sulfated HSPGs serve as co-receptors for many growth factors and cytokines, SULF1 was predicted to modulate growth factor and cytokine signaling. DISCUSSION The role of SULF1 in growth factor signaling and its effects on human tumorigenesis are under active investigation. Initial results show that SULF1 inhibits the co-receptor function of HSPGs in multiple receptor tyrosine kinase signaling pathways, particularly by the heparin binding growth factors--fibroblast growth factor 2, vascular endothelial growth factor, hepatocyte growth factor, PDGF, and heparin-binding epidermal growth factor (HB-EGF). SULF1 is downregulated in the majority of cancer cell lines examined, and forced expression of SULF1 decreases cell proliferation, migration, and invasion. SULF1 also promotes drug-induced apoptosis of cancer cells in vitro and inhibits tumorigenesis and angiogenesis in vivo. CONCLUSION Strategies targeting SULF1 or the interaction between SULF1 and the related sulfatase 2 will potentially be important in developing novel cancer therapies.
Collapse
Affiliation(s)
- Jin-Ping Lai
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
112
|
Luo J, Zheng W, Wang Y, Wu Z, Bai Y, Lu Z. Detection method for methylation density on microarray using methyl-CpG-binding domain protein. Anal Biochem 2009; 387:143-9. [DOI: 10.1016/j.ab.2008.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/02/2008] [Accepted: 11/06/2008] [Indexed: 01/06/2023]
|
113
|
Ball MP, Li JB, Gao Y, Lee JH, LeProust E, Park IH, Xie B, Daley GQ, Church GM. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 2009; 27:361-8. [PMID: 19329998 PMCID: PMC3566772 DOI: 10.1038/nbt.1533] [Citation(s) in RCA: 831] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 03/06/2009] [Indexed: 12/15/2022]
Abstract
Studies of epigenetic modifications would benefit from improved methods for high-throughput methylation profiling. We introduce two complementary approaches that use next-generation sequencing technology to detect cytosine methylation. In the first method, we designed approximately 10,000 bisulfite padlock probes to profile approximately 7,000 CpG locations distributed over the ENCODE pilot project regions and applied them to human B-lymphocytes, fibroblasts and induced pluripotent stem cells. This unbiased choice of targets takes advantage of existing expression and chromatin immunoprecipitation data and enabled us to observe a pattern of low promoter methylation and high gene-body methylation in highly expressed genes. The second method, methyl-sensitive cut counting, generated nontargeted genome-scale data for approximately 1.4 million HpaII sites in the DNA of B-lymphocytes and confirmed that gene-body methylation in highly expressed genes is a consistent phenomenon throughout the human genome. Our observations highlight the usefulness of techniques that are not inherently or intentionally biased towards particular subsets like CpG islands or promoter regions.
Collapse
Affiliation(s)
- Madeleine Price Ball
- Department of Genetics, Harvard Medical School
- Broad Institute of MIT and Harvard, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Jin Billy Li
- Department of Genetics, Harvard Medical School
- Broad Institute of MIT and Harvard, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Yuan Gao
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 1000 W. Cary St. Richmond, Virginia 23284, USA
| | - Je-Hyuk Lee
- Department of Genetics, Harvard Medical School
- Broad Institute of MIT and Harvard, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Emily LeProust
- Genomics Solution Unit, Agilent Technologies Inc., 5301 Stevens Creek Blvd., Santa Clara, California 95051, USA
| | - In-Hyun Park
- Department of Medicine, Division of Pediatric Hematology Oncology, Children's Hospital Boston, and Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Karp Family Research Building 7214, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Bin Xie
- Center for the Study of Biological Complexity, Virginia Commonwealth University, 1000 W. Cary St. Richmond, Virginia 23284, USA
| | - George Q. Daley
- Department of Medicine, Division of Pediatric Hematology Oncology, Children's Hospital Boston, and Dana-Farber Cancer Institute; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Karp Family Research Building 7214, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School
- Broad Institute of MIT and Harvard, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
114
|
Zhang Y, Rohde C, Tierling S, Jurkowski TP, Bock C, Santacruz D, Ragozin S, Reinhardt R, Groth M, Walter J, Jeltsch A. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution. PLoS Genet 2009; 5:e1000438. [PMID: 19325872 PMCID: PMC2653639 DOI: 10.1371/journal.pgen.1000438] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/25/2009] [Indexed: 11/19/2022] Open
Abstract
Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read) Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i) amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii) methylation levels of individual cells in one tissue are very similar, and iii) methylation patterns follow a relaxed site-specific distribution. Furthermore, iv) we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene regulation. Further, we illustrate genotype–epigenotype interactions by showing novel examples of allele-specific methylation. Epigenetics is defined as the inheritance of changes in gene function without changing the DNA sequence. Epigenetic signals comprise methylation of cytosine bases of the DNA and chemical modifications of the histone proteins. DNA methylation plays important roles in development and disease processes. To investigate the biological role of DNA methylation, we analyzed DNA methylation patterns of 190 gene promoter regions on chromosome 21 in five human cell types. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, indicating that DNA methylation acts in a switch-like manner. Consistent with the well-established role of DNA methylation in gene silencing, we found DNA methylation in promoter regions strongly correlated with absence of gene expression and low levels of additional activating epigenetic marks. Although methylation levels of individual cells in one tissue are very similar, we observed differences in DNA methylation when comparing different cell types in 43% of all regions analyzed. This finding is in agreement with a role of DNA methylation in cellular development. We identified three cases of genes that are differentially methylated in both alleles that illustrate the tight interplay of genetic and epigenetic processes.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Christian Rohde
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Sascha Tierling
- Institut für Genetik, FB Biowissenschaften, Universität des Saarlandes, Saarbrücken, Germany
| | - Tomasz P. Jurkowski
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Christoph Bock
- Max-Planck-Institut für Informatik, Saarbrücken, Germany
| | - Diana Santacruz
- Institut für Genetik, FB Biowissenschaften, Universität des Saarlandes, Saarbrücken, Germany
| | - Sergey Ragozin
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | - Marco Groth
- Leibniz-Institute for Age Research—Fritz-Lipmann-Institute, Jena, Germany
| | - Jörn Walter
- Institut für Genetik, FB Biowissenschaften, Universität des Saarlandes, Saarbrücken, Germany
- * E-mail: (JW); (AJ)
| | - Albert Jeltsch
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail: (JW); (AJ)
| |
Collapse
|
115
|
Chang JW, Huang THM, Wang YC. Emerging methods for analysis of the cancer methylome. Pharmacogenomics 2009; 9:1869-78. [PMID: 19072645 DOI: 10.2217/14622416.9.12.1869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CpG island hypermethylation plays a key role in the silencing of cancer-related genes. In recent years, some new and effective methods have been developed for high-throughput analysis of DNA methylation, and have provided DNA methylation markers as powerful tools for the development of innovative diagnostic and therapeutic strategies in cancer. In this review, we describe various current and emerging technologies for studying the DNA methylation profile in cancer including: the isoschizomers and gel-based methylation analysis, the microarray-based methylation analysis and the sequencing-based methylation analysis. All of these techniques have advantages and disadvantages, such as sensitivity, specificity, analysis scale and cost. In the coming years, newer platforms of low cost, high-throughput and greater expediency, and speed for cancer methylome analysis will be developed.
Collapse
Affiliation(s)
- Jer-Wei Chang
- National Taiwan Normal University, Taiwan, Republic of China
| | | | | |
Collapse
|
116
|
Muhonen P, Holthofer H. Epigenetic and microRNA-mediated regulation in diabetes. Nephrol Dial Transplant 2009; 24:1088-96. [PMID: 19145005 PMCID: PMC2658734 DOI: 10.1093/ndt/gfn728] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Pirkko Muhonen
- Centre for BioAnalytical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | |
Collapse
|
117
|
Abstract
Epigenetics is the study of heritable changes in gene expression. Chromatin immunoprecipitation (ChIP) and methylation status analysis of genes have been applied to the study of epigenetic modifications, often perturbed in human cancer. ChIP is a technique allowing the analysis of the protein association with specific genomic regions in the context of intact cells. ChIP and immunoprecipitation (IP) of methylated DNA, both rely on the use of well-characterized specific antibodies. The first is described in Chapter 2 and the second is shown here. At Diagenode, a novel METHYL kit has been designed to immunoprecipitate methylated DNA (Methyl DNA IP). This kit allows you to perform DNA methylation analysis of your sample together with optimized internal IP controls, all in one tube. This brand new Methyl DNA IP method provides methylated DNA (meDNA) and unmethylated DNA (unDNA) controls to be used together with your DNA sample, allowing direct correlation between immunoprecipitated material and methylation status. Such methylation analysis is highly specific and each IP is quality controlled, two essential keys for reliable results. In addition, the kit protocol is fast and user-friendly.
Collapse
|
118
|
Tao J, Wu H, Sun YE. Deciphering Rett syndrome with mouse genetics, epigenomics, and human neurons. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 89:147-60. [PMID: 19900619 DOI: 10.1016/s0074-7742(09)89007-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations of MECP2 (methyl-CpG binding protein 2) cause Rett syndrome (RTT). Mouse genetics studies have demonstrated that the lack of functional MeCP2 in the central nervous system leads to RTT-like symptoms, which could be reversed upon MeCP2 restoration. MeCP2 recognizes methylated CpG dinucleotides and may interact with other chromatin remodeling proteins. Although traditionally thought to be a transcription repressor, MeCP2 may also be involved in transcription activation. With the development of new technologies, deciphering the role of MeCP2 on a genome-wide scale is important for understanding of the RTT disease mechanisms.
Collapse
Affiliation(s)
- Jifang Tao
- Department of Molecular & Medical Pharmacology and Psychiatry & Behavioral Sciences, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
119
|
Strategies for Epigenome Analysis. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
120
|
Pomraning KR, Smith KM, Freitag M. Genome-wide high throughput analysis of DNA methylation in eukaryotes. Methods 2008; 47:142-50. [PMID: 18950712 DOI: 10.1016/j.ymeth.2008.09.022] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 09/29/2008] [Indexed: 12/15/2022] Open
Abstract
Cytosine methylation is the quintessential epigenetic mark. Two well-established methods, bisulfite sequencing and methyl-DNA immunoprecipitation (MeDIP) lend themselves to the genome-wide analysis of DNA methylation by high throughput sequencing. Here we provide an overview and brief review of these methods. We summarize our experience with MeDIP followed by high throughput Illumina/Solexa sequencing, exemplified by the analysis of the methylated fraction of the Neurospora crassa genome ("methylome"). We provide detailed methods for DNA isolation, processing and the generation of in vitro libraries for Illumina/Solexa sequencing. We discuss potential problems in the generation of sequencing libraries. Finally, we provide an overview of software that is appropriate for the analysis of high throughput sequencing data generated by Illumina/Solexa-type sequencing by synthesis, with a special emphasis on approaches and applications that can generate more accurate depictions of sequence reads that fall in repeated regions of a chosen reference genome.
Collapse
Affiliation(s)
- Kyle R Pomraning
- Center for Genome Research and Biocomputing and Department of Biochemistry and Biophysics, Oregon State University, 2011 ALS Building, Corvallis, OR 97331-7305, USA
| | | | | |
Collapse
|
121
|
Fouse SD, Shen Y, Pellegrini M, Cole S, Meissner A, Van Neste L, Jaenisch R, Fan G. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2008; 2:160-9. [PMID: 18371437 DOI: 10.1016/j.stem.2007.12.011] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 10/01/2007] [Accepted: 12/17/2007] [Indexed: 01/04/2023]
Abstract
We report here genome-wide mapping of DNA methylation patterns at proximal promoter regions in mouse embryonic stem (mES) cells. Most methylated genes are differentiation associated and repressed in mES cells. By contrast, the unmethylated gene set includes many housekeeping and pluripotency genes. By crossreferencing methylation patterns to genome-wide mapping of histone H3 lysine (K) 4/27 trimethylation and binding of Oct4, Nanog, and Polycomb proteins on gene promoters, we found that promoter DNA methylation is the only marker of this group present on approximately 30% of genes, many of which are silenced in mES cells. In demethylated mutant mES cells, we saw upregulation of a subset of X-linked genes and developmental genes that are methylated in wild-type mES cells, but lack either H3K4 and H3K27 trimethylation or association with Polycomb, Oct4, or Nanog. Our data suggest that in mES cells promoter methylation represents a unique epigenetic program that complements other regulatory mechanisms to ensure appropriate gene expression.
Collapse
Affiliation(s)
- Shaun D Fouse
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Papageorgio C, Harrison R, Rahmatpanah FB, Taylor K, Davis W, Caldwell CW. Algorithmic discovery of methylation "hot spots" in DNA from lymphoma patients. Cancer Inform 2008; 6:449-53. [PMID: 19259422 PMCID: PMC2623312 DOI: 10.4137/cin.s921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The computational aspects of the problem in this paper involve, firstly, selective mapping of methylated DNA clones according to methylation level and, secondly, extracting motif information from all the mapped elements in the absence of prior probability distribution. Our novel implementation of algorithms to map and maximize expectation in this setting has generated data that appear to be distinct for each lymphoma subtype examined. A "clone" represents a polymerase chain reaction (PCR) product (on average approximately 500 bp) which belongs to a microarray of 8544 such sequences preserving CpG-rich islands (CGIs) [1]. Accumulating evidence indicates that cancers including lymphomas demonstrate hypermethylation of CGIs "silencing" an increasing number of tumor suppressor (TS) genes which can lead to tumorigenesis.
Collapse
Affiliation(s)
- Chris Papageorgio
- Department of Internal Medicine/Division of Hematology Oncology, Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65203, USA.
| | | | | | | | | | | |
Collapse
|
123
|
Tanabe K, Liu Z, Patel S, Doble BW, Li L, Cras-Méneur C, Martinez SC, Welling CM, White MF, Bernal-Mizrachi E, Woodgett JR, Permutt MA. Genetic deficiency of glycogen synthase kinase-3beta corrects diabetes in mouse models of insulin resistance. PLoS Biol 2008; 6:e37. [PMID: 18288891 PMCID: PMC2245985 DOI: 10.1371/journal.pbio.0060037] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 01/04/2008] [Indexed: 12/26/2022] Open
Abstract
Despite treatment with agents that enhance beta-cell function and insulin action, reduction in beta-cell mass is relentless in patients with insulin resistance and type 2 diabetes mellitus. Insulin resistance is characterized by impaired signaling through the insulin/insulin receptor/insulin receptor substrate/PI-3K/Akt pathway, leading to elevation of negatively regulated substrates such as glycogen synthase kinase-3beta (Gsk-3beta). When elevated, this enzyme has antiproliferative and proapoptotic properties. In these studies, we designed experiments to determine the contribution of Gsk-3beta to regulation of beta-cell mass in two mouse models of insulin resistance. Mice lacking one allele of the insulin receptor (Ir+/-) exhibit insulin resistance and a doubling of beta-cell mass. Crossing these mice with those having haploinsufficiency for Gsk-3beta (Gsk-3beta+/-) reduced insulin resistance by augmenting whole-body glucose disposal, and significantly reduced beta-cell mass. In the second model, mice missing two alleles of the insulin receptor substrate 2 (Irs2-/-), like the Ir+/- mice, are insulin resistant, but develop profound beta-cell loss, resulting in early diabetes. We found that islets from these mice had a 4-fold elevation of Gsk-3beta activity associated with a marked reduction of beta-cell proliferation and increased apoptosis. Irs2-/- mice crossed with Gsk-3beta+/- mice preserved beta-cell mass by reversing the negative effects on proliferation and apoptosis, preventing onset of diabetes. Previous studies had shown that islets of Irs2-/- mice had increased cyclin-dependent kinase inhibitor p27(kip1) that was limiting for beta-cell replication, and reduced Pdx1 levels associated with increased cell death. Preservation of beta-cell mass in Gsk-3beta+/- Irs2-/- mice was accompanied by suppressed p27(kip1) levels and increased Pdx1 levels. To separate peripheral versus beta-cell-specific effects of reduction of Gsk3beta activity on preservation of beta-cell mass, mice homozygous for a floxed Gsk-3beta allele (Gsk-3(F/F)) were then crossed with rat insulin promoter-Cre (RIP-Cre) mice to produce beta-cell-specific knockout of Gsk-3beta (betaGsk-3beta-/-). Like Gsk-3beta+/- mice, betaGsk-3beta-/- mice also prevented the diabetes of the Irs2-/- mice. The results of these studies now define a new, negatively regulated substrate of the insulin signaling pathway specifically within beta-cells that when elevated, can impair replication and increase apoptosis, resulting in loss of beta-cells and diabetes. These results thus form the rationale for developing agents to inhibit this enzyme in obese insulin-resistant individuals to preserve beta-cells and prevent diabetes onset.
Collapse
Affiliation(s)
- Katsuya Tanabe
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhonghao Liu
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Satish Patel
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Bradley W Doble
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Lin Li
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Corentin Cras-Méneur
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sara C Martinez
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cris M Welling
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Morris F White
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James R Woodgett
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - M. Alan Permutt
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
124
|
Cloning, purification and initial characterization of E. coli McrA, a putative 5-methylcytosine-specific nuclease. Protein Expr Purif 2008; 62:98-103. [PMID: 18662788 DOI: 10.1016/j.pep.2008.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 01/29/2023]
Abstract
Expression strains of Escherichia coli BL21(DE3) overproducing the E. coli m(5)C McrA restriction protein were produced by cloning the mcrA coding sequence behind a T7 promoter. The recombinant mcrA minus BL21(DE3) host produces active McrA as evidenced by its acquired ability to selectively restrict the growth of T7 phage containing DNA methylated in vitro by HpaII methylase. The mcrA coding region contains several non-optimal E. coli triplets. Addition of the pACYC-RIL tRNA encoding plasmid to the BL21(DE3) host increased the yield of recombinant McrA (rMcrA) upon induction about 5- to 10-fold. McrA protein expressed at 37 degrees C is insoluble but a significant fraction is recovered as soluble protein after autoinduction at 20 degrees C. rMcrA protein, which is predicted to contain a Cys(4)-Zn(2+) finger and a catalytically important histidine triad in its putative nuclease domain, binds to several metal chelate resins without addition of a poly-histidine affinity tag. This feature was used to develop an efficient protocol for the rapid purification of nearly homogeneous rMcrA. The native protein is a dimer with a high alpha-helical content as measured by circular dichroism analysis. Under all conditions tested purified rMcrA does not have measurable nuclease activity on HpaII methylated (Cm(5)CGG) DNA, although the purified protein does specifically bind HpaII methylated DNA. These results have implications for understanding the in vivo activity of McrA in "restricting" m(5)C-containing DNA and suggest that rMcrA may have utility as a reagent for affinity purification of DNA fragments containing m(5)C residues.
Collapse
|
125
|
Abstract
The genomes of many animals, plants and fungi are tagged by methylation of DNA cytosine. To understand the biological significance of this epigenetic mark it is essential to know where in the genome it is located. New techniques are making it easier to map DNA methylation patterns on a large scale and the results have already provided surprises. In particular, the conventional view that DNA methylation functions predominantly to irreversibly silence transcription is being challenged. Not only is promoter methylation often highly dynamic during development, but many organisms also seem to target DNA methylation specifically to the bodies of active genes.
Collapse
|
126
|
Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, Yamochi T, Urano T, Furukawa K, Kwabi-Addo B, Gold DL, Sekido Y, Huang THM, Issa JPJ. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet 2008; 40:741-50. [PMID: 18488029 DOI: 10.1038/ng.159] [Citation(s) in RCA: 468] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 03/19/2008] [Indexed: 12/16/2022]
Abstract
Epigenetic silencing in cancer cells is mediated by at least two distinct histone modifications, polycomb-based histone H3 lysine 27 trimethylation (H3K27triM) and H3K9 dimethylation. The relationship between DNA hypermethylation and these histone modifications is not completely understood. Using chromatin immunoprecipitation microarrays (ChIP-chip) in prostate cancer cells compared to normal prostate, we found that up to 5% of promoters (16% CpG islands and 84% non-CpG islands) were enriched with H3K27triM. These genes were silenced specifically in prostate cancer, and those CpG islands affected showed low levels of DNA methylation. Downregulation of the EZH2 histone methyltransferase restored expression of the H3K27triM target genes alone or in synergy with histone deacetylase inhibition, without affecting promoter DNA methylation, and with no effect on the expression of genes silenced by DNA hypermethylation. These data establish EZH2-mediated H3K27triM as a mechanism of tumor-suppressor gene silencing in cancer that is potentially independent of promoter DNA methylation.
Collapse
Affiliation(s)
- Yutaka Kondo
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 2008; 6:e22. [PMID: 18232738 PMCID: PMC2214817 DOI: 10.1371/journal.pbio.0060022] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/13/2007] [Indexed: 12/13/2022] Open
Abstract
CpG islands (CGIs) are dense clusters of CpG sequences that punctuate the CpG-deficient human genome and associate with many gene promoters. As CGIs also differ from bulk chromosomal DNA by their frequent lack of cytosine methylation, we devised a CGI enrichment method based on nonmethylated CpG affinity chromatography. The resulting library was sequenced to define a novel human blood CGI set that includes many that are not detected by current algorithms. Approximately half of CGIs were associated with annotated gene transcription start sites, the remainder being intra- or intergenic. Using an array representing over 17,000 CGIs, we established that 6%–8% of CGIs are methylated in genomic DNA of human blood, brain, muscle, and spleen. Inter- and intragenic CGIs are preferentially susceptible to methylation. CGIs showing tissue-specific methylation were overrepresented at numerous genetic loci that are essential for development, including HOX and PAX family members. The findings enable a comprehensive analysis of the roles played by CGI methylation in normal and diseased human tissues. The human genome contains about 22,000 genes, each encoding one of the proteins required for human life. A particular cell type (e.g., blood, skin, etc.) expresses a specific subset of protein genes and silences the remainder. To shed light on the mechanisms that cause genes to be activated or shut down, we studied DNA sequences called “CpG islands” (CGIs). These sequences are found at over half of all human genes and can exist in either the active or silent state depending on the presence or absence of methyl groups on the DNA. We devised a method for purifying all CGIs and showed that, unexpectedly, only half occur at the beginning of genes near the promoter, the rest occurring within or between genes. Notably, methylation of CGIs causes stable gene silencing. We tested 17,000 CGIs in four human tissues and found that 6%–8% were methylated in each. Genes whose protein products play an essential role during embryonic development were preferentially methylated, suggesting that gene expression during development could be regulated by CGI methylation. CpG island methylation, an epigenetic phenomenon usually associated with abnormality in disease, is little characterised in the context of "normal" human cells. Here we highlight tissue-specific CpG Island methylation, which frequently associates with developmental genes.
Collapse
|
128
|
Microarray-based methods to identify DNA methylation in cancer. YI CHUAN = HEREDITAS 2008; 30:295-303. [DOI: 10.3724/sp.j.1005.2008.00295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
129
|
Hoxd13 binds in vivo and regulates the expression of genes acting in key pathways for early limb and skeletal patterning. Dev Biol 2008; 317:497-507. [PMID: 18407260 DOI: 10.1016/j.ydbio.2008.02.048] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 11/24/2022]
Abstract
5' HoxD genes are required for the correct formation of limb skeletal elements. Hoxd13, the most 5'-located HoxD gene, is important for patterning the most distal limb region, and its mutation causes human limb malformation syndromes. The mechanisms underlying the control of developmental processes by Hoxd13, and by Hox genes in general, are still elusive, due to the limited knowledge on their direct downstream target genes. We identified by ChIP-on-chip 248 known gene loci bound invivo by Hoxd13. Genes relevant to limb patterning and skeletogenesis were further analysed. We found that Hoxd13 binds invivo, in developing limbs, the loci of Hand2, a gene crucial to limb AP axis patterning, of Meis1 and Meis2, involved in PD patterning, of the Sfrp1, Barx1, and Fbn1 genes, involved in skeletogenesis, and of the Dach1, Bmp2, Bmp4, andEmx2 genes. We show that Hoxd13 misexpression in developing chick limbs alters the expression of the majority of these genes, supporting the conclusion that Hoxd13 directly regulates their transcription. Our results indicate that 5' Hox proteins regulate directly both key genes for early limb AP and PD axis patterning and genes involved, at later stages, in skeletal patterning.
Collapse
|
130
|
Estécio MRH, Yan PS, Huang THM, Issa JPJ. Methylated CpG Island Amplification and Microarray (MCAM) for High-Throughput Analysis of DNA Methylation. ACTA ACUST UNITED AC 2008; 2008:pdb.prot4974. [PMID: 21356790 DOI: 10.1101/pdb.prot4974] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONThis protocol describes the use of methylated CpG island amplification (MCA) in combination with a microarray platform to analyze genome-wide DNA methylation in a high-throughput fashion. In this approach, termed MCAM, methylated CpG islands are selectively targeted using oligonucleotide adaptors after two rounds of digestion with a combination of methylation-sensitive and methylation-insensitive nucleases. They are then amplified using PCR. The resulting amplicons, representing the methylated fraction of the genome, are labeled with fluorochromes. Subsequently, a comparative hybridization of reference and test samples (typically normal and tumor DNA specimens) is done on a microarray platform.
Collapse
Affiliation(s)
- Marcos R H Estécio
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
131
|
Aleman A, Adrien L, Lopez-Serra L, Cordon-Cardo C, Esteller M, Belbin TJ, Sanchez-Carbayo M. Identification of DNA hypermethylation of SOX9 in association with bladder cancer progression using CpG microarrays. Br J Cancer 2008; 98:466-73. [PMID: 18087279 PMCID: PMC2361432 DOI: 10.1038/sj.bjc.6604143] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 11/19/2007] [Indexed: 02/06/2023] Open
Abstract
CpG island arrays represent a high-throughput epigenomic discovery platform to identify global disease-specific promoter hypermethylation candidates along bladder cancer progression. DNA obtained from 10 pairs of invasive bladder tumours were profiled vs their respective normal urothelium using differential methylation hybridisation on custom-made CpG arrays (n=12 288 clones). Promoter hypermethylation of 84 clones was simultaneously shown in at least 70% of the tumours. SOX9 was selected for further validation by bisulphite genomic sequencing and methylation-specific polymerase chain reaction in bladder cancer cells (n=11) and primary bladder tumours (n=101). Hypermethylation was observed in bladder cancer cells and associated with lack of gene expression, being restored in vitro by a demethylating agent. In primary bladder tumours, SOX9 hypermethylation was present in 56.4% of the cases. Moreover, SOX9 hypermethylation was significantly associated with tumour grade and overall survival. Thus, this high-throughput epigenomic strategy has served to identify novel hypermethylated candidates in bladder cancer. In vitro analyses supported the role of methylation in silencing SOX9 gene. The association of SOX9 hypermethylation with tumour progression and clinical outcome suggests its relevant clinical implications at stratifying patients affected with bladder cancer.
Collapse
Affiliation(s)
- A Aleman
- Tumor Markers Group, Molecular Pathology Program, Spanish National Cancer Center, Madrid, Spain
| | - L Adrien
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - L Lopez-Serra
- Epigenetics Group, Molecular Pathology Program, Spanish National Cancer Center, Madrid, Spain
| | - C Cordon-Cardo
- Division of Molecular Pathology, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA
| | - M Esteller
- Epigenetics Group, Molecular Pathology Program, Spanish National Cancer Center, Madrid, Spain
| | - T J Belbin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M Sanchez-Carbayo
- Tumor Markers Group, Molecular Pathology Program, Spanish National Cancer Center, Madrid, Spain
| |
Collapse
|
132
|
Rauch T, Li H, Wu X, Pfeifer GP. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 2007; 66:7939-47. [PMID: 16912168 DOI: 10.1158/0008-5472.can-06-1888] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a straightforward and comprehensive approach for DNA methylation analysis in mammalian genomes. The methylated-CpG island recovery assay (MIRA), which is based on the high affinity of the MBD2/MBD3L1 complex for methylated DNA, has been used to detect cell type-dependent differences in DNA methylation on a microarray platform. The procedure has been verified and applied to identify a series of novel candidate lung tumor suppressor genes and potential DNA methylation markers that contain methylated CpG islands. One gene of particular interest was DLEC1, located at a commonly deleted area on chromosome 3p22-p21.3, which was frequently methylated in primary lung cancers and melanomas. Among the identified methylated genes, homeodomain-containing genes were unusually frequent (11 of the top 50 hits) and were targeted on different chromosomes. These genes included LHX2, LHX4, PAX7, HOXB13, LBX1, SIX2, HOXD3, DLX1, HOXD1, ONECUT2, and PAX9. The data show that MIRA-assisted microarray analysis has a low false-positive rate and has the capacity to catalogue methylated CpG islands on a genome-wide basis. The results support the hypothesis that cancer-associated DNA methylation events do not occur randomly throughout the genome but at least some are targeted by specific mechanisms.
Collapse
Affiliation(s)
- Tibor Rauch
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
133
|
Schaefer M, Meusburger M, Lyko F. Non-mammalian models for epigenetic analyses in cancer. Hum Mol Genet 2007; 16 Spec No 1:R1-6. [PMID: 17613542 DOI: 10.1093/hmg/ddm004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many paradigms for our understanding of cancer etiology have been shaped in mammalian model systems. However, it has become evident that both genetic and epigenetic components actively influence the progression and severity of cancers. The complexity of epigenetic mechanisms in mammals has invigorated the use of non-mammalian model organisms in several research areas. Key contributions from this approach include (1) the in-depth characterization of epigenetic mechanisms and their interactions, resulting in an improved understanding of epigenetic pathways, (2) the establishment and refinement of techniques for genome-wide epigenetic profiling and (3) the discovery of novel epigenetic modifiers with potentially druggable enzymatic activities. Recent findings in all three areas will improve our understanding of epigenetic misregulation in cancer and facilitate the translation of basic research concepts into clinical applications.
Collapse
Affiliation(s)
- Matthias Schaefer
- Division of Epigenetics, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
134
|
Abstract
Cytosine methylation is the most common covalent modification of DNA in eukaryotes. DNA methylation has an important role in many aspects of biology, including development and disease. Methylation can be detected using bisulfite conversion, methylation-sensitive restriction enzymes, methyl-binding proteins and anti-methylcytosine antibodies. Combining these techniques with DNA microarrays and high-throughput sequencing has made the mapping of DNA methylation feasible on a genome-wide scale. Here we discuss recent developments and future directions for identifying and mapping methylation, in an effort to help colleagues to identify the approaches that best serve their research interests.
Collapse
Affiliation(s)
- Daniel Zilberman
- University of California, 211 Koshland Hall, Berkeley, CA 94720, USA
| | | |
Collapse
|
135
|
Zou H, Harrington J, Rego RL, Ahlquist DA. A novel method to capture methylated human DNA from stool: implications for colorectal cancer screening. Clin Chem 2007; 53:1646-51. [PMID: 17712002 DOI: 10.1373/clinchem.2007.086223] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Assay of methylated DNA markers in stool is a promising approach for colorectal cancer (CRC) screening. A method to capture hypermethylated CpG islands from stool would enrich target analyte and allow optimal assay sensitivity. METHODS Methyl-binding domain (MBD) protein was produced using a pET6HMBD plasmid with MBD DNA sequence cloned from rat MeCP2 gene and bound to a column of nickel-agarose resin. We first established the feasibility of using the MBD column to extract methylated human DNA in a high background of fecal bacterial DNA. To explore the impact of MBD enrichment on detection sensitivity, the tumor-associated methylated vimentin gene was assayed with methylation-specific PCR from stools to which low amounts of cancer cell DNA (0-50 ng) were added and from stools from CRC patients and healthy individuals. Stools from cancer patients were selected with low amounts of human DNA (median 7 ng, range 0.5-832 ng). RESULTS With MBD enrichment, methylated vimentin was detected in stools enriched with >/=10 ng of cancer cell DNA and in CRC stool with a range of native human DNA amounts from 4 to 832 ng. Without MBD enrichment, methylated vimentin was not detected in the enriched stools and was detected in only 1 cancer stool with high human DNA (832 ng). In stools from healthy individuals methylated vimentin was not detected, with or without MBD enrichment. CONCLUSIONS MBD capture increases assay sensitivity for detecting methylated DNA markers in stool. Applied clinical studies for stool cancer screening are indicated.
Collapse
Affiliation(s)
- Hongzhi Zou
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
136
|
He X, Chang S, Zhang J, Zhao Q, Xiang H, Kusonmano K, Yang L, Sun ZS, Yang H, Wang J. MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res 2007; 36:D836-41. [PMID: 17890243 PMCID: PMC2238864 DOI: 10.1093/nar/gkm730] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cancer is ranked as one of the top killers in all human diseases and continues to have a devastating effect on the population around the globe. Current research efforts are aiming to accelerate our understanding of the molecular basis of cancer and develop effective means for cancer diagnostics, treatment and prognosis. An altered pattern of epigenetic modifications, most importantly DNA methylation events, plays a critical role in tumorigenesis through regulating oncogene activation, tumor suppressor gene silencing and chromosomal instability. To study interplay of DNA methylation, gene expression and cancer, we developed a publicly accessible database for human DNA Methylation and Cancer (MethyCancer, http://methycancer.genomics.org.cn). MethyCancer hosts both highly integrated data of DNA methylation, cancer-related gene, mutation and cancer information from public resources, and the CpG Island (CGI) clones derived from our large-scale sequencing. Interconnections between different data types were analyzed and presented. Furthermore, a powerful search tool is developed to provide user-friendly access to all the data and data connections. A graphical MethyView shows DNA methylation in context of genomics and genetics data facilitating the research in cancer to understand genetic and epigenetic mechanisms that make dramatic changes in gene expression of tumor cells.
Collapse
Affiliation(s)
- Ximiao He
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China, Graduate University of the Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, China, Bioinformatics Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 101300, China and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
| | - Suhua Chang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China, Graduate University of the Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, China, Bioinformatics Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 101300, China and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
| | - Jiajie Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China, Graduate University of the Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, China, Bioinformatics Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 101300, China and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
| | - Qian Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China, Graduate University of the Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, China, Bioinformatics Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 101300, China and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
| | - Haizhen Xiang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China, Graduate University of the Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, China, Bioinformatics Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 101300, China and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
| | - Kanthida Kusonmano
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China, Graduate University of the Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, China, Bioinformatics Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 101300, China and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
| | - Liu Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China, Graduate University of the Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, China, Bioinformatics Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 101300, China and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
| | - Zhong Sheng Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China, Graduate University of the Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, China, Bioinformatics Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 101300, China and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
| | - Huanming Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China, Graduate University of the Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, China, Bioinformatics Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 101300, China and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
| | - Jing Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China, Graduate University of the Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100039, China, Bioinformatics Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand, Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 101300, China and James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
- *To whom correspondence should be addressed.+86 10 80485492+86 10 80498676
| |
Collapse
|
137
|
Estécio MRH, Yan PS, Ibrahim AEK, Tellez CS, Shen L, Huang THM, Issa JPJ. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res 2007; 17:1529-36. [PMID: 17785535 PMCID: PMC1987348 DOI: 10.1101/gr.6417007] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An abnormal pattern of DNA methylation occurs at specific genes in almost all neoplasms. The lack of high-throughput methods with high specificity and sensitivity to detect changes in DNA methylation has limited its application for clinical profiling. Here we overcome this limitation and present an improved method to identify methylated genes genome-wide by hybridizing a CpG island microarray with amplicons obtained by the methylated CpG island amplification technique (MCAM). We validated this method in three cancer cell lines and 15 primary colorectal tumors, resulting in the discovery of hundreds of new methylated genes in cancer. The sensitivity and specificity of the method to detect hypermethylated loci were 88% and 96%, respectively, according to validation by bisulfite-PCR. Unsupervised hierarchical clustering segregated the tumors into the expected subgroups based on CpG island methylator phenotype classification. In summary, MCAM is a suitable technique to discover methylated genes and to profile methylation changes in clinical samples in a high-throughput fashion.
Collapse
Affiliation(s)
- Marcos R H Estécio
- Department of Leukemia, UT M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
138
|
Chen Y, Blackwell TW, Chen J, Gao J, Lee AW, States DJ. Integration of genome and chromatin structure with gene expression profiles to predict c-MYC recognition site binding and function. PLoS Comput Biol 2007; 3:e63. [PMID: 17411336 PMCID: PMC1847699 DOI: 10.1371/journal.pcbi.0030063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 02/16/2007] [Indexed: 11/19/2022] Open
Abstract
The MYC genes encode nuclear sequence specific-binding DNA-binding proteins that are pleiotropic regulators of cellular function, and the c-MYC proto-oncogene is deregulated and/or mutated in most human cancers. Experimental studies of MYC binding to the genome are not fully consistent. While many c-MYC recognition sites can be identified in c-MYC responsive genes, other motif matches-even experimentally confirmed sites-are associated with genes showing no c-MYC response. We have developed a computational model that integrates multiple sources of evidence to predict which genes will bind and be regulated by MYC in vivo. First, a Bayesian network classifier is used to predict those c-MYC recognition sites that are most likely to exhibit high-occupancy binding in chromatin immunoprecipitation studies. This classifier incorporates genomic sequence, experimentally determined genomic chromatin acetylation islands, and predicted methylation status from a computational model estimating the likelihood of genomic DNA methylation. We find that the predictions from this classifier are also applicable to other transcription factors, such as cAMP-response element-binding protein, whose binding sites are sensitive to DNA methylation. Second, the MYC binding probability is combined with the gene expression profile data from nine independent microarray datasets in multiple tissues. Finally, we may consider gene function annotations in Gene Ontology to predict the c-MYC targets. We assess the performance of our prediction results by comparing them with the c-myc targets identified in the biomedical literature. In total, we predict 460 likely c-MYC target genes in the human genome, of which 67 have been reported to be both bound and regulated by MYC, 68 are bound by MYC, and another 80 are MYC-regulated. The approach thus successfully identifies many known c-MYC targets and suggests many novel sites. Our findings suggest that to identify c-MYC genomic targets, integration of different data sources helps to improve the accuracy.
Collapse
Affiliation(s)
- Yili Chen
- Bioinformatics Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Thomas W Blackwell
- Bioinformatics Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ji Chen
- Bioinformatics Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jing Gao
- Bioinformatics Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Angel W Lee
- Pharmacology Department, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David J States
- Bioinformatics Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
139
|
Huang Q, Baum L, Huang JF, You JP, Wang F, Wang J, Zheng J, Yan XC, Xia H, Zhao YH, Kuang H, Fu WL. Isolation and enrichment of human genomic CpG islands by methylation-sensitive mirror orientation selection. Anal Biochem 2007; 365:153-64. [PMID: 17481566 DOI: 10.1016/j.ab.2007.03.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 03/09/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
CpG islands (CGIs) in human genomic DNA are GC-rich fragments whose aberrant methylation is associated with human disease development. In the current study, methylation-sensitive mirror orientation selection (MS-MOS) was developed to efficiently isolate and enrich unmethylated CGIs from human genomic DNA. The unmethylated CGIs prepared by the MS-MOS procedure subsequently were used to construct a CGI library. Then the sequence characteristics of cloned inserts of the library were analyzed by bioinformatics tools, and the methylation status of CGI clones was analyzed by HpaII PCR. The results showed that the MS-MOS method could be used to isolate up to 0.001% of differentially existed unmethylated DNA fragments in two complex genomic DNA. In the CGI library, 34.1% of clones had insert sequences satisfying the minimal criteria for CGIs. Excluding duplicates, 22.0% of the 80,000 clones were unique CGI clones, representing 60% of all the predicted CGIs (about 29,000) in human genomic DNA, and most or all of the CGI clones were unmethylated in human normal cell DNA based on the HpaII PCR analysis results of randomly selected CGI clones. In conclusion, MS-MOS was an efficient way to isolate and enrich human genomic CGIs. The method has powerful potential application in the comprehensive identification of aberrantly methylated CGIs associated with human tumorigenesis to improve understanding of the epigenetic mechanisms involved.
Collapse
Affiliation(s)
- Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Hellebrekers DMEI, Melotte V, Viré E, Langenkamp E, Molema G, Fuks F, Herman JG, Van Criekinge W, Griffioen AW, van Engeland M. Identification of Epigenetically Silenced Genes in Tumor Endothelial Cells. Cancer Res 2007; 67:4138-48. [PMID: 17483324 DOI: 10.1158/0008-5472.can-06-3032] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor angiogenesis requires intricate regulation of gene expression in endothelial cells. We recently showed that DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors directly repress endothelial cell growth and tumor angiogenesis, suggesting that epigenetic modifications mediated by DNMTs and HDAC are involved in regulation of endothelial cell gene expression during tumor angiogenesis. To understand the mechanisms behind the epigenetic regulation of tumor angiogenesis, we used microarray analysis to perform a comprehensive screen to identify genes down-regulated in tumor-conditioned versus quiescent endothelial cells, and reexpressed by 5-aza-2'-deoxycytidine (DAC) and trichostatin A (TSA). Among the 81 genes identified, 77% harbored a promoter CpG island. Validation of mRNA levels of a subset of genes confirmed significant down-regulation in tumor-conditioned endothelial cells and reactivation by treatment with a combination of DAC and TSA, as well as by both compounds separately. Silencing of these genes in tumor-conditioned endothelial cells correlated with promoter histone H3 deacetylation and loss of H3 lysine 4 methylation, but did not involve DNA methylation of promoter CpG islands. For six genes, down-regulation in microdissected human tumor endothelium was confirmed. Functional validation by RNA interference revealed that clusterin, fibrillin 1, and quiescin Q6 are negative regulators of endothelial cell growth and angiogenesis. In summary, our data identify novel angiogenesis-suppressing genes that become silenced in tumor-conditioned endothelial cells in association with promoter histone modifications and reactivated by DNMT and HDAC inhibitors through reversal of these epigenetic modifications, providing a mechanism for epigenetic regulation of tumor angiogenesis.
Collapse
Affiliation(s)
- Debby M E I Hellebrekers
- Department of Pathology, Research Institute for Growth and Development, Maastricht University and University Hospital, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Ho SM, Tang WY. Techniques used in studies of epigenome dysregulation due to aberrant DNA methylation: an emphasis on fetal-based adult diseases. Reprod Toxicol 2007; 23:267-82. [PMID: 17317097 PMCID: PMC2055548 DOI: 10.1016/j.reprotox.2007.01.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 01/04/2007] [Accepted: 01/08/2007] [Indexed: 12/31/2022]
Abstract
Epigenetic changes are heritable modifications that do not involve alterations in the primary DNA sequence. They regulate crucial cellular functions such as genome stability, X-chromosome inactivation, and gene imprinting. Epidemiological and experimental observations now suggest that such changes may also explain the fetal basis of adult diseases such as cancer, obesity, diabetes, cardiovascular disorders, neurological diseases, and behavioral modifications. The main molecular events known to initiate and sustain epigenetic modifications are histone modification and DNA methylation. This review specifically focuses on existing and emerging technologies used in studying DNA methylation, which occurs primarily at CpG dinucleotides in the genome. These include standard exploratory tools used for global profiling of DNA methylation and targeted gene investigation: methylation sensitive restriction fingerprinting (MSRF), restriction landmark genomic scanning (RLGS), methylation CpG island amplification-representational difference analysis (MCA-RDA), differential methylation hybridization (DMH), and cDNA microarrays combined with treatment with demethylating agents and inhibitors of histone deacetylase. The basic operating principals, resource requirements, applications, and benefits and limitations of each methodology are discussed. Validation methodologies and functional assays needed to establish the role of a CpG-rich sequence in regulating the expression of a target or candidate gene are outlined. These include in silico database searches, methylation status studies (bisulfite genomic sequencing, COBRA, MS-PCR, MS-SSCP), gene expression studies, and promoter activity analyses. Our intention is to give readers a starting point for choosing methodologies and to suggest a workflow to follow during their investigations. We believe studies of epigenetic changes such as DNA methylation hold great promise in understanding the early origins of adult diseases and in advancing their diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Shuk-mei Ho
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|
142
|
Pfister S, Schlaeger C, Mendrzyk F, Wittmann A, Benner A, Kulozik A, Scheurlen W, Radlwimmer B, Lichter P. Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Res 2007; 35:e51. [PMID: 17344319 PMCID: PMC1874664 DOI: 10.1093/nar/gkm094] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Existing microarray-based approaches for screening of DNA methylation are hampered by a number of shortcomings, such as the introduction of bias by DNA copy-number imbalances in the test genome and negligence of tissue-specific methylation patterns. We developed a method designated array-based profiling of reference-independent methylation status (aPRIMES) that allows the detection of direct methylation status rather than relative methylation. Array-PRIMES is based on the differential restriction and competitive hybridization of methylated and unmethylated DNA by methylation-specific and methylation-sensitive restriction enzymes, respectively. We demonstrate the accuracy of aPRIMES in detecting the methylation status of CpG islands for different states of methylation. Application of aPRIMES to the DNA from desmoplastic medulloblastomas of monozygotic twins showed strikingly similar methylation profiles. Additional analysis of 18 sporadic medulloblastomas revealed an overall correlation between highly methylated tumors and poor clinical outcome and identified ZIC2 as a frequently methylated gene in pediatric medulloblastoma.
Collapse
Affiliation(s)
- Stefan Pfister
- Department of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Department of Pediatric Oncology, Hematology & Immunology, University of Heidelberg, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany, Central Unit Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, St. Johannis Muehlgasse 19, 90419 Nuernberg, Germany
| | - Christof Schlaeger
- Department of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Department of Pediatric Oncology, Hematology & Immunology, University of Heidelberg, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany, Central Unit Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, St. Johannis Muehlgasse 19, 90419 Nuernberg, Germany
| | - Frank Mendrzyk
- Department of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Department of Pediatric Oncology, Hematology & Immunology, University of Heidelberg, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany, Central Unit Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, St. Johannis Muehlgasse 19, 90419 Nuernberg, Germany
| | - Andrea Wittmann
- Department of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Department of Pediatric Oncology, Hematology & Immunology, University of Heidelberg, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany, Central Unit Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, St. Johannis Muehlgasse 19, 90419 Nuernberg, Germany
| | - Axel Benner
- Department of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Department of Pediatric Oncology, Hematology & Immunology, University of Heidelberg, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany, Central Unit Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, St. Johannis Muehlgasse 19, 90419 Nuernberg, Germany
| | - Andreas Kulozik
- Department of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Department of Pediatric Oncology, Hematology & Immunology, University of Heidelberg, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany, Central Unit Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, St. Johannis Muehlgasse 19, 90419 Nuernberg, Germany
| | - Wolfram Scheurlen
- Department of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Department of Pediatric Oncology, Hematology & Immunology, University of Heidelberg, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany, Central Unit Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, St. Johannis Muehlgasse 19, 90419 Nuernberg, Germany
| | - Bernhard Radlwimmer
- Department of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Department of Pediatric Oncology, Hematology & Immunology, University of Heidelberg, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany, Central Unit Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, St. Johannis Muehlgasse 19, 90419 Nuernberg, Germany
| | - Peter Lichter
- Department of Molecular Genetics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany, Department of Pediatric Oncology, Hematology & Immunology, University of Heidelberg, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany, Central Unit Biostatistics, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Cnopf'sche Kinderklinik, Nürnberg Children's Hospital, St. Johannis Muehlgasse 19, 90419 Nuernberg, Germany
- *To whom correspondence should be addressed. Tel:+49-6221-424619+49-6221-424639
| |
Collapse
|
143
|
Miao F, Wu X, Zhang L, Yuan YC, Riggs AD, Natarajan R. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J Biol Chem 2007; 282:13854-63. [PMID: 17339327 DOI: 10.1074/jbc.m609446200] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aberrant histone lysine methylation patterns that change chromatin structure can promote dysregulated gene transcription and disease progression. Diabetic conditions such as high glucose (HG) are known to alter key pathologic pathways. However, their impact on cellular histone lysine methylation is unknown. We hypothesized that chronic HG can induce aberrant changes in histone H3 lysine 4 and lysine 9 dimethylation (H3K4me2 and H3K9me2) within target cells. Chromatin immunoprecipitation linked to microarrays (ChIP-on-chip) is currently a widely used approach for acquiring genome-wide information on histone modifications. We adopted this approach to profile and compare the variations in H3K4me2 and H3K9me2 in human gene coding and CpG island regions in THP-1 monocytes cultured in normal glucose and HG. Subsequently, we identified key relevant candidate genes displaying differential changes in H3K4me2 and H3K9me2 in HG versus normal glucose and also validated them with follow-up conventional ChIPs. Relevance to human diabetes was demonstrated by noting that H3K9me2 at the coding and promoter regions of two candidate genes was significantly greater in blood monocytes of diabetic patients relative to normal controls similar to the THP-1 data. In addition, regular mRNA profiling with cDNA arrays revealed correlations between mRNA and H3K9me2 levels. These novel results show histone methylation variations, for the first time, under diabetic conditions at a genome-wide level.
Collapse
Affiliation(s)
- Feng Miao
- Department of Diabetes, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
144
|
Staub J, Chien J, Pan Y, Qian X, Narita K, Aletti G, Scheerer M, Roberts LR, Molina J, Shridhar V. Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance. Oncogene 2007; 26:4969-78. [PMID: 17310998 DOI: 10.1038/sj.onc.1210300] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate the mechanism by which HSulf-1 expression is downregulated in ovarian cancer, DNA methylation and histone acetylation of HSulf-1 was analysed in ovarian cancer cell lines and primary tumors. Treatment of OV207 and SKOV3 by 5-aza-2'-deoxycytidine resulted in increased transcription of HSulf-1. Sequence analysis of bisulfite-modified genomic DNA from ovarian cell lines and primary tumors without HSulf-1 expression revealed an increase in the frequency of methylation of 12 CpG sites in exon 1A. Chromatin immunoprecipitation assays showed an increase in histone H3 methylation in cell lines without HSulf-1 expression. To assess the significance of HSulf-1 downregulation in ovarian cancer, OV167 and OV202 cells were transfected with HSulf-1 siRNA. Downregulation of HSulf-1 expression in OV167 and OV202 cells lead to an attenuation of cisplatin-induced cytotoxicity. Moreover, patients with ovarian tumors expressing higher levels of HSulf-1 showed a 90% response rate (27/30) to chemotherapy compared to a response rate of 63% (19/30) in those with weak or moderate levels (P=0.0146, chi(2) test). Collectively, these data indicate that HSulf-1 is epigenetically silenced in ovarian cancer and that epigenetic therapy targeting HSulf-1 might sensitize ovarian tumors to conventional first-line therapies.
Collapse
Affiliation(s)
- J Staub
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Ignatenko NA, Yerushalmi HF, Watts GS, Futscher BW, Stringer DE, Marton LJ, Gerner EW. Pharmacogenomics of the polyamine analog 3,8,13,18-tetraaza-10,11-[(E)-1,2-cyclopropyl]eicosane tetrahydrochloride, CGC-11093, in the colon adenocarcinoma cell line HCT1161. Technol Cancer Res Treat 2007; 5:553-64. [PMID: 17121431 DOI: 10.1177/153303460600500602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Polyamine analogs are known to inhibit tumorigenesis at least in part by mimicking some of the regulatory roles of natural polyamines. To begin the identification of those signaling pathways that are involved in differential cellular responses to the synthetic conformationally restricted polyamine analog CGC-11093, we conducted gene expression profiling, proteomic, and genome-wide DNA methylation and histone acetylation analyses of the HCT116 colon adenocarcinoma cell line after treatment with this analog. Gene expression analysis was performed using Affymetrix GeneChip human genome U133 Plus 2.0 arrays. Changes in protein expression were evaluated using 2D polyacrylamide gels followed by LCMS/MS. DNA methylation was measured using 6,800 element CpG island microarrays. Treatment of cells with CGC-11093 at concentrations ranging from 0.1 to 10 microM caused inhibition of cell growth and metabolic activity, but only minimally affected cell viability. Gene expression analysis showed concentration-dependent effects of CGC-11093 on the DNA/RNA binding transcription factor, cell cycle, signaling, transport, cytoskeletal/structural, and serine protease genes. Functional gene analysis revealed distinct expression patterns related to inhibition of cell cycle control, TGF beta signaling, proteasome and RNA polymerase pathways, upregulation of the aminoacyl-tRNA synthesis pathway, and perturbations in the MAPK and Wnt signaling pathways. Microarray results were validated for selected genes with real time RT PCR. Proteomics analysis showed correlative changes in the expression of proteins involved in the regulation of proteasome function (proteasome subunit Y) and tRNA synthesis. CGC-11093 treatment did not produce any detectable changes in DNA methylation or histone acetylation in cells. This study validates specific target pathways for a specific conformationally restricted polyamine analog and suggests the utility of combined gene and DNA methylation microarrays along with proteomic analyses as a useful approach to the evaluation of the mechanisms of action of anticancer drugs.
Collapse
Affiliation(s)
- Natalia A Ignatenko
- Department of Cell Biology and Anatomy, Arizona Cancer Center, The University of Arizona, 1515 N. Campbell Avenue, Tucson, Arizona 85724, USA.
| | | | | | | | | | | | | |
Collapse
|
146
|
Shiraishi M, Sekiya T. Segregation of partly melted DNA molecules. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:463-73. [PMID: 16838839 DOI: 10.1080/15257770600684159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Segregation of partly melted DNA molecules is a convenient and efficient method to isolate DNA fragments associated with CpG islands. The method stands on the observation that the electrophoretic mobility of partly melted DNA fragments in a denaturing gradient gel is low and that they persist in the gel so long as the remaining helical part is sufficiently resistant to strand dissociation and dissociates slowly. Such features are observed in DNA fragments derived from CpG islands. These DNA fragments are preferentially retained in a denaturing gradient gel after prolonged electric field exposure, permitting the enrichment of DNA fragments derived from CpG islands. The principle and practical application of this method are reviewed.
Collapse
Affiliation(s)
- Masahiko Shiraishi
- Department ofPharmaceutical Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan.
| | | |
Collapse
|
147
|
Novak P, Jensen T, Oshiro MM, Wozniak RJ, Nouzova M, Watts GS, Klimecki WT, Kim C, Futscher BW. Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res 2006; 66:10664-70. [PMID: 17090521 DOI: 10.1158/0008-5472.can-06-2761] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using an integrated approach of epigenomic scanning and gene expression profiling, we found aberrant methylation and epigenetic silencing of a small neighborhood of contiguous genes-the HOXA gene cluster in human breast cancer. The observed transcriptional repression was localized to approximately 100 kb of the HOXA gene cluster and did not extend to genes located upstream or downstream of the cluster. Bisulfite sequencing, chromatin immunoprecipitation, and quantitative reverse transcription-PCR analysis confirmed that the loss of expression of the HOXA gene cluster in human breast cancer is closely linked to aberrant DNA methylation and loss of permissive histone modifications in the region. Pharmacologic manipulations showed the importance of these aberrant epigenetic changes in gene silencing and support the hypothesis that aberrant DNA methylation is dominant to histone hypoacetylation. Overall, these data suggest that inactivation of the HOXA gene cluster in breast cancer may represent a new type of genomic lesion-epigenetic microdeletion. We predict that epigenetic microdeletions are common in human cancer and that they functionally resemble genetic microdeletions but are defined by epigenetic inactivation and transcriptional silencing of a relatively small set of contiguous genes along a chromosome, and that this type of genomic lesion is metastable and reversible in a classic epigenetic fashion.
Collapse
Affiliation(s)
- Petr Novak
- Arizona Cancer Center, Department of Pharmacology and Toxicology, Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Ibrahim AEK, Thorne NP, Baird K, Barbosa-Morais NL, Tavaré S, Collins VP, Wyllie AH, Arends MJ, Brenton JD. MMASS: an optimized array-based method for assessing CpG island methylation. Nucleic Acids Res 2006; 34:e136. [PMID: 17041235 PMCID: PMC1635254 DOI: 10.1093/nar/gkl551] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 05/10/2006] [Accepted: 07/14/2006] [Indexed: 12/31/2022] Open
Abstract
We describe an optimized microarray method for identifying genome-wide CpG island methylation called microarray-based methylation assessment of single samples (MMASS) which directly compares methylated to unmethylated sequences within a single sample. To improve previous methods we used bioinformatic analysis to predict an optimized combination of methylation-sensitive enzymes that had the highest utility for CpG-island probes and different methods to produce unmethylated representations of test DNA for more sensitive detection of differential methylation by hybridization. Subtraction or methylation-dependent digestion with McrBC was used with optimized (MMASS-v2) or previously described (MMASS-v1, MMASS-sub) methylation-sensitive enzyme combinations and compared with a published McrBC method. Comparison was performed using DNA from the cell line HCT116. We show that the distribution of methylation microarray data is inherently skewed and requires exogenous spiked controls for normalization and that analysis of digestion of methylated and unmethylated control sequences together with linear fit models of replicate data showed superior statistical power for the MMASS-v2 method. Comparison with previous methylation data for HCT116 and validation of CpG islands from PXMP4, SFRP2, DCC, RARB and TSEN2 confirmed the accuracy of MMASS-v2 results. The MMASS-v2 method offers improved sensitivity and statistical power for high-throughput microarray identification of differential methylation.
Collapse
Affiliation(s)
- Ashraf E K Ibrahim
- Department of Pathology, Division of Molecular Histopathology, Addenbrooke's Hospital Hills Road, Cambridge CB2 2XZ, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Wang Y, Fan PS, Kahaleh B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. ACTA ACUST UNITED AC 2006; 54:2271-9. [PMID: 16802366 DOI: 10.1002/art.21948] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Scleroderma (systemic sclerosis; SSc) is an autoimmune disease characterized by vasculopathy and widespread organ fibrosis. Altered fibroblast function, both in vivo and in vitro, is well documented and illustrated by augmented synthesis and deposition of extracellular matrix proteins. We undertook this study to investigate the possibility that epigenetic mechanisms mediate the emergence and persistence of the altered SSc fibroblast phenotype. METHODS The effects of DNA methyltransferase and histone deacetylase inhibitors on collagen expression and the level of epigenetic mediators in fibroblasts were examined. The effects of transient transfection of SSc fibroblasts with FLI1 gene and normal cells with FLI1 antisense construct on collagen expression were determined. The methylation status of the FLI1 promoter was tested in cultured cells and in SSc and normal skin biopsy specimens. RESULTS Increased levels of epigenetic mediators in SSc fibroblasts were noted. The addition of epigenetic inhibitors to cell cultures normalized collagen expression in SSc fibroblasts. The augmented collagen synthesis by SSc fibroblasts was linked to epigenetic repression of the collagen suppressor gene FLI1. Heavy methylation of the CpG islands in the FLI1 promoter region was demonstrated in SSc fibroblasts and skin biopsy specimens. CONCLUSION The results of this study indicate that epigenetic mechanisms may mediate the fibrotic manifestations of SSc. The signal transduction leading to the SSc fibrotic phenotype appears to converge on DNA methylation and histone deacetylation at the FLI1 gene.
Collapse
Affiliation(s)
- Youngqing Wang
- Medical University of Ohio, Division of Rheumatology and Immunology, 3120 Glendale Avenue, Toledo, OH 43614, USA
| | | | | |
Collapse
|
150
|
Schumacher A, Petronis A. Epigenetics of Complex Diseases: From General Theory to Laboratory Experiments. Curr Top Microbiol Immunol 2006; 310:81-115. [PMID: 16909908 DOI: 10.1007/3-540-31181-5_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite significant effort, understanding the causes and mechanisms of complex non-Mendelian diseases remains a key challenge. Although numerous molecular genetic linkage and association studies have been conducted in order to explain the heritable predisposition to complex diseases, the resulting data are quite often inconsistent and even controversial. In a similar way, identification of environmental factors causal to a disease is difficult. In this article, a new interpretation of the paradigm of "genes plus environment" is presented in which the emphasis is shifted to epigenetic misregulation as a major etiopathogenic factor. Epigenetic mechanisms are consistent with various non-Mendelian irregularities of complex diseases, such as the existence of clinically indistinguishable sporadic and familial cases, sexual dimorphism, relatively late age of onset and peaks of susceptibility to some diseases, discordance of monozygotic twins and major fluctuations on the course of disease severity. It is also suggested that a substantial portion of phenotypic variance that traditionally has been attributed to environmental effects may result from stochastic epigenetic events in the cell. It is argued that epigenetic strategies, when applied in parallel with the traditional genetic ones, may significantly advance the discovery of etiopathogenic mechanisms of complex diseases. The second part of this chapter is dedicated to a review of laboratory methods for DNA methylation analysis, which may be useful in the study of complex diseases. In this context, epigenetic microarray technologies are emphasized, as it is evident that such technologies will significantly advance epigenetic analyses in complex diseases.
Collapse
Affiliation(s)
- A Schumacher
- The Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, ON, Toronto, Canada
| | | |
Collapse
|