101
|
Tian R, Geng Y, Yang Y, Seim I, Yang G. Oxidative stress drives divergent evolution of the glutathione peroxidase (GPX) gene family in mammals. Integr Zool 2021; 16:696-711. [PMID: 33417299 DOI: 10.1111/1749-4877.12521] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular basis for adaptations to extreme environments can now be understood by interrogating the ever-increasing number of sequenced genomes. Mammals such as cetaceans, bats, and highland species can protect themselves from oxidative stress, a disruption in the balance of reactive oxygen species, which results in oxidative injury and cell damage. Here, we consider the evolution of the glutathione peroxidase (GPX) family of antioxidant enzymes by interrogating publicly available genome data from 70 mammalian species from all major clades. We identified 8 GPX subclasses ubiquitous to all mammalian groups. Mammalian GPX gene families resolved into the GPX4/7/8 and GPX1/2/3/5/6 groups and are characterized by several instances of gene duplication and loss, indicating a dynamic process of gene birth and death in mammals. Seven of the eight GPX subfamilies (all but GPX7) were under positive selection, with the residues under selection located at or close to active sites or at the dimer interface. We also reveal evidence of a correlation between ecological niches (e.g. high oxidative stress) and the divergent selection and gene copy number of GPX subclasses. Notably, a convergent expansion of GPX1 was observed in several independent lineages of mammals under oxidative stress and may be important for avoiding oxidative damage. Collectively, this study suggests that the GPX gene family has shaped the adaption of mammals to stressful environments.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yuepan Geng
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Ying Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
102
|
Chaney ME, Romine MG, Piontkivska H, Tosi AJ. Diversifying selection detected in only a minority of xenobiotic-metabolizing CYP1-3 genes among primate species. Xenobiotica 2020; 50:1406-1412. [PMID: 32558606 DOI: 10.1080/00498254.2020.1785580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
1. Primates exhibit a high degree of among-species dietary diversity, which likely exposes them to varying levels of xenobiotic compounds. Here, we examined the evolution of primate CYP1-3 gene families, and we classified the 15 CYP1-3 gene subfamilies as either xenobiotic-metabolizing (XM) or endogenous-metabolizing (EM) based on sources in the P450 literature. 2. We predicted that XM P450s would show (1) greater variability in gene-copy number and (2) more evidence of diversifying selection and, especially on codons that encode the substrate-recognition sites (SRSs) for the final enzymes. 3. Counter to our first prediction, EM and XM P450s showed similar levels of variation in gene-copy number. We did find, however, that four XM P450 subfamilies (CYP2C, CYP2D, CYP2E, and CYP3A) showed evidence of diversifying selection while no EM subfamilies demonstrated any consistent signal of diversifying selection. Of these four, CYP2C, CYP2D, and CYP3A showed significant links between SRSs and diversifying selection. 4. These results reveal an amount of evolutionary dynamism that would not be expected when viewing P450 subfamilies along a simple binary EM/XM spectrum. We recommend that comparative studies of cytochrome P450 evolution should focus on the CYP2C, CYP2D, CYP2E, and CYP3A subfamilies.
Collapse
Affiliation(s)
- Morgan E Chaney
- Department of Anthropology, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Melia G Romine
- Department of Anthropology, Kent State University, Kent, OH, USA
| | - Helen Piontkivska
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Anthony J Tosi
- Department of Anthropology, Kent State University, Kent, OH, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
103
|
Turakhia Y, Chen HI, Marcovitz A, Bejerano G. A fully-automated method discovers loss of mouse-lethal and human-monogenic disease genes in 58 mammals. Nucleic Acids Res 2020; 48:e91. [PMID: 32614390 PMCID: PMC7498332 DOI: 10.1093/nar/gkaa550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/23/2020] [Accepted: 06/23/2020] [Indexed: 01/20/2023] Open
Abstract
Gene losses provide an insightful route for studying the morphological and physiological adaptations of species, but their discovery is challenging. Existing genome annotation tools focus on annotating intact genes and do not attempt to distinguish nonfunctional genes from genes missing annotation due to sequencing and assembly artifacts. Previous attempts to annotate gene losses have required significant manual curation, which hampers their scalability for the ever-increasing deluge of newly sequenced genomes. Using extreme sequence erosion (amino acid deletions and substitutions) and sister species support as an unambiguous signature of loss, we developed an automated approach for detecting high-confidence gene loss events across a species tree. Our approach relies solely on gene annotation in a single reference genome, raw assemblies for the remaining species to analyze, and the associated phylogenetic tree for all organisms involved. Using human as reference, we discovered over 400 unique human ortholog erosion events across 58 mammals. This includes dozens of clade-specific losses of genes that result in early mouse lethality or are associated with severe human congenital diseases. Our discoveries yield intriguing potential for translational medical genetics and evolutionary biology, and our approach is readily applicable to large-scale genome sequencing efforts across the tree of life.
Collapse
Affiliation(s)
- Yatish Turakhia
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Heidi I Chen
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Amir Marcovitz
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Gill Bejerano
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
104
|
Rubanov LI, Zverkov OA, Shilovsky GA, Seliverstov AV, Lyubetsky VA. Protein-Coding Genes in Euarchontoglires with Pseudogene Homologs in Humans. Life (Basel) 2020; 10:life10090192. [PMID: 32927891 PMCID: PMC7555810 DOI: 10.3390/life10090192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 09/08/2020] [Indexed: 12/02/2022] Open
Abstract
An original bioinformatics technique is developed to identify the protein-coding genes in rodents, lagomorphs and nonhuman primates that are pseudogenized in humans. The method is based on per-gene verification of local synteny, similarity of exon-intronic structures and orthology in a set of genomes. It is applicable to any genome set, even with the number of genomes exceeding 100, and efficiently implemented using fast computer software. Only 50 evolutionary recent human pseudogenes were predicted. Their functional homologs in model species are often associated with the immune system or digestion and mainly express in the testes. According to current evidence, knockout of most of these genes leads to an abnormal phenotype. Some genes were pseudogenized or lost independently in human and nonhuman hominoids.
Collapse
Affiliation(s)
- Lev I. Rubanov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127051, Russia; (L.I.R.); (O.A.Z.); (G.A.S.); (A.V.S.)
| | - Oleg A. Zverkov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127051, Russia; (L.I.R.); (O.A.Z.); (G.A.S.); (A.V.S.)
| | - Gregory A. Shilovsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127051, Russia; (L.I.R.); (O.A.Z.); (G.A.S.); (A.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Alexandr V. Seliverstov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127051, Russia; (L.I.R.); (O.A.Z.); (G.A.S.); (A.V.S.)
| | - Vassily A. Lyubetsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127051, Russia; (L.I.R.); (O.A.Z.); (G.A.S.); (A.V.S.)
- Correspondence:
| |
Collapse
|
105
|
Wang K, Tian S, Galindo-González J, Dávalos LM, Zhang Y, Zhao H. Molecular adaptation and convergent evolution of frugivory in Old World and neotropical fruit bats. Mol Ecol 2020; 29:4366-4381. [PMID: 32633855 DOI: 10.1111/mec.15542] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022]
Abstract
Although cases of independent adaptation to the same dietary niche have been documented in mammalian ecology, the molecular correlates of such shifts are seldom known. Here, we used genomewide analyses of molecular evolution to examine two lineages of bats that, from an insectivorous ancestor, have both independently evolved obligate frugivory: the Old World family Pteropodidae and the neotropical subfamily Stenodermatinae. New genome assemblies from two neotropical fruit bats (Artibeus jamaicensis and Sturnira hondurensis) provide a framework for comparisons with Old World fruit bats. Comparative genomics of 10 bat species encompassing dietary diversity across the phylogeny revealed convergent molecular signatures of frugivory in both multigene family evolution and single-copy genes. Evidence for convergent molecular adaptations associated with frugivorous diets includes the composition of three subfamilies of olfactory receptor genes, losses of three bitter taste receptor genes, losses of two digestive enzyme genes and convergent amino acid substitutions in several metabolic genes. By identifying suites of adaptations associated with the convergent evolution of frugivory, our analyses both reveal the extent of molecular mechanisms under selection in dietary shifts and will facilitate future studies of molecular ecology in mammals.
Collapse
Affiliation(s)
- Kai Wang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life Sciences, Hubei University, Wuhan, China
| | - Shilin Tian
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,Novogene Bioinformatics Institute, Beijing, China
| | - Jorge Galindo-González
- Biotechnology and Applied Ecology Institute (INBIOTECA), Universidad Veracruzana, Xalapa,Veracruz, Mexico
| | - Liliana M Dávalos
- Department of Ecology and Evolution and Center for Inter-Disciplinary Environmental Research, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Yuzhi Zhang
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- Department of Ecology, Tibetan Centre for Ecology and Conservation at WHU-TU, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,College of Science, Tibet University, Lhasa, China
| |
Collapse
|
106
|
Freitas L, Nery MF. Expansions and contractions in gene families of independently-evolved blood-feeding insects. BMC Evol Biol 2020; 20:87. [PMID: 32680460 PMCID: PMC7367253 DOI: 10.1186/s12862-020-01650-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The blood-feeding behavior evolved multiple times in Insecta lineages and it represents an excellent opportunity to study patterns of convergent molecular evolution regarding this habit. In insects the expansion of some gene families is linked with blood-feeding behavior, but a wide study comparing the evolution of these gene families among different lineages is still missing. Here we gathered genomic data from six independently-evolved hematophagous lineages, aiming to identify convergent expansions and/or contractions of gene families in hematophagous lineages of insects. RESULTS We found four rapidly evolving gene families shared by at least two hematophagous independently-evolved lineages, including a heat-shock and a chemosensory protein. On the expression of these four rapidly evolving gene families we found more genes expressed in mated individuals compared with virgin individuals in rapidly-expanded families and more genes expressed in non-blood-feeding individuals compared with blood-feeding individuals in rapidly-contracted families. CONCLUSION Our results reveal a new set of candidate genes to be explored in further analysis to help the development of new strategies to deal with blood-feeding vectors and also presents a new perspective to study the evolution of hematophagy identifying convergent molecular patterns.
Collapse
Affiliation(s)
- Lucas Freitas
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Bertrand Russell, S/N, Cidade Universitária, IB, Bloco H, Campinas, SP, Brazil.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| | - Mariana F Nery
- Laboratório de Genômica Evolutiva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Bertrand Russell, S/N, Cidade Universitária, IB, Bloco H, Campinas, SP, Brazil
| |
Collapse
|
107
|
Heger P, Zheng W, Rottmann A, Panfilio KA, Wiehe T. The genetic factors of bilaterian evolution. eLife 2020; 9:e45530. [PMID: 32672535 PMCID: PMC7535936 DOI: 10.7554/elife.45530] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.
Collapse
Affiliation(s)
- Peter Heger
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Wen Zheng
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Anna Rottmann
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, Cologne Biocenter, University of CologneCologneGermany
- School of Life Sciences, University of Warwick, Gibbet Hill CampusCoventryUnited Kingdom
| | - Thomas Wiehe
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| |
Collapse
|
108
|
Lopes-Marques M, Serrano C, Cardoso AR, Salazar R, Seixas S, Amorim A, Azevedo L, Prata MJ. GBA3: a polymorphic pseudogene in humans that experienced repeated gene loss during mammalian evolution. Sci Rep 2020; 10:11565. [PMID: 32665690 PMCID: PMC7360587 DOI: 10.1038/s41598-020-68106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
The gene encoding the cytosolic β-glucosidase GBA3 shows pseudogenization due to a truncated allele (rs358231) that is polymorphic in humans. Since this enzyme is involved in the transformation of many plant β-glycosides, this particular case of gene loss may have been influenced by dietary adaptations during evolution. In humans, apart from the inactivating allele, we found that GBA3 accumulated additional damaging mutations, implying an extensive GBA3 loss. The allelic distribution of loss-of-function alleles revealed significant differences between human populations which can be partially related with their staple diet. The analysis of mammalian orthologs disclosed that GBA3 underwent at least nine pseudogenization events. Most events of pseudogenization occurred in carnivorous lineages, suggesting a possible link to a β-glycoside poor diet. However, GBA3 was also lost in omnivorous and herbivorous species, hinting that the physiological role of GBA3 is not fully understood and other unknown causes may underlie GBA3 pseudogenization. Such possibility relies upon a putative role in sialic acid biology, where GBA3 participates in a cellular network involving NEU2 and CMAH. Overall, our data shows that the recurrent loss of GBA3 in mammals is likely to represent an evolutionary endpoint of the relaxation of selective constraints triggered by diet-related factors.
Collapse
Affiliation(s)
- Monica Lopes-Marques
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Catarina Serrano
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana R. Cardoso
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Renato Salazar
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Susana Seixas
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - António Amorim
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Luisa Azevedo
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Prata
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
109
|
Jasti N, Sebagh D, Riaz M, Wang X, Koripella B, Palanisamy V, Mohammad N, Chen Q, Friedrich M. Towards reconstructing the dipteran demise of an ancient essential gene: E3 ubiquitin ligase Murine double minute. Dev Genes Evol 2020; 230:279-294. [PMID: 32623522 DOI: 10.1007/s00427-020-00663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/21/2020] [Indexed: 01/09/2023]
Abstract
Genome studies have uncovered many examples of essential gene loss, raising the question of how ancient genes transition from essentiality to dispensability. We explored this process for the deeply conserved E3 ubiquitin ligase Murine double minute (Mdm), which is lacking in Drosophila despite the conservation of its main regulatory target, the cellular stress response gene p53. Conducting gene expression and knockdown experiments in the red flour beetle Tribolium castaneum, we found evidence that Mdm has remained essential in insects where it is present. Using bioinformatics approaches, we confirm the absence of the Mdm gene family in Drosophila, mapping its loss to the stem lineage of schizophoran Diptera and Pipunculidae (big-headed flies), about 95-85 million years ago. Intriguingly, this gene loss event was preceded by the de novo origin of the gene Companion of reaper (Corp), a novel p53 regulatory factor that is characterized by functional similarities to vertebrate Mdm2 despite lacking E3 ubiquitin ligase protein domains. Speaking against a 1:1 compensatory gene gain/loss scenario, however, we found that hoverflies (Syrphidae) and pointed-wing flies (Lonchopteridae) possess both Mdm and Corp. This implies that the two p53 regulators have been coexisting for ~ 150 million years in select dipteran clades and for at least 50 million years in the lineage to Schizophora and Pipunculidae. Given these extensive time spans of Mdm/Corp coexistence, we speculate that the loss of Mdm in the lineage to Drosophila involved further acquisitions of compensatory gene activities besides the emergence of Corp. Combined with the previously noted reduction of an ancestral P53 contact domain in the Mdm homologs of crustaceans and insects, we conclude that the loss of the ancient Mdm gene family in flies was the outcome of incremental functional regression over long macroevolutionary time scales.
Collapse
Affiliation(s)
- Naveen Jasti
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA.,Institute for Protein Design, Washington University, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Dylan Sebagh
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Mohammed Riaz
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Xin Wang
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Bharat Koripella
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Vasanth Palanisamy
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Nabeel Mohammad
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Qing Chen
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA. .,Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
110
|
Alves LQ, Ruivo R, Fonseca MM, Lopes-Marques M, Ribeiro P, Castro L. PseudoChecker: an integrated online platform for gene inactivation inference. Nucleic Acids Res 2020; 48:W321-W331. [PMID: 32449938 PMCID: PMC7319564 DOI: 10.1093/nar/gkaa408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 01/21/2023] Open
Abstract
The rapid expansion of high-quality genome assemblies, exemplified by ongoing initiatives such as the Genome-10K and i5k, demands novel automated methods to approach comparative genomics. Of these, the study of inactivating mutations in the coding region of genes, or pseudogenization, as a source of evolutionary novelty is mostly overlooked. Thus, to address such evolutionary/genomic events, a systematic, accurate and computationally automated approach is required. Here, we present PseudoChecker, the first integrated online platform for gene inactivation inference. Unlike the few existing methods, our comparative genomics-based approach displays full automation, a built-in graphical user interface and a novel index, PseudoIndex, for an empirical evaluation of the gene coding status. As a multi-platform online service, PseudoChecker simplifies access and usability, allowing a fast identification of disruptive mutations. An analysis of 30 genes previously reported to be eroded in mammals, and 30 viable genes from the same lineages, demonstrated that PseudoChecker was able to correctly infer 97% of loss events and 95% of functional genes, confirming its reliability. PseudoChecker is freely available, without login required, at http://pseudochecker.ciimar.up.pt.
Collapse
Affiliation(s)
- Luís Q Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Raquel Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Miguel M Fonseca
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
| | - Pedro Ribeiro
- CRACS & INESC-TEC Department of Computer Science, FCUP, Porto, 4169-007, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Matosinhos, 4450-208, Portugal
- Department of Biology, FCUP, Porto, 4169-007, Portugal
| |
Collapse
|
111
|
Jebb D, Huang Z, Pippel M, Hughes GM, Lavrichenko K, Devanna P, Winkler S, Jermiin LS, Skirmuntt EC, Katzourakis A, Burkitt-Gray L, Ray DA, Sullivan KAM, Roscito JG, Kirilenko BM, Dávalos LM, Corthals AP, Power ML, Jones G, Ransome RD, Dechmann DKN, Locatelli AG, Puechmaille SJ, Fedrigo O, Jarvis ED, Hiller M, Vernes SC, Myers EW, Teeling EC. Six reference-quality genomes reveal evolution of bat adaptations. Nature 2020; 583:578-584. [PMID: 32699395 PMCID: PMC8075899 DOI: 10.1038/s41586-020-2486-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/09/2020] [Indexed: 11/08/2022]
Abstract
Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols1 to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our 'Tool to infer Orthologs from Genome Alignments' (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and disease1.
Collapse
Affiliation(s)
- David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Lars S Jermiin
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
- Earth Institute, University College Dublin, Dublin, Ireland
| | - Emilia C Skirmuntt
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Aris Katzourakis
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, UK
| | - Lucy Burkitt-Gray
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - David A Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Kevin A M Sullivan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | | | - Megan L Power
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Roger D Ransome
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Dina K N Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Andrea G Locatelli
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Sébastien J Puechmaille
- ISEM, University of Montpellier, Montpellier, France
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Olivier Fedrigo
- Vertebrate Genomes Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genomes Laboratory, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
- Faculty of Computer Science, Technical University Dresden, Dresden, Germany.
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
112
|
Penso-Dolfin L, Man A, Mehta T, Haerty W, Di Palma F. Analysis of structural variants in four African cichlids highlights an association with developmental and immune related genes. BMC Evol Biol 2020; 20:69. [PMID: 32564776 PMCID: PMC7309985 DOI: 10.1186/s12862-020-01629-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND East African lake cichlids are one of the most impressive examples of an adaptive radiation. Independently in Lake Victoria, Tanganyika, and Malawi, several hundreds of species arose within the last 10 million to 100,000 years. Whereas most analyses in cichlids focused on nucleotide substitutions across species to investigate the genetic bases of this explosive radiation, to date, no study has investigated the contribution of structural variants (SVs) in the evolution of adaptive traits across the three Great Lakes of East Africa. RESULTS Here, we annotate and characterize the repertoires and evolutionary potential of different SV classes (deletion, duplication, inversion, insertions and translocations) in four cichlid species: Haplochromis burtoni, Metriaclima zebra, Neolamprologus brichardi and Pundamilia nyererei. We investigate the patterns of gain and loss evolution for each SV type, enabling the identification of lineage specific events. Both deletions and inversions show a significant overlap with SINE elements, while inversions additionally show a limited, but significant association with DNA transposons. Inverted regions are enriched for genes regulating behaviour, or involved in skeletal and visual system development. We also find that duplicated regions show enrichment for genes associated with "antigen processing and presentation" and other immune related categories. Our pipeline and results were further tested by PCR validation of selected deletions and inversions, which confirmed respectively 7 out of 10 and 6 out of 9 events. CONCLUSIONS Altogether, we provide the first comprehensive overview of rearrangement evolution in East African cichlids, and some important insights into their likely contribution to adaptation.
Collapse
Affiliation(s)
- Luca Penso-Dolfin
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Angela Man
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Tarang Mehta
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ UK
| |
Collapse
|
113
|
Davies KTJ, Yohe LR, Almonte J, Sánchez MKR, Rengifo EM, Dumont ER, Sears KE, Dávalos LM, Rossiter SJ. Foraging shifts and visual preadaptation in ecologically diverse bats. Mol Ecol 2020; 29:1839-1859. [PMID: 32293071 DOI: 10.1111/mec.15445] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/28/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Changes in behaviour may initiate shifts to new adaptive zones, with physical adaptations for novel environments evolving later. While new mutations are commonly considered engines of adaptive change, sensory evolution enabling access to new resources might also arise from standing genetic diversity, and even gene loss. We examine the relative contribution of molecular adaptations, measured by positive and relaxed selection, acting on eye-expressed genes associated with shifts to new adaptive zones in ecologically diverse bats from the superfamily Noctilionoidea. Collectively, noctilionoids display remarkable ecological breadth, from highly divergent echolocation to flight strategies linked to specialized insectivory, the parallel evolution of diverse plant-based diets (e.g., nectar, pollen and fruit) from ancestral insectivory, and-unusually for echolocating bats-often have large, well-developed eyes. We report contrasting levels of positive selection in genes associated with the development, maintenance and scope of visual function, tracing back to the origins of noctilionoids and Phyllostomidae (the bat family with most dietary diversity), instead of during shifts to novel diets. Generalized plant visiting was not associated with exceptional molecular adaptation, and exploration of these novel niches took place in an ancestral phyllostomid genetic background. In contrast, evidence for positive selection in vision genes was found at subsequent shifts to either nectarivory or frugivory. Thus, neotropical noctilionoids that use visual cues for identifying food and roosts, as well as for orientation, were effectively preadapted, with subsequent molecular adaptations in nectar-feeding lineages and the subfamily Stenodermatinae of fig-eating bats fine-tuning pre-existing visual adaptations for specialized purposes.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Laurel R Yohe
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, USA.,Department of Geology & Geophysics, Yale University, New Haven, CT, USA
| | - Jesus Almonte
- Independent Scientist, Santo Domingo, Dominican Republic
| | - Miluska K R Sánchez
- Escuela Profesional de Ciencias Biológicas, Universidad Nacional de Piura, Piura, Peru
| | - Edgardo M Rengifo
- Programa de Pós-Graduação Interunidades em Ecologia Aplicada, Escola Superior de Agricultura 'Luiz de Queiroz', Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, Brazil.,Centro de Investigación Biodiversidad Sostenible (BioS), Lima, Peru
| | - Elizabeth R Dumont
- School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, USA.,Consortium for Inter-Disciplinary Environmental Research, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
114
|
Janiak MC, Pinto SL, Duytschaever G, Carrigan MA, Melin AD. Genetic evidence of widespread variation in ethanol metabolism among mammals: revisiting the 'myth' of natural intoxication. Biol Lett 2020; 16:20200070. [PMID: 32343936 DOI: 10.1098/rsbl.2020.0070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Humans have a long evolutionary relationship with ethanol, pre-dating anthropogenic sources, and possess unusually efficient ethanol metabolism, through a mutation that evolved in our last common ancestor with African great apes. Increased exposure to dietary ethanol through fermenting fruits and nectars is hypothesized to have selected for this in our lineage. Yet, other mammals have frugivorous and nectarivorous diets, raising the possibility of natural ethanol exposure and adaptation in other taxa. We conduct a comparative genetic analysis of alcohol dehydrogenase class IV (ADH IV) across mammals to provide insight into their evolutionary history with ethanol. We find genetic variation and multiple pseudogenization events in ADH IV, indicating the ability to metabolize ethanol is variable. We suggest that ADH enzymes are evolutionarily plastic and show promise for revealing dietary adaptation. We further highlight the derived condition of humans and draw attention to problems with modelling the physiological responses of other mammals on them, a practice that has led to potentially erroneous conclusions about the likelihood of natural intoxication in wild animals. It is a fallacy to assume that other animals share our metabolic adaptations, rather than taking into consideration each species' unique physiology.
Collapse
Affiliation(s)
- Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Swellan L Pinto
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada
| | - Gwen Duytschaever
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada
| | | | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary AB T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, University of Calgary, AB, Canada
| |
Collapse
|
115
|
Yusuf L, Heatley MC, Palmer JPG, Barton HJ, Cooney CR, Gossmann TI. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome Res 2020; 30:553-565. [PMID: 32269134 PMCID: PMC7197477 DOI: 10.1101/gr.255752.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.
Collapse
Affiliation(s)
- Leeban Yusuf
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, KY16 9TF, United Kingdom
| | - Matthew C Heatley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Joseph P G Palmer
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Organismal and Evolutionary Biology Research Programme, Viikinkaari 9 (PL 56), University of Helsinki, Helsinki, FI-00014, Finland
| | - Christopher R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Department of Animal Behaviour, Bielefeld University, Bielefeld, DE-33501, Germany
| |
Collapse
|
116
|
Xiang R, van den Berg I, MacLeod IM, Daetwyler HD, Goddard ME. Effect direction meta-analysis of GWAS identifies extreme, prevalent and shared pleiotropy in a large mammal. Commun Biol 2020; 3:88. [PMID: 32111961 PMCID: PMC7048789 DOI: 10.1038/s42003-020-0823-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
In genome-wide association studies (GWAS), variants showing consistent effect directions across populations are considered as true discoveries. We model this information in an Effect Direction MEta-analysis (EDME) to quantify pleiotropy using GWAS of 34 Cholesky-decorrelated traits in 44,000+ cattle with sequence variants. The effect-direction agreement between independent bull and cow datasets was used to quantify the false discovery rate by effect direction (FDRed) and the number of affected traits for prioritised variants. Variants with multi-trait p < 1e–6 affected 1∼22 traits with an average of 10 traits. EDME assigns pleiotropic variants to each trait which informs the biology behind complex traits. New pleiotropic loci are identified, including signals from the cattle FTO locus mirroring its bystander effects on human obesity. When validated in the 1000-Bull Genome database, the prioritized pleiotropic variants consistently predicted expected phenotypic differences between dairy and beef cattle. EDME provides robust approaches to control GWAS FDR and quantify pleiotropy. Xiang et al. developed an Effect Direction Meta-analysis (EDME) approach to identify true pleiotropy. They used Cholesky-transformation to decorrelate the traits and identified many pleiotropic variants that consistently predicted phenotypic differences in cattle.
Collapse
Affiliation(s)
- Ruidong Xiang
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, 3052, Victoria, Australia. .,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria, 3083, Australia.
| | - Irene van den Berg
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, 3052, Victoria, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria, 3083, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Michael E Goddard
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, 3052, Victoria, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
117
|
Hepler NK, Bowman A, Carey RE, Cosgrove DJ. Expansin gene loss is a common occurrence during adaptation to an aquatic environment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:666-680. [PMID: 31627246 DOI: 10.1111/tpj.14572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 05/15/2023]
Abstract
Expansins comprise a superfamily of plant cell wall loosening proteins that can be divided into four individual families (EXPA, EXPB, EXLA and EXLB). Aside from inferred roles in a variety of plant growth and developmental traits, little is known regarding the function of specific expansin clades, for which there are at least 16 in flowering plants (angiosperms); however, there is evidence to suggest that some expansins have cell-specific functions, in root hair and pollen tube development, for example. Recently, two duckweed genomes have been sequenced (Spirodela polyrhiza strains 7498 and 9509), revealing significantly reduced superfamily sizes. We hypothesized that there would be a correlation between expansin loss and morphological reductions seen among highly adapted aquatic species. In order to provide an answer to this question, we characterized the expansin superfamilies of the greater duckweed Spirodela, the marine eelgrass Zostera marina and the bladderwort Utricularia gibba. We discovered rampant expansin gene and clade loss among the three, including a complete absence of the EXLB family and EXPA-VII. The most convincing correlation between morphological reduction and expansin loss was seen for Utricularia and Spirodela, which both lack root hairs and the root hair expansin clade EXPA-X. Contrary to the pattern observed in other species, four Utricularia expansins failed to branch within any clade, suggesting that they may be the result of neofunctionalization. Last, an expansin clade previously discovered only in eudicots was identified in Spirodela, allowing us to conclude that the last common ancestor of monocots and eudicots contained a minimum of 17 expansins.
Collapse
Affiliation(s)
- Nathan K Hepler
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexa Bowman
- Program in Biochemistry and Molecular Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Robert E Carey
- Department of Biology, Lebanon Valley College, 101 N. College Ave., Annville, PA, 17003, USA
| | - Daniel J Cosgrove
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
118
|
Hecker N, Hiller M. A genome alignment of 120 mammals highlights ultraconserved element variability and placenta-associated enhancers. Gigascience 2020; 9:giz159. [PMID: 31899510 PMCID: PMC6941714 DOI: 10.1093/gigascience/giz159] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Multiple alignments of mammalian genomes have been the basis of many comparative genomic studies aiming at annotating genes, detecting regions under evolutionary constraint, and studying genome evolution. A key factor that affects the power of comparative analyses is the number of species included in a genome alignment. RESULTS To utilize the increased number of sequenced genomes and to provide an accessible resource for genomic studies, we generated a mammalian genome alignment comprising 120 species. We used this alignment and the CESAR method to provide protein-coding gene annotations for 119 non-human mammals. Furthermore, we illustrate the utility of this alignment by 2 exemplary analyses. First, we quantified how variable ultraconserved elements (UCEs) are among placental mammals. Leveraging the high taxonomic coverage in our alignment, we estimate that UCEs contain on average 4.7%-15.6% variable alignment columns. Furthermore, we show that the center regions of UCEs are generally most constrained. Second, we identified enhancer sequences that are only conserved in placental mammals. We found that these enhancers are significantly associated with placenta-related genes, suggesting that some of these enhancers may be involved in the evolution of placental mammal-specific aspects of the placenta. CONCLUSION The 120-mammal alignment and all other data are available for analysis and visualization in a genome browser at https://genome-public.pks.mpg.de/and for download at https://bds.mpi-cbg.de/hillerlab/120MammalAlignment/.
Collapse
Affiliation(s)
- Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
| |
Collapse
|
119
|
Schneider K, Adams CE, Elmer KR. Parallel selection on ecologically relevant gene functions in the transcriptomes of highly diversifying salmonids. BMC Genomics 2019; 20:1010. [PMID: 31870285 PMCID: PMC6929470 DOI: 10.1186/s12864-019-6361-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022] Open
Abstract
Background Salmonid fishes are characterised by a very high level of variation in trophic, ecological, physiological, and life history adaptations. Some salmonid taxa show exceptional potential for fast, within-lake diversification into morphologically and ecologically distinct variants, often in parallel; these are the lake-resident charr and whitefish (several species in the genera Salvelinus and Coregonus). To identify selection on genes and gene categories associated with such predictable diversifications, we analysed 2702 orthogroups (4.82 Mbp total; average 4.77 genes/orthogroup; average 1783 bp/orthogroup). We did so in two charr and two whitefish species and compared to five other salmonid lineages, which do not evolve in such ecologically predictable ways, and one non-salmonid outgroup. Results All selection analyses are based on Coregonus and Salvelinus compared to non-diversifying taxa. We found more orthogroups were affected by relaxed selection than intensified selection. Of those, 122 were under significant relaxed selection, with trends of an overrepresentation of serine family amino acid metabolism and transcriptional regulation, and significant enrichment of behaviour-associated gene functions. Seventy-eight orthogroups were under significant intensified selection and were enriched for signalling process and transcriptional regulation gene ontology terms and actin filament and lipid metabolism gene sets. Ninety-two orthogroups were under diversifying/positive selection. These were enriched for signal transduction, transmembrane transport, and pyruvate metabolism gene ontology terms and often contained genes involved in transcriptional regulation and development. Several orthogroups showed signs of multiple types of selection. For example, orthogroups under relaxed and diversifying selection contained genes such as ap1m2, involved in immunity and development, and slc6a8, playing an important role in muscle and brain creatine uptake. Orthogroups under intensified and diversifying selection were also found, such as genes syn3, with a role in neural processes, and ctsk, involved in bone remodelling. Conclusions Our approach pinpointed relevant genomic targets by distinguishing among different kinds of selection. We found that relaxed, intensified, and diversifying selection affect orthogroups and gene functions of ecological relevance in salmonids. Because they were found consistently and robustly across charr and whitefish and not other salmonid lineages, we propose these genes have a potential role in the replicated ecological diversifications.
Collapse
Affiliation(s)
- Kevin Schneider
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Colin E Adams
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.,Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, G63 0AW, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
120
|
Gloux A, Duclos MJ, Brionne A, Bourin M, Nys Y, Réhault-Godbert S. Integrative analysis of transcriptomic data related to the liver of laying hens: from physiological basics to newly identified functions. BMC Genomics 2019; 20:821. [PMID: 31699050 PMCID: PMC6839265 DOI: 10.1186/s12864-019-6185-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND At sexual maturity, the liver of laying hens undergoes many metabolic changes to support vitellogenesis. In published transcriptomic approaches, hundreds of genes were reported to be overexpressed in laying hens and functional gene annotation using gene ontology tools have essentially revealed an enrichment in lipid and protein metabolisms. We reanalyzed some data from a previously published article comparing 38-week old versus 10-week old hens to give a more integrative view of the functions stimulated in the liver at sexual maturity and to move beyond current physiological knowledge. Functions were defined based on information available in Uniprot database and published literature. RESULTS Of the 516 genes previously shown to be overexpressed in the liver of laying hens, 475 were intracellular (1.23-50.72 fold changes), while only 36 were predicted to be secreted (1.35-66.93 fold changes) and 5 had no related information on their cellular location. Besides lipogenesis and protein metabolism, we demonstrated that the liver of laying hens overexpresses several clock genes (which supports the circadian control of liver metabolic functions) and was likely to be involved in a liver/brain/liver circuit (neurotransmitter transport), in thyroid and steroid hormones metabolisms. Many genes were associated with anatomical structure development, organ homeostasis but also regulation of blood pressure. As expected, several secreted proteins are incorporated in yolky follicles but we also evidenced that some proteins are likely participating in fertilization (ZP1, MFGE8, LINC00954, OVOCH1) and in thyroid hormone maturation (CPQ). We also proposed that secreted proteins (PHOSPHO1, FGF23, BMP7 but also vitamin-binding proteins) may contribute to the development of peripheral organs including the formation of medullar bones to provide labile calcium for eggshell formation. Thirteen genes are uniquely found in chicken/bird but not in human species, which strengthens that some of these genes may be specifically related to avian reproduction. CONCLUSIONS This study gives additional hypotheses on some molecular actors and mechanisms that are involved in basic physiological function of the liver at sexual maturity of hen. It also revealed some additional functions that accompany reproductive capacities of laying hens, and that are usually underestimated when using classical gene ontology approaches.
Collapse
Affiliation(s)
- Audrey Gloux
- BOA, INRA, Université de Tours, 37380, Nouzilly, France.
| | | | | | - Marie Bourin
- Institut Technique de l'Aviculture (ITAVI), Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Yves Nys
- BOA, INRA, Université de Tours, 37380, Nouzilly, France
| | | |
Collapse
|
121
|
Kirilenko BM, Hagey LR, Barnes S, Falany CN, Hiller M. Evolutionary Analysis of Bile Acid-Conjugating Enzymes Reveals a Complex Duplication and Reciprocal Loss History. Genome Biol Evol 2019; 11:3256-3268. [PMID: 31670760 PMCID: PMC6934887 DOI: 10.1093/gbe/evz238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 12/01/2022] Open
Abstract
To fulfill their physiological functions, bile acids are conjugated with amino acids. In humans, conjugation is catalyzed by bile acid coenzyme A: amino acid N-acyltransferase (BAAT), an enzyme with a highly conserved catalytic triad in its active site. Interestingly, the conjugated amino acids are highly variable among mammals, with some species conjugating bile acids with both glycine and taurine, whereas others conjugate only taurine. The genetic origin of these bile acid conjugation differences is unknown. Here, we tested whether mutations in BAAT’s catalytic triad could explain bile acid conjugation differences. Our comparative analysis of 118 mammals first revealed that the ancestor of placental mammals and marsupials possessed two genes, BAAT and BAATP1, that arose by a tandem duplication. This duplication was followed by numerous gene losses, including BAATP1 in humans. Losses of either BAAT or BAATP1 largely happened in a reciprocal fashion, suggesting that a single conjugating enzyme is generally sufficient for mammals. In intact BAAT and BAATP1 genes, we observed multiple changes in the catalytic triad between Cys and Ser residues. Surprisingly, although mutagenesis experiments with the human enzyme have shown that replacing Cys for Ser greatly diminishes the glycine-conjugating ability, across mammals we found that this residue provides little power in predicting the experimentally measured amino acids that are conjugated with bile acids. This suggests that the mechanism of BAAT’s enzymatic function is incompletely understood, despite relying on a classic catalytic triad. More generally, our evolutionary analysis indicates that results of mutagenesis experiments may not easily be extrapolatable to other species.
Collapse
Affiliation(s)
- Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Lee R Hagey
- Department of Medicine, University of California at San Diego, USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama, Birmingham, USA
| | - Charles N Falany
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama, Birmingham, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| |
Collapse
|
122
|
Sharma V, Hiller M. Losses of human disease-associated genes in placental mammals. NAR Genom Bioinform 2019; 2:lqz012. [PMID: 33575564 PMCID: PMC7671337 DOI: 10.1093/nargab/lqz012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/24/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
We systematically investigate whether losses of human disease-associated genes occurred in other mammals during evolution. We first show that genes lost in any of 62 non-human mammals generally have a lower degree of pleiotropy, and are highly depleted in essential and disease-associated genes. Despite this under-representation, we discovered multiple genes implicated in human disease that are truly lost in non-human mammals. In most cases, traits resembling human disease symptoms are present but not deleterious in gene-loss species, exemplified by losses of genes causing human eye or teeth disorders in poor-vision or enamel-less mammals. We also found widespread losses of PCSK9 and CETP genes, where loss-of-function mutations in humans protect from atherosclerosis. Unexpectedly, we discovered losses of disease genes (TYMP, TBX22, ABCG5, ABCG8, MEFV, CTSE) where deleterious phenotypes do not manifest in the respective species. A remarkable example is the uric acid-degrading enzyme UOX, which we found to be inactivated in elephants and manatees. While UOX loss in hominoids led to high serum uric acid levels and a predisposition for gout, elephants and manatees exhibit low uric acid levels, suggesting alternative ways of metabolizing uric acid. Together, our results highlight numerous mammals that are 'natural knockouts' of human disease genes.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
123
|
Alves LQ, Alves J, Ribeiro R, Ruivo R, Castro F. The dopamine receptor D 5 gene shows signs of independent erosion in toothed and baleen whales. PeerJ 2019; 7:e7758. [PMID: 31616587 PMCID: PMC6791347 DOI: 10.7717/peerj.7758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022] Open
Abstract
To compare gene loci considering a phylogenetic framework is a promising approach to uncover the genetic basis of human diseases. Imbalance of dopaminergic systems is suspected to underlie some emerging neurological disorders. The physiological functions of dopamine are transduced via G-protein-coupled receptors, including DRD5 which displays a relatively higher affinity toward dopamine. Importantly, DRD5 knockout mice are hypertense, a condition emerging from an increase in sympathetic tone. We investigated the evolution of DRD5, a high affinity receptor for dopamine, in mammals. Surprisingly, among 124 investigated mammalian genomes, we found that Cetacea lineages (Mysticeti and Odontoceti) have independently lost this gene, as well as the burrowing Chrysochloris asiatica (Cape golden mole). We suggest that DRD5 inactivation parallels hypoxia-induced adaptations, such as peripheral vasoconstriction required for deep-diving in Cetacea, in accordance with the convergent evolution of vasoconstrictor genes in hypoxia-exposed animals. Our findings indicate that Cetacea are natural knockouts for DRD5 and might offer valuable insights into the mechanisms of some forms of vasoconstriction responses and hypertension in humans.
Collapse
Affiliation(s)
- Luís Q Alves
- CIIMAR-University of Porto, Matosinhos, Portugal.,FCUP-University of Porto, Porto, Portugal
| | - Juliana Alves
- CIIMAR-University of Porto, Matosinhos, Portugal.,FCUP-University of Porto, Porto, Portugal
| | - Rodrigo Ribeiro
- CIIMAR-University of Porto, Matosinhos, Portugal.,FCUP-University of Porto, Porto, Portugal
| | - Raquel Ruivo
- CIIMAR-University of Porto, Matosinhos, Portugal
| | | |
Collapse
|
124
|
Huelsmann M, Hecker N, Springer MS, Gatesy J, Sharma V, Hiller M. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. SCIENCE ADVANCES 2019; 5:eaaw6671. [PMID: 31579821 PMCID: PMC6760925 DOI: 10.1126/sciadv.aaw6671] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/28/2019] [Indexed: 05/22/2023]
Abstract
The transition from land to water in whales and dolphins (cetaceans) was accompanied by remarkable adaptations. To reveal genomic changes that occurred during this transition, we screened for protein-coding genes that were inactivated in the ancestral cetacean lineage. We found 85 gene losses. Some of these were likely beneficial for cetaceans, for example, by reducing the risk of thrombus formation during diving (F12 and KLKB1), erroneous DNA damage repair (POLM), and oxidative stress-induced lung inflammation (MAP3K19). Additional gene losses may reflect other diving-related adaptations, such as enhanced vasoconstriction during the diving response (mediated by SLC6A18) and altered pulmonary surfactant composition (SEC14L3), while loss of SLC4A9 relates to a reduced need for saliva. Last, loss of melatonin synthesis and receptor genes (AANAT, ASMT, and MTNR1A/B) may have been a precondition for adopting unihemispheric sleep. Our findings suggest that some genes lost in ancestral cetaceans were likely involved in adapting to a fully aquatic lifestyle.
Collapse
Affiliation(s)
- Matthias Huelsmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - John Gatesy
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Corresponding author.
| |
Collapse
|
125
|
Hecker N, Lächele U, Stuckas H, Giere P, Hiller M. Convergent vomeronasal system reduction in mammals coincides with convergent losses of calcium signalling and odorant-degrading genes. Mol Ecol 2019; 28:3656-3668. [PMID: 31332871 DOI: 10.1111/mec.15180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
Abstract
The vomeronasal system (VNS) serves crucial functions for detecting olfactory clues often related to social and sexual behaviour. Intriguingly, two of the main components of the VNS, the vomeronasal organ (VNO) and the accessory olfactory bulb, are regressed in aquatic mammals, several bats and primates, likely due to adaptations to different ecological niches. To detect genomic changes that are associated with the convergent reduction of the VNS, we performed the first systematic screen for convergently inactivated protein-coding genes associated with convergent VNS reduction, considering 106 mammalian genomes. Extending previous studies, our results support that Trpc2, a cation channel that is important for calcium signalling in the VNO, is a predictive molecular marker for the presence of a VNS. Our screen also detected the convergent inactivation of the calcium-binding protein S100z, the aldehyde oxidase Aox2 that is involved in odorant degradation, and the uncharacterized Mslnl gene that is expressed in the VNO and olfactory epithelium. Furthermore, we found that Trpc2 and S100z or Aox2 are also inactivated in otters and Phocid seals for which no morphological data about the VNS are available yet. This predicts a VNS reduction in these semi-aquatic mammals. By examining the genomes of 115 species in total, our study provides a detailed picture of how the convergent reduction of the VNS coincides with gene inactivation in placental mammals. These inactivated genes provide experimental targets for studying the evolution and biological significance of the olfactory system under different environmental conditions.
Collapse
Affiliation(s)
- Nikolai Hecker
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Ulla Lächele
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Heiko Stuckas
- Population Genetics, Senckenberg Natural History Collections Dresden, Dresden, Germany.,Leibniz Institution for Biodiversity and Earth System Research, Dresden, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Michael Hiller
- Center for Systems Biology Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| |
Collapse
|
126
|
Signatures of Relaxed Selection in the CYP8B1 Gene of Birds and Mammals. J Mol Evol 2019; 87:209-220. [DOI: 10.1007/s00239-019-09903-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023]
|
127
|
Lopes-Marques M, Machado AM, Alves LQ, Fonseca MM, Barbosa S, Sinding MHS, Rasmussen MH, Iversen MR, Frost Bertelsen M, Campos PF, da Fonseca R, Ruivo R, Castro LFC. Complete Inactivation of Sebum-Producing Genes Parallels the Loss of Sebaceous Glands in Cetacea. Mol Biol Evol 2019; 36:1270-1280. [PMID: 30895322 PMCID: PMC6526905 DOI: 10.1093/molbev/msz068] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Genomes are dynamic biological units, with processes of gene duplication and loss triggering evolutionary novelty. The mammalian skin provides a remarkable case study on the occurrence of adaptive morphological innovations. Skin sebaceous glands (SGs), for instance, emerged in the ancestor of mammals serving pivotal roles, such as lubrication, waterproofing, immunity, and thermoregulation, through the secretion of sebum, a complex mixture of various neutral lipids such as triacylglycerol, free fatty acids, wax esters, cholesterol, and squalene. Remarkably, SGs are absent in a few mammalian lineages, including the iconic Cetacea. We investigated the evolution of the key molecular components responsible for skin sebum production: Dgat2l6, Awat1, Awat2, Elovl3, Mogat3, and Fabp9. We show that all analyzed genes have been rendered nonfunctional in Cetacea species (toothed and baleen whales). Transcriptomic analysis, including a novel skin transcriptome from blue whale, supports gene inactivation. The conserved mutational pattern found in most analyzed genes, indicates that pseudogenization events took place prior to the diversification of modern Cetacea lineages. Genome and skin transcriptome analysis of the common hippopotamus highlighted the convergent loss of a subset of sebum-producing genes, notably Awat1 and Mogat3. Partial loss profiles were also detected in non-Cetacea aquatic mammals, such as the Florida manatee, and in terrestrial mammals displaying specialized skin phenotypes such as the African elephant, white rhinoceros and pig. Our findings reveal a unique landscape of “gene vestiges” in the Cetacea sebum-producing compartment, with limited gene loss observed in other mammalian lineages: suggestive of specific adaptations or specializations of skin lipids.
Collapse
Affiliation(s)
- Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal
| | - André M Machado
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal
| | - Luís Q Alves
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, U. Porto-University of Porto, Porto, Portugal
| | - Miguel M Fonseca
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal
| | - Susana Barbosa
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal
| | | | | | | | | | - Paula F Campos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal.,Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark
| | - Rute da Fonseca
- Department of Biology, The Bioinformatics Centre, University of Copenhagen, Copenhagen, Denmark.,Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Raquel Ruivo
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal
| | - L Filipe C Castro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, U. Porto-University of Porto, Porto, Portugal.,Department of Biology, Faculty of Sciences, U. Porto-University of Porto, Porto, Portugal
| |
Collapse
|
128
|
Feiner N, Wood NJ. Lizards possess the most complete tetrapod Hox gene repertoire despite pervasive structural changes in Hox clusters. Evol Dev 2019; 21:218-228. [PMID: 31298799 DOI: 10.1111/ede.12300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 06/08/2019] [Indexed: 01/21/2023]
Abstract
Hox genes are a remarkable example of conservation in animal development and their nested expression along the head-to-tail axis orchestrates embryonic patterning. Early in vertebrate history, two duplications led to the emergence of four Hox clusters (A-D) and redundancy within paralog groups has been partially accommodated with gene losses. Here we conduct an inventory of squamate Hox genes using the genomes of 10 lizard and 7 snake species. Although the HoxC1 gene has been hypothesized to be lost in the amniote ancestor, we reveal that it is retained in lizards. In contrast, all snakes lack functional HoxC1 and -D12 genes. Varying levels of degradation suggest differences in the process of gene loss between the two genes. The vertebrate HoxC1 gene is prone to gene loss and its functional domains are more variable than those of other Hox1 genes. We describe for the first time the HoxC1 expression patterns in tetrapods. HoxC1 is broadly expressed during development in the diencephalon, the neural tube, dorsal root ganglia, and limb buds in two lizard species. Our study emphasizes the value of revisiting Hox gene repertoires by densely sampling taxonomic groups and its feasibility owing to growing sequence resources in evaluating gene repertoires across taxa.
Collapse
Affiliation(s)
- Nathalie Feiner
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Biology, Lund University, Lund, Sweden
| | - Natalie J Wood
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Centre for Life's Origins and Evolution, Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
129
|
Contraction of the ROS Scavenging Enzyme Glutathione S-Transferase Gene Family in Cetaceans. G3-GENES GENOMES GENETICS 2019; 9:2303-2315. [PMID: 31092607 PMCID: PMC6643896 DOI: 10.1534/g3.119.400224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cetaceans are a group of marine mammals whose ancestors were adaptated for life on land. Life in an aquatic environment poses many challenges for air-breathing mammals. Diving marine mammals have adapted to rapid reoxygenation and reactive oxygen species (ROS)-mediated reperfusion injury. Here, we considered the evolution of the glutathione transferase (GST) gene family which has important roles in the detoxification of endogenously-derived ROS and environmental pollutants. We characterized the cytosolic GST gene family in 21 mammalian species; cetaceans, sirenians, pinnipeds, and their terrestrial relatives. All seven GST classes were identified, showing that GSTs are ubiquitous in mammals. Some GST genes are the product of lineage-specific duplications and losses, in line with a birth-and-death evolutionary model. We detected sites with signatures of positive selection that possibly influence GST structure and function, suggesting that adaptive evolution of GST genes is important for defending mammals from various types of noxious environmental compounds. We also found evidence for loss of alpha and mu GST subclass genes in cetacean lineages. Notably, cetaceans have retained a homolog of at least one of the genes GSTA1, GSTA4, and GSTM1; GSTs that are present in both the cytosol and mitochondria. The observed variation in number and selection pressure on GST genes suggest that the gene family structure is dynamic within cetaceans.
Collapse
|
130
|
Gonzalo A, Lucas MO, Charpentier C, Sandmann G, Lloyd A, Jenczewski E. Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus. Nat Commun 2019; 10:2354. [PMID: 31142748 PMCID: PMC6541637 DOI: 10.1038/s41467-019-10010-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/11/2019] [Indexed: 02/06/2023] Open
Abstract
In allopolyploids, correct chromosome segregation requires suppression of non-homologous crossovers while levels of homologous crossovers are ensured. To date, no mechanism able to specifically inhibit non-homologous crossovers has been described in allopolyploids other than in bread wheat. Here, we show that reducing the number of functional copies of MSH4, an essential gene for the main crossover pathway, prevents non-homologous crossovers in allotetraploid Brassica napus. We show that non-homologous crossovers originate almost exclusively from the MSH4-dependent recombination pathway and that their numbers decrease when MSH4 returns to single copy in B. napus; by contrast, homologous crossovers remain unaffected by MSH4 duplicate loss. We also demonstrate that MSH4 systematically returns to single copy following numerous independent polyploidy events, a pattern that is probably not by chance. These results suggest that stabilization of allopolyploid meiosis can be enhanced by loss of a key meiotic recombination gene.
Collapse
Affiliation(s)
- Adrián Gonzalo
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.,Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Marie-Odile Lucas
- INRA UMR1349 Institut de Génétique, Environnement et Protection des Plantes, Le Rheu, 35653, France
| | - Catherine Charpentier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Greta Sandmann
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Andrew Lloyd
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.,Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, UK
| | - Eric Jenczewski
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
131
|
Larsen PA, Matocq MD. Emerging genomic applications in mammalian ecology, evolution, and conservation. J Mammal 2019. [DOI: 10.1093/jmammal/gyy184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Peter A Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science; Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
132
|
Lopes-Marques M, Alves LQ, Fonseca MM, Secci-Petretto G, Machado AM, Ruivo R, Castro LFC. Convergent inactivation of the skin-specific C-C motif chemokine ligand 27 in mammalian evolution. Immunogenetics 2019; 71:363-372. [PMID: 31049641 DOI: 10.1007/s00251-019-01114-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
The appearance of mammalian-specific skin features was a key evolutionary event contributing for the elaboration of physiological processes such as thermoregulation, adequate hydration, locomotion, and inflammation. Skin inflammatory and autoimmune processes engage a population of skin-infiltrating T cells expressing a specific C-C chemokine receptor (CCR10) which interacts with an epidermal CC chemokine, the skin-specific C-C motif chemokine ligand 27 (CCL27). CCL27 is selectively produced in the skin by keratinocytes, particularly upon inflammation, mediating the adhesion and homing of skin-infiltrating T cells. Here, we examined the evolution and coding condition of Ccl27 in 112 placental mammalian species. Our findings reveal that a number of open reading frame inactivation events such as insertions, deletions, and start and stop codon mutations independently occurred in Cetacea, Pholidota, Sirenia, Chiroptera, and Rodentia, totalizing 18 species. The diverse habitat settings and lifestyles of Ccl27-eroded lineages probably implied distinct evolutionary triggers rendering this gene unessential. For example, in Cetacea, the rapid renewal of skin layers minimizes the need for an elaborate inflammatory mechanism, mirrored by the absence of epidermal scabs. Our findings suggest that the convergent and independent loss of Ccl27 in mammalian evolution concurred with unique adaptive roads for skin physiology.
Collapse
Affiliation(s)
| | - Luís Q Alves
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Miguel M Fonseca
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Giulia Secci-Petretto
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - André M Machado
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal
| | - Raquel Ruivo
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - L Filipe C Castro
- CIIMAR-UP, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal. .,Department of Biology, Faculty of Sciences, Rua do Campo Alegre 1021/1055, 4169-007, Porto, Portugal.
| |
Collapse
|
133
|
Castagnone‐Sereno P, Mulet K, Danchin EGJ, Koutsovoulos GD, Karaulic M, Da Rocha M, Bailly‐Bechet M, Pratx L, Perfus‐Barbeoch L, Abad P. Gene copy number variations as signatures of adaptive evolution in the parthenogenetic, plant‐parasitic nematode
Meloidogyne incognita. Mol Ecol 2019; 28:2559-2572. [DOI: 10.1111/mec.15095] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 01/05/2023]
Affiliation(s)
| | - Karine Mulet
- INRAUniversité Côte d'AzurCNRSISA Sophia Antipolis France
| | | | | | | | | | | | - Loris Pratx
- INRAUniversité Côte d'AzurCNRSISA Sophia Antipolis France
| | | | - Pierre Abad
- INRAUniversité Côte d'AzurCNRSISA Sophia Antipolis France
| |
Collapse
|
134
|
Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, Wheeler NE, Gardner PP, Clarke JA, Baker AJ, Clamp M, Edwards SV. Convergent regulatory evolution and loss of flight in paleognathous birds. Science 2019; 364:74-78. [DOI: 10.1126/science.aat7244] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
A core question in evolutionary biology is whether convergent phenotypic evolution is driven by convergent molecular changes in proteins or regulatory regions. We combined phylogenomic, developmental, and epigenomic analysis of 11 new genomes of paleognathous birds, including an extinct moa, to show that convergent evolution of regulatory regions, more so than protein-coding genes, is prevalent among developmental pathways associated with independent losses of flight. A Bayesian analysis of 284,001 conserved noncoding elements, 60,665 of which are corroborated as enhancers by open chromatin states during development, identified 2355 independent accelerations along lineages of flightless paleognaths, with functional consequences for driving gene expression in the developing forelimb. Our results suggest that the genomic landscape associated with morphological convergence in ratites has a substantial shared regulatory component.
Collapse
|
135
|
Neves F, Abrantes J, Lopes AM, Fusinatto LA, Magalhães MJ, van der Loo W, Esteves PJ. Evolution of CCL16 in Glires (Rodentia and Lagomorpha) shows an unusual random pseudogenization pattern. BMC Evol Biol 2019; 19:59. [PMID: 30786851 PMCID: PMC6383237 DOI: 10.1186/s12862-019-1390-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
Background The C-C motif chemokine ligand 16 (CCL16) is a potent pro-inflammatory chemokine and a chemoattractant for monocytes and lymphocytes. In normal plasma, it is present at high concentrations and elicits its effects on cells by interacting with cell surface chemokine receptors. In the European rabbit and in rodents such as mouse, rat and guinea pig, CCL16 was identified as a pseudogene, while in the thirteen-lined ground squirrel it appears to be potentially functional. To gain insight into the evolution of this gene in the superorder Glires (rodents and lagomorphs), we amplified the CCL16 gene from eleven Leporidae and seven Ochotonidae species. Results We compared our sequences with CCL16 sequences of twelve rodent species retrieved from public databases. The data show that for all leporid species studied CCL16 is a pseudogene. This is primarily due to mutations at the canonical Cys Cys motif, creating either premature stop codons, or disrupting amino acid replacements. In the Mexican cottontail, CCL16 is pseudogenized due to a frameshift deletion. Additionally, in the exon 1 (signal peptide), there are frameshift deletions present in all leporids studied. In contrast, in Ochotona species, CCL16 is potentially functional, except for an allele in Hoffmann’s pika. In rodents, CCL16 is functional in a number of species, but patterns of pseudogenization similar to those observed in lagomorphs also exist. Conclusions Our results suggest that while functional in the Glires ancestor, CCL16 underwent pseudogenization in some species. This process occurred stochastically or in specific lineages at different moments in the evolution of Glires. These observations suggest that the CCL16 had different evolutionary constrains in the Glires group that could be associated with the CCL16 biological function. Electronic supplementary material The online version of this article (10.1186/s12862-019-1390-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,UMIB/UP - Unidade Multidisciplinar de Investigação Biomédica/Universidade do Porto, Porto, Portugal
| | - Joana Abrantes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Ana M Lopes
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal.,UMIB/UP - Unidade Multidisciplinar de Investigação Biomédica/Universidade do Porto, Porto, Portugal
| | - Luciana A Fusinatto
- Departamento de Ecologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), R. São Francisco Xavier 524, Rio de Janeiro, RJ, CEP 20550-013, Brazil
| | - Maria J Magalhães
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Wessel van der Loo
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Pedro J Esteves
- CIBIO, InBIO - Research Network in Biodiversity and Evolutionary Biology, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal. .,CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal.
| |
Collapse
|
136
|
Hecker N, Sharma V, Hiller M. Convergent gene losses illuminate metabolic and physiological changes in herbivores and carnivores. Proc Natl Acad Sci U S A 2019; 116:3036-3041. [PMID: 30718421 PMCID: PMC6386725 DOI: 10.1073/pnas.1818504116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The repeated evolution of dietary specialization represents a hallmark of mammalian ecology. To detect genomic changes that are associated with dietary adaptations, we performed a systematic screen for convergent gene losses associated with an obligate herbivorous or carnivorous diet in 31 placental mammals. For herbivores, our screen discovered the repeated loss of the triglyceride lipase inhibitor PNLIPRP1, suggesting enhanced triglyceride digestion efficiency. Furthermore, several herbivores lost the pancreatic exocytosis factor SYCN, providing an explanation for continuous pancreatic zymogen secretion in these species. For carnivores, we discovered the repeated loss of the hormone-receptor pair INSL5-RXFP4 that regulates appetite and glucose homeostasis, which likely relates to irregular feeding patterns and constant gluconeogenesis. Furthermore, reflecting the reduced need to metabolize plant-derived xenobiotics, several carnivores lost the xenobiotic receptors NR1I3 and NR1I2 Finally, the carnivore-associated loss of the gastrointestinal host defense gene NOX1 could be related to a reduced gut microbiome diversity. By revealing convergent gene losses associated with differences in dietary composition, feeding patterns, and gut microbiomes, our study contributes to understanding how similar dietary specializations evolved repeatedly in mammals.
Collapse
Affiliation(s)
- Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany;
- Max Planck Institute for the Physics of Complex Systems, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
137
|
The Singularity of Cetacea Behavior Parallels the Complete Inactivation of Melatonin Gene Modules. Genes (Basel) 2019; 10:genes10020121. [PMID: 30736361 PMCID: PMC6410235 DOI: 10.3390/genes10020121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Melatonin, the hormone of darkness, is a peculiar molecule found in most living organisms. Emerging as a potent broad-spectrum antioxidant, melatonin was repurposed into extra roles such as the modulation of circadian and seasonal rhythmicity, affecting numerous aspects of physiology and behaviour, including sleep entrainment and locomotor activity. Interestingly, the pineal gland—the melatonin synthesising organ in vertebrates—was suggested to be absent or rudimentary in some mammalian lineages, including Cetacea. In Cetacea, pineal regression is paralleled by their unique bio-rhythmicity, as illustrated by the unihemispheric sleeping behaviour and long-term vigilance. Here, we examined the genes responsible for melatonin synthesis (Aanat and Asmt) and signalling (Mtnr1a and Mtnr1b) in 12 toothed and baleen whale genomes. Based on an ample genomic comparison, we deduce that melatonin-related gene modules are eroded in Cetacea.
Collapse
|
138
|
Springer MS, Emerling CA, Gatesy J, Randall J, Collin MA, Hecker N, Hiller M, Delsuc F. Odontogenic ameloblast-associated (ODAM) is inactivated in toothless/enamelless placental mammals and toothed whales. BMC Evol Biol 2019; 19:31. [PMID: 30674270 PMCID: PMC6343362 DOI: 10.1186/s12862-019-1359-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background The gene for odontogenic ameloblast-associated (ODAM) is a member of the secretory calcium-binding phosphoprotein gene family. ODAM is primarily expressed in dental tissues including the enamel organ and the junctional epithelium, and may also have pleiotropic functions that are unrelated to teeth. Here, we leverage the power of natural selection to test competing hypotheses that ODAM is tooth-specific versus pleiotropic. Specifically, we compiled and screened complete protein-coding sequences, plus sequences for flanking intronic regions, for ODAM in 165 placental mammals to determine if this gene contains inactivating mutations in lineages that either lack teeth (baleen whales, pangolins, anteaters) or lack enamel on their teeth (aardvarks, sloths, armadillos), as would be expected if the only essential functions of ODAM are related to tooth development and the adhesion of the gingival junctional epithelium to the enamel tooth surface. Results We discovered inactivating mutations in all species of placental mammals that either lack teeth or lack enamel on their teeth. A surprising result is that ODAM is also inactivated in a few additional lineages including all toothed whales that were examined. We hypothesize that ODAM inactivation is related to the simplified outer enamel surface of toothed whales. An alternate hypothesis is that ODAM inactivation in toothed whales may be related to altered antimicrobial functions of the junctional epithelium in aquatic habitats. Selection analyses on ODAM sequences revealed that the composite dN/dS value for pseudogenic branches is close to 1.0 as expected for a neutrally evolving pseudogene. DN/dS values on transitional branches were used to estimate ODAM inactivation times. In the case of pangolins, ODAM was inactivated ~ 65 million years ago, which is older than the oldest pangolin fossil (Eomanis, 47 Ma) and suggests an even more ancient loss or simplification of teeth in this lineage. Conclusion Our results validate the hypothesis that the only essential functions of ODAM that are maintained by natural selection are related to tooth development and/or the maintenance of a healthy junctional epithelium that attaches to the enamel surface of teeth. Electronic supplementary material The online version of this article (10.1186/s12862-019-1359-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA.
| | - Christopher A Emerling
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France.,Department of Biology, Whittier College, Whittier, CA, 90602, USA
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | - Jason Randall
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Matthew A Collin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Frédéric Delsuc
- Institut des Sciences de l'Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, Montpellier, France
| |
Collapse
|
139
|
Network-based microsynteny analysis identifies major differences and genomic outliers in mammalian and angiosperm genomes. Proc Natl Acad Sci U S A 2019; 116:2165-2174. [PMID: 30674676 PMCID: PMC6369804 DOI: 10.1073/pnas.1801757116] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Studying the organization of genes within genomes across broad evolutionary timescales can advance our understanding of the evolution of traits and clades. We have used a network approach to investigate genome dynamics of mammals and angiosperms. In general, genome organization and gene microcollinearity is much more conserved in mammals than in flowering plants. We then identified the genomic outliers or “rebel genes,” within each clade. Genes that have moved are unusual for mammals, whereas highly conserved single-copy genes are exceptional for plants. How conservation and changes in synteny or fundamental differences in genome organization have contributed to the evolution of lineages could be a new scientific frontier. A comprehensive analysis of relative gene order, or microsynteny, can provide valuable information for understanding the evolutionary history of genes and genomes, and ultimately traits and species, across broad phylogenetic groups and divergence times. We have used our network-based phylogenomic synteny analysis pipeline to first analyze the overall patterns and major differences between 87 mammalian and 107 angiosperm genomes. These two important groups have both evolved and radiated over the last ∼170 MYR. Secondly, we identified the genomic outliers or “rebel genes” within each clade. We theorize that rebel genes potentially have influenced trait and lineage evolution. Microsynteny networks use genes as nodes and syntenic relationships between genes as edges. Networks were decomposed into clusters using the Infomap algorithm, followed by phylogenomic copy-number profiling of each cluster. The differences in syntenic properties of all annotated gene families, including BUSCO genes, between the two clades are striking: most genes are single copy and syntenic across mammalian genomes, whereas most genes are multicopy and/or have lineage-specific distributions for angiosperms. We propose microsynteny scores as an alternative and complementary metric to BUSCO for assessing genome assemblies. We further found that the rebel genes are different between the two groups: lineage-specific gene transpositions are unusual in mammals, whereas single-copy highly syntenic genes are rare for flowering plants. We illustrate several examples of mammalian transpositions, such as brain-development genes in primates, and syntenic conservation across angiosperms, such as single-copy genes related to photosynthesis. Future experimental work can test if these are indeed rebels with a cause.
Collapse
|
140
|
Coding Exon-Structure Aware Realigner (CESAR): Utilizing Genome Alignments for Comparative Gene Annotation. Methods Mol Biol 2019; 1962:179-191. [PMID: 31020560 DOI: 10.1007/978-1-4939-9173-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Alignment-based gene identification methods utilize sequence conservation between orthologous protein-coding genes to annotate genes in newly sequenced genomes. CESAR is an approach that makes use of existing genome alignments to transfer genes from one genome to other aligned genomes, and thus generates comparative gene annotations. To accurately detect conserved exons that exhibit an intact reading frame and consensus splice sites, CESAR produces a new alignment between orthologous exons, taking information about the exon's reading frame and splice site positions into account. Furthermore, CESAR is able to detect most evolutionary splice site shifts, which helps to annotate exon boundaries at high precision. Here, we describe how to apply CESAR to generate comparative gene annotations for one or many species, and discuss the strengths and limitations of this approach. CESAR is available at https://github.com/hillerlab/CESAR2.0 .
Collapse
|
141
|
Sharma V, Hiller M. Loss of Enzymes in the Bile Acid Synthesis Pathway Explains Differences in Bile Composition among Mammals. Genome Biol Evol 2018; 10:3211-3217. [PMID: 30388264 PMCID: PMC6296402 DOI: 10.1093/gbe/evy243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2018] [Indexed: 12/11/2022] Open
Abstract
Bile acids are important for absorbing nutrients. Most mammals produce cholic and chenodeoxycholic bile acids. Here, we investigated genes in the bile acid synthesis pathway in four mammals that deviate from the usual mammalian bile composition. First, we show that naked-mole rats, elephants, and manatees repeatedly inactivated CYP8B1, an enzyme uniquely required for cholic acid synthesis, which explains the absence of cholic acid in these species. Second, no gene-inactivating mutations were found in any pathway gene in the rhinoceros, a species that lacks bile acids, indicating an evolutionarily recent change in its bile composition. Third, elephants and/or manatees that also lack bile acids altogether have lost additional nonessential enzymes (SLC27A5, ACOX2). Apart from uncovering genomic differences explaining deviations in bile composition, our analysis of bile acid enzymes in bile acid-lacking species suggests that essentiality prevents gene loss, while loss of pleiotropic genes is permitted if their other functions are compensated by functionally related proteins.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany.,CRTD-DFG Center for Regenerative Therapies Dresden, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden; and German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
142
|
Jebb D, Hiller M. Recurrent loss of HMGCS2 shows that ketogenesis is not essential for the evolution of large mammalian brains. eLife 2018; 7:38906. [PMID: 30322448 PMCID: PMC6191284 DOI: 10.7554/elife.38906] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/09/2018] [Indexed: 12/04/2022] Open
Abstract
Apart from glucose, fatty acid-derived ketone bodies provide metabolic energy for the brain during fasting and neonatal development. We investigated the evolution of HMGCS2, the key enzyme required for ketone body biosynthesis (ketogenesis). Unexpectedly, we found that three mammalian lineages, comprising cetaceans (dolphins and whales), elephants and mastodons, and Old World fruit bats have lost this gene. Remarkably, many of these species have exceptionally large brains and signs of intelligent behavior. While fruit bats are sensitive to starvation, cetaceans and elephants can still withstand periods of fasting. This suggests that alternative strategies to fuel large brains during fasting evolved repeatedly and reveals flexibility in mammalian energy metabolism. Furthermore, we show that HMGCS2 loss preceded brain size expansion in toothed whales and elephants. Thus, while ketogenesis was likely important for brain size expansion in modern humans, ketogenesis is not a universal precondition for the evolution of large mammalian brains. Our brain requires a lot of energy to work properly. Sugars are usually the main type of fuel for the body, but when they run low – for example during a food shortage – fat, in the form of fatty acids, can be used instead. However, the brain cannot directly process these molecules; instead, fatty acids need to go through ketogenesis, a process that turns fat into ketone bodies, which the organ can then burn. Scientists believe that the ability to create ketone bodies was essential for us to evolve large brains. Yet, it is still unclear if all mammals can transform fatty acids into ketone bodies. One way to look into this question is to track whether other species have HMGCS2, the main enzyme that drives ketogenesis. Jebb and Hiller examined the genomes of 70 different species of mammals for the gene that codes for HMGCS2. The comparisons revealed that cetaceans (whales, dolphins and porpoises), Old World fruit bats and the African savanna elephant have all independently lost their working version of HMGCS2. Yet, many members of these three groups have evolved brains that are large for their body size. The genetic analyses showed that dolphins and elephants developed big brains after the enzyme became inactive, challenging the idea that HMGCS2 – and by extension ketogenesis – is always required for the evolution of large brains. These results may also be useful for conservation efforts. Many fruit bats across the world are severely threatened, and their lack of ketogenesis could explain why these animals are highly sensitive to starvation and quickly die when food becomes scarce.
Collapse
Affiliation(s)
- David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
143
|
Cañestro C, Roncalli V. Gene losses did not stop the evolution of big brains. eLife 2018; 7:e41912. [PMID: 30322446 PMCID: PMC6191282 DOI: 10.7554/elife.41912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/07/2018] [Indexed: 11/13/2022] Open
Abstract
Elephants and fruit bats have evolved large brains even though they have lost a gene that is fundamental to the supply of energy to the brain when glucose is not available.
Collapse
Affiliation(s)
- Cristian Cañestro
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | - Vittoria Roncalli
- Departament de Genètica, Microbiologia i EstadísticaUniversitat de BarcelonaBarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| |
Collapse
|
144
|
Boso G, Buckler-White A, Kozak CA. Ancient Evolutionary Origin and Positive Selection of the Retroviral Restriction Factor Fv1 in Muroid Rodents. J Virol 2018; 92:e00850-18. [PMID: 29976659 PMCID: PMC6146698 DOI: 10.1128/jvi.00850-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/23/2018] [Indexed: 12/16/2022] Open
Abstract
The laboratory mouse Fv1 gene encodes a retroviral restriction factor that mediates resistance to murine leukemia viruses (MLVs). Sequence similarity between Fv1 and the gag protein of the murine endogenous retrovirus L (MuERV-L) family of ERVs suggests that Fv1 was coopted from an ancient provirus. Previous evolutionary studies found Fv1 orthologs only in the genus Mus Here, we describe identification of orthologous Fv1 sequences in several species belonging to multiple families of rodents outside the genus Mus We show that these Fv1 orthologs are in the same region of conserved synteny, between the genes Miip and Mfn2, suggesting a minimum insertion time of 45 million years for the ancient progenitor of Fv1 Our analysis also revealed that Fv1 was not detectable or heavily mutated in some lineages in the superfamily Muroidea, while, in concert with previous findings in the genus Mus, we found strong evidence of positive selection of Fv1 in the African clade in the subfamily Muridae Residues identified as evolving under positive selection include those that have been previously found to be important for restriction of multiple retroviral lineages. Taken together, these findings suggest that the evolutionary origin of Fv1 substantially predates Mus evolution, that the rodent Fv1 has been shaped by lineage-specific differential selection pressures, and that Fv1 has long been evolving under positive selection in the rodent family Muridae, supporting a defensive role that significantly antedates exposure to MLVs.IMPORTANCE Retroviruses have adapted to living in concert with their hosts throughout vertebrate evolution. Over the years, the study of these relationships revealed the presence of host proteins called restriction factors that inhibit retroviral replication in host cells. The first of these restriction factors to be identified, encoded by the Fv1 gene found in mice, was thought to have originated in the genus Mus In this study, we utilized genome database searches and DNA sequencing to identify Fv1 copies in multiple rodent lineages. Our findings suggest a minimum time of insertion into the genome of rodents of 45 million years for the ancestral progenitor of Fv1 While Fv1 is not detectable in some lineages, we also identified full-length orthologs showing signatures of a molecular "arms race" in a family of rodent species indigenous to Africa. This finding suggests that Fv1 in these species has been coevolving with unidentified retroviruses for millions of years.
Collapse
Affiliation(s)
- Guney Boso
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Alicia Buckler-White
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Christine A Kozak
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
145
|
Meyer WK, Jamison J, Richter R, Woods SE, Partha R, Kowalczyk A, Kronk C, Chikina M, Bonde RK, Crocker DE, Gaspard J, Lanyon JM, Marsillach J, Furlong CE, Clark NL. Ancient convergent losses of Paraoxonase 1 yield potential risks for modern marine mammals. Science 2018; 361:591-594. [PMID: 30093596 DOI: 10.1126/science.aap7714] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 06/29/2018] [Indexed: 01/17/2023]
Abstract
Mammals diversified by colonizing drastically different environments, with each transition yielding numerous molecular changes, including losses of protein function. Though not initially deleterious, these losses could subsequently carry deleterious pleiotropic consequences. We have used phylogenetic methods to identify convergent functional losses across independent marine mammal lineages. In one extreme case, Paraoxonase 1 (PON1) accrued lesions in all marine lineages, while remaining intact in all terrestrial mammals. These lesions coincide with PON1 enzymatic activity loss in marine species' blood plasma. This convergent loss is likely explained by parallel shifts in marine ancestors' lipid metabolism and/or bloodstream oxidative environment affecting PON1's role in fatty acid oxidation. PON1 loss also eliminates marine mammals' main defense against neurotoxicity from specific man-made organophosphorus compounds, implying potential risks in modern environments.
Collapse
Affiliation(s)
- Wynn K Meyer
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jerrica Jamison
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Richter
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stacy E Woods
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Raghavendran Partha
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda Kowalczyk
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles Kronk
- Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert K Bonde
- Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | | | - Janet M Lanyon
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Judit Marsillach
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Clement E Furlong
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nathan L Clark
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA. .,Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
146
|
Cetacea are natural knockouts for IL20. Immunogenetics 2018; 70:681-687. [DOI: 10.1007/s00251-018-1071-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/01/2018] [Indexed: 10/28/2022]
|
147
|
Scally A. High-quality genomes reveal new differences between the great apes. Nature 2018; 559:336-338. [DOI: 10.1038/d41586-018-05679-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
148
|
Sharma V, Lehmann T, Stuckas H, Funke L, Hiller M. Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals. PLoS Biol 2018; 16:e2005293. [PMID: 29953435 PMCID: PMC6023123 DOI: 10.1371/journal.pbio.2005293] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023] Open
Abstract
Descent of testes from a position near the kidneys into the lower abdomen or into the scrotum is an important developmental process that occurs in all placental mammals, with the exception of five afrotherian lineages. Since soft-tissue structures like testes are not preserved in the fossil record and since key parts of the placental mammal phylogeny remain controversial, it has been debated whether testicular descent is the ancestral or derived condition in placental mammals. To resolve this debate, we used genomic data of 71 mammalian species and analyzed the evolution of two key genes (relaxin/insulin-like family peptide receptor 2 [RXFP2] and insulin-like 3 [INSL3]) that induce the development of the gubernaculum, the ligament that is crucial for testicular descent. We show that both RXFP2 and INSL3 are lost or nonfunctional exclusively in four afrotherians (tenrec, cape elephant shrew, cape golden mole, and manatee) that completely lack testicular descent. The presence of remnants of once functional orthologs of both genes in these afrotherian species shows that these gene losses happened after the split from the placental mammal ancestor. These “molecular vestiges” provide strong evidence that testicular descent is the ancestral condition, irrespective of persisting phylogenetic discrepancies. Furthermore, the absence of shared gene-inactivating mutations and our estimates that the loss of RXFP2 happened at different time points strongly suggest that testicular descent was lost independently in Afrotheria. Our results provide a molecular mechanism that explains the loss of testicular descent in afrotherians and, more generally, highlight how molecular vestiges can provide insights into the evolution of soft-tissue characters. While fossils of whales with legs demonstrate that these species evolved from legged ancestors, the ancestral state of nonfossilizing soft-tissue structures can only be indirectly inferred. This difficulty is also confounded by uncertainties in the phylogenetic relationships between the animals concerned. A prime example is the case of testicular descent, a developmental process that determines the final position of testes, which occurs in most placental mammals but is absent from several afrotherian lineages. Here, we discovered that afrotherians possess remnants of genes known to be required for testicular descent. These “molecular vestiges” show that testicular descent was already present in the placental ancestor and was subsequently lost in Afrotheria. Our study highlights the potential of molecular vestiges in resolving contradictory ancestral states of soft-tissue characters.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Germany
| | - Thomas Lehmann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | | | - Liane Funke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Germany
- * E-mail:
| |
Collapse
|