101
|
Zhang Y, Li Z, Wang Z, Yan B, Shi A, Xu J, Guan J, Zhang L, Zhou P, Mao Y. Mechanically enhanced composite hydrogel scaffold for in situ bone repairs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112700. [DOI: 10.1016/j.msec.2022.112700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
|
102
|
Vermeulen S, Birgani ZT, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials 2022; 283:121431. [DOI: 10.1016/j.biomaterials.2022.121431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
|
103
|
Riley SE, Feng Y, Hansen CG. Hippo-Yap/Taz signalling in zebrafish regeneration. NPJ Regen Med 2022; 7:9. [PMID: 35087046 PMCID: PMC8795407 DOI: 10.1038/s41536-022-00209-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
The extent of tissue regeneration varies widely between species. Mammals have a limited regenerative capacity whilst lower vertebrates such as the zebrafish (Danio rerio), a freshwater teleost, can robustly regenerate a range of tissues, including the spinal cord, heart, and fin. The molecular and cellular basis of this altered response is one of intense investigation. In this review, we summarise the current understanding of the association between zebrafish regeneration and Hippo pathway function, a phosphorylation cascade that regulates cell proliferation, mechanotransduction, stem cell fate, and tumorigenesis, amongst others. We also compare this function to Hippo pathway activity in the regenerative response of other species. We find that the Hippo pathway effectors Yap/Taz facilitate zebrafish regeneration and that this appears to be latent in mammals, suggesting that therapeutically promoting precise and temporal YAP/TAZ signalling in humans may enhance regeneration and hence reduce morbidity.
Collapse
Affiliation(s)
- Susanna E Riley
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Yi Feng
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Carsten Gram Hansen
- University of Edinburgh Centre for Inflammation Research, Institute for Regeneration and Repair, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
104
|
Ma L, Li G, Lei J, Song Y, Feng X, Tan L, Luo R, Liao Z, Shi Y, Zhang W, Liu X, Sheng W, Wu S, Yang C. Nanotopography Sequentially Mediates Human Mesenchymal Stem Cell-Derived Small Extracellular Vesicles for Enhancing Osteogenesis. ACS NANO 2022; 16:415-430. [PMID: 34935354 DOI: 10.1021/acsnano.1c07150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Engineered small extracellular vesicles (sEVs) are used as tools to enhance therapeutic efficacy. However, such application of sEVs is associated with several issues, including high costs and a high risk of tumorigenesis. Nanotopography has a greater influence on bone-related cell behaviors. However, whether nanotopography specifically mediate sEV content to perform particular biological functions remains unclear. Here, we demonstrate that selective nanotopography may be used to sequentially mediate human bone mesenchymal stem cell (hBMSC) sEVs to enhance the therapeutic efficacy of hBMSCs-EVs for osteogenesis. We subjected sEVs harvested from hBMSCs cultured on polished titanium plates (Ti) or nanotopographical titanium plates (Ti4) after 7, 14, and 21 d for RNA sequencing, and we found that there was no significant difference in sEV-miRNA expression after 7 d. Differentially expressed osteogenic-related microRNAs were founded after 14 days, and KEGG analysis indicated that the main microRNAs were associated with osteogenesis-related pathways, such as TGF-beta, AMPK, and FoxO. A significant difference was found in sEV-miRNAs expression after 21 d. We loaded sEV secreted from hBMSCs cultured on Ti4 after 21 d on 3D-printed porous PEEK scaffolds with poly dopamine (PDA) and found that such scaffolds showed superior osteogenic ability after 6- and 12-weeks. Here, we demonstrate the alkali- and heat-treated nanotopography with the ability of stimulating osteogenic differentiation of hBMSC can induce the secretion of pro-osteogenesis sEV, and we also found that sEVs meditate osteogenesis through miRNA. Thus, whether nanotopography has the ability to regulate other contents of sEVs such as proteins for enhancing osteogenesis needs further research. These findings may help us use nanotopography to extract sEVs for other biomedical applications, including cancer therapy.
Collapse
Affiliation(s)
- Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Tan
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Weibin Sheng
- Department of Spine Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Shuilin Wu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
105
|
Zarka M, Haÿ E, Cohen-Solal M. YAP/TAZ in Bone and Cartilage Biology. Front Cell Dev Biol 2022; 9:788773. [PMID: 35059398 PMCID: PMC8764375 DOI: 10.3389/fcell.2021.788773] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
YAP and TAZ were initially described as the main regulators of organ growth during development and more recently implicated in bone biology. YAP and TAZ are regulated by mechanical and cytoskeletal cues that lead to the control of cell fate in response to the cellular microenvironment. The mechanical component represents a major signal for bone tissue adaptation and remodelling, so YAP/TAZ contributes significantly in bone and cartilage homeostasis. Recently, mice and cellular models have been developed to investigate the precise roles of YAP/TAZ in bone and cartilage cells, and which appear to be crucial. This review provides an overview of YAP/TAZ regulation and function, notably providing new insights into the role of YAP/TAZ in bone biology.
Collapse
Affiliation(s)
- Mylène Zarka
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Eric Haÿ
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| | - Martine Cohen-Solal
- INSERM UMR 1132 BIOSCAR, Hôpital Lariboisière, Paris, France.,Faculté de Santé, Université de Paris, Paris, France
| |
Collapse
|
106
|
Xie Z, Hou L, Shen S, Wu Y, Wang J, Jie Z, Zhao X, Li X, Zhang X, Chen J, Xu W, Ning L, Ma Q, Wang S, Wang H, Yuan P, Fang X, Qin A, Fan S. Mechanical force promotes dimethylarginine dimethylaminohydrolase 1-mediated hydrolysis of the metabolite asymmetric dimethylarginine to enhance bone formation. Nat Commun 2022; 13:50. [PMID: 35013196 PMCID: PMC8748781 DOI: 10.1038/s41467-021-27629-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2021] [Indexed: 12/30/2022] Open
Abstract
Mechanical force is critical for the development and remodeling of bone. Here we report that mechanical force regulates the production of the metabolite asymmetric dimethylarginine (ADMA) via regulating the hydrolytic enzyme dimethylarginine dimethylaminohydrolase 1 (Ddah1) expression in osteoblasts. The presence of -394 4 N del/ins polymorphism of Ddah1 and higher serum ADMA concentration are negatively associated with bone mineral density. Global or osteoblast-specific deletion of Ddah1 leads to increased ADMA level but reduced bone formation. Further molecular study unveils that mechanical stimulation enhances TAZ/SMAD4-induced Ddah1 transcription. Deletion of Ddah1 in osteoblast-lineage cells fails to respond to mechanical stimulus-associated bone formation. Taken together, the study reveals mechanical force is capable of down-regulating ADMA to enhance bone formation.
Collapse
Affiliation(s)
- Ziang Xie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lei Hou
- Department of Cardiology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shuying Shen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yizheng Wu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jian Wang
- Department of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiang Li
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuyang Zhang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Junxin Chen
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lei Ning
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shiyu Wang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Haoming Wang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangqian Fang
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
107
|
Ping J, Li L, Dong Y, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. The Role of Long Non-Coding RNAs and Circular RNAs in Bone Regeneration: Modulating MiRNAs Function. J Tissue Eng Regen Med 2021; 16:227-243. [PMID: 34958714 DOI: 10.1002/term.3277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/06/2022]
Abstract
Although bone is a self-healing organ and is able to repair and restore most fractures, large bone fractures, about 10%, are not repairable. Bone grafting, as a gold standard, and bone tissue engineering using biomaterials, growth factors, and stem cells have been developed to restore large bone defects. Since bone regeneration is a complex and multiple-step process and the majority of the human genome, about 98%, is composed of the non-protein-coding regions, non-coding RNAs (ncRNAs) play essential roles in bone regeneration. Recent studies demonstrated that long ncRNAs (lncRNAs) and circular RNAs (circRNAs), as members of ncRNAs, are widely involved in bone regeneration by interaction with microRNAs (miRNAs) and constructing a lncRNA or circRNA/miRNA/mRNA regulatory network. The constructed network regulates the differentiation of stem cells into osteoblasts and their commitment to osteogenesis. This review will present the structure and biogenesis of lncRNAs and circRNAs, the mechanism of bone repair, and the bone tissue engineering in bone defects. Finally, we will discuss the role of lncRNAs and circRNAs in osteogenesis and bone fracture healing through constructing various lncRNA or circRNA/miRNA/mRNA networks and the involved pathways. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianfeng Ping
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, China
| | - Laifeng Li
- Department of Traumatic Orthopaedics, Affiliated Jinan Third Hospital of Jining Medical University, Jinan, 250132, Shandong Province, China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing, 312500, Zhejiang Province, China
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Xiaogang Huang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Sun
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Bin Zeng
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, Zhejiang Province, China
| |
Collapse
|
108
|
Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther 2021; 6:426. [PMID: 34916490 PMCID: PMC8674418 DOI: 10.1038/s41392-021-00830-x] [Citation(s) in RCA: 431] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/05/2023] Open
Abstract
Hydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell-hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Huan Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lixia Duan
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China
| | - Jun Cao
- Department of Nuclear Medicine, West China Hospital, and National Engineering Research Center for Biomaterials, Sichuan University, 610064, Chengdu, P. R. China.
| | - Kun Zhang
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, 200072, Shanghai, People's Republic of China.
| |
Collapse
|
109
|
Du G, Cheng X, Zhang Z, Han L, Wu K, Li Y, Lin X. TGF-Beta Induced Key Genes of Osteogenic and Adipogenic Differentiation in Human Mesenchymal Stem Cells and MiRNA-mRNA Regulatory Networks. Front Genet 2021; 12:759596. [PMID: 34899844 PMCID: PMC8656281 DOI: 10.3389/fgene.2021.759596] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
Background: The clinical efficacy of osteoporosis therapy is unsatisfactory. However, there is currently no gold standard for the treatment of osteoporosis. Recent studies have indicated that a switch from osteogenic to adipogenic differentiation in human bone marrow mesenchymal stem cells (hMSCs) induces osteoporosis. This study aimed to provide a more comprehensive understanding of the biological mechanisms involved in this process and to identify key genes involved in osteogenic and adipogenic differentiation in hMSCs to provide new insights for the prevention and treatment of osteoporosis. Methods: Microarray and bioinformatics approaches were used to identify the differentially expressed genes (DEGs) involved in osteogenic and adipogenic differentiation, and the biological functions and pathways of these genes were analyzed. Hub genes were identified, and the miRNA–mRNA interaction networks of these hub genes were constructed. Results: In an optimized microenvironment, transforming growth factor-beta (TGF-beta) could promote osteogenic differentiation and inhibit adipogenic differentiation of hMSCs. According to our study, 98 upregulated genes involved in osteogenic differentiation and 66 downregulated genes involved in adipogenic differentiation were identified, and associated biological functions and pathways were analyzed. Based on the protein–protein interaction (PPI) networks, the hub genes of the upregulated genes (CTGF, IGF1, BMP2, MMP13, TGFB3, MMP3, and SERPINE1) and the hub genes of the downregulated genes (PPARG, TIMP3, ANXA1, ADAMTS5, AGTR1, CXCL12, and CEBPA) were identified, and statistical analysis revealed significant differences. In addition, 36 miRNAs derived from the upregulated hub genes were screened, as were 17 miRNAs derived from the downregulated hub genes. Hub miRNAs (hsa-miR-27a/b-3p, hsa-miR-128-3p, hsa-miR-1-3p, hsa-miR-98-5p, and hsa-miR-130b-3p) coregulated both osteogenic and adipogenic differentiation factors. Conclusion: The upregulated hub genes identified are potential targets for osteogenic differentiation in hMSCs, whereas the downregulated hub genes are potential targets for adipogenic differentiation. These hub genes and miRNAs play important roles in adipogenesis and osteogenesis of hMSCs. They may be related to the prevention and treatment not only of osteoporosis but also of obesity.
Collapse
Affiliation(s)
- Genfa Du
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xinyuan Cheng
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen Zhang
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Linjing Han
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keliang Wu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yongjun Li
- Department of Orthopedics, Shunde Hospital Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiaosheng Lin
- Department of Orthopedics, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
110
|
Papanota AM, Karousi P, Kontos CK, Artemaki PI, Liacos CI, Papadimitriou MA, Bagratuni T, Eleutherakis-Papaiakovou E, Malandrakis P, Ntanasis-Stathopoulos I, Gavriatopoulou M, Kastritis E, Avgeris M, Dimopoulos MA, Scorilas A, Terpos E. A Cancer-Related microRNA Signature Shows Biomarker Utility in Multiple Myeloma. Int J Mol Sci 2021; 22:13144. [PMID: 34884950 PMCID: PMC8658678 DOI: 10.3390/ijms222313144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy, arising from terminally differentiated B cells, namely plasma cells. miRNAs are small non-coding RNAs that participate in the post-transcriptional regulation of gene expression. In this study, we investigated the role of nine miRNAs in MM. CD138+ plasma cells were selected from bone marrow aspirates from MM and smoldering MM (sMM) patients. Total RNA was extracted and in vitro polyadenylated. Next, first-strand cDNA synthesis was performed using an oligo-dT-adapter primer. For the relative quantification of the investigated miRNAs, an in-house real-time quantitative PCR (qPCR) assay was developed. A functional in silico analysis of the miRNAs was also performed. miR-16-5p and miR-155-5p expression was significantly lower in the CD138+ plasma cells of MM patients than in those of sMM patients. Furthermore, lower levels of miR-15a-5p, miR-16-5p, and miR-222-3p were observed in the CD138+ plasma cells of MM patients with osteolytic bone lesions, compared to those without. miR-125b-5p was also overexpressed in the CD138+ plasma cells of MM patients with bone disease that presented with skeletal-related events (SREs). Furthermore, lower levels of miR-223-3p were associated with significantly worse overall survival in MM patients. In conclusion, we propose a miRNA signature with putative clinical utility in MM.
Collapse
Affiliation(s)
- Aristea-Maria Papanota
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Christos K. Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Pinelopi I. Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Christine-Ivy Liacos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Panagiotis Malandrakis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
- Laboratory of Clinical Biochemistry-Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, 11527 Athens, Greece
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece; (P.K.); (C.K.K.); (P.I.A.); (M.-A.P.); (M.A.)
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.P.); (C.-I.L.); (T.B.); (E.E.-P.); (P.M.); (I.N.-S.); (M.G.); (E.K.); (M.-A.D.)
| |
Collapse
|
111
|
Pan JX, Sun D, Lee D, Xiong L, Ren X, Guo HH, Yao LL, Lu Y, Jung C, Xiong WC. Osteoblastic Swedish mutant APP expedites brain deficits by inducing endoplasmic reticulum stress-driven senescence. Commun Biol 2021; 4:1326. [PMID: 34824365 PMCID: PMC8617160 DOI: 10.1038/s42003-021-02843-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Patients with Alzheimer’s disease (AD) often have osteoporosis or osteopenia. However, their direct link and relationship remain largely unclear. Previous studies have detected osteoporotic deficits in young adult Tg2576 and TgAPPsweOCN mice, which express APPswe (Swedish mutant) ubiquitously and selectively in osteoblast (OB)-lineage cells. This raises the question, whether osteoblastic APPswe contributes to AD development. Here, we provide evidence that TgAPPsweOCN mice also exhibit AD-relevant brain pathologies and behavior phenotypes. Some brain pathologies include age-dependent and regional-selective increases in glial activation and pro-inflammatory cytokines, which are accompanied by behavioral phenotypes such as anxiety, depression, and altered learning and memory. Further cellular studies suggest that APPswe, but not APPwt or APPlon (London mutant), in OB-lineage cells induces endoplasmic reticulum-stress driven senescence, driving systemic and cortex inflammation as well as behavioral changes in 6-month-old TgAPPsweOCN mice. These results therefore reveal an unrecognized function of osteoblastic APPswe to brain axis in AD development. Jin-Xiu Pan et al. report that an osteoblast-specific expression of Swedish mutant amyloid precursor protein (APPswe) induces ER stress-driven senescence, leading to systemic inflammation and inflammation in the cortex that drives behavioral changes. The results demonstrate a previously unrecognized function of osteoblastic APPswe to brain axis in AD development.
Collapse
Affiliation(s)
- Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ling-Ling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yuyi Lu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Caroline Jung
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
112
|
Bone Regeneration Using MMP-Cleavable Peptides-Based Hydrogels. Gels 2021; 7:gels7040199. [PMID: 34842679 PMCID: PMC8628702 DOI: 10.3390/gels7040199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence has suggested the significant potential of chemically modified hydrogels in bone regeneration. Despite the progress of bioactive hydrogels with different materials, structures and loading cargoes, the desires from clinical applications have not been fully validated. Multiple biological behaviors are orchestrated precisely during the bone regeneration process, including bone marrow mesenchymal stem cells (BMSCs) recruitment, osteogenic differentiation, matrix calcification and well-organized remodeling. Since matrix metalloproteinases play critical roles in such bone metabolism processes as BMSC commitment, osteoblast survival, osteoclast activation matrix calcification and microstructure remodeling, matrix metalloproteinase (MMP) cleavable peptides-based hydrogels could respond to various MMP levels and, thus, accelerate bone regeneration. In this review, we focused on the MMP-cleavable peptides, polymers, functional modification and crosslinked reactions. Applications, perspectives and limitations of MMP-cleavable peptides-based hydrogels for bone regeneration were then discussed.
Collapse
|
113
|
Wang Z, Li L, Gu W, Mao Y, Wang T. Resveratrol Reverses Osteogenic Decline of Bone Marrow Mesenchymal Stem Cells Via Upregulation of Yes-Associated Protein Expression in Inflammatory Environment. Stem Cells Dev 2021; 30:1202-1214. [PMID: 34598655 DOI: 10.1089/scd.2021.0195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is an age-related bone disease, characterized by rapid boneloss, decreased bone mineral density (BMD), and consequent risk of fractures. The most prevalent form of clinically significant osteoporosis involves various inflammatory conditions, especially age-dependent osteoporosis and postmenopausal osteoporosis. Tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine, plays a critical role in the development of inflammatory, which also plays an important role in bone formation and bone loss during osteoporosis. In this report, we examined the effect of TNF-α on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and its modulation by resveratrol (Res). We found that TNF-α can upregulate inflammatory cytokines, Il-6, Mmp-9, and Il-1β, and establish an inflammatory environment. High inflammatory cytokine expression significantly inhibited osteogenic differentiation of BMSCs by overactivating upstream Hippo kinases and decreasing the nuclear Yes-associated protein (YAP) signals. With Res treatment, decreasing inflammatory cytokine expression normalized Hippo/YAP signaling and effectively rescued YAP-mediated osteogenesis. Thus, through these studies, we present a mechanism by which TNF-α can affect BMSCs osteogenesis through modulation of Hippo/YAP signaling.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Le Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Wenwen Gu
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yuqi Mao
- Cardiovascular Disease Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Tao Wang
- Cardiovascular Disease Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
114
|
La Noce M, Stellavato A, Vassallo V, Cammarota M, Laino L, Desiderio V, Del Vecchio V, Nicoletti GF, Tirino V, Papaccio G, Schiraldi C, Ferraro GA. Hyaluronan-Based Gel Promotes Human Dental Pulp Stem Cells Bone Differentiation by Activating YAP/TAZ Pathway. Cells 2021; 10:cells10112899. [PMID: 34831122 PMCID: PMC8616223 DOI: 10.3390/cells10112899] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Hyaluronans exist in different forms, accordingly with molecular weight and degree of crosslinking. Here, we tested the capability to induce osteogenic differentiation in hDPSCs (human dental pulp stem cells) of three hyaluronans forms: linear pharmaceutical-grade hyaluronans at high and (HHA) low molecular weight (LHA) and hybrid cooperative complexes (HCC), containing both sizes. METHODS hDPSCs were treated with HHA, LHA, HCC for 7, 14 and 21 days. The effects of hyaluronans on osteogenic differentiation were evaluated by qRT-PCR and WB of osteogenic markers and by Alizarin Red S staining. To identify the involved pathway, CD44 was analyzed by immunofluorescence, and YAP/TAZ expression was measured by qRT-PCR. Moreover, YAP/TAZ inhibitor-1 was used, and the loss of function of YAP/TAZ was evaluated by qRT-PCR, WB and immunofluorescence. RESULTS We showed that all hyaluronans improves osteogenesis. Among these, HCC is the main inducer of osteogenesis, along with overexpression of bone related markers and upregulating CD44. We also found that this biological process is subordinate to the activation of YAP/TAZ pathway. CONCLUSIONS We found that HA's molecular weight can have a relevant impact on HA performance for bone regeneration, and we unveil a new molecular mechanism by which HA acts on stem cells.
Collapse
Affiliation(s)
- Marcella La Noce
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Via L. de Crecchio 6, 80138 Naples, Italy; (L.L.); (G.F.N.); (G.A.F.)
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Vitale Del Vecchio
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Giovanni Francesco Nicoletti
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Via L. de Crecchio 6, 80138 Naples, Italy; (L.L.); (G.F.N.); (G.A.F.)
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
- Correspondence: (V.T.); (G.P.); Tel.: +39-08-1566-4040 (V.T.); +39-08-1566-6014 (G.P.)
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
- Correspondence: (V.T.); (G.P.); Tel.: +39-08-1566-4040 (V.T.); +39-08-1566-6014 (G.P.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Molecular Medicine and Medical Histology, University of Campania “L. Vanvitelli”, Via L. de Crecchio 7, 80138 Naples, Italy; (M.L.N.); (A.S.); (V.V.); (M.C.); (V.D.); (V.D.V.); (C.S.)
| | - Giuseppe Andrea Ferraro
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania “L. Vanvitelli”, Via L. de Crecchio 6, 80138 Naples, Italy; (L.L.); (G.F.N.); (G.A.F.)
| |
Collapse
|
115
|
Lojk J, Marc J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int J Mol Sci 2021; 22:10840. [PMID: 34639180 PMCID: PMC8509327 DOI: 10.3390/ijms221910840] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.
Collapse
Affiliation(s)
- Jasna Lojk
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Clinical Center Ljubljana, Clinical Department of Clinical Chemistry and Biochemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
116
|
Peng Y, Qu R, Feng Y, Huang X, Yang Y, Fan T, Sun B, Khan AU, Wu S, Dai J, Ouyang J. Regulation of the integrin αVβ3- actin filaments axis in early osteogenesis of human fibroblasts under cyclic tensile stress. Stem Cell Res Ther 2021; 12:523. [PMID: 34620239 PMCID: PMC8496073 DOI: 10.1186/s13287-021-02597-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022] Open
Abstract
Background Integrins play a prominent role in osteogenic differentiation by transmitting both mechanical and chemical signals. Integrin expression is closely associated with tensile stress, which has a positive effect on osteogenic differentiation. We investigated the relationship between integrin αVβ3 and tensile stress. Methods Human fibroblasts were treated with c (RGDyk) and lentivirus transduction to inhibit function of integrin αVβ3. Y-15, cytochalasin D and verteporfin were used to inhibit phosphorylation of FAK, polymerization of microfilament and function of nuclear YAP, respectively. Fibroblasts were exposed to a cyclic tensile stress of 10% at 0.5 Hz, once a day for 2 h each application. Fibroblasts were harvested on day 4 and 7 post-treatment. The expression of ALP, RUNX2, integrin αVβ3, β-actin, talin-1, FAK, vinculin, and nuclear YAP was detected by Western blot or qRT-PCR. The expression and distribution of integrin αVβ3, vinculin, microfilament and nuclear YAP. Results Cyclic tensile stress was found to promote expression of ALP and RUNX2. Inhibition of integrin αVβ3 activation downregulated the rearrangement of microfilament and the expression of ALP, RUNX2 and nuclear YAP. When the polymerization of microfilament was inhibited the expression of ALP, RUNX2 and nuclear YAP were decreased. The phosphorylation of FAK induced by cyclic tensile stress reduced by the inhibition of integrin αVβ3. The expression of ALP and RUNX2 was decreased by inhibition of phosphorylation of FAK and inhibition of nuclear YAP. Conclusions Cyclic tensile stress promotes osteogenesis of human fibroblasts via integrin αVβ3-microfilament axis. Phosphorylation of FAK and nuclear YAP participates in this process. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02597-y.
Collapse
Affiliation(s)
- Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Yanting Feng
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, Guangdong, China
| | - Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China.
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
117
|
Unni M, Reddy PC, Pal M, Sagi I, Galande S. Identification of Components of the Hippo Pathway in Hydra and Potential Role of YAP in Cell Division and Differentiation. Front Genet 2021; 12:676182. [PMID: 34691138 PMCID: PMC8526868 DOI: 10.3389/fgene.2021.676182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022] Open
Abstract
The Hippo signaling pathway has been shown to be involved in regulating cellular identity, cell/tissue size maintenance and mechanotransduction. The Hippo pathway consists of a kinase cascade which determines the nucleo-cytoplasmic localization of YAP in the cell. YAP is the effector protein in the Hippo pathway, which acts as a transcriptional cofactor for TEAD. Phosphorylation of YAP upon activation of the Hippo pathway prevents it from entering the nucleus and abrogates its function in the transcription of the target genes. In Cnidaria, the information on the regulatory roles of the Hippo pathway is virtually lacking. Here, we report the existence of a complete set of Hippo pathway core components in Hydra for the first time. By studying their phylogeny and domain organization, we report evolutionary conservation of the components of the Hippo pathway. Protein modelling suggested the conservation of YAP-TEAD interaction in Hydra. Further, we characterized the expression pattern of the homologs of yap, hippo, mob and sav in Hydra using whole-mount RNA in situ hybridization and report their possible role in stem cell maintenance. Immunofluorescence assay revealed that Hvul_YAP expressing cells occur in clusters in the body column and are excluded in the terminally differentiated regions. Actively proliferating cells marked by Ki67 exhibit YAP colocalization in their nuclei. Strikingly, a subset of these colocalized cells is actively recruited to the newly developing bud. Disruption of the YAP-TEAD interaction increased the budding rate indicating a critical role of YAP in regulating cell proliferation in Hydra. Collectively, we posit that the Hippo pathway is an essential signaling system in Hydra; its components are ubiquitously expressed in the Hydra body column and play a crucial role in Hydra tissue homeostasis.
Collapse
Affiliation(s)
- Manu Unni
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Mrinmoy Pal
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| |
Collapse
|
118
|
Yan HC, Sun Y, Zhang MY, Zhang SE, Sun JD, Dyce PW, Klinger FG, De Felici M, Shen W, Cheng SF. YAP regulates porcine skin-derived stem cells self-renewal partly by repressing Wnt/β-catenin signaling pathway. Histochem Cell Biol 2021; 157:39-50. [PMID: 34586448 DOI: 10.1007/s00418-021-02034-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
Skin-derived stem cells (SDSCs) are a class of adult stem cells (ASCs) that have the ability to self-renew and differentiate. The regulation mechanisms involved in the differentiation of SDSCs are a hot topic. In this paper, we explore the link between the transcriptional regulator yes-associated protein (YAP) and the fate of porcine SDSCs (pSDSCs). We found that lysophosphatidylcholine (LPC) activates YAP, promotes pSDSCs pluripotency, and counteracts transdifferentiation of pSDSCs into porcine primordial germ cell-like cells (pPGCLCs). YAP promotes the pluripotent state of pSDSCs by maintaining the high expression of the pluripotency genes Oct4 and Sox2. The overexpression of YAP prevented the differentiation of pSDSCs, and the depletion of YAP by small interfering RNA (siRNAs) suppressed the self-renewal of pSDSCs. In addition, we found that YAP regulates the fate of pSDSCs through a mechanism related to the Wnt/β-catenin signaling pathway. When an activator of the Wnt/β-catenin signaling pathway, CHIR99021, was added to pSDSCs overexpressing YAP, the ability of pSDSCs to differentiate was partially restored. Conversely, when XAV939, an inhibitor of the Wnt/β-catenin signaling pathway, was added to YAP knockdown pSDSCs a higher self-renewal ability resulted. Taken together, our results suggested that YAP and the Wnt/β-catenin signaling pathway interact to regulate the fate of pSDSCs.
Collapse
Affiliation(s)
- Hong-Chen Yan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ming-Yu Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Jia-Dong Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Francesca Gioia Klinger
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
119
|
Sun C, He B, Sun M, Lv X, Wang F, Chen J, Zhang J, Ye Z, Wen J, Liu P. Yes-Associated Protein in Atherosclerosis and Related Complications: A Potential Therapeutic Target That Requires Further Exploration. Front Cardiovasc Med 2021; 8:704208. [PMID: 34513949 PMCID: PMC8430249 DOI: 10.3389/fcvm.2021.704208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis and its complications diseases remain leading causes of cardiovascular morbidity and mortality, bringing a massive burden on public health worldwide. Atherosclerosis is recognized as chronic inflammation, and involves several highly correlated processes, including lipid metabolism dysfunction, endothelial cell dysfunction, inflammation, oxidative stress, vascular smooth muscle cell activation, platelet activation, thrombosis, altered matrix metabolism, and vascular remodeling. Within the past few decades, accumulating evidence has shown that the Yes-associated protein (YAP), the major effector of the Hippo pathway, can play a crucial role in pathogenesis and development of atherosclerosis. Activation of YAP-related pathways, which are induced by alerting flow pattern and matrix stiffness among others, can regulate processes including vascular endothelial cell dysfunction, monocyte infiltration, and smooth muscle cell migration, which contribute to atherosclerotic lesion formation. Further, YAP potentially modulates atherosclerotic complications such as vascular calcification and intraplaque hemorrhage, which require further investigation. Here, we summarized the relevant literature to outline current findings detailing the relationship between of YAP and atherosclerosis and highlight areas for future research.
Collapse
Affiliation(s)
- Congrui Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Bin He
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Mingsheng Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaoshuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jie Chen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianbin Zhang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianyan Wen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
120
|
Yu D, Wang J, Qian KJ, Yu J, Zhu HY. Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. J Zhejiang Univ Sci B 2021; 21:871-884. [PMID: 33150771 DOI: 10.1631/jzus.b2000355] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanofibers can mimic natural tissue structure by creating a more suitable environment for cells to grow, prompting a wide application of nanofiber materials. In this review, we include relevant studies and characterize the effect of nanofibers on mesenchymal stem cells, as well as factors that affect cell adhesion and osteogenic differentiation. We hypothesize that the process of bone regeneration in vitro is similar to bone formation and healing in vivo, and the closer nanofibers or nanofibrous scaffolds are to natural bone tissue, the better the bone regeneration process will be. In general, cells cultured on nanofibers have a similar gene expression pattern and osteogenic behavior as cells induced by osteogenic supplements in vitro. Genes involved in cell adhesion (focal adhesion kinase (FAK)), cytoskeletal organization, and osteogenic pathways (transforming growth factor-β (TGF-β)/bone morphogenic protein (BMP), mitogen-activated protein kinase (MAPK), and Wnt) are upregulated successively. Cell adhesion and osteogenesis may be influenced by several factors. Nanofibers possess certain physical properties including favorable hydrophilicity, porosity, and swelling properties that promote cell adhesion and growth. Moreover, nanofiber stiffness plays a vital role in cell fate, as cell recruitment for osteogenesis tends to be better on stiffer scaffolds, with associated signaling pathways of integrin and Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ). Also, hierarchically aligned nanofibers, as well as their combination with functional additives (growth factors, HA particles, etc.), contribute to osteogenesis and bone regeneration. In summary, previous studies have indicated that upon sensing the stiffness of the nanofibrous environment as well as its other characteristics, stem cells change their shape and tension accordingly, regulating downstream pathways followed by adhesion to nanofibers to contribute to osteogenesis. However, additional experiments are needed to identify major signaling pathways in the bone regeneration process, and also to fully investigate its supportive role in fabricating or designing the optimum tissue-mimicking nanofibrous scaffolds.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jin Wang
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ke-Jia Qian
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hui-Yong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
121
|
Frontini-López YR, Gojanovich AD, Del Veliz S, Uhart M, Bustos DM. 14-3-3β isoform is specifically acetylated at Lys51 during differentiation to the osteogenic lineage. J Cell Biochem 2021; 122:1767-1780. [PMID: 34379822 DOI: 10.1002/jcb.30128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023]
Abstract
The 14-3-3 protein family binds and regulates hundreds of serine/threonine phosphorylated proteins as an essential component of many signaling networks. Specific biological functions are currently been discovered for each of its seven isoforms in mammals. These proteins have been traditionally considered unregulated; however, its acetylation in an essential lysine residue, causing its inactivation, was recently published. Here, we studied the acetylation state of this lysine 49/51 during the osteogenic differentiation of human adipose-derived stem cells. We found that during this process, the levels of 14-3-3β (but not its isoform 14-3-3γ) acK49/51 increase, representing the first report linking this PTM to a specific isoform and a cellular process. Our results suggested that this posttranslational modification could be catalyzed by the HBO1 acetyltransferase, as overexpression of HBO1 increased specifically 14-3-3 acK49/51 acetylation. Acetylated 14-3-3 proteins are located primarily in the nucleus, where their active state has been described to bind H3 histones and many transcription factors. The inhibition of the expression of different isoforms showed that the specific silencing of the 14-3-3β gene, but not γ, increased significantly the osteogenic potential of the cells. This result correlated to the increase in acetylation of 14-3- 3β Lys 49/51 during osteogenesis. The possible role of this PTM in osteogenesis is discussed.
Collapse
Affiliation(s)
- Yesica R Frontini-López
- Laboratorio de Integración de Señales Celulares, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET-UNCuyo), Mendoza, Argentina
| | - Aldana D Gojanovich
- Laboratorio de Integración de Señales Celulares, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET-UNCuyo), Mendoza, Argentina.,CReM, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Samanta Del Veliz
- Laboratorio de Integración de Señales Celulares, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET-UNCuyo), Mendoza, Argentina
| | - Marina Uhart
- Laboratorio de Integración de Señales Celulares, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET-UNCuyo), Mendoza, Argentina
| | - Diego M Bustos
- Laboratorio de Integración de Señales Celulares, Instituto de Histología y Embriología de Mendoza (IHEM-CONICET-UNCuyo), Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
122
|
Woods K, Guezguez B. Dynamic Changes of the Bone Marrow Niche: Mesenchymal Stromal Cells and Their Progeny During Aging and Leukemia. Front Cell Dev Biol 2021; 9:714716. [PMID: 34447754 PMCID: PMC8383146 DOI: 10.3389/fcell.2021.714716] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogenous cell population found in a wide range of tissues in the body, known for their nutrient-producing and immunomodulatory functions. In the bone marrow (BM), these MSCs are critical for the regulation of hematopoietic stem cells (HSC) that are responsible for daily blood production and functional immunity throughout an entire organism's lifespan. Alongside other stromal cells, MSCs form a specialized microenvironment BM tissue called "niche" that tightly controls HSC self-renewal and differentiation. In addition, MSCs are crucial players in maintaining bone integrity and supply of hormonal nutrients due to their capacity to differentiate into osteoblasts and adipocytes which also contribute to cellular composition of the BM niche. However, MSCs are known to encompass a large heterogenous cell population that remains elusive and poorly defined. In this review, we focus on deciphering the BM-MSC biology through recent advances in single-cell identification of hierarchical subsets with distinct functionalities and transcriptional profiles. We also discuss the contribution of MSCs and their osteo-adipo progeny in modulating the complex direct cell-to-cell or indirect soluble factors-mediated interactions of the BM HSC niche during homeostasis, aging and myeloid malignancies. Lastly, we examine the therapeutic potential of MSCs for rejuvenation and anti-tumor remedy in clinical settings.
Collapse
Affiliation(s)
- Kevin Woods
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Borhane Guezguez
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
123
|
Liu Y, Wang Z, Ju M, Zhao Y, Jing Y, Li J, Shao C, Fu T, Lv Z, Li G. Modification of COL1A1 in Autologous Adipose Tissue-Derived Progenitor Cells Rescues the Bone Phenotype in a Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2021; 36:1521-1534. [PMID: 33950576 DOI: 10.1002/jbmr.4326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a congenital genetic disorder mainly manifested as bone fragility and recurrent fracture. Mutation of COL1A1/COL1A2 genes encoding the type I collagen are most responsible for the clinical patients. Allogenic mesenchymal stem cells (MSCs) provide the potential to treat OI through differentiation into osteoblasts. Autologous defective MSCs have not been utilized in OI treatment mainly because of their impaired osteogenesis, but the latent mechanism has not been well understood. Here, the relative signaling abnormality of adipose-derived mesenchymal stem cells (ADSCs) isolated from OI type I mice (Col1a1+/-365 mice) was explored. Autologous ADSCs transfected by retrovirus carrying human COL1A1 gene was first utilized in OI therapy. The results showed that decreased activity of Yes-associated protein (YAP) due to hyperactive upstream Hippo kinases greatly contributed to the weakened bone-forming capacity of defective ADSCs. Recovered collagen synthesis of autologous ADSCs by COL1A1 gene modification normalized Hippo/YAP signaling and effectively rescued YAP-mediated osteogenesis. And the COL1A1 gene engineered autologous ADSCs efficaciously improved the microstructure, enhanced the mechanical properties and promoted bone formation of Col1a1+/-365 mice after femoral bone marrow cavity delivery and might serve as an alternative source of stem cells in OI treatment. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yi Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zihan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Mingyan Ju
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuxia Zhao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yaqing Jing
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jiaci Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Chenyi Shao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ting Fu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhe Lv
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
124
|
Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, Kelenis DP, Whitney CP, Guthrie MR, Wait SJ, Soltero D, Witt BL, Quaranta V, Johnson JE, Oliver TG. ASCL1 represses a SOX9 + neural crest stem-like state in small cell lung cancer. Genes Dev 2021; 35:847-869. [PMID: 34016693 PMCID: PMC8168563 DOI: 10.1101/gad.348295.121] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
ASCL1 is a neuroendocrine lineage-specific oncogenic driver of small cell lung cancer (SCLC), highly expressed in a significant fraction of tumors. However, ∼25% of human SCLC are ASCL1-low and associated with low neuroendocrine fate and high MYC expression. Using genetically engineered mouse models (GEMMs), we show that alterations in Rb1/Trp53/Myc in the mouse lung induce an ASCL1+ state of SCLC in multiple cells of origin. Genetic depletion of ASCL1 in MYC-driven SCLC dramatically inhibits tumor initiation and progression to the NEUROD1+ subtype of SCLC. Surprisingly, ASCL1 loss promotes a SOX9+ mesenchymal/neural crest stem-like state and the emergence of osteosarcoma and chondroid tumors, whose propensity is impacted by cell of origin. ASCL1 is critical for expression of key lineage-related transcription factors NKX2-1, FOXA2, and INSM1 and represses genes involved in the Hippo/Wnt/Notch developmental pathways in vivo. Importantly, ASCL1 represses a SOX9/RUNX1/RUNX2 program in vivo and SOX9 expression in human SCLC cells, suggesting a conserved function for ASCL1. Together, in a MYC-driven SCLC model, ASCL1 promotes neuroendocrine fate and represses the emergence of a SOX9+ nonendodermal stem-like fate that resembles neural crest.
Collapse
Affiliation(s)
- Rachelle R Olsen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - David W Kastner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Kyle B Spainhower
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Karine Pozo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Demetra P Kelenis
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Christopher P Whitney
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Matthew R Guthrie
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sarah J Wait
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Danny Soltero
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Benjamin L Witt
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
- ARUP Laboratories at University of Utah, Salt Lake City, Utah 84108, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37212, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
125
|
Li Y, Wang J, Zhong W. Regulation and mechanism of YAP/TAZ in the mechanical microenvironment of stem cells (Review). Mol Med Rep 2021; 24:506. [PMID: 33982785 PMCID: PMC8134874 DOI: 10.3892/mmr.2021.12145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Stem cells receive cues from their physical and mechanical microenvironment via mechanosensing and mechanotransduction. These cues affect proliferation, self‑renewal and differentiation into specific cell fates. A growing body of evidence suggests that yes‑associated protein (YAP) and transcriptional coactivator with PDZ‑binding motif (TAZ) mechanotransduction is key for driving stem cell behavior and regeneration via the Hippo and other signaling pathways. YAP/TAZ receive a range of physical cues, including extracellular matrix stiffness, cell geometry, flow shear stress and mechanical forces in the cytoskeleton, and translate them into cell‑specific transcriptional programs. However, the mechanism by which mechanical signals regulate YAP/TAZ activity in stem cells is not fully understand. The present review summarizes the current knowledge of the mechanisms involved in YAP/TAZ regulation on the physical and mechanical microenvironment, as well as its potential effects on stem cell differentiation.
Collapse
Affiliation(s)
- Ying Li
- Department of Orthopaedics Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jinming Wang
- Department of Orthopaedics Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Weiliang Zhong
- Department of Orthopaedics Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
126
|
Enny A, Shanabag A, Thompson AW, Racicot B, Braasch I, Nakamura T. Cellular mechanisms of frontal bone development in spotted gar (Lepisosteus oculatus). Dev Dyn 2021; 250:1668-1682. [PMID: 33913218 DOI: 10.1002/dvdy.356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The cellular and molecular mechanisms initiating vertebrate cranial dermal bone formation is a conundrum in evolutionary and developmental biology. Decades of studies have determined the developmental processes of cranial dermal bones in various vertebrates and identified possible inducers of dermal bone. However, evolutionarily derived characters of current experimental model organisms, such as non-homologous frontal bones between teleosts and sarcopterygians, hinder investigations of ancestral and conserved mechanisms of vertebrate cranial dermal bone induction. Thus, investigating such mechanisms with animals diverging at evolutionarily informative phylogenetic nodes is imperative. RESULTS We investigated the cellular foundations of skull frontal bone formation in the spotted gar Lepisosteus oculatus, a basally branching non-teleost actinopterygian. Whole-mount bone and cartilage staining and hematoxylin-eosin section staining revealed that mesenchymal cell condensations in the frontal bone of spotted gar develop in close association with the underlying cartilage. We also identified novel aspects of frontal bone formation: enrichment of F-actin, cellular membranes, and E-cadherin in condensing cells, and extension of podia-like structures from osteoblasts to the frontal bone, which may be responsible for bone mineral transport. CONCLUSION This study highlights the process of frontal bone formation with dynamic architectural changes of mesenchymal cells in spotted gar, an emerging non-teleost fish model system, illuminating supposedly ancestral and likely conserved developmental mechanisms of skull bone formation among vertebrates.
Collapse
Affiliation(s)
- Alyssa Enny
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | - Anusha Shanabag
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| | - Andrew W Thompson
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.,Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, Michigan, USA
| | - Brett Racicot
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA.,Program in Ecology, Evolution, and Behavior (EEB), Michigan State University, East Lansing, Michigan, USA
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
127
|
New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2021; 13:cancers13081981. [PMID: 33924049 PMCID: PMC8073623 DOI: 10.3390/cancers13081981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary YES-associated protein (YAP) is a co-transcriptional activator that binds to transcriptional factors to increase the rate of transcription of a set of genes, and it can intervene in the onset and progression of different tumors. Most of the data in the literature refer to the effects of the YAP system in solid neoplasms. In this review, we analyze the possibility that YAP can also intervene in hematological neoplasms such as lymphomas, multiple myeloma, and acute and chronic leukemias, modifying the phenomena of cell proliferation and cell death. The possibilities of pharmacological intervention related to the YAP system in an attempt to use its modulation therapeutically are also discussed. Abstract The Hippo/YES-associated protein (YAP) signaling pathway is a cell survival and proliferation-control system with its main activity that of regulating cell growth and organ volume. YAP operates as a transcriptional coactivator in regulating the onset, progression, and treatment response in numerous human tumors. Moreover, there is evidence suggesting the involvement of YAP in the control of the hematopoietic system, in physiological conditions rather than in hematological diseases. Nevertheless, several reports have proposed that the effects of YAP in tumor cells are cell-dependent and cell-type-determined, even if YAP usually interrelates with extracellular signaling to stimulate the onset and progression of tumors. In the present review, we report the most recent findings in the literature on the relationship between the YAP system and hematological neoplasms. Moreover, we evaluate the possible therapeutic use of the modulation of the YAP system in the treatment of malignancies. Given the effects of the YAP system in immunosurveillance, tumorigenesis, and chemoresistance, further studies on interactions between the YAP system and hematological malignancies will offer very relevant information for the targeting of these diseases employing YAP modifiers alone or in combination with chemotherapy drugs.
Collapse
|
128
|
Sun B, Qu R, Fan T, Yang Y, Jiang X, Khan AU, Zhou Z, Zhang J, Wei K, Ouyang J, Dai J. Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells. Cell Mol Biol Lett 2021; 26:15. [PMID: 33858321 PMCID: PMC8048231 DOI: 10.1186/s11658-021-00259-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Actin is an essential cellular protein that assembles into microfilaments and regulates numerous processes such as cell migration, maintenance of cell shape, and material transport. METHODS In this study, we explored the effect of actin polymerization state on the osteogenic differentiation of human adipose-derived stem cells (hASCs). The hASCs were treated for 7 days with different concentrations (0, 1, 5, 10, 20, and 50 nM) of jasplakinolide (JAS), a reagent that directly polymerizes F-actin. The effects of the actin polymerization state on cell proliferation, apoptosis, migration, and the maturity of focal adhesion-related proteins were assessed. In addition, western blotting and alizarin red staining assays were performed to assess osteogenic differentiation. RESULTS Cell proliferation and migration in the JAS (0, 1, 5, 10, and 20 nM) groups were higher than in the control group and the JAS (50 nM) group. The FAK, vinculin, paxillin, and talin protein expression levels were highest in the JAS (20 nM) group, while zyxin expression was highest in the JAS (50 nM) group. Western blotting showed that osteogenic differentiation in the JAS (0, 1, 5, 10, 20, and 50 nM) group was enhanced compared with that in the control group, and was strongest in the JAS (50 nM) group. CONCLUSIONS In summary, our data suggest that the actin polymerization state may promote the osteogenic differentiation of hASCs by regulating the protein expression of focal adhesion-associated proteins in a concentration-dependent manner. Our findings provide valuable information for exploring the mechanism of osteogenic differentiation in hASCs.
Collapse
Affiliation(s)
- Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xin Jiang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Zhitao Zhou
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Jingliao Zhang
- Department of Foot and Ankle Surgery, Henan Luoyang Orthopedic Hospital, Zhengzhou, China
| | - Kuanhai Wei
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China.
| |
Collapse
|
129
|
Deng L, Chen Y, Guo J, Han X, Guo Y. Roles and mechanisms of YAP/TAZ in orthodontic tooth movement. J Cell Physiol 2021; 236:7792-7800. [PMID: 33843049 DOI: 10.1002/jcp.30388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 02/05/2023]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators encoded by paratactic homologous genes, shuttle-crossing between cytoplasm and nucleus to regulate the gene expression and cell behavior and standing at the center place of the sophisticated regulatory networking of mechanotransduction. Orthodontic tooth movement (OTM) is a process in which extracellular mechanical stimuli are transformed into intracellular biochemical signals to regulate cellular responses and tissue remodeling. Literature studies have confirmed that YAP/TAZ plays an important role not only in embryonic development, homeostasis and tumorigenesis, but also in mechanical-biochemical signal transduction of periodontal tissues under the mediation of various signal molecules in its upstream and downstream. Herein, we review the advances in the roles and mechanisms of YAP/TAZ in OTM to provide insights for better understanding and further study of the OTM and possible targeted clinical intervention in orthodontic treatment.
Collapse
Affiliation(s)
- Lanzhi Deng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiusi Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
130
|
Circ-ITCH sponges miR-214 to promote the osteogenic differentiation in osteoporosis via upregulating YAP1. Cell Death Dis 2021; 12:340. [PMID: 33795657 PMCID: PMC8016856 DOI: 10.1038/s41419-021-03586-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Osteoporosis is the most prevailing primary bone disease and a growing health care burden. The aim of this study was to clarify the functional roles and mechanisms of the circ-ITCH regulating osteogenic differentiation of osteoporosis. Circ-ITCH and yes-associated protein 1 (YAP1) levels were downregulated, but the miR‐214 level was upregulated in osteoporotic mice and patients. Knockdown of circ-ITCH inhibited the alkaline phosphatase (ALP) activity, mineralized nodule formation, and expression of runt-related transcription factor 2 (RUNX2), osteopontin (OPN), and osteocalcin (OCN) during osteogenic induction. Furthermore, miR-214 was a target of circ-ITCH, knockdown of miR-214 could impede the regulatory effects of sh-circ-ITCH on osteogenic differentiation. Moreover, miR-214 suppressed hBMSCs osteogenic differentiation by downregulating YAP1. Finally, in vivo experiments indicated that overexpression of circ-ITCH could improve osteogenesis in ovariectomized mice. In conclusion, circ-ITCH upregulated YAP1 expression to promote osteogenic differentiation in osteoporosis via sponging miR-214. Circ-ITCH could act as a novel therapeutic target for osteoporosis.
Collapse
|
131
|
Chen X, Chen W, Aung ZM, Han W, Zhang Y, Chai G. LY3023414 inhibits both osteogenesis and osteoclastogenesis through the PI3K/Akt/GSK3 signalling pathway. Bone Joint Res 2021; 10:237-249. [PMID: 33789427 PMCID: PMC8076989 DOI: 10.1302/2046-3758.104.bjr-2020-0255.r2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIMS LY3023414 is a novel oral phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dual inhibitor designed for advanced cancers, for which a phase II clinical study was completed in March 2020; however, little is known about its effect on bone modelling/remodelling. In this study, we aimed to explore the function of LY3023414 in bone modelling/remodelling. METHODS The function of LY3023414 was explored in the context of osteogenesis (bone formation by osteoblasts) and osteoclastogenesis (osteoclast formation and bone resorption). Murine preosteoblast MC3T3-E1 cell line and murine bone marrow-derived macrophage cells (BMMs) were subjected to different treatments. An MTS cell proliferation assay was used to examine the cytotoxicity. Thereafter, different induction conditions were applied, such as MCSF and RANKL for osteoclastogenesis and osteogenic media for osteogenesis. Specific staining, a bone resorption assay, and quantitative real-time polymerase chain reaction (qRT-PCR) were subsequently used to evaluate the effect of LY3023414. Moreover, small interfering RNA (siRNA) was applied to knockdown Akt1 or Akt2 for further validation. Lastly, western blot was used to examine the exact mechanism of action. RESULTS LY3023414 attenuated PI3K/protein kinase B (Akt)/GSK3-dependent activation of β-catenin and nuclear factor-activated T cell 1 (NFATc1) during osteogenesis and osteoclastogenesis, respectively. LY3023414 mainly inhibited osteoclast formation instead of mature osteoclast function. Moreover, it suppressed osteogenesis both in the early stage of differentiation and late stage of calcification. Similarly, gene knockdown of Akt isoforms by siRNA downregulated osteogenic and osteoclastogenic processes, indicating that Akt1 and Akt2 acted synergistically. CONCLUSION LY3023414 can suppress osteogenesis and osteoclastogenesis through inhibition of the PI3K/Akt/GSK3 signalling pathway, which highlights the potential benefits and side effects of LY3023414 for future clinical applications. Cite this article: Bone Joint Res 2021;10(4):237-249.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zin Mar Aung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Chai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
132
|
Kim H, Kumbar SG, Nukavarapu SP. Biomaterial-directed cell behavior for tissue engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 17:100260. [PMID: 33521410 PMCID: PMC7839921 DOI: 10.1016/j.cobme.2020.100260] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful tissue regeneration strategies focus on the use of novel biomaterials, structures, and a variety of cues to control cell behavior and promote regeneration. Studies discovered how biomaterial/ structure cues in the form of biomaterial chemistry, material stiffness, surface topography, pore, and degradation properties play an important role in controlling cellular events in the contest of in vitro and in vivo tissue regeneration. Advanced biomaterials structures and strategies are developed to focus on the delivery of bioactive factors, such as proteins, peptides, and even small molecules to influence cell behavior and regeneration. The present article is an effort to summarize important findings and further discuss biomaterial strategies to influence and control cell behavior directly via physical and chemical cues. This article also touches on various modern methods in biomaterials processing to include bioactive factors as signaling cues to program cell behavior for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hyun Kim
- Biomedical Engineering, University of Connecticut, Storrs-06269
| | - Sangamesh G. Kumbar
- Biomedical Engineering, University of Connecticut, Storrs-06269
- Materials Science & Engineering, University of Connecticut, Storrs-06269
- Orthopaedic Surgery, University of Connecticut Health, Farmington-06030
| | - Syam P. Nukavarapu
- Biomedical Engineering, University of Connecticut, Storrs-06269
- Materials Science & Engineering, University of Connecticut, Storrs-06269
- Orthopaedic Surgery, University of Connecticut Health, Farmington-06030
| |
Collapse
|
133
|
Li JR, Liu L, Luo H, Chen ZG, Wang JH, Li NF. Long Noncoding RNA DUXAP8 Promotes Pancreatic Carcinoma Cell Migration and Invasion Via Pathway by miR-448/WTAP/Fak Signaling Axis. Pancreas 2021; 50:317-326. [PMID: 33625109 PMCID: PMC8041564 DOI: 10.1097/mpa.0000000000001751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Pancreatic carcinoma (PC) has become the fourth leading cause of cancer deaths. Long noncoding RNA DUXAP8 has also been reported to play a regulatory role in PC progression. However, its molecular mechanism in PC is not fully elucidated. METHODS Quantitative real-time polymerase chain reaction was used to detect the levels of DUXAP8, microRNA (miR)-448, Wilms tumor 1-associating protein (WTAP), focal adhesion kinase (Fak), and matrix metallopeptidase 2/9. Western blotting was carried out to detect matrix metallopeptidase 2/9, WTAP, Fak, and p-Fak. The interaction between DUXAP8 and miR-448 as well as WTAP and miR-448 was validated by bioinformatics and dual-luciferase reporter assays. Transwell assay was used to analyze cell invasion and migration. 3-[4,5-Dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay was used to analyze cell proliferation. RESULTS DUXAP8 was upregulated, whereas miR-448 was downregulated in PC tissue and cells. Meanwhile, DUXAP8 knockdown or miR-448 overexpression inhibited migration, invasion, and proliferation of PC cells. DUXAP8 directly targeted miR-448, and miR-448 directly bound to WTAP. Downregulation of miR-448 reversed the inhibition of migration and invasion of PC cells by DUXAP8 knockdown. CONCLUSIONS DUXAP8 sponges miR-448 to modulate migration, invasion, and proliferation of PC cells, indicating a novel mechanistic role of DUXAP8 in the regulation of PC progression.
Collapse
|
134
|
LeBlanc L, Ramirez N, Kim J. Context-dependent roles of YAP/TAZ in stem cell fates and cancer. Cell Mol Life Sci 2021; 78:4201-4219. [PMID: 33582842 PMCID: PMC8164607 DOI: 10.1007/s00018-021-03781-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Hippo effectors YAP and TAZ control cell fate and survival through various mechanisms, including transcriptional regulation of key genes. However, much of this research has been marked by conflicting results, as well as controversy over whether YAP and TAZ are redundant. A substantial portion of the discordance stems from their contradictory roles in stem cell self-renewal vs. differentiation and cancer cell survival vs. apoptosis. In this review, we present an overview of the multiple context-dependent functions of YAP and TAZ in regulating cell fate decisions in stem cells and organoids, as well as their mechanisms of controlling programmed cell death pathways in cancer.
Collapse
Affiliation(s)
- Lucy LeBlanc
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Nereida Ramirez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA. .,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
135
|
Long Y, Cheng X, Jansen JA, Leeuwenburgh SGC, Mao J, Yang F, Chen L. The molecular conformation of silk fibroin regulates osteogenic cell behavior by modulating the stability of the adsorbed protein-material interface. Bone Res 2021; 9:13. [PMID: 33574222 PMCID: PMC7878842 DOI: 10.1038/s41413-020-00130-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/27/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023] Open
Abstract
Silk fibroin (SF) can be used to construct various stiff material interfaces to support bone formation. An essential preparatory step is to partially transform SF molecules from random coils to β-sheets to render the material water insoluble. However, the influence of the SF conformation on osteogenic cell behavior at the material interface remains unknown. Herein, three stiff SF substrates were prepared by varying the β-sheet content (high, medium, and low). The substrates had a comparable chemical composition, surface topography, and wettability. When adsorbed fibronectin was used as a model cellular adhesive protein, the stability of the adsorbed protein-material interface, in terms of the surface stability of the SF substrates and the accompanying fibronectin detachment resistance, increased with the increasing β-sheet content of the SF substrates. Furthermore, (i) larger areas of cytoskeleton-associated focal adhesions, (ii) higher orders of cytoskeletal organization and (iii) more elongated cell spreading were observed for bone marrow-derived mesenchymal stromal cells (BMSCs) cultured on SF substrates with high vs. low β-sheet contents, along with enhanced nuclear translocation and activation of YAP/TAZ and RUNX2. Consequently, osteogenic differentiation of BMSCs was stimulated on high β-sheet substrates. These results indicated that the β-sheet content influences osteogenic differentiation of BMSCs on SF materials in vitro by modulating the stability of the adsorbed protein-material interface, which proceeds via protein-focal adhesion-cytoskeleton links and subsequent intracellular mechanotransduction. Our findings emphasize the role of the stability of the adsorbed protein-material interface in cellular mechanotransduction and the perception of stiff SF substrates with different β-sheet contents, which should not be overlooked when engineering stiff biomaterials.
Collapse
Affiliation(s)
- Yanlin Long
- grid.33199.310000 0004 0368 7223Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022 China
| | - Xian Cheng
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - John A. Jansen
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Sander G. C. Leeuwenburgh
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Jing Mao
- grid.33199.310000 0004 0368 7223Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Fang Yang
- grid.10417.330000 0004 0444 9382Department of Dentistry–Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Lili Chen
- grid.33199.310000 0004 0368 7223Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022 China
| |
Collapse
|
136
|
Dubon M, Lee S, Park JH, Lee JY, Kang D. The Role of Melanotransferrin (CD228) in the regulation of the differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells (hBM-MSC). Int J Med Sci 2021; 18:1580-1591. [PMID: 33746574 PMCID: PMC7976559 DOI: 10.7150/ijms.53650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Melanotransferrin (CD228), firstly reported as a melanoma-associated antigen, is a membrane-bound glycoprotein of an iron-binding transferrin homolog. CD228 was found to be expressed significantly higher in human bone marrow-derived mesenchymal stem cells (hBM-MSC) than in human embryonic fibroblasts (FB) by RT-PCR, western blotting and flow cytometry. The expression of CD228 declined in aged hBM-MSC as osteogenesis-related genes did. We examined a possible role for CD228 in the regulation of osteogenesis and adipogenesis of hBM-MSC. Surprisingly, siRNA-mediated CD228 knockdown increased the expression of the transcription factor DLX5 and enhanced osteogenesis of hBM-MSC evidenced by an increased expression of the runt-related transcription factor 2 (RUNX2), osterix (Osx), and osteocalcin (OC), as well as higher alkaline phosphatase (ALP) activity and extracellular calcium deposition. Interestingly, hBM-MSC transfected with CD228 siRNA also showed an increase in intracellular lipid level during adipogenesis, indicated by oil red O staining of differentiated adipocytes. Overall, our study unveils CD228 as a cell surface molecule expressed by young hBM-MSC, but not by FB. It also provides evidence to suggest a role for CD228 as a negative regulator of osteogenesis and of lipid accumulation during adipogenesis in hBM-MSC in vitro.
Collapse
Affiliation(s)
- Maria Dubon
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
| | - Sooho Lee
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
| | - Ji-Hong Park
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Jae-Yong Lee
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Dongchul Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do 14066, Republic of Korea
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| |
Collapse
|
137
|
Reichenbach M, Mendez P, da Silva Madaleno C, Ugorets V, Rikeit P, Boerno S, Jatzlau J, Knaus P. Differential Impact of Fluid Shear Stress and YAP/TAZ on BMP/TGF‐β Induced Osteogenic Target Genes. Adv Biol (Weinh) 2021; 5:e2000051. [DOI: 10.1002/adbi.202000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 12/08/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Maria Reichenbach
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul‐Lennard Mendez
- International Max Planck Research School for Biology and Computation Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Carolina da Silva Madaleno
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Vladimir Ugorets
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Paul Rikeit
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Stefan Boerno
- Sequencing Core Facility Max Planck Institute for Molecular Genetics Ihnestr. 63 Berlin 14195 Germany
| | - Jerome Jatzlau
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
- Berlin‐Brandenburg School for Regenerative Therapies (BSRT) Charité—Universitätsmedizin Berlin Föhrer Str. 15 Berlin 13353 Germany
| | - Petra Knaus
- Institute of Chemistry/Biochemistry Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| |
Collapse
|
138
|
Martyniak K, Wei F, Ballesteros A, Meckmongkol T, Calder A, Gilbertson T, Orlovskaya N, Coathup MJ. Do polyunsaturated fatty acids protect against bone loss in our aging and osteoporotic population? Bone 2021; 143:115736. [PMID: 33171312 DOI: 10.1016/j.bone.2020.115736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related bone loss is inevitable in both men and women and there will soon be more people of extreme old age than ever before. Osteoporosis is a common chronic disease and as the proportion of older people, rate of obesity and the length of life increases, a rise in age-related degenerating bone diseases, disability, and prolonged dependency is projected. Fragility fractures are one of the most severe complications associated with both primary and secondary osteoporosis and current treatment strategies target weight-bearing exercise and pharmacological intervention, both with limited long-term success. Obesity and osteoporosis are intimately interrelated, and diet is a variable that plays a significant role in bone regeneration and repair. The Western Diet is characterized by its unhealthy components, specifically excess amounts of saturated fat intake. This review examines the impact of saturated and polyunsaturated fatty acid consumption on chronic inflammation, osteogenesis, bone architecture, and strength and explores the hypothesis that dietary polyunsaturated fats have a beneficial effect on osteogenesis, reducing bone loss by decreasing chronic inflammation, and activating bone resorption through key cellular and molecular mechanisms in our aging population. We conclude that aging, obesity and a diet high in saturated fatty acids significantly impairs bone regeneration and repair and that consumption of ω-3 polyunsaturated fatty acids is associated with significantly increased bone regeneration, improved microarchitecture and structural strength. However, ω-6 polyunsaturated fatty acids were typically pro-inflammatory and have been associated with an increased fracture risk. This review suggests a potential role for ω-3 fatty acids as a non-pharmacological dietary method of reducing bone loss in our aging population. We also conclude that contemporary amendments to the formal nutritional recommendations made by the Food and Nutrition Board may be necessary such that our aging population is directly considered.
Collapse
Affiliation(s)
- Kari Martyniak
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Amelia Ballesteros
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Teerin Meckmongkol
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of General Surgery, Nemours Children's Hospital, Orlando, FL, United States
| | - Ashley Calder
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Timothy Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States
| | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
139
|
Nulsen J, Misetic H, Yau C, Ciccarelli FD. Pan-cancer detection of driver genes at the single-patient resolution. Genome Med 2021; 13:12. [PMID: 33517897 PMCID: PMC7849133 DOI: 10.1186/s13073-021-00830-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Identifying the complete repertoire of genes that drive cancer in individual patients is crucial for precision oncology. Most established methods identify driver genes that are recurrently altered across patient cohorts. However, mapping these genes back to patients leaves a sizeable fraction with few or no drivers, hindering our understanding of cancer mechanisms and limiting the choice of therapeutic interventions. RESULTS We present sysSVM2, a machine learning software that integrates cancer genetic alterations with gene systems-level properties to predict drivers in individual patients. Using simulated pan-cancer data, we optimise sysSVM2 for application to any cancer type. We benchmark its performance on real cancer data and validate its applicability to a rare cancer type with few known driver genes. We show that drivers predicted by sysSVM2 have a low false-positive rate, are stable and disrupt well-known cancer-related pathways. CONCLUSIONS sysSVM2 can be used to identify driver alterations in patients lacking sufficient canonical drivers or belonging to rare cancer types for which assembling a large enough cohort is challenging, furthering the goals of precision oncology. As resources for the community, we provide the code to implement sysSVM2 and the pre-trained models in all TCGA cancer types ( https://github.com/ciccalab/sysSVM2 ).
Collapse
Affiliation(s)
- Joel Nulsen
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Hrvoje Misetic
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Christopher Yau
- School of Health Sciences, University of Manchester, Manchester, M13 9PL, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
- School of Cancer and Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
140
|
Kim JY, Kim TY, Lee ES, Aryal YP, Pokharel E, Sung S, Sohn WJ, Kim JY, Jung JK. Implications of the specific localization of YAP signaling on the epithelial patterning of circumvallate papilla. J Mol Histol 2021; 52:313-320. [PMID: 33420594 DOI: 10.1007/s10735-020-09951-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/26/2020] [Indexed: 11/24/2022]
Abstract
Circumvallate papilla (CVP) is a distinctively structured with dome-shaped apex, and the surrounding trench which contains over two hundred taste buds on the lateral walls. Although CVP was extensively studied to determine the regulatory mechanisms during organogenesis, it still remains to be elucidated the principle mechanisms of signaling regulations on morphogenesis including taste buds formation. The key role of Yes-associated protein (YAP) in the regulation of organ size and cell proliferation in vertebrates is well understood, but little is known about the role of this signaling pathway in CVP development. We aimed to determine the putative roles of YAP signaling in the epithelial patterning during CVP morphogenesis. To evaluate the precise localization patterns of YAP and other related signaling molecules, including β-catenin, Ki67, cytokeratins, and PGP9.5, in CVP tissue, histology and immunohistochemistry were employed at E16 and adult mice. Our results suggested that there are specific localization patterns of YAP and Wnt signaling molecules in developing and adult CVP. These concrete localization patterns would provide putative involvements of YAP and Wnt signaling for proper epithelial cell differentiation including the formation and maintenance of taste buds.
Collapse
Affiliation(s)
- Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Inchoen, Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Elina Pokharel
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Shijin Sung
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, 38610, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea.
| | - Jae-Kwang Jung
- Department of Oral Medicine, School of Dentistry, IHBR, Kyungpook National University, 2177 Dalgubeol-daero, Joong-gu, Daegu, 41940, Korea.
| |
Collapse
|
141
|
Li L, Zhou X, Zhang JT, Liu AF, Zhang C, Han JC, Zhang XQ, Wu S, Zhang XY, Lv FQ. Exosomal miR-186 derived from BMSCs promote osteogenesis through hippo signaling pathway in postmenopausal osteoporosis. J Orthop Surg Res 2021; 16:23. [PMID: 33413543 PMCID: PMC7791800 DOI: 10.1186/s13018-020-02160-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMO) that results from estrogen withdrawal is the most common primary osteoporosis among older women. However, little is known about the mechanism of PMO, and effective treatment of PMO is limited. METHODS We used real-time polymerase chain reaction (qPCR), Western blotting, and RNA pull down to investigate the relationship between miR-186 and MOB Kinase Activator 1A (Mob1). Also, we investigated the effect of exosome in osteogenesis using alkaline phosphatase (ALP) staining. And hematoxylin eosin (HE) staining was used to verify the osteogenesis in PMO model. RESULTS Exosomal miR-186 plays an important role in bone formation. The results of miRNA-seq and q-PCR showed that miR-186 was upregulated in a PMO + Exo treatment group. Results of RNA-pull down and luciferase reporter assays verified interactions between miR-186 and Mob1. We also verified the Hippo signaling pathway plays an important role in osteogenesis. CONCLUSIONS We concluded that exosomes derived from human bone marrow mesenchymal stem cells (hBMSCs) can transfer miR-186 to promote osteogenesis in ovariectomy (OVX) rats through the Hippo signaling pathway.
Collapse
Affiliation(s)
- Lu Li
- Department of Acupuncture, Tianjin Nankai Hospital, Tianjin, 300100, People's Republic of China
| | - Xin Zhou
- Department of Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China
| | - Jun-Tao Zhang
- Department of Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China
| | - Ai-Feng Liu
- Department of Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China
| | - Chao Zhang
- Department of Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China
| | - Jin-Chang Han
- Department of Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China
| | - Xiao-Qing Zhang
- Department of Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China
| | - Si Wu
- Department of Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China
| | - Xiao-Yu Zhang
- Department of Orthopedics, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, People's Republic of China.
| | - Fu-Quan Lv
- Department of Acupuncture, Tianjin Nankai Hospital, Tianjin, 300100, People's Republic of China.
| |
Collapse
|
142
|
Kegelman CD, Nijsure MP, Moharrer Y, Pearson HB, Dawahare JH, Jordan KM, Qin L, Boerckel JD. YAP and TAZ Promote Periosteal Osteoblast Precursor Expansion and Differentiation for Fracture Repair. J Bone Miner Res 2021; 36:143-157. [PMID: 32835424 PMCID: PMC7988482 DOI: 10.1002/jbmr.4166] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022]
Abstract
In response to bone fracture, periosteal progenitor cells proliferate, expand, and differentiate to form cartilage and bone in the fracture callus. These cellular functions require the coordinated activation of multiple transcriptional programs, and the transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) regulate osteochondroprogenitor activation during endochondral bone development. However, recent observations raise important distinctions between the signaling mechanisms used to control bone morphogenesis and repair. Here, we tested the hypothesis that YAP and TAZ regulate osteochondroprogenitor activation during endochondral bone fracture healing in mice. Constitutive YAP and/or TAZ deletion from Osterix-expressing cells impaired both cartilage callus formation and subsequent mineralization. However, this could be explained either by direct defects in osteochondroprogenitor differentiation after fracture or by developmental deficiencies in the progenitor cell pool before fracture. Consistent with the second possibility, we found that developmental YAP/TAZ deletion produced long bones with impaired periosteal thickness and cellularity. Therefore, to remove the contributions of developmental history, we next generated adult onset-inducible knockout mice (using Osx-CretetOff ) in which YAP and TAZ were deleted before fracture but after normal development. Adult onset-induced YAP/TAZ deletion had no effect on cartilaginous callus formation but impaired bone formation at 14 days post-fracture (dpf). Earlier, at 4 dpf, adult onset-induced YAP/TAZ deletion impaired the proliferation and expansion of osteoblast precursor cells located in the shoulder of the callus. Further, activated periosteal cells isolated from this region at 4 dpf exhibited impaired osteogenic differentiation in vitro upon YAP/TAZ deletion. Finally, confirming the effects on osteoblast function in vivo, adult onset-induced YAP/TAZ deletion impaired bone formation in the callus shoulder at 7 dpf before the initiation of endochondral ossification. Together, these data show that YAP and TAZ promote the expansion and differentiation of periosteal osteoblast precursors to accelerate bone fracture healing. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Christopher D Kegelman
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasaman Moharrer
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hope B Pearson
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - James H Dawahare
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Kelsey M Jordan
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
143
|
Kuang MJ, Zhang KH, Qiu J, Wang AB, Che WW, Li XM, Shi DL, Wang DC. Exosomal miR-365a-5p derived from HUC-MSCs regulates osteogenesis in GIONFH through the Hippo signaling pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:565-576. [PMID: 33510944 PMCID: PMC7810916 DOI: 10.1016/j.omtn.2020.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
The pathogenesis of glucocorticoid (GC)-induced osteonecrosis of the femoral head (GIONFH) is still disputed, and abnormal bone metabolism caused by GCs may be an important factor. In vitro, Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2′-deoxyuridine (EdU) staining were used to evaluate cellular proliferation, and western blotting was used to investigate osteogenesis. In vivo, we used micro-computed tomography (micro-CT), H&E staining, Masson staining, and immunohistochemistry (IHC) analysis to evaluate the impact of exosomes. In addition, the mechanism by which exosomes regulate osteogenesis through the miR-365a-5p/Hippo signaling pathway was investigated using RNA sequencing (RNA-seq), luciferase reporter assays, fluorescence in situ hybridization (FISH), and western blotting. The results of western blotting verified that the relevant genes in osteogenesis, including BMP2, Sp7, and Runx2, were upregulated. RNA-seq and qPCR of the exosome and Dex-treated exosome groups showed that miR-365a-5p was upregulated in the exosome group. Furthermore, we verified that miR-365a-5p promoted osteogenesis by targeting SAV1. Additional in vivo experiments revealed that exosomes prevented GIONFH in a rat model, as shown by micro-CT scanning and histological and IHC analysis. We concluded that exosomal miR-365a-5p was effective in promoting osteogenesis and preventing the development of GIONFH via activation of the Hippo signaling pathway in rats.
Collapse
Affiliation(s)
- Ming-Jie Kuang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - Kai-Hui Zhang
- Department of Orthopedics, Tianjin Hospital, Tianjin 300211, China
| | - Jie Qiu
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - An-Bang Wang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - Wen-Wen Che
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - Xiao-Ming Li
- Department of Orthopedics, Traditional Chinese Medicine-Western Medicine Hospital of Cangzhou City, Hebei Province 061000, China
| | - Dong-Li Shi
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| | - Da-Chuan Wang
- Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong 250014, China
| |
Collapse
|
144
|
Sun NY, Liu XL, Gao J, Wu XH, Dou B. Astragaloside‑IV modulates NGF‑induced osteoblast differentiation via the GSK3β/β‑catenin signalling pathway. Mol Med Rep 2020; 23:19. [PMID: 33179111 PMCID: PMC7673321 DOI: 10.3892/mmr.2020.11657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/17/2020] [Indexed: 11/19/2022] Open
Abstract
Astragaloside (AST) is derived from the Chinese herb Astragalus membranaceus, and studies have demonstrated that it promotes differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). To the best of our knowledge, however, the functions of the component AST-IV in osteogenesis have not previously been elucidated. The present study aimed to verify the effects of AST-IV in osteogenesis. First, the proliferation and differentiation status of human BMSCs incubated with AST-IV were analysed and compared with a control (no AST-IV treatment). In order to determine the involvement of the glycogen synthase kinase (GSK)3β signalling pathway in AST-IV, overexpression and inhibition of GSK3β was induced during incubation of BMSCs with AST-IV. In order to investigate how neuronal growth factor (NGF) contributes to BMSCs differentiation, BMSCs were co-incubated with an anti-NGF antibody and AST IV, and then levels of osteogenesis markers were assessed. The results demonstrated for the first time that AST-IV contributed to BMSCs differentiation. Furthermore, the GSK3β/β-catenin signalling pathway was revealed to be involved in AST-IV-induced osteogenesis; moreover, AST-IV accelerated differentiation by enhancing the expression levels of NGF. In summary, the present study demonstrated that AST-IV promotes BMSCs differentiation, thus providing a potential target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Nan-Yang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Xiao-Lan Liu
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Juan Gao
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Xiao-Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Ben Dou
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
145
|
Xie W, Xiao W, Tang K, Zhang L, Li Y. Yes-Associated Protein 1: Role and Treatment Prospects in Orthopedic Degenerative Diseases. Front Cell Dev Biol 2020; 8:573455. [PMID: 33178690 PMCID: PMC7593614 DOI: 10.3389/fcell.2020.573455] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/25/2020] [Indexed: 01/11/2023] Open
Abstract
The Hippo/yes-associated protein 1 signaling pathway is an evolutionarily conserved signaling pathway. This signaling pathway is primarily involved in the regulation of stem cell self-renewal, organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. It plays an important role in embryonic development and tissue organ formation. Yes-associated protein 1 (YAP1) is a key transcription factor in the Hippo signaling pathway and is negatively regulated by this pathway. Changes in YAP1 expression levels affect the occurrence and development of a variety of tumors, but the specific mechanism associated with this phenomenon has not been thoroughly studied. Recently, several studies have described the role of YAP1 in osteoarthritis (OA). Indeed, YAP1 is involved in orthopedic degenerative diseases such as osteoporosis (OP) in addition to OA. In this review, we will summarize the significance of YAP1 in orthopedic degenerative diseases and discuss the potential of the targeted modulation of YAP1 for the treatment of these diseases.
Collapse
Affiliation(s)
- Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Tang
- Discipline Construction Office, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
146
|
Feng X, Liu J, Xu Y, Zhu J, Chen W, Feng B, Pan Q, Yu J, Shi X, Yang J, Li Y, Li L, Cao H. Molecular mechanism underlying the difference in proliferation between placenta-derived and umbilical cord-derived mesenchymal stem cells. J Cell Physiol 2020; 235:6779-6793. [PMID: 31990045 DOI: 10.1002/jcp.29572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
The placenta and umbilical cord are pre-eminent candidate sources of mesenchymal stem cells (MSCs). However, placenta-derived MSCs (P-MSCs) showed greater proliferation capacity than umbilical cord-derived MSCs (UC-MSCs) in our study. We investigated the drivers of this proliferation difference and elucidated the mechanisms of proliferation regulation. Proteomic profiling and Gene Ontology (GO) functional enrichment were conducted to identify candidate proteins that may influence proliferation. Using lentiviral or small interfering RNA infection, we established overexpression and knockdown models and observed changes in cell proliferation to examine whether a relationship exists between the candidate proteins and proliferation capacity. Real-time quantitative polymerase chain reaction, western blot analysis, and immunofluorescence assays were conducted to elucidate the mechanisms underlying proliferation. Six candidate proteins were selected based on the results of proteomic profiling and GO functional enrichment. Through further validation, yes-associated protein 1 (YAP1) and β-catenin were confirmed to affect MSCs proliferation rates. YAP1 and β-catenin showed increased nuclear colocalization during cell expansion. YAP1 overexpression significantly enhanced proliferation capacity and upregulated the expression of both β-catenin and the transcriptional targets of Wnt signaling, CCND1, and c-MYC, whereas silencing β-catenin attenuated this influence. We found that YAP1 directly interacts with β-catenin in the nucleus to form a transcriptional YAP/β-catenin/TCF4 complex. Our study revealed that YAP1 and β-catenin caused the different proliferation capacities of P-MSCs and UC-MSCs. Mechanism analysis showed that YAP1 stabilized the nuclear β-catenin protein, and also triggered the Wnt/β-catenin pathway, promoting proliferation.
Collapse
Affiliation(s)
- Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jingqi Liu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaowei Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yang Li
- Department of Obstetrical, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Zhejiang Provincial Key Laboratory For Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, Hangzhou, 310003, China
| |
Collapse
|
147
|
Imerb N, Thonusin C, Chattipakorn N, Chattipakorn SC. Aging, obese-insulin resistance, and bone remodeling. Mech Ageing Dev 2020; 191:111335. [DOI: 10.1016/j.mad.2020.111335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/14/2020] [Indexed: 02/08/2023]
|
148
|
Huber AK, Patel N, Pagani CA, Marini S, Padmanabhan KR, Matera DL, Said M, Hwang C, Hsu GCY, Poli AA, Strong AL, Visser ND, Greenstein JA, Nelson R, Li S, Longaker MT, Tang Y, Weiss SJ, Baker BM, James AW, Levi B. Immobilization after injury alters extracellular matrix and stem cell fate. J Clin Invest 2020; 130:5444-5460. [PMID: 32673290 PMCID: PMC7524473 DOI: 10.1172/jci136142] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022] Open
Abstract
Cells sense the extracellular environment and mechanical stimuli and translate these signals into intracellular responses through mechanotransduction, which alters cell maintenance, proliferation, and differentiation. Here we use a mouse model of trauma-induced heterotopic ossification (HO) to examine how cell-extrinsic forces impact mesenchymal progenitor cell (MPC) fate. After injury, single-cell (sc) RNA sequencing of the injury site reveals an early increase in MPC genes associated with pathways of cell adhesion and ECM-receptor interactions, and MPC trajectories to cartilage and bone. Immunostaining uncovers active mechanotransduction after injury with increased focal adhesion kinase signaling and nuclear translocation of transcriptional coactivator TAZ, inhibition of which mitigates HO. Similarly, joint immobilization decreases mechanotransductive signaling, and completely inhibits HO. Joint immobilization decreases collagen alignment and increases adipogenesis. Further, scRNA sequencing of the HO site after injury with or without immobilization identifies gene signatures in mobile MPCs correlating with osteogenesis, and signatures from immobile MPCs with adipogenesis. scATAC-seq in these same MPCs confirm that in mobile MPCs, chromatin regions around osteogenic genes are open, whereas in immobile MPCs, regions around adipogenic genes are open. Together these data suggest that joint immobilization after injury results in decreased ECM alignment, altered MPC mechanotransduction, and changes in genomic architecture favoring adipogenesis over osteogenesis, resulting in decreased formation of HO.
Collapse
MESH Headings
- Acyltransferases
- Adipogenesis/genetics
- Animals
- Cell Differentiation
- Cell Lineage
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Extremities/injuries
- Focal Adhesion Kinase 1/deficiency
- Focal Adhesion Kinase 1/genetics
- Focal Adhesion Kinase 1/metabolism
- Humans
- Male
- Mechanotransduction, Cellular/genetics
- Mechanotransduction, Cellular/physiology
- Mesenchymal Stem Cells/pathology
- Mesenchymal Stem Cells/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Ossification, Heterotopic/etiology
- Ossification, Heterotopic/pathology
- Ossification, Heterotopic/physiopathology
- Osteogenesis/genetics
- Restraint, Physical/adverse effects
- Restraint, Physical/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery
| | | | | | | | - Daniel L. Matera
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohamed Said
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Andrea A. Poli
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | - Shuli Li
- Section of Plastic Surgery, Department of Surgery
| | - Michael T. Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California, USA
| | - Yi Tang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen J. Weiss
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Brendon M. Baker
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
149
|
Suo J, Feng X, Li J, Wang J, Wang Z, Zhang L, Zou W. VGLL4 promotes osteoblast differentiation by antagonizing TEADs-inhibited Runx2 transcription. SCIENCE ADVANCES 2020; 6:6/43/eaba4147. [PMID: 33097532 PMCID: PMC7608831 DOI: 10.1126/sciadv.aba4147] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/08/2020] [Indexed: 05/31/2023]
Abstract
VGLL4 has been identified as a YAP inhibitor. However, the exact function of VGLL4 in bone development and bone homeostasis remains unclear. In this study, we demonstrated that VGLL4 breaks TEADs-mediated transcriptional inhibition of RUNX2 to promote osteoblast differentiation and bone development. We found that knockout of VGLL4 in mesenchymal stem cells and preosteoblasts showed osteoporosis and a cleidocranial dysplasia-like phenotype due to osteoblast differentiation disorders. Mechanistically, we showed that the TEAD transcriptional factors severely inhibited osteoblast differentiation in a YAP binding-independent manner. TEADs interacted with RUNX2 to repress RUNX2 transcriptional activity. Furthermore, VGLL4 relieved the transcriptional inhibition of TEADs by directly competing with RUNX2 to bind TEADs through its two TDU domains. Collectively, our studies demonstrate that VGLL4 plays an important role in regulating osteoblast differentiation and bone development, and that TEADs regulate the transcriptional activity of RUNX2, which may shed light on treatment of cleidocranial dysplasia and osteoporosis.
Collapse
Affiliation(s)
- Jinlong Suo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xue Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiayi Li
- Department of Laboratory Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Jinghui Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zuoyun Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou 215121, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- Bio-Research Innovation Center, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Suzhou 215121, China
| |
Collapse
|
150
|
Kegelman CD, Collins JM, Nijsure MP, Eastburn EA, Boerckel JD. Gone Caving: Roles of the Transcriptional Regulators YAP and TAZ in Skeletal Development. Curr Osteoporos Rep 2020; 18:526-540. [PMID: 32712794 PMCID: PMC8040027 DOI: 10.1007/s11914-020-00605-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The development of the skeleton is controlled by cellular decisions determined by the coordinated activation of multiple transcription factors. Recent evidence suggests that the transcriptional regulator proteins, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), could have important roles in directing the activity of these transcriptional programs. However, in vitro evidence for the roles of YAP and TAZ in skeletal cells has been hopelessly contradictory. The goals of this review are to provide a cross-sectional view on the state of the field and to synthesize the available data toward a unified perspective. RECENT FINDINGS YAP and TAZ are regulated by diverse upstream signals and interact downstream with multiple transcription factors involved in skeletal development, positioning YAP and TAZ as important signal integration nodes in an hourglass-shaped signaling pathway. Here, we provide a survey of putative transcriptional co-effectors for YAP and TAZ in skeletal cells. Synthesizing the in vitro data, we conclude that TAZ is consistently pro-osteogenic in function, while YAP can exhibit either pro- or anti-osteogenic activity depending on cell type and context. Synthesizing the in vivo data, we conclude that YAP and TAZ combinatorially promote developmental bone formation, bone matrix homeostasis, and endochondral fracture repair by regulating a variety of transcriptional programs depending on developmental stage. Here, we discuss the current understanding of the roles of the transcriptional regulators YAP and TAZ in skeletal development, and provide recommendations for continued study of molecular mechanisms, mechanotransduction, and therapeutic implications for skeletal disease.
Collapse
Affiliation(s)
- Christopher D Kegelman
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M Collins
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Eastburn
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel D Boerckel
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, 376A Stemmler Hall, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|