101
|
Goldring AC, Beurg M, Fettiplace R. The contribution of TMC1 to adaptation of mechanoelectrical transduction channels in cochlear outer hair cells. J Physiol 2019; 597:5949-5961. [PMID: 31633194 PMCID: PMC6910908 DOI: 10.1113/jp278799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/17/2019] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Hair cell mechanoelectrical transducer channels are opened by deflections of the hair bundle about a resting position set by incompletely understood adaptation mechanisms. We used three characteristics to define adaptation in hair cell mutants of transmembrane channel-like proteins, TMC1 and TMC2, which are considered to be channel constituents. The results obtained demonstrate that the three characteristics are not equivalent, and raise doubts about simple models in which intracellular Ca2+ regulates adaptation. Adaptation is faster and more effective in TMC1-containing than in TMC2-containing transducer channels. This result ties adaptation to the channel complex, and suggests that TMC1 is a better isoform for use in cochlear hair cells. We describe a TMC1 point mutation, D569N, that reduces the resting open probability and Ca2+ permeability of the transducer channels, comprising properties that may contribute to the deafness phenotype. ABSTRACT Recordings of mechanoelectrical transducer (MET) currents in cochlear hair cells were made in mice with mutations of transmembrane channel-like (TMC) protein to examine the effects on fast transducer adaptation. Adaptation was faster and more complete in Tmc2-/- than in Tmc1-/- , although this disparity was not explained by differences in Ca2+ permeability or Ca2+ influx between the two isoforms, with TMC2 having the larger permeability. We made a mouse mutation, Tmc1 p.D569N, homologous to a human DFNA36 deafness mutation, which also had MET channels with lower Ca2+ -permeability but showed better fast adaptation than wild-type Tmc1+/+ channels. Consistent with the more effective adaptation in Tmc1 p.D569N, the resting probability of MET channel opening was smaller. The three TMC variants studied have comparable single-channel conductances, although the lack of correlation between channel Ca2+ permeability and adaptation opposes the hypothesis that adaptation is controlled simply by Ca2+ influx through the channels. During the first postnatal week of mouse development, the MET currents amplitude grew, and transducer adaptation became faster and more effective. We attribute changes in adaptation partly to a developmental switch from TMC2- to TMC1- containing channels and partly to an increase in channel expression. More complete and faster adaptation, coupled with larger MET currents, may account for the sole use of TMC1 in the adult cochlear hair cells.
Collapse
Affiliation(s)
- Adam C Goldring
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Maryline Beurg
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
102
|
Kim DK, Kim JA, Park J, Niazi A, Almishaal A, Park S. The release of surface-anchored α-tectorin, an apical extracellular matrix protein, mediates tectorial membrane organization. SCIENCE ADVANCES 2019; 5:eaay6300. [PMID: 31807709 PMCID: PMC6881170 DOI: 10.1126/sciadv.aay6300] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The tectorial membrane (TM) is an apical extracellular matrix (ECM) that hovers over the cochlear sensory epithelium and plays an essential role in auditory transduction. The TM forms facing the luminal endolymph-filled space and exhibits complex ultrastructure. Contrary to the current extracellular assembly model, which posits that secreted collagen fibrils and ECM components self-arrange in the extracellular space, we show that surface tethering of α-tectorin (TECTA) via a glycosylphosphatidylinositol anchor is essential to prevent diffusion of secreted TM components. In the absence of surface-tethered TECTA, collagen fibrils aggregate randomly and fail to recruit TM glycoproteins. Conversely, conversion of TECTA into a transmembrane form results in a layer of collagens on the epithelial surface that fails to form a multilayered structure. We propose a three-dimensional printing model for TM morphogenesis: A new layer of ECM is printed on the cell surface concomitant with the release of a preestablished layer to generate the multilayered TM.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ju Ang Kim
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joosang Park
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ava Niazi
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ali Almishaal
- Department of Communication Sciences and Disorders, University of Utah, Salt Lake City, UT 84112, USA
| | - Sungjin Park
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
103
|
Dal Cortivo G, Marino V, Iacobucci C, Vallone R, Arlt C, Rehkamp A, Sinz A, Dell'Orco D. Oligomeric state, hydrodynamic properties and target recognition of human Calcium and Integrin Binding protein 2 (CIB2). Sci Rep 2019; 9:15058. [PMID: 31636333 PMCID: PMC6803640 DOI: 10.1038/s41598-019-51573-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 11/23/2022] Open
Abstract
Calcium- and Integrin-Binding protein 2 (CIB2) is a small and ubiquitously expressed protein with largely unknown biological function but ascertained role in hearing physiology and disease. Recent studies found that CIB2 binds Ca2+ with moderate affinity and dimerizes under conditions mimicking the physiological ones. Here we provided new lines of evidence on CIB2 oligomeric state and the mechanism of interaction with the α7B integrin target. Based on a combination of native mass spectrometry, chemical cross-linking/mass spectrometry, analytical gel filtration, dynamic light scattering and molecular dynamics simulations we conclude that CIB2 is monomeric under all tested conditions and presents uncommon hydrodynamic properties, most likely due to the high content of hydrophobic solvent accessible surface. Surface plasmon resonance shows that the interaction with α7B occurs with relatively low affinity and is limited to the cytosolic region proximal to the membrane, being kinetically favored in the presence of physiological Mg2+ and in the absence of Ca2+. Although CIB2 binds to an α7B peptide in a 1:1 stoichiometry, the formation of the complex might induce binding of another CIB2 molecule.
Collapse
Affiliation(s)
- Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Rosario Vallone
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Christian Arlt
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anne Rehkamp
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
| |
Collapse
|
104
|
Corey DP, Akyuz N, Holt JR. Function and Dysfunction of TMC Channels in Inner Ear Hair Cells. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033506. [PMID: 30291150 DOI: 10.1101/cshperspect.a033506] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The TMC1 channel was identified as a protein essential for hearing in mouse and human, and recognized as one of a family of eight such proteins in mammals. The TMC family is part of a superfamily of seven branches, which includes the TMEM16s. Vertebrate hair cells express both TMC1 and TMC2. They are located at the tips of stereocilia and are required for hair cell mechanotransduction. TMC1 assembles as a dimer and its similarity to the TMEM16s has enabled a predicted tertiary structure with an ion conduction pore in each subunit of the dimer. Cysteine mutagenesis of the pore supports the role of TMC1 and TMC2 as the core channel proteins of a larger mechanotransduction complex that includes PCDH15 and LHFPL5, and perhaps TMIE, CIB2 and others.
Collapse
Affiliation(s)
- David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
105
|
A Tmc1 mutation reduces calcium permeability and expression of mechanoelectrical transduction channels in cochlear hair cells. Proc Natl Acad Sci U S A 2019; 116:20743-20749. [PMID: 31548403 PMCID: PMC6789967 DOI: 10.1073/pnas.1908058116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cochlear hair cells transduce sound into electrical signals by activation of mechanically sensitive ion channels thought to be formed by TMC1. We generated a single aspartate/asparagine substitution in mouse TMC1 which is homologous to a human genetic deafness mutation. The main consequence was reduction in the Ca2+ permeability of the mechanically sensitive channel with little change in its unitary conductance. Nevertheless, there was a much reduced expression of the ion channel, which led within 4 wk to death of the outer hair cells culminating in deafness. The mouse mutant accounts for the human deafness and implies that TMC1, in addition to forming the mechanically sensitive ion channel, regulates its own expression. Mechanoelectrical transducer (MET) currents were recorded from cochlear hair cells in mice with mutations of transmembrane channel-like protein TMC1 to study the effects on MET channel properties. We characterized a Tmc1 mouse with a single-amino-acid mutation (D569N), homologous to a dominant human deafness mutation. Measurements were made in both Tmc2 wild-type and Tmc2 knockout mice. By 30 d, Tmc1 pD569N heterozygote mice were profoundly deaf, and there was substantial loss of outer hair cells (OHCs). MET current in OHCs of Tmc1 pD569N mutants developed over the first neonatal week to attain a maximum amplitude one-third the size of that in Tmc1 wild-type mice, similar at apex and base, and lacking the tonotopic size gradient seen in wild type. The MET-channel Ca2+ permeability was reduced 3-fold in Tmc1 pD569N homozygotes, intermediate deficits being seen in heterozygotes. Reduced Ca2+ permeability resembled that of the Tmc1 pM412K Beethoven mutant, a previously studied semidominant mouse mutation. The MET channel unitary conductance, assayed by single-channel recordings and by measurements of current noise, was unaffected in mutant apical OHCs. We show that, in contrast to the Tmc1 M412K mutant, there was reduced expression of the TMC1 D569N channel at the transduction site assessed by immunolabeling, despite the persistence of tip links. The reduction in MET channel Ca2+ permeability seen in both mutants may be the proximate cause of hair-cell apoptosis, but changes in bundle shape and protein expression in Tmc1 D569N suggest another role for TMC1 apart from forming the channel.
Collapse
|
106
|
Cunningham CL, Müller U. Molecular Structure of the Hair Cell Mechanoelectrical Transduction Complex. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033167. [PMID: 30082452 DOI: 10.1101/cshperspect.a033167] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cochlear hair cells employ mechanically gated ion channels located in stereocilia that open in response to sound wave-induced motion of the basilar membrane, converting mechanical stimulation to graded changes in hair cell membrane potential. Membrane potential changes in hair cells cause neurotransmitter release from hair cells that initiate electrical signals in the nerve terminals of afferent fibers from spiral ganglion neurons. These signals are then propagated within the central nervous system (CNS) to mediate the sensation of hearing. Recent studies show that the mechanoelectrical transduction (MET) machinery of hair cells is formed by an ensemble of proteins. Candidate components forming the MET channel have been identified, but none alone fulfills all criteria necessary to define them as pore-forming subunits of the MET channel. We will review here recent findings on the identification and function of proteins that are components of the MET machinery in hair cells and consider remaining open questions.
Collapse
Affiliation(s)
- Christopher L Cunningham
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
| | - Ulrich Müller
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205
| |
Collapse
|
107
|
Pacentine IV, Nicolson T. Subunits of the mechano-electrical transduction channel, Tmc1/2b, require Tmie to localize in zebrafish sensory hair cells. PLoS Genet 2019; 15:e1007635. [PMID: 30726219 PMCID: PMC6380590 DOI: 10.1371/journal.pgen.1007635] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/19/2019] [Accepted: 01/03/2019] [Indexed: 12/26/2022] Open
Abstract
Mutations in transmembrane inner ear (TMIE) cause deafness in humans; previous studies suggest involvement in the mechano-electrical transduction (MET) complex in sensory hair cells, but TMIE's precise role is unclear. In tmie zebrafish mutants, we observed that GFP-tagged Tmc1 and Tmc2b, which are subunits of the MET channel, fail to target to the hair bundle. In contrast, overexpression of Tmie strongly enhances the targeting of Tmc1-GFP and Tmc2b-GFP to stereocilia. To identify the motifs of Tmie underlying the regulation of the Tmcs, we systematically deleted or replaced peptide segments. We then assessed localization and functional rescue of each mutated/chimeric form of Tmie in tmie mutants. We determined that the first putative helix was dispensable and identified a novel critical region of Tmie, the extracellular region and transmembrane domain, which is required for both mechanosensitivity and Tmc2b-GFP expression in bundles. Collectively, our results suggest that Tmie's role in sensory hair cells is to target and stabilize Tmc channel subunits to the site of MET.
Collapse
Affiliation(s)
- Itallia V. Pacentine
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Teresa Nicolson
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
108
|
Becchetti A, Petroni G, Arcangeli A. Ion Channel Conformations Regulate Integrin-Dependent Signaling. Trends Cell Biol 2019; 29:298-307. [PMID: 30635161 DOI: 10.1016/j.tcb.2018.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/12/2023]
Abstract
Cell-matrix adhesion determines the choice between different cell fates and is accompanied by substantial changes in ion transport. The greatest evidence is the bidirectional interplay occurring between integrin receptors and K+ channels. These proteins can form signaling hubs that regulate cell proliferation, differentiation, and migration in normal and neoplastic tissue. Recent results show that the physical interaction with integrins determines the balance of the open and closed K+ channel states, and individual channel conformations regulate distinct downstream pathways. We propose a model of how these mechanisms regulate proliferation and metastasis in cancer cells. In particular, we suggest that the neoplastic progression could be modulated by targeting specific ion channel conformations.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| |
Collapse
|
109
|
Vélez-Ortega AC, Frolenkov GI. Building and repairing the stereocilia cytoskeleton in mammalian auditory hair cells. Hear Res 2019; 376:47-57. [PMID: 30638948 DOI: 10.1016/j.heares.2018.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Despite all recent achievements in identification of the molecules that are essential for the structure and mechanosensory function of stereocilia bundles in the auditory hair cells of mammalian species, we still have only a rudimentary understanding of the mechanisms of stereocilia formation, maintenance, and repair. Important molecular differences distinguishing mammalian auditory hair cells from hair cells of other types and species have been recently revealed. In addition, we are beginning to solve the puzzle of the apparent life-long stability of the stereocilia bundles in these cells. New data link the stability of the cytoskeleton in the mammalian auditory stereocilia with the normal activity of mechanotransduction channels. These data suggest new ideas on how a terminally-differentiated non-regenerating hair cell in the mammalian cochlea may repair and tune its stereocilia bundle throughout the life span of the organism.
Collapse
Affiliation(s)
- A Catalina Vélez-Ortega
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| | - Gregory I Frolenkov
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| |
Collapse
|
110
|
Richard EM, Santos-Cortez RLP, Faridi R, Rehman AU, Lee K, Shahzad M, Acharya A, Khan AA, Imtiaz A, Chakchouk I, Takla C, Abbe I, Rafeeq M, Liaqat K, Chaudhry T, Bamshad MJ, Schrauwen I, Khan SN, Morell RJ, Zafar S, Ansar M, Ahmed ZM, Ahmad W, Riazuddin S, Friedman TB, Leal SM, Riazuddin S. Global genetic insight contributed by consanguineous Pakistani families segregating hearing loss. Hum Mutat 2019; 40:53-72. [PMID: 30303587 PMCID: PMC6296877 DOI: 10.1002/humu.23666] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/14/2022]
Abstract
Consanguineous Pakistani pedigrees segregating deafness have contributed decisively to the discovery of 31 of the 68 genes associated with nonsyndromic autosomal recessive hearing loss (HL) worldwide. In this study, we utilized genome-wide genotyping, Sanger and exome sequencing to identify 163 DNA variants in 41 previously reported HL genes segregating in 321 Pakistani families. Of these, 70 (42.9%) variants identified in 29 genes are novel. As expected from genetic studies of disorders segregating in consanguineous families, the majority of affected individuals (94.4%) are homozygous for HL-associated variants, with the other variants being compound heterozygotes. The five most common HL genes in the Pakistani population are SLC26A4, MYO7A, GJB2, CIB2 and HGF, respectively. Our study provides a profile of the genetic etiology of HL in Pakistani families, which will allow for the development of more efficient genetic diagnostic tools, aid in accurate genetic counseling, and guide application of future gene-based therapies. These findings are also valuable in interpreting pathogenicity of variants that are potentially associated with HL in individuals of all ancestries. The Pakistani population, and its infrastructure for studying human genetics, will continue to be valuable to gene discovery for HL and other inherited disorders.
Collapse
Affiliation(s)
- Elodie M. Richard
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Regie LP. Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Atteeq U. Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kwanghyuk Lee
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohsin Shahzad
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Asma A. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Ayesha Imtiaz
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Imen Chakchouk
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Christina Takla
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Izoduwa Abbe
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Rafeeq
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Khurram Liaqat
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Taimur Chaudhry
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael J. Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Shaheen N. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Robert J. Morell
- The Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892
| | - Saba Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, 59300, Pakistan
| | - Muhammad Ansar
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zubair M. Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Wasim Ahmad
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sheik Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
- Allama Iqbal Medical College, University of Health Sciences, Lahore, 54500, Pakistan
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Suzanne M. Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, 44000, Pakistan
| |
Collapse
|
111
|
de Jong SJ, Créquer A, Matos I, Hum D, Gunasekharan V, Lorenzo L, Jabot-Hanin F, Imahorn E, Arias AA, Vahidnezhad H, Youssefian L, Markle JG, Patin E, D'Amico A, Wang CQF, Full F, Ensser A, Leisner TM, Parise LV, Bouaziz M, Maya NP, Cadena XR, Saka B, Saeidian AH, Aghazadeh N, Zeinali S, Itin P, Krueger JG, Laimins L, Abel L, Fuchs E, Uitto J, Franco JL, Burger B, Orth G, Jouanguy E, Casanova JL. The human CIB1-EVER1-EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J Exp Med 2018; 215:2289-2310. [PMID: 30068544 PMCID: PMC6122964 DOI: 10.1084/jem.20170308] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/21/2018] [Accepted: 07/02/2018] [Indexed: 02/04/2023] Open
Abstract
Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of TMC6 (encoding EVER1) or TMC8 (EVER2) are selectively prone to disseminated skin lesions due to keratinocyte-tropic human β-papillomaviruses (β-HPVs), which lack E5 and E8. We describe EV patients homozygous for null mutations of the CIB1 gene encoding calcium- and integrin-binding protein-1 (CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients. CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded by α-HPV16 and γ-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively, these findings suggest that the disruption of CIB1-EVER1-EVER2-dependent keratinocyte-intrinsic immunity underlies the selective susceptibility to β-HPVs of EV patients.
Collapse
Affiliation(s)
- Sarah Jill de Jong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Amandine Créquer
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Irina Matos
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - David Hum
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | | | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Fabienne Jabot-Hanin
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elias Imahorn
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andres A Arias
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
- School of Microbiology, University of Antioquia, Medellin, Colombia
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Janet G Markle
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Etienne Patin
- Human Evolutionary Genetics, Pasteur Institute, Paris, France
- National Center for Scientific Research, URA 3012, Paris, France
- Center of Bioinformatics, Biostatistics and Integrative Biology, Pasteur Institute, Paris, France
| | - Aurelia D'Amico
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Claire Q F Wang
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Florian Full
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Armin Ensser
- Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tina M Leisner
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Leslie V Parise
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | | | - Xavier Rueda Cadena
- Dermatology/Oncology - Skin Cancer Unit, National Cancer Institute, Bogota, Colombia
| | - Bayaki Saka
- Department of Dermatology, Sylvanus Olympio Hospital, University of Lomé, Togo
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Nessa Aghazadeh
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Kawsar Human Genetics Research Center, Tehran, Iran
| | - Peter Itin
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Dermatology, University Hospital Basel, Basel, Switzerland
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY
| | - Lou Laimins
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Jose Luis Franco
- Primary Immunodeficiencies Group, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Bettina Burger
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Gérard Orth
- Department of Virology, Pasteur Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Institut National de la Santé et de la Recherche Médicale, UMR 1163, Necker Hospital for Sick Children, Paris, France
- University Paris Descartes, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
112
|
Asai Y, Pan B, Nist-Lund C, Galvin A, Lukashkin AN, Lukashkina VA, Chen T, Zhou W, Zhu H, Russell IJ, Holt JR, Géléoc GSG. Transgenic Tmc2 expression preserves inner ear hair cells and vestibular function in mice lacking Tmc1. Sci Rep 2018; 8:12124. [PMID: 30108254 PMCID: PMC6092434 DOI: 10.1038/s41598-018-28958-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/03/2018] [Indexed: 01/18/2023] Open
Abstract
Recent work has demonstrated that transmembrane channel-like 1 protein (TMC1) is an essential component of the sensory transduction complex in hair cells of the inner ear. A closely related homolog, TMC2, is expressed transiently in the neonatal mouse cochlea and can enable sensory transduction in Tmc1-null mice during the first postnatal week. Both TMC1 and TMC2 are expressed at adult stages in mouse vestibular hair cells. The extent to which TMC1 and TMC2 can substitute for each other is unknown. Several biophysical differences between TMC1 and TMC2 suggest these proteins perform similar but not identical functions. To investigate these differences, and whether TMC2 can substitute for TMC1 in mature hair cells, we generated a knock-in mouse model allowing Cre-inducible expression of Tmc2. We assayed for changes in hair cell sensory transduction and auditory and vestibular function in Tmc2 knockin mice (Tm[Tmc2]) in the presence or absence of endogenous Tmc1, Tmc2 or both. Our results show that expression of Tm[TMC2] restores sensory transduction in vestibular hair cells and transiently in cochlear hair cells in the absence of TMC1. The cellular rescue leads to recovery of balance but not auditory function. We conclude that TMC1 provides some additional necessary function, not provided by TMC2.
Collapse
Affiliation(s)
- Yukako Asai
- Department of Otolaryngology and Communication Enhancement, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bifeng Pan
- Department of Otolaryngology and Communication Enhancement, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl Nist-Lund
- Department of Otolaryngology and Communication Enhancement, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice Galvin
- Department of Otolaryngology and Communication Enhancement, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrei N Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Victoria A Lukashkina
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Tianwen Chen
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Oxford, MS, USA
| | - Wu Zhou
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Oxford, MS, USA
| | - Hong Zhu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Oxford, MS, USA
| | - Ian J Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Jeffrey R Holt
- Department of Otolaryngology and Communication Enhancement, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gwenaelle S G Géléoc
- Department of Otolaryngology and Communication Enhancement, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
113
|
Elliott KL, Fritzsch B, Duncan JS. Evolutionary and Developmental Biology Provide Insights Into the Regeneration of Organ of Corti Hair Cells. Front Cell Neurosci 2018; 12:252. [PMID: 30135646 PMCID: PMC6092489 DOI: 10.3389/fncel.2018.00252] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/23/2018] [Indexed: 01/19/2023] Open
Abstract
We review the evolution and development of organ of Corti hair cells with a focus on their molecular differences from vestibular hair cells. Such information is needed to therapeutically guide organ of Corti hair cell development in flat epithelia and generate the correct arrangement of different hair cell types, orientation of stereocilia, and the delayed loss of the kinocilium that are all essential for hearing, while avoiding driving hair cells toward a vestibular fate. Highlighting the differences from vestibular organs and defining what is known about the regulation of these differences will help focus future research directions toward successful restoration of an organ of Corti following long-term hair cell loss.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, United States
| | - Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| |
Collapse
|
114
|
Abstract
Sensory hair cells are specialized secondary sensory cells that mediate our senses of hearing, balance, linear acceleration, and angular acceleration (head rotation). In addition, hair cells in fish and amphibians mediate sensitivity to water movement through the lateral line system, and closely related electroreceptive cells mediate sensitivity to low-voltage electric fields in the aquatic environment of many fish species and several species of amphibian. Sensory hair cells share many structural and functional features across all vertebrate groups, while at the same time they are specialized for employment in a wide variety of sensory tasks. The complexity of hair cell structure is large, and the diversity of hair cell applications in sensory systems exceeds that seen for most, if not all, sensory cell types. The intent of this review is to summarize the more significant structural features and some of the more interesting and important physiological mechanisms that have been elucidated thus far. Outside vertebrates, hair cells are only known to exist in the coronal organ of tunicates. Electrical resonance, electromotility, and their exquisite mechanical sensitivity all contribute to the attractiveness of hair cells as a research subject.
Collapse
|
115
|
Ballesteros A, Fenollar-Ferrer C, Swartz KJ. Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. eLife 2018; 7:38433. [PMID: 30063209 PMCID: PMC6067890 DOI: 10.7554/elife.38433] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 02/03/2023] Open
Abstract
The hair cell mechanotransduction (MET) channel complex is essential for hearing, yet it's molecular identity and structure remain elusive. The transmembrane channel-like 1 (TMC1) protein localizes to the site of the MET channel, interacts with the tip-link responsible for mechanical gating, and genetic alterations in TMC1 alter MET channel properties and cause deafness, supporting the hypothesis that TMC1 forms the MET channel. We generated a model of TMC1 based on X-ray and cryo-EM structures of TMEM16 proteins, revealing the presence of a large cavity near the protein-lipid interface that also harbors the Beethoven mutation, suggesting that it could function as a permeation pathway. We also find that hair cells are permeable to 3 kDa dextrans, and that dextran permeation requires TMC1/2 proteins and functional MET channels, supporting the presence of a large permeation pathway and the hypothesis that TMC1 is a pore forming subunit of the MET channel complex.
Collapse
Affiliation(s)
- Angela Ballesteros
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular & Cellular Neurobiology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States.,Laboratory of Molecular Genetics, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States.,Molecular Biology and Genetics Section, National Institute of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Kenton Jon Swartz
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
116
|
Michel V, Booth KT, Patni P, Cortese M, Azaiez H, Bahloul A, Kahrizi K, Labbé M, Emptoz A, Lelli A, Dégardin J, Dupont T, Aghaie A, Oficjalska-Pham D, Picaud S, Najmabadi H, Smith RJ, Bowl MR, Brown SD, Avan P, Petit C, El-Amraoui A. CIB2, defective in isolated deafness, is key for auditory hair cell mechanotransduction and survival. EMBO Mol Med 2018; 9:1711-1731. [PMID: 29084757 PMCID: PMC5709726 DOI: 10.15252/emmm.201708087] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Defects of CIB2, calcium‐ and integrin‐binding protein 2, have been reported to cause isolated deafness, DFNB48 and Usher syndrome type‐IJ, characterized by congenital profound deafness, balance defects and blindness. We report here two new nonsense mutations (pGln12* and pTyr110*) in CIB2 patients displaying nonsyndromic profound hearing loss, with no evidence of vestibular or retinal dysfunction. Also, the generated CIB2−/− mice display an early onset profound deafness and have normal balance and retinal functions. In these mice, the mechanoelectrical transduction currents are totally abolished in the auditory hair cells, whilst they remain unchanged in the vestibular hair cells. The hair bundle morphological abnormalities of CIB2−/− mice, unlike those of mice defective for the other five known USH1 proteins, begin only after birth and lead to regression of the stereocilia and rapid hair‐cell death. This essential role of CIB2 in mechanotransduction and cell survival that, we show, is restricted to the cochlea, probably accounts for the presence in CIB2−/− mice and CIB2 patients, unlike in Usher syndrome, of isolated hearing loss without balance and vision deficits.
Collapse
Affiliation(s)
- Vincent Michel
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa.,Department of Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Pranav Patni
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Matteo Cortese
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Amel Bahloul
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ménélik Labbé
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Alice Emptoz
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Andrea Lelli
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Julie Dégardin
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Typhaine Dupont
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Asadollah Aghaie
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, Paris, France
| | - Danuta Oficjalska-Pham
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| | - Serge Picaud
- Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Retinal information processing - Pharmacology and Pathology, Institut de la Vision, Paris, France
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | | | - Paul Avan
- Laboratoire de Biophysique Sensorielle, Faculté de Médecine, Biophysique Médicale, Centre Jean Perrin, Université d'Auvergne, Clermont-Ferrand, France
| | - Christine Petit
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France.,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France.,Collège de France, Paris, France
| | - Aziz El-Amraoui
- Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France .,Unité Mixte de Recherche- UMRS 1120, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Universités, UPMC Univ Paris06, Paris, France
| |
Collapse
|
117
|
Ahmed ZM, Jaworek TJ, Sarangdhar GN, Zheng L, Gul K, Khan SN, Friedman TB, Sisk RA, Bartles JR, Riazuddin S, Riazuddin S. Inframe deletion of human ESPN is associated with deafness, vestibulopathy and vision impairment. J Med Genet 2018; 55:479-488. [PMID: 29572253 PMCID: PMC6232856 DOI: 10.1136/jmedgenet-2017-105221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Usher syndrome (USH) is a neurosensory disorder characterised by deafness, variable vestibular areflexia and vision loss. The aim of the study was to identify the genetic defect in a Pakistani family (PKDF1051) segregating USH. METHODS Genome-wide linkage analysis was performed by using an Illumina linkage array followed by Sanger and exome sequencing. Heterologous cells and mouse organ of Corti explant-based transfection assays were used for functional evaluations. Detailed clinical evaluations were performed to characterise the USH phenotype. RESULTS Through homozygosity mapping, we genetically linked the USH phenotype segregating in family PKDF1051 to markers on chromosome 1p36.32-p36.22. The locus was designated USH1M. Using a combination of Sanger sequencing and exome sequencing, we identified a novel homozygous 18 base pair inframe deletion in ESPN. Variants of ESPN, encoding the actin-bundling protein espin, have been previously associated with deafness and vestibular areflexia in humans with no apparent visual deficits. Our functional studies in heterologous cells and in mouse organ of Corti explant cultures revealed that the six deleted residues in affected individuals of family PKDF1051 are essential for the actin bundling function of espin demonstrated by ultracentrifugation actin binding and bundling assays. Funduscopic examination of the affected individuals of family PKDF1051 revealed irregular retinal contour, temporal flecks and disc pallor in both eyes. ERG revealed diminished rod photoreceptor function among affected individuals. CONCLUSION Our study uncovers an additional USH gene, assigns the USH1 phenotype to a variant of ESPN and provides a 12th molecular component to the USH proteome.
Collapse
Affiliation(s)
- Zubair M Ahmed
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Thomas J Jaworek
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Gowri N Sarangdhar
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Lili Zheng
- Department of Cell and Molecular Biology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Khitab Gul
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Shaheen N Khan
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A Sisk
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
- Ophthalmology, Cincinnati Eye Institute, Cincinnati, Ohio, USA
| | - James R Bartles
- Department of Cell and Molecular Biology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Sheikh Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
- University of Lahore and Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| |
Collapse
|
118
|
Variable number of TMC1-dependent mechanotransducer channels underlie tonotopic conductance gradients in the cochlea. Nat Commun 2018; 9:2185. [PMID: 29872055 PMCID: PMC5988745 DOI: 10.1038/s41467-018-04589-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/16/2018] [Indexed: 11/25/2022] Open
Abstract
Functional mechanoelectrical transduction (MET) channels of cochlear hair cells require the presence of transmembrane channel-like protein isoforms TMC1 or TMC2. We show that TMCs are required for normal stereociliary bundle development and distinctively influence channel properties. TMC1-dependent channels have larger single-channel conductance and in outer hair cells (OHCs) support a tonotopic apex-to-base conductance gradient. Each MET channel complex exhibits multiple conductance states in ~50 pS increments, basal MET channels having more large-conductance levels. Using mice expressing fluorescently tagged TMCs, we show a three-fold increase in number of TMC1 molecules per stereocilium tip from cochlear apex to base, mirroring the channel conductance gradient in OHCs. Single-molecule photobleaching indicates the number of TMC1 molecules per MET complex changes from ~8 at the apex to ~20 at base. The results suggest there are varying numbers of channels per MET complex, each requiring multiple TMC1 molecules, and together operating in a coordinated or cooperative manner. Mechanoelectrical transduction channel (MET) current found in stereocilia of hair cells matures over the first postnatal week. Here the authors look at the contribution of transmembrane channel-like protein 1 and 2 (TMC1 and TMC2) to MET current during development of tonotopic gradients.
Collapse
|
119
|
Qiu X, Müller U. Mechanically Gated Ion Channels in Mammalian Hair Cells. Front Cell Neurosci 2018; 12:100. [PMID: 29755320 PMCID: PMC5932396 DOI: 10.3389/fncel.2018.00100] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 01/05/2023] Open
Abstract
Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET) channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS)/LHFPL5, transmembrane inner ear (TMIE) and transmembrane channel-like proteins 1 and 2 (TMC1/2). However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.
Collapse
Affiliation(s)
- Xufeng Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ulrich Müller
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
120
|
Booth KT, Kahrizi K, Babanejad M, Daghagh H, Bademci G, Arzhangi S, Zareabdollahi D, Duman D, El-Amraoui A, Tekin M, Najmabadi H, Azaiez H, Smith RJ. Variants in CIB2 cause DFNB48 and not USH1J. Clin Genet 2018; 93:812-821. [PMID: 29112224 PMCID: PMC5851821 DOI: 10.1111/cge.13170] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
Abstract
The genetic, mutational and phenotypic spectrum of deafness-causing genes shows great diversity and pleiotropy. The best examples are the group of genes, which when mutated can either cause non-syndromic hearing loss (NSHL) or the most common dual sensory impairment, Usher syndrome (USH). Variants in the CIB2 gene have been previously reported to cause hearing loss at the DFNB48 locus and deaf-blindness at the USH1J locus. In this study, we characterize the phenotypic spectrum in a multiethnic cohort with autosomal recessive non-syndromic hearing loss (ARNSHL) due to variants in the CIB2 gene. Of the 6 families we ascertained, 3 segregated novel loss-of-function (LOF) variants, 2 families segregated missense variants (1 novel) and 1 family segregated a previously reported pathogenic variant in trans with a frameshift variant. This report is the first to show that biallelic LOF variants in CIB2 cause ARNSHL and not USH. In the era of precision medicine, providing the correct diagnosis (NSHL vs USH) is essential for patient care as it impacts potential intervention and prevention options for patients. Here, we provide evidence disqualifying CIB2 as an USH-causing gene.
Collapse
Affiliation(s)
- Kevin T Booth
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
- Department of Molecular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mojgan Babanejad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Daghagh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Guney Bademci
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Davood Zareabdollahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Duygu Duman
- Division of Pediatric Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Aziz El-Amraoui
- Institut Pasteur, Génétique et Physiologie de l’Audition, INSERM UMRS1120, UPMC Univ Paris06, 75015 Paris, France
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, and Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hela Azaiez
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| | - Richard J Smith
- Molecular Otolaryngology and Renal Research Laboratories, Department of Otolaryngology- Head and Neck Surgery, University of Iowa, Iowa City, Iowa
| |
Collapse
|
121
|
Yousaf R, Gu C, Ahmed ZM, Khan SN, Friedman TB, Riazuddin S, Shears SB, Riazuddin S. Mutations in Diphosphoinositol-Pentakisphosphate Kinase PPIP5K2 are associated with hearing loss in human and mouse. PLoS Genet 2018; 14:e1007297. [PMID: 29590114 PMCID: PMC5891075 DOI: 10.1371/journal.pgen.1007297] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/09/2018] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Autosomal recessive nonsyndromic hearing loss is a genetically heterogeneous disorder. Here, we report a severe-to-profound sensorineural hearing loss locus, DFNB100 on chromosome 5q13.2-q23.2. Exome enrichment followed by massive parallel sequencing revealed a c.2510G>A transition variant in PPIP5K2 that segregated with DFNB100-associated hearing loss in two large apparently unrelated Pakistani families. PPIP5Ks enzymes interconvert 5-IP7 and IP8, two key members of the inositol pyrophosphate (PP-IP) cell-signaling family. Their actions at the interface of cell signaling and bioenergetic homeostasis can impact many biological processes. The c.2510G>A transition variant is predicted to substitute a highly invariant arginine residue with histidine (p.Arg837His) in the phosphatase domain of PPIP5K2. Biochemical studies revealed that the p.Arg837His variant reduces the phosphatase activity of PPIP5K2 and elevates its kinase activity. We found that in mouse inner ear, PPIP5K2 is expressed in the cochlear and vestibular sensory hair cells, supporting cells and spiral ganglion neurons. Mice homozygous for a targeted deletion of the Ppip5k2 phosphatase domain exhibit degeneration of cochlear outer hair cells and elevated hearing thresholds. Our demonstration that PPIP5K2 has a role in hearing in humans indicates that PP-IP signaling is important to hair cell maintenance and function within inner ear. Exome sequencing coupled with homozygosity mapping was used to identify a missense variant [c.2510G>A; p.(Arg837His)] in PPIP5K2 at the DFNB100 locus that is associated with nonsyndromic, prelingual sensorineural deafness in two large consanguineous Pakistani families. PPIP5Ks are pivotal enzymes for regulating inositol pyrophosphate (PP-IP) turnover. Biochemical analyses revealed that, compared to wild type human PPIP5K2, the PPIP5K2R837H variant exhibited lower phosphatase activity and higher kinase activity, indicating that it promotes increased metabolic flux from 5-IP7 to IP8 in vivo. In rodent inner ears, PPIP5K2 immunoreactivity was observed in the cochlear and vestibular hair cells, supporting cells, and spiral ganglion neurons. Mouse mutants homozygous for the targeted deletion of Ppip5k2 phosphatase domain exhibit degeneration of cochlear outer hair cells and progressive hearing loss. Our work provides the first description of any amino acid variant of PPIP5K2 that is both functionally-significant and associates with a human disorder. The ‘futile cycling’ of the kinase/phosphatase activity of PPIP5K2 makes inner ear function particularly susceptible to even minor changes in the phosphatase activity of PPIP5K2. We have shown that a pathogenic variant in PPIP5K2 is associated with hearing loss in humans. Thus, PPIP5K2 is given new clinical significance by our observations.
Collapse
Affiliation(s)
- Rizwan Yousaf
- Laboratory of Molecular Genetics, Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, United States of America
| | - Chunfang Gu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America
| | - Zubair M. Ahmed
- Laboratory of Neurogenetics and Regenerative Medicine, Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, United States of America
| | - Shaheen N. Khan
- National Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Thomas B. Friedman
- Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States of America
| | - Sheikh Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Stephen B. Shears
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States of America
| | - Saima Riazuddin
- Laboratory of Molecular Genetics, Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine University of Maryland, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
122
|
Wang Y, Li J, Yao X, Li W, Du H, Tang M, Xiong W, Chai R, Xu Z. Loss of CIB2 Causes Profound Hearing Loss and Abolishes Mechanoelectrical Transduction in Mice. Front Mol Neurosci 2017; 10:401. [PMID: 29255404 PMCID: PMC5722843 DOI: 10.3389/fnmol.2017.00401] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Calcium and integrin-binding protein 2 (CIB2) belongs to a protein family with four known members, CIB1 through CIB4, which are characterized by multiple calcium-binding EF-hand domains. Among the family members, the Cib1 and Cib2 genes are expressed in mouse cochlear hair cells, and mutations in the human CIB2 gene have been associated with nonsyndromic deafness DFNB48 and syndromic deafness USH1J. To further explore the function of CIB1 and CIB2 in hearing, we established Cib1 and Cib2 knockout mice using the clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease (CRISPR/Cas9) genome editing technique. We found that loss of CIB1 protein does not affect auditory function, whereas loss of CIB2 protein causes profound hearing loss in mice. Further investigation revealed that hair cell stereocilia development is affected in Cib2 knockout mice. Noticeably, loss of CIB2 abolishes mechanoelectrical transduction (MET) currents in auditory hair cells. In conclusion, we show here that although both CIB1 and CIB2 are readily detected in the cochlea, only loss of CIB2 results in profound hearing loss, and that CIB2 is essential for auditory hair cell MET.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| | - Jie Li
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Xuerui Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| | - Wei Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
123
|
Tompkins N, Spinelli KJ, Choi D, Barr-Gillespie PG. A Model for Link Pruning to Establish Correctly Polarized and Oriented Tip Links in Hair Bundles. Biophys J 2017; 113:1868-1881. [PMID: 29045880 DOI: 10.1016/j.bpj.2017.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022] Open
Abstract
Tip links are thought to gate the mechanically sensitive transduction channels of hair cells, but how they form during development and regeneration remains mysterious. In particular, it is unclear how tip links are strung between stereocilia so that they are oriented parallel to a single axis; why their polarity is uniform despite their constituent molecules' intrinsic asymmetry; and why only a single tip link is present at each tip-link position. We present here a series of simple rules that reasonably explain why these phenomena occur. In particular, our model relies on each of the two ends of the tip link having distinct Ca2+-dependent stability and being connected to different motor complexes. A simulation employing these rules allowed us to explore the parameter space for the model, demonstrating the importance of the feedback between transduction channels and angled links, links that are 60° off-axis with respect to mature tip links. We tested this key aspect of the model by examining angled links in chick cochlea hair cells. As implied by the assumptions used to generate the model, we found that angled links were stabilized if there was no tip link at the tip of the upper stereocilium, and appeared when transduction channels were blocked. The model thus plausibly explains how tip-link formation and pruning can occur.
Collapse
Affiliation(s)
- Nathan Tompkins
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Kateri J Spinelli
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Dongseok Choi
- School of Public Health, Oregon Health and Science University, Portland, Oregon; Graduate School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
124
|
Beurg M, Fettiplace R. PIEZO2 as the anomalous mechanotransducer channel in auditory hair cells. J Physiol 2017; 595:7039-7048. [PMID: 28983916 PMCID: PMC5709317 DOI: 10.1113/jp274996] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/01/2017] [Indexed: 12/24/2022] Open
Abstract
Throughout postnatal maturation of the mouse inner ear, cochlear hair cells display at least two types of mechanically gated ion channel: normal mechanotransducer (MT) channels at the tips of the stereocilia, activated by tension in interciliary tip links, and anomalous mechanosensitive (MS) channels on the top surface of the cells. The anomalous MS channels are responsible for the reverse‐polarity current that appears in mutants in which normal transduction is lost. They are also seen in wild‐type hair cells around birth, appearing 2 days earlier than normal MT channels, and being down‐regulated with the emergence of the normal channels. We review the evidence that the normal and anomalous channels are distinct channel types, which includes differences in localization, susceptibility to pharmacological agents, single‐channel conductance and Ca2+ permeability. The dichotomy is reinforced by the observation that the anomalous current is absent in cochlear cells of Piezo2‐null mice, even though the normal MT current persists. The anomalous current is suppressed by high intracellular Ca2+, suggesting that influx of the divalent ion via more Ca2+‐permeable normal MT channels inhibits the anomalous channels, thus explaining the temporal relationship between the two. Piezo2‐null mice have largely normal hearing, exhibiting up to 20 dB elevation in threshold in the acoustic brainstem response, so raising questions about the significance of PIEZO2 in the cochlea. Since the anomalous current declines with postnatal age, PIEZO2 may contribute to hair cell development, but it does not underlie the normal MT current. Its role in the development of hearing is not understood.
![]()
Collapse
Affiliation(s)
- Maryline Beurg
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | - Robert Fettiplace
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| |
Collapse
|
125
|
Zhu W, Jarman KE, Lokman NA, Neubauer HA, Davies LT, Gliddon BL, Taing H, Moretti PAB, Oehler MK, Pitman MR, Pitson SM. CIB2 Negatively Regulates Oncogenic Signaling in Ovarian Cancer via Sphingosine Kinase 1. Cancer Res 2017; 77:4823-4834. [PMID: 28729416 DOI: 10.1158/0008-5472.can-17-0025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/02/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
Abstract
Sphingosine kinase 1 (SK1) is a key regulator of the cellular balance between proapoptotic and prosurvival sphingolipids. Oncogenic signaling by SK1 relies on its localization to the plasma membrane, which is mediated by the calcium and integrin binding protein CIB1 via its Ca2+-myristoyl switch function. Here we show that another member of the CIB family, CIB2, plays a surprisingly opposite role to CIB1 in the regulation of SK1 signaling. CIB2 bound SK1 on the same site as CIB1, yet it lacks the Ca2+-myristoyl switch function. As a result, CIB2 blocked translocation of SK1 to the plasma membrane and inhibited its subsequent signaling, which included sensitization to TNFα-induced apoptosis and inhibition of Ras-induced neoplastic transformation. CIB2 was significantly downregulated in ovarian cancer and low CIB2 expression was associated with poor prognosis in ovarian cancer patients. Notably, reintroduction of CIB2 in ovarian cancer cells blocked plasma membrane localization of endogenous SK1, reduced in vitro neoplastic growth and tumor growth in mice, and suppressed cell motility and invasiveness both in vitro and in vivo Consistent with the in vitro synergistic effects between the SK1-specific inhibitor SK1-I and standard chemotherapeutics, expression of CIB2 also sensitized ovarian cancer cells to carboplatin. Together, these findings identify CIB2 as a novel endogenous suppressor of SK1 signaling and potential prognostic marker and demonstrate the therapeutic potential of SK1 in this gynecologic malignancy. Cancer Res; 77(18); 4823-34. ©2017 AACR.
Collapse
Affiliation(s)
- Wenying Zhu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, South Australia, Australia
| | - Kate E Jarman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, South Australia, Australia
| | - Noor A Lokman
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia
| | - Heidi A Neubauer
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Lorena T Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Houng Taing
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Paul A B Moretti
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Martin K Oehler
- School of Paediatrics and Reproductive Health, Robinson Research Institute, University of Adelaide, South Australia, Australia.,Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia. .,School of Biological Sciences, University of Adelaide, South Australia, Australia
| |
Collapse
|