101
|
Masyeni S, Kuntaman K, Aryati A, Sofro MAU, Hadi U, Mastutik G, Purnomo W, Santosa A, Iqhrammullah M, Yohan B, Nelwan EJ, Sasmono RT. The role of mediator suppressor of cytokine signaling (SOCS), toll-like receptor 3 (TLR-3) and nuclear factor kappa B (NFκB) on cytokine production during dengue virus infection. NARRA J 2023; 3:e167. [PMID: 38454980 PMCID: PMC10919718 DOI: 10.52225/narra.v3i2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/14/2023] [Indexed: 10/16/2023]
Abstract
Inability to understand the pathogenesis of severe dengue, in particular the control mechanism of immune responses, has led to high mortality rate for patients with dengue shock syndrome (DSS). The aim of this study was to determine the control mechanism of cytokine production by mediator suppressor of cytokine signaling (SOCS), toll-like receptor 3 (TLR-3) and nuclear factor kappa B (NFκB) during DENV infection. Peripheral blood mononuclear blood cells (PBMC), isolated from healthy individuals, were infected with dengue virus (DENV)-2 strain SJN-006 Cosmopolitan genotype (isolated from Bali, Indonesia). The relative gene expression of SOCS-3, TLR-3, NFκB, and the cytokine genes (interleukin (IL)-6, IL-8, interferon inducible protein 10 (IP-10), and macrophage inflammatory protein-1 beta (MIP-1β)) were measured using qRT-PCR at 6, 12 and 24 hours post infection (hpi). Student t-test and Mann-Whitney test were used to compare the gene expressions while causal correlations were analyzed using regression test and path analyses. DENV-2 infection increased the gene expression of SOCS-3, TLR-3, and NFκB after 12 and 24 hpi. The expression of IL-6, IL-8, IP-10, and MIP-1β genes was increased and peaked at different times post-infection. NFκB and SOCS-3 genes likely have role in the upregulation of IL-8 and IL-6 gene expression, respectively. MIP-1β gene expression was significantly induced by both NFκB and SOCS-3. In conclusion, our study suggested that SOCS-3, TLR-3, and NFκB are important in regulating the production of IL-6, IL-8, IP-10, MIP-1β during early phase of DENV-2 infection. This enriches our understanding on pathogenesis pathway of DENV-associated cytokine storm.
Collapse
Affiliation(s)
- Sri Masyeni
- Departement of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Bali, Indonesia
- Departement of Internal Medicine, Sanjiwani Hospital, Bali, Indonesia
| | - Kuntaman Kuntaman
- Department of Medical Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Department of Medical Microbiology, Dr. Soetomo Hospital, Surabaya, Indonesia
| | - Aryati Aryati
- Department of Clinical Pathology, School of Medicine and Institute of Tropical Disease, Universitas Airlangga, Surabaya,Indonesia
| | - Muchlis AU. Sofro
- Department of Internal Medicine, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
- Department of Internal Medicine, Dr Kariadi Hospital, Semarang, Indonesia
| | - Usman Hadi
- Department of Internal Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo Hospital, Surabaya, Indonesia
| | - Gondo Mastutik
- Department of Anatomical Pathologic, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Windu Purnomo
- Department of Biostatistics, Faculty of Public Health, Universitas Airlangga Surabaya, Indonesia
| | - Agus Santosa
- Departement of Internal Medicine, Faculty of Medicine and Health Sciences, Universitas Warmadewa, Bali, Indonesia
| | - Muhammad Iqhrammullah
- Faculty of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh, Indonesia
- Innovative Sustainability Lab, PT. Biham Riset dan Edukasi, Banda Aceh, Indonesia
| | - Benediktus Yohan
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| | - Erni J. Nelwan
- Division of Tropical and Infectious Disease, Department of Internal Medicine, Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
- Infectious Disease and Immunology Research Center, Indonesia Medical and Education Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Research Center for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
102
|
Lockwood KC, Lear TB, Rajbhandari S, McKelvey AC, Dunn SR, Boudreau ÁN, Liu Y, Chen BB. KIAA0317 regulates SOCS1 stability to ameliorate colonic inflammation. FEBS J 2023; 290:3802-3811. [PMID: 36938956 PMCID: PMC10509311 DOI: 10.1111/febs.16780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 03/21/2023]
Abstract
Dysregulated cytokine signalling is a hallmark of inflammatory bowel diseases. Inflammatory responses of the colon are regulated by the suppressor of cytokine signalling (SOCS) proteins. SOCS1 is a key member of this family, and its function is critical in maintaining an appropriate inflammatory response through the JAK/STAT signalling pathway. Dysregulation of SOCS1 protein has been identified as a causal element in colonic inflammatory diseases. Despite this, it remains unclear how SOCS1 protein is regulated. Here, we identify that SOCS1 protein is targeted for degradation by the ubiquitin proteasome system, mediated by the E3 ubiquitin ligase KIAA0317 during experimental colonic inflammation. We characterize the mechanism of protein-protein interaction and ubiquitin conjugation to SOCS1 and demonstrate that the modulation of SOCS1 protein level leads to stark effects on JAK/STAT inflammatory signalling. Together, these results provide insight into the regulation of colonic inflammation through a new mechanism of ubiquitin-based control of SOCS1 protein.
Collapse
Affiliation(s)
- Karina C. Lockwood
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Travis B. Lear
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shristi Rajbhandari
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Alison C. McKelvey
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah R. Dunn
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Áine N. Boudreau
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Yuan Liu
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
| | - Bill B. Chen
- Aging Institute, University of Pittsburgh/UPMC, Pittsburgh, PA 15219, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
103
|
Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM. A Review of micro RNAs changes in T2DM in animals and humans. J Diabetes 2023; 15:649-664. [PMID: 37329278 PMCID: PMC10415875 DOI: 10.1111/1753-0407.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin secretion lost by islets of Langerhans and the resistance of target tissues to insulin action, which are two critical features in T2DM development. Based on recently highlighted research that plasma concentration of inflammatory mediators such as tumor necrosis factor α and interleukin-6 are elevated in insulin-resistant and T2DM, and it raises novel question marks about the processes causing inflammation in both situations. Over the past few decades, microRNAs (miRNAs), a class of short, noncoding RNA molecules, have been discovered to be involved in the regulation of inflammation, insulin resistance, and T2DM pathology. These noncoding RNAs are specifically comprised of RNA-induced silencing complexes and regulate the expression of specific protein-coding genes through various mechanisms. There is extending evidence that describes the expression profile of a special class of miRNA molecules altered during T2DM development. These modifications can be observed as potential biomarkers for the diagnosis of T2DM and related diseases. In this review study, after reviewing the possible mechanisms involved in T2DM pathophysiology, we update recent information on the miRNA roles in T2DM, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Mohammad Reza Afsharmanesh
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Zeinab Mohammadi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Azad Reza Mansourian
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
104
|
Nock S, Karim E, Unsworth AJ. Pim Kinases: Important Regulators of Cardiovascular Disease. Int J Mol Sci 2023; 24:11582. [PMID: 37511341 PMCID: PMC10380471 DOI: 10.3390/ijms241411582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pim Kinases; Pim-1, Pim-2, and Pim-3, are a family of constitutively active serine/threonine kinases, widely associated with cell survival, proliferation, and migration. Historically considered to be functionally redundant, independent roles for the individual isoforms have been described. Whilst most established for their role in cancer progression, there is increasing evidence for wider pathological roles of Pim kinases within the context of cardiovascular disease, including inflammation, thrombosis, and cardiac injury. The Pim kinase isoforms have widespread expression in cardiovascular tissues, including the heart, coronary artery, aorta, and blood, and have been demonstrated to be upregulated in several co-morbidities/risk factors for cardiovascular disease. Pim kinase inhibition may thus be a desirable therapeutic for a multi-targeted approach to treat cardiovascular disease and some of the associated risk factors. In this review, we discuss what is known about Pim kinase expression and activity in cells of the cardiovascular system, identify areas where the role of Pim kinase has yet to be fully explored and characterised and review the suitability of targeting Pim kinase for the prevention and treatment of cardiovascular events in high-risk individuals.
Collapse
Affiliation(s)
| | | | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
105
|
Valenzuela NM. JAKinibs prevent persistent, IFNγ-autonomous endothelial cell inflammation and immunogenicity. Am J Physiol Cell Physiol 2023; 325:C186-C207. [PMID: 37184230 PMCID: PMC10312316 DOI: 10.1152/ajpcell.00298.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
The adhesion and subsequent activation of T cells is a critical step in local inflammatory responses, particularly of alloreactive leukocytes in rejection of transplanted donor tissue. Interferon (IFN)γ is an adaptive cytokine that promotes endothelial cell (EC) expression of pro-adhesive factors and costimulatory molecules. We recently reported that IFNγ-induced endothelial cell antigen-presenting capacity was protracted after cytokine withdrawal. This study sought to determine what intracellular signaling mediates this chronic endothelial activation by IFNγ. The durability of interferon signaling in human aortic endothelial activation was tested. Pro-adhesive and costimulatory gene expression, phenotype, secretome, and Janus kinase (JAK)/STAT phosphorylation in human primary endothelial cells were measured under chronic and transient IFNγ stimulation, with various JAK inhibitors. IFNγ reporter cells were tested for STAT1 transcriptional activity with JAK inhibition and suppressors of cytokine signaling (SOCS) overexpression, under continuous and priming conditions. The consequences of even short exposure to IFNγ were long-lasting and broad, with sustained elevation of adhesion molecules and chemokines up to 48 h later. JAK/STAT and interferon response factor expression were likewise durable, dependent on new transcription but autonomous of continuous IFNγ. Persistent STAT new transcription and JAK signaling in the endothelium was required to maintain a pro-adhesive and proimmunogenic phenotype after IFNγ withdrawal since both could be prevented by cycloheximide but only by JAKinibs with potency against JAK2. Finally, the suppressor of cytokine signaling SOCS1 failed to emerge in primed endothelial cells, which likely accounted for prolonged inflammatory gene expression. The results reveal a sustained JAK-dependent perturbation of endothelial function and suggest that JAKinibs may have therapeutic benefits in dampening vascular inflammation and allogeneic leukocyte activation.NEW & NOTEWORTHY The central question investigated in this study is why vascular endothelium remains inflamed and what underlying signaling is responsible. The new results show that the resolution of endothelial-controlled inflammation may be impaired or delayed because Janus kinase (JAK)/STAT activation is maintained autonomous of interferon (IFN)γ presence, and the late phase negative regulator suppressors of cytokine signaling (SOCS)1 fails to be induced.
Collapse
Affiliation(s)
- Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States
| |
Collapse
|
106
|
Somade OT, Oyinloye BE, Ajiboye BO, Osukoya OA. Syringic acid demonstrates an anti-inflammatory effect via modulation of the NF-κB-iNOS-COX-2 and JAK-STAT signaling pathways in methyl cellosolve-induced hepato-testicular inflammation in rats. Biochem Biophys Rep 2023; 34:101484. [PMID: 37197735 PMCID: PMC10184048 DOI: 10.1016/j.bbrep.2023.101484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Syringic acid (SACI) is an emerging nutraceutical and antioxidant used in modern Chinese medicine. It has potential neuroprotective, anti-hyperglycemic, and anti-angiogenic properties. Methyl cellosolve (MCEL) has been reported to induce tissue inflammation in the testis, kidney, liver, and lung. This study aimed to investigate the effect and probable mechanism of action of SACI on MCEL-induced hepatic and testicular inflammation in male rats. Compared to the control group, administration of MCEL to rats significantly increased the levels of IL-6, TNF-α, iNOS, COX-2, and NF-κB in the liver and testis. Additionally, the total mRNA expressions of JAK1 (in the liver only), STAT1, and SOCS1 were significantly increased in both the liver and testis, while testicular JAK1 total mRNA levels were significantly decreased. The expression of PIAS1 protein was significantly higher in the liver and testis. Treatments with SACI at 25 (except liver iNOS), 50, and 75 mg/kg significantly decreased the levels of IL-6, TNF-α, iNOS, COX-2, and NF-κB compared to the control group. Furthermore, the total mRNA expressions of JAK1 and SOCS1 in the liver were significantly reduced by all doses of SACI investigated, while the total mRNA levels of liver and testis STAT1 were significantly reduced by 25 and 50 mg/kg of SACI only. In the testis, the mRNA level of SOCS1 was significantly reduced by all doses of SACI compared to MCEL only. Additionally, SACI (at 75 mg/kg) significantly reduced PIAS1 protein expression in the liver, while in the testis, SACI at all investigated doses significantly reduced the expression of PIAS1. In conclusion, SACI demonstrated a hepatic and testicular anti-inflammatory effect by inhibiting the MCEL-induced activation of the NF-κB and JAK-STAT signaling pathways in rats.
Collapse
Affiliation(s)
- Oluwatobi T. Somade
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
| | - Babatunji E. Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Basiru O. Ajiboye
- Institute of Drug Research and Development, S.E Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
| | - Olukemi A. Osukoya
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti, 360001, Nigeria
| |
Collapse
|
107
|
Guo M, Zhang L, Wang H, Zhou Q, Zhu X, Fu X, Yang J, Liu S, Guo D, Zhang B. SOCS1 as a Biomarker Candidate for HPV Infection and Prognosis of Head and Neck Squamous Cell Carcinomas. Curr Issues Mol Biol 2023; 45:5598-5612. [PMID: 37504269 PMCID: PMC10378037 DOI: 10.3390/cimb45070353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
The pathogenesis of head and neck squamous cell carcinoma (HNSCC) is associated with human papillomavirus (HPV) infection. However, the molecular mechanisms underlying the interactions between HNSCC and HPV remain unclear. Bioinformatics was used to analyze the gene expression dataset of HPV-associated HNSCC based on the Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) in HPV-positive and HPV-negative HNSCC were screened. Gene function enrichment, protein-protein interactions (PPI), survival analysis, and immune cell infiltration of DEGs were performed. Furthermore, the clinical data of HNSCC tissue samples were analyzed using immunohistochemistry. In total, 194 DEGs were identified. A PPI network was constructed and 10 hub genes (EREG, PLCG1, ERBB4, HBEGF, ZFP42, CBX6, NFKBIA, SOCS1, ATP2B2, and CEND1) were identified. Survival analysis indicated that low expression of SOCS1 was associated with worse overall survival. Immunohistochemistry demonstrated that SOCS1 expression was higher in HPV-negative HNSCC than in HPV-positive HNSCC, and there was a positive correlation between SOCS1 expression and patient survival. This study provides new information on biological targets that may be relevant to the molecular mechanisms underpinning the occurrence and development of HNSCC. SOCS1 may play an important role in the interaction between HPV and HNSCC and serve as a potential biomarker for future therapeutic targets.
Collapse
Affiliation(s)
- Manli Guo
- Key Lab of Oral Diseases of Gansu Province, Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
| | - Lijie Zhang
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Huihui Wang
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, China
| | - Qiaozhen Zhou
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Xinrang Zhu
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Xinyu Fu
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Jinlong Yang
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Shanhe Liu
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
| | - Dingcheng Guo
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, China
| | - Baoping Zhang
- School/Hospital of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou 730000, China
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, China
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
108
|
Balendran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front Immunol 2023; 14:1196931. [PMID: 37457726 PMCID: PMC10339812 DOI: 10.3389/fimmu.2023.1196931] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that causes pain and disability. Many of the currently available drugs for treating RA patients are aimed at halting the progression of the disease and alleviating inflammation. Further, some of these treatment options have drawbacks, including disease recurrence and adverse effects due to long-term use. These inefficiencies have created a need for a different approach to treating RA. Recently, the focus has shifted to direct targeting of transcription factors (TFs), as they play a vital role in the pathogenesis of RA, activating key cytokines, chemokines, adhesion molecules, and enzymes. In light of this, synthetic drugs and natural compounds are being explored to target key TFs or their signaling pathways in RA. This review discusses the role of four key TFs in inflammation, namely NF-κB, STATs, AP-1 and IRFs, and their potential for being targeted to treat RA.
Collapse
Affiliation(s)
- Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Keith Lim
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - John A. Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian A. Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
109
|
Ling Q, Fang J, Zhai C, Huang W, Chen Y, Zhou T, Liu Y, Fang X. Berberine induces SOCS1 pathway to reprogram the M1 polarization of macrophages via miR-155-5p in colitis-associated colorectal cancer. Eur J Pharmacol 2023; 949:175724. [PMID: 37059377 DOI: 10.1016/j.ejphar.2023.175724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Berberine is approved for the treatment of intestinal infections and diarrhea and has been shown to have anti-inflammatory and anti-tumor effects in pathological intestinal tissues. However, it is unclear whether the anti-inflammatory effect of berberine contributes to its anti-tumor effect on colitis-associated colorectal cancer (CAC). In this study, we found that berberine effectively inhibited tumorigenesis and protected against colon shortening in CAC mouse model. Immunohistochemistry results showed a reduction in the number of macrophage infiltrations in the colon following berberine treatment. Further analysis revealed that most of the infiltrated macrophages were pro-inflammatory M1 type, which berberine effectively limited. However, in another CRC model without chronic colitis, berberine had no significant effect on tumor number or colon length. In vitro studies demonstrated that berberine treatment significantly reduced the percentage of M1 type and levels of Interleukin-1β (IL-1β), Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Additionally, miR-155-5p level was down-regulated, and suppressor of cytokine signaling 1 (SOCS1) expression was up-regulated in berberine-treated cells. Notably, the miR-155-5p inhibitor attenuated the regulatory effects of berberine on SOCS1 signaling and macrophage polarization. Altogether, our findings suggest that the inhibitory effect of berberine on CAC development is dependent on its anti-inflammatory activity. Moreover, miR-155-5p may be involved in the pathogenesis of CAC by regulating M1 macrophage polarization, and berberine could be a promising protective agent against miR-155-5p-mediated CAC. This study provides new insights into pharmacologic mechanisms of berberine and supports the possibility that other anti-miR-155-5p drugs may be beneficial in the treatment of CAC.
Collapse
Affiliation(s)
- Qiaoyun Ling
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Jing Fang
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Chi Zhai
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Wan Huang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Yu Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Ting Zhou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China
| | - Yunxin Liu
- School of Basic Medicine & Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029, China.
| | - Xianjun Fang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230031, China.
| |
Collapse
|
110
|
Ganjali F, Asri N, Rostami-Nejad M, Hashemi M, Ainy E, Masotti A, Asadzadeh Aghdaei H. Expression analysis of IL-2, TBX21 and SOCS1 in peripheral blood cells of celiac disease patients reveals the diagnostic potential of IL-2. Mol Biol Rep 2023; 50:4841-4849. [PMID: 37039998 DOI: 10.1007/s11033-023-08394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/17/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Celiac disease (CD) is a chronic immune-mediated enteropathy and a cytokine network is involved in its pathogenesis. Interleukin-2 (IL-2) has a key role in the adaptive immune pathogenesis of CD and has been reported to be one of the earliest cytokines to be elicited after gluten exposure by CD patients. This study aimed at investigating the expression level of IL-2 and functionally related genes SOCS1 and TBX21 in active and treated CD patients compared to controls. METHODS AND RESULTS Peripheral blood (PB) samples were collected from 40 active CD (ACD), 100 treated CD, and 100 healthy subjects. RNA was extracted, cDNA was synthesized and mRNA expression levels of the desired genes were investigated by Real-time PCR. The gene-gene interaction network was also constructed by GeneMANIA. Our results showed a higher PB mRNA expression of IL-2 in ACD patients compared to controls (p = 0.001) and treated CD patients (p˂0.0001). The mRNA expression level of TBX21 was also significantly up-regulated in ACD patients compared to controls (P = 0.03). SOCS1 mRNA level did not differ between active and treated CD patients and controls (p˃0.05) but showed a significant correlation with the patient's aphthous stomatitis symptom (r = 0.37, p = 0.01). ROC curve analysis suggested that the use of IL-2 levels can reach a high specificity and sensitivity in discriminating active CD patients. CONCLUSIONS The PB level of IL-2 has the potential to be introduced as a diagnostic biomarker for CD. Larger cohort studies, including pediatric patients, are needed to achieve more insights in this regard.
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Department of Cellular and molecular biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Ainy
- Department of Vice Chancellor Research Affairs, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, V.le San Paolo 15, 00146, Rome, Italy
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
111
|
Fadanni GP, Calixto JB. Recent progress and prospects for anti-cytokine therapy in preclinical and clinical acute lung injury. Cytokine Growth Factor Rev 2023; 71-72:13-25. [PMID: 37481378 DOI: 10.1016/j.cytogfr.2023.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a heterogeneous cause of respiratory failure that has a rapid onset, a high mortality rate, and for which there is no effective pharmacological treatment. Current evidence supports a critical role of excessive inflammation in ARDS, resulting in several cytokines, cytokine receptors, and proteins within their downstream signalling pathways being putative therapeutic targets. However, unsuccessful trials of anti-inflammatory drugs have thus far hindered progress in the field. In recent years, the prospects of precision medicine and therapeutic targeting of cytokines coevolving into effective treatments have gained notoriety. There is an optimistic and growing understanding of ARDS subphenotypes as well as advances in treatment strategies and clinical trial design. Furthermore, large trials of anti-cytokine drugs in patients with COVID-19 have provided an unprecedented amount of information that could pave the way for therapeutic breakthroughs. While current clinical and nonclinical ARDS research suggest relatively limited potential in monotherapy with anti-cytokine drugs, combination therapy has emerged as an appealing strategy and may provide new perspectives on finding safe and effective treatments. Accurate evaluation of these drugs, however, also relies on well-founded experimental research and the implementation of biomarker-guided stratification in future trials. In this review, we provide an overview of anti-cytokine therapy for acute lung injury and ARDS, highlighting the current preclinical and clinical evidence for targeting the main cytokines individually and the therapeutic prospects for combination therapy.
Collapse
Affiliation(s)
- Guilherme Pasetto Fadanni
- Centre of Innovation and Preclinical Studies (CIEnP), Florianópolis, Santa Catarina, Brazil; Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| | - João Batista Calixto
- Centre of Innovation and Preclinical Studies (CIEnP), Florianópolis, Santa Catarina, Brazil; Department of Pharmacology, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
112
|
Suren Garg S, Kushwaha K, Dubey R, Gupta J. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions. Diabetes Res Clin Pract 2023; 200:110691. [PMID: 37150407 DOI: 10.1016/j.diabres.2023.110691] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Obesity, a metabolic disorder, is becoming a worldwide epidemic that predominantly increases the risk for various diseases including metabolic inflammation, insulin resistance, and cardiovascular diseases. However, the mechanisms that link obesity with other metabolic diseases are not completely understood. In obesity, various inflammatory pathways that cause inflammation in adipose tissue of an obese individual become activated and exacerbate the disease. Obesity-induced low-grade metabolic inflammation perturbates the insulin signaling pathway and leads to insulin resistance. Researchers have identified several pathways that link the impairment of insulin resistance through obesity-induced inflammation like activation of Nuclear factor kappa B (NF-κB), suppressor of cytokine signaling (SOCS) proteins, cJun-N-terminal Kinase (JNK), Wingless-related integration site (Wnt), and Toll-like receptor (TLR) signaling pathways. In this review article, the published studies have been reviewed to identify the potential and influential role of different signaling pathways in the pathogenesis of obesity-induced metabolic inflammation and insulin resistance along with the discussion on potential therapeutic strategies. Therapies targeting these signaling pathways show improvements in metabolic diseases associated with obesity, but require further testing and confirmation through clinical trials.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kriti Kushwaha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rupal Dubey
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
113
|
De George DJ, Ge T, Krishnamurthy B, Kay TWH, Thomas HE. Inflammation versus regulation: how interferon-gamma contributes to type 1 diabetes pathogenesis. Front Cell Dev Biol 2023; 11:1205590. [PMID: 37293126 PMCID: PMC10244651 DOI: 10.3389/fcell.2023.1205590] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease with onset from early childhood. The insulin-producing pancreatic beta cells are destroyed by CD8+ cytotoxic T cells. The disease is challenging to study mechanistically in humans because it is not possible to biopsy the pancreatic islets and the disease is most active prior to the time of clinical diagnosis. The NOD mouse model, with many similarities to, but also some significant differences from human diabetes, provides an opportunity, in a single in-bred genotype, to explore pathogenic mechanisms in molecular detail. The pleiotropic cytokine IFN-γ is believed to contribute to pathogenesis of type 1 diabetes. Evidence of IFN-γ signaling in the islets, including activation of the JAK-STAT pathway and upregulation of MHC class I, are hallmarks of the disease. IFN-γ has a proinflammatory role that is important for homing of autoreactive T cells into islets and direct recognition of beta cells by CD8+ T cells. We recently showed that IFN-γ also controls proliferation of autoreactive T cells. Therefore, inhibition of IFN-γ does not prevent type 1 diabetes and is unlikely to be a good therapeutic target. In this manuscript we review the contrasting roles of IFN-γ in driving inflammation and regulating the number of antigen specific CD8+ T cells in type 1 diabetes. We also discuss the potential to use JAK inhibitors as therapy for type 1 diabetes, to inhibit both cytokine-mediated inflammation and proliferation of T cells.
Collapse
Affiliation(s)
- David J. De George
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Balasubramaniam Krishnamurthy
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
114
|
Feng Y, Wang J, Fan W, Geng Y, Huang X, Ouyang P, Chen D, Guo H, Deng H, Lai W, Zuo Z. Integrated bioinformatics identifies key mediators in cytokine storm and tissue remodeling during Vibrio mimicus infection in yellow catfish (Pelteobagrus fulvidraco). Front Immunol 2023; 14:1172849. [PMID: 37283750 PMCID: PMC10239856 DOI: 10.3389/fimmu.2023.1172849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction The pathogenesis of Vibrio mimicus infection in yellow catfish (Pelteobagrus fulvidraco) remains poorly understood, particularly regarding the impact of infection with the pathogen on primary target organs such as the skin and muscle. Methods In this study, we aim to analyze the pathological intricacies of the skin and muscle of yellow catfish after being infected with V. mimicus using a 1/10 LC50 seven-day post-infection model. Furthermore, we have utilized integrated bioinformatics to comprehensively elucidate the regulatory mechanisms and identify the key regulatory genes implicated in this phenomenon. Results Our histopathological examination revealed significant pathological changes in the skin and muscle, characterized by necrosis and inflammation. Moreover, tissue remodeling occurred, with perimysium degeneration and lesion invasion into the muscle along the endomysium, accompanied by a transformation of type I collagen into a mixture of type I and type III collagens in the perimysium and muscle bundles. Our eukaryotic transcriptomic and 4D label-free analyses demonstrated a predominantly immune pathway response in both the skin and muscle, with downregulation observed in several cell signaling pathways that focused on focal adhesion-dominated cell signaling pathways. The upregulated genes included interleukins (IL)-1 and -6, chemokines, and matrix metallopeptidases (mmp)-9 and -13, while several genes were significantly downregulated, including col1a and col1a1a. Further analysis revealed that these pathways were differentially regulated, with mmp-9 and mmp-13 acting as the potential core regulators of cytokine and tissue remodeling pathways. Upregulation of NF-κB1 and FOSL-1 induced by IL-17C and Nox 1/2-based NADPH oxidase may have held matrix metallopeptidase and cytokine-related genes. Also, we confirmed these relevant regulatory pathways by qPCR and ELISA in expanded samples. Discussion Our findings unequivocally illustrate the occurrence of a cytokine storm and tissue remodeling, mediated by interleukins, chemokines, and MMPs, in the surface of yellow catfish infected with V. mimicus. Additionally, we unveil the potential bidirectional regulatory role of MMP-9 and MMP-13. These results provide novel perspectives on the intricate immune response to V. mimicus infection in yellow catfish and highlight potential targets for developing therapies.
Collapse
Affiliation(s)
- Yang Feng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiao Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weimin Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
115
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 208] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
116
|
Han J, Wu M, Liu Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front Immunol 2023; 14:1190333. [PMID: 37275859 PMCID: PMC10233742 DOI: 10.3389/fimmu.2023.1190333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) has been identified as a crucial factor in determining the responsiveness to immunotherapy. Produced primarily by natural killer (NK) and T cells, IFN-γ promotes activation, maturation, proliferation, cytokine expression, and effector function in immune cells, while simultaneously inducing antigen presentation, growth arrest, and apoptosis in tumor cells. However, tumor cells can hijack the IFN-γ signaling pathway to mount IFN-γ resistance: rather than increasing antigenicity and succumbing to death, tumor cells acquire stemness characteristics and express immunosuppressive molecules to defend against antitumor immunity. In this review, we summarize the potential mechanisms of IFN-γ resistance occurring at two critical stages: disrupted signal transduction along the IFNG/IFNGR/JAK/STAT pathway, or preferential expression of specific interferon-stimulated genes (ISGs). Elucidating the molecular mechanisms through which tumor cells develop IFN-γ resistance help identify promising therapeutic targets to improve immunotherapy, with broad application value in conjugation with targeted, antibody or cellular therapies.
Collapse
Affiliation(s)
- Jiashu Han
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
117
|
Toth KA, Schmitt EG, Cooper MA. Deficiencies and Dysregulation of STAT Pathways That Drive Inborn Errors of Immunity: Lessons from Patients and Mouse Models of Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1463-1472. [PMID: 37126806 PMCID: PMC10151837 DOI: 10.4049/jimmunol.2200905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
The STAT family proteins provide critical signals for immune cell development, differentiation, and proinflammatory and anti-inflammatory responses. Inborn errors of immunity (IEIs) are caused by single gene defects leading to immune deficiency and/or dysregulation, and they have provided opportunities to identify genes important for regulating the human immune response. Studies of patients with IEIs due to altered STAT signaling, and mouse models of these diseases, have helped to shape current understanding of the mechanisms whereby STAT signaling and protein interactions regulate immunity. Although many STAT signaling pathways are shared, clinical and immune phenotypes in patients with monogenic defects of STAT signaling highlight both redundant and nonredundant pathways. In this review, we provide an overview of the shared and unique signaling pathways used by STATs, phenotypes of IEIs with altered STAT signaling, and recent discoveries that have provided insight into the human immune response and treatment of disease.
Collapse
Affiliation(s)
- Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
118
|
Torres-Paz YE, Gamboa R, Fuentevilla-Álvarez G, Soto ME, González-Moyotl N, Martínez-Alvarado R, Torres-Tamayo M, Ramírez-Marroquín ES, Vásquez-Jiménez X, Sainz-Escarrega V, Huesca-Gómez C. Overexpression of microRNA-21-5p and microRNA-221-5p in Monocytes Increases the Risk of Developing Coronary Artery Disease. Int J Mol Sci 2023; 24:ijms24108641. [PMID: 37239987 DOI: 10.3390/ijms24108641] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
MicroRNAs (miRs) regulate gene expression at the post-transcriptional level and are found to be present in monocytes. This study aimed to investigate miR-221-5p, miR-21-5p, and miR-155-5p, their expression in monocytes, and their role in coronary arterial disease (CAD). The study population comprised 110 subjects, and RT-qPCR was used to examine the miR-221-5p, miR-21-5p, and miR-155-5p expressions in monocytes. Results: the miR-21-5p (p = 0.001) and miR-221-5p (p < 0.001) expression levels were significantly higher in the CAD group, and the miR-155-5p (p = 0.021) expression levels were significantly lower in the CAD group; only miR-21-5p and miR-221-5p upregulation was found to be associated with an increased CAD risk. The results show significant increases in miR-21-5p in the unmedicated CAD group with the metformin patients vs. the healthy control group (p = 0.001) and vs. the medicated CAD group with metformin (p = 0.022). The same was true for miR-221-5p in the CAD patients unmedicated with metformin vs. the healthy control group (p < 0.001). Our results from Mexican CAD patients show that the overexpression in monocytes of miR-21-5p and miR-221-5p increases the risk of the development of CAD. In addition, in the CAD group, the metformin downregulated the expression of miR-21-5p and miR-221-5p. Also, the expression of endothelial nitric oxide synthase (NOS3) decreased significantly in our patients with CAD, regardless of whether they were medicated. Therefore, our findings allow for the proposal of new therapeutic strategies for the diagnosis and prognosis of CAD and the evaluation of treatment efficacy.
Collapse
Affiliation(s)
- Yazmín Estela Torres-Paz
- Physiology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
- Postgraduate Program in Medical, Dental and Health Sciences, Universidad Nacional Autónoma de México (UNAM), México City 04510, Mexico
| | - Ricardo Gamboa
- Physiology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Giovanny Fuentevilla-Álvarez
- Physiology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
- Biochemistry Department, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), México City 11350, Mexico
| | - María Elena Soto
- Immunology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Nadia González-Moyotl
- Physiology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
- Master's Program in Health Science, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), México City 11350, Mexico
| | - Rocío Martínez-Alvarado
- Endocrinology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Margarita Torres-Tamayo
- Endocrinology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | | | - Xicoténcatl Vásquez-Jiménez
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Víctor Sainz-Escarrega
- Cardiothoracic Surgery Department, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Claudia Huesca-Gómez
- Physiology Department, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| |
Collapse
|
119
|
Nakamura R, Bing R, Gartling GJ, Garabedian MJ, Branski RC. Glucocorticoid Dose Dependency on Gene Expression in Vocal Fold Fibroblasts and Macrophages. Laryngoscope 2023; 133:1169-1175. [PMID: 36779842 PMCID: PMC9925845 DOI: 10.1002/lary.30330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Glucocorticoids (GCs) modulate multiple cellular activities including inflammatory and fibrotic responses. Outcomes of GC treatment for laryngeal disease vary, affording opportunity to optimize treatment. In the current study, three clinically employed GCs were evaluated to identify optimal in vitro concentrations at which GCs mediate favorable anti-inflammatory and fibrotic effects in multiple cell types. We hypothesize a therapeutic window will emerge as a foundation for optimized therapeutic strategies for patients with laryngeal disease. STUDY DESIGN In vitro. METHODS Human vocal fold fibroblasts and human macrophages derived from THP-1 monocytes were treated with 0.03-1000 nM dexamethasone, 0.3-10,000 nM methylprednisolone, and 0.3-10,000 nM triamcinolone in combination with interferon-γ, tumor necrosis factor-α, or interleukin-4. Real-time polymerase chain reaction was performed to analyze inflammatory (CXCL10, CXCl11, PTGS2, TNF, IL1B) and fibrotic (CCN2, LOX, TGM2) genes, and TSC22D3, a target gene of GC signaling. EC50 and IC50 to alter inflammatory and fibrotic gene expression was calculated. RESULTS Interferon-γ and tumor necrosis factor-α increased inflammatory gene expression in both cell types; this response was reduced by GCs. Interleukin-4 increased LOX and TGM2 expression in macrophages; this response was also reduced by GCs. GCs induced TSC22D3 and CCN2 expression independent of cytokine treatment. EC50 for each GC to upregulate CCN2 was higher than the IC50 to downregulate other genes. CONCLUSION Lower concentrations of GCs repressed inflammatory gene expression and only moderately induced genes involved in fibrosis. These data warrant consideration as a foundation for optimized clinical care paradigms to reduce inflammation and mitigate fibrosis. LEVEL OF EVIDENCE NA Laryngoscope, 133:1169-1175, 2023.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | - Renjie Bing
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | - Gary J. Gartling
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | | | - Ryan C. Branski
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
120
|
Xu W, Zhang Z, Lai F, Yang J, Qin Q, Huang Y, Huang X. Transcriptome analysis reveals the host immune response upon LMBV infection in largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108753. [PMID: 37080326 DOI: 10.1016/j.fsi.2023.108753] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Largemouth bass (Micropterus salmoides) is one of the important economical freshwater aquaculture species in China. However, the outbreak of viral diseases always caused great economic losses in the largemouth bass aquaculture industry. Largemouth bass virus (LMBV), a double-stranded DNA (dsDNA) virus belonging to genus Ranavirus, family Iridoviridae causes high mortality in cultivated largemouth bass. However, host responses, especially the molecular events involved in LMBV infection still remained largely uncertain. Here, we established an in vivo model of LMBV infection, and systematically investigated the mRNA expression profiles of host genes in liver and spleen from infected largemouth bass using RNA sequencing (RNA-seq). Histopathological analysis indicated that necrotic cells and the formed necrotic focus were present in spleen, while numerous basophilic cells, hepatocytes volume shrinkage, nucleus pyknosis, and the disappeared boundary of hepatocytes were observed in the liver of infected largemouth bass. Transcriptomic analysis showed that transcription levels of 5128 genes (2804 up-regulated genes and 2324 down-regulated) in liver and 7008 genes (2603 up-regulated and 4405 down-regulated) in spleen were altered significantly. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that numerous co-regulated differentially expressed genes (DEGs) in liver and spleen were enriched in the pathways related to cell death and immune signaling, such as apoptosis, necroptosis, cytokine-cytokine receptor interaction and JAK-STAT signaling. Moreover, the DEGs specially regulated by LMBV infection in liver were significantly enriched in the KEGG pathways related to metabolism and cell death, while those in spleen were enriched in the immune related pathways. In addition, the expression changes of several randomly selected genes, such as SOCS1, IL-6, CXCL2, CASP8, CYC and TNF from qPCR were consistent with the transcriptomic data. Taken together, our findings will provide new insights into the fundamental patterns of molecular responses induced by LMBV in vivo, but also contribute greatly to understanding the host defense mechanisms against iridoviral pathogens.
Collapse
Affiliation(s)
- Weihua Xu
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Zemiao Zhang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Fuxiang Lai
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Jiahui Yang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519082, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Youhua Huang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| | - Xiaohong Huang
- College of Marine Sciences, South China Agricultural University, Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
121
|
Shimamura Y, Noaki R, Oura Y, Ichikawa K, Kan T, Masuda S. Regulation of Staphylococcal Enterotoxin-Induced Inflammation in Spleen Cells from Diabetic Mice by Polyphenols. Microorganisms 2023; 11:microorganisms11041039. [PMID: 37110462 PMCID: PMC10143252 DOI: 10.3390/microorganisms11041039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Patients with diabetes are known to be more susceptible to infections following the establishment of Staphylococcus aureus in their nasal passages and on their skin. The present study evaluated the effects of staphylococcal enterotoxin A (SEA) on the immune responses of spleen cells derived from diabetic mice, and examined the effects of polyphenols, catechins, and nobiletin on inflammation-related gene expression associated with the immune response. (-)-Epigallocatechin gallate (EGCG), possessing hydroxyl groups, interacted with SEA, whereas nobiletin, possessing methyl groups, did not interact with SEA. The exposure of spleen cells derived from diabetic mice to SEA enhanced the expression of interferon gamma, suppressor of cytokine signaling 1, signal transducer and activator of transcription 3, interferon-induced transmembrane protein 3, Janus kinase 2, and interferon regulatory factor 3, suggesting that SEA sensitivity is variable in the development of diabetes. Both EGCG and nobiletin changed the expression of genes related to SEA-induced inflammation in spleen cells, suggesting that they inhibit inflammation through different mechanisms. These results may lead to a better understanding of the SEA-induced inflammatory response during diabetogenesis, and the establishment of methods to control these effects with polyphenols.
Collapse
Affiliation(s)
- Yuko Shimamura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Rina Noaki
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yukino Oura
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenya Ichikawa
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshiyuki Kan
- Department of Synthetic Organic & Medicinal Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shuichi Masuda
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
122
|
Chen C, Lim D, Cai Z, Zhang F, Liu G, Dong C, Feng Z. HDAC inhibitor HPTA initiates anti-tumor response by CXCL9/10-recruited CXCR3 +CD4 +T cells against PAHs carcinogenicity. Food Chem Toxicol 2023; 176:113783. [PMID: 37059382 DOI: 10.1016/j.fct.2023.113783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure in food is closely associated with the occurrence and development of breast cancer, which may attribute to altered immunotoxicity and immune regulation. Currently, cancer immunotherapy aims to promote tumor-specific T cell responses, especially CD4+T helper cells (Th) for anti-tumor immunity. The histone deacetylase inhibitors (HDACis) are found to exert an anti-tumor effect by reshaping the tumor immune microenvironment, but the immune regulatory mechanism of HDACis in PAHs-induced breast tumor remains elusive. Here, using established breast cancer models induced by 7,12-dimethylbenz[a]anthracene (DMBA), a potent carcinogenic agent of PAH, the novel HDACi, 2-hexyl-4-pentylene acid (HPTA) exhibited anti-tumor effect by activating T lymphocytes immune function. HPTA recruited CXCR3+CD4+T cells into chemokines CXCL9/10-enriched tumor sites, the increased secretion of CXCL9/10 was regulated by the NF-κB-mediated pathway. Furthermore, HPTA promoted Th1 differentiation and assisted cytotoxic CD8+T cells in the elimination of breast cancer cells. These findings support the proposition of HPTA as a potential therapeutic in the treatment of PAHs-induced carcinogenicity.
Collapse
Affiliation(s)
- Chen Chen
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - David Lim
- Translational Health Research Institute, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia; College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Zuchao Cai
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengmei Zhang
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guochao Liu
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Dong
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Zhihui Feng
- Department of Occupational Health and Occupational Medicine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
123
|
Grant AH, Rodriguez AC, Rodriguez Moncivais OJ, Sun S, Li L, Mohl JE, Leung MY, Kirken RA, Rodriguez G. JAK1 Pseudokinase V666G Mutant Dominantly Impairs JAK3 Phosphorylation and IL-2 Signaling. Int J Mol Sci 2023; 24:ijms24076805. [PMID: 37047778 PMCID: PMC10095075 DOI: 10.3390/ijms24076805] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Overactive Janus kinases (JAKs) are known to drive leukemia, making them well-suited targets for treatment. We sought to identify new JAK-activating mutations and instead found a JAK1-inactivating pseudokinase mutation, V666G. In contrast to other pseudokinase mutations that canonically lead to an active kinase, the JAK1 V666G mutation led to under-activation seen by reduced phosphorylation. To understand the functional role of JAK1 V666G in modifying kinase activity we investigated its influence on other JAK kinases and within the Interleukin-2 pathway. JAK1 V666G not only inhibited its own activity, but its presence could inhibit other JAK kinases. These findings provide new insights into the potential of JAK1 pseudokinase to modulate its own activity, as well as of other JAK kinases. Thus, the features of the JAK1 V666 region in modifying JAK kinases can be exploited to allosterically inhibit overactive JAKs.
Collapse
Affiliation(s)
- Alice H. Grant
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Alejandro C. Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Omar J. Rodriguez Moncivais
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Shengjie Sun
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lin Li
- Department of Physics, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jonathon E. Mohl
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Ming-Ying Leung
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
- Computational Science Program, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Robert A. Kirken
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
124
|
Pan Y, Shu G, Fu L, Huang K, Zhou X, Gui C, Liu H, Jin X, Chen M, Li P, Cen J, Feng Z, Lu J, Chen Z, Li J, Xu Q, Wang Y, Liang H, Wang Z, Deng Q, Chen W, Luo J, Yang J, Zhang J, Wei J. EHBP1L1 Drives Immune Evasion in Renal Cell Carcinoma through Binding and Stabilizing JAK1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206792. [PMID: 36775874 PMCID: PMC10104659 DOI: 10.1002/advs.202206792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/03/2023] [Indexed: 06/18/2023]
Abstract
High lymphocyte infiltration and immunosuppression characterize the tumor microenvironment (TME) in renal cell carcinoma (RCC). There is an urgent need to elucidate how tumor cells escape the immune attack and to develop novel therapeutic targets to enhance the efficacy of immune checkpoint blockade (ICB) in RCC. Overactivated IFN-γ-induced JAK/STAT signaling involves in such TME, but the underlying mechanisms remain elusive. Here, EH domain-binding protein 1-like protein 1 (EHBP1L1) is identified as a crucial mediator of IFN-γ/JAK1/STAT1/PD-L1 signaling in RCC. EHBP1L1 is highly expressed in RCC, and high EHBP1L1 expression levels are correlated with poor prognosis and resistance to ICB. EHBP1L1 depletion significantly inhibits tumor growth, which is attributed to enhanced CD8+ T cell-mediated antitumor immunity. Mechanistically, EHBP1L1 interacts with and stabilizes JAK1. By competing with SOCS1, EHBP1L1 protects JAK1 from proteasomal degradation, which leads to elevated JAK1 protein levels and JAK1/STAT1/PD-L1 signaling activity, thereby forming an immunosuppressive TME. Furthermore, the combination of EHBP1L1 inhibition and ICB reprograms the immunosuppressive TME and prevents tumor immune evasion, thus significantly reinforcing the therapeutic efficacy of ICB in RCC patient-derived xenograft (PDX) models. These findings reveal the vital role of EHBP1L1 in immune evasion in RCC, which may be a potential complement for ICB therapy.
Collapse
Affiliation(s)
- Yihui Pan
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
- Department of UrologyThe Third Affiliated HospitalSoochow UniversityChangzhouJiangsu213003China
| | - Guannan Shu
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Liangmin Fu
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Kangbo Huang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Department of UrologySun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xinwei Zhou
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Chengpeng Gui
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Huashan Liu
- Department of Colorectal Surgery and Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Xiaohan Jin
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Minyu Chen
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Pengju Li
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Junjie Cen
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Zihao Feng
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jun Lu
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Zhenhua Chen
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jiaying Li
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Quanhui Xu
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Yinghan Wang
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Hui Liang
- Department of UrologyAffiliated Longhua People's HospitalSouthern Medical UniversityShenzhen518109China
| | - Zhu Wang
- Department of UrologyAffiliated Longhua People's HospitalSouthern Medical UniversityShenzhen518109China
| | - Qiong Deng
- Department of UrologyAffiliated Longhua People's HospitalSouthern Medical UniversityShenzhen518109China
| | - Wei Chen
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Junhang Luo
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jiefeng Yang
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jiaxing Zhang
- Department of OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jinhuan Wei
- Department of UrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
125
|
Doggett K, Keating N, Dehkhoda F, Bidgood GM, Meza Guzman LG, Leong E, Kueh A, Nicola NA, Kershaw NJ, Babon JJ, Alexander WS, Nicholson SE. The SOCS1 KIR and SH2 domain are both required for suppression of cytokine signaling in vivo. Cytokine 2023; 165:156167. [PMID: 36934508 DOI: 10.1016/j.cyto.2023.156167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023]
Abstract
Suppressor Of Cytokine Signaling (SOCS) 1 is a critical negative regulator of cytokine signaling and required to protect against an excessive inflammatory response. Genetic deletion of Socs1 results in unrestrained cytokine signaling and neonatal lethality, characterised by an inflammatory immune infiltrate in multiple organs. Overexpression and structural studies have suggested that the SOCS1 kinase inhibitory region (KIR) and Src homology 2 (SH2) domain are important for interaction with and inhibition of the receptor-associated JAK1, JAK2 and TYK2 tyrosine kinases, which initiate downstream signaling. To investigate the role of the KIR and SH2 domain in SOCS1 function, we independently mutated key conserved residues in each domain and analysed the impact on cytokine signaling, and the in vivo impact on SOCS1 function. Mutation of the SOCS1-KIR or SH2 domain had no impact on the integrity of the SOCS box complex, however, mutation within the phosphotyrosine binding pocket of the SOCS1-SH2 domain specifically disrupted SOCS1 interaction with phosphorylated JAK1. In contrast, mutation of the KIR did not affect the interaction with JAK1, but did prevent SOCS1 inhibition of JAK1 autophosphorylation. In human and mouse cell lines, both mutants impacted the ability of SOCS1 to restrain cytokine signaling, and crucially, Socs1-R105A and Socs1-F59A mice displayed a neonatal lethality and excessive inflammatory phenotype similar to Socs1-null mice. This study defines a critical and non-redundant role for both the KIR and SH2 domain in endogenous SOCS1 function.
Collapse
Affiliation(s)
- Karen Doggett
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Farhad Dehkhoda
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Grace M Bidgood
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Lizeth G Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Evelyn Leong
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Andrew Kueh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nicos A Nicola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sandra E Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
126
|
Zhu W, Huang X. Mural cell composition and functional analysis in the healing process of human gingiva from periodontal intrabony defects. Arch Oral Biol 2023; 150:105687. [PMID: 36947913 DOI: 10.1016/j.archoralbio.2023.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVE To evaluate the composition and function of mural cell populations in human gingival tissues DESIGN: A cross-sectional study was conducted on seven periodontitis (stage Ⅲ) patients. Gingival tissues were collected two months after scaling and root planing and divided into 3 groups: 1, h_h group (horizontal bone resorption, residual pocket depth ≤3 mm); 2, v_h group (vertical bone resorption >4 mm, residual pocket depth ≤3 mm); 3, v_i group (vertical bone resorption >4 mm, residual pocket depth ≥6 mm). Single-cell RNA sequencing (10X genomics) and subsequent bioinformatics analysis were performed. Protein expression of selected genes was confirmed by histological staining. RESULTS Two mural cell clusters, RGS5+THY1+ and ACTA2+MYH11+ subpopulations, were identified and confirmed by histological staining and cross-validation with three different single-cell RNA sequencing datasets in the GEO database. RGS5+THY1+ cluster in perivascular areas possessed cellular protrusions and exhibited immunomodulatory and synthetic phenotypes. In contrast, the ACTA2+MYH11+ cluster strictly distributed around vessel walls was characterized by a contractile phenotype. Mural cells closely interacted with endothelial cells through PDGF and NOTCH3 signaling. Mural cell loss was detected in the v_i group and in hopeless periodontal teeth, which might be caused by tumor necrosis factor-alpha induced apoptosis. CONCLUSIONS Gingival mural cells can be classified into two distinct clusters according to their gene signatures and cell morphology. The loss of mural cells may indicate periodontitis progression.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Xin Huang
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
127
|
The link between rheumatic disorders and inborn errors of immunity. EBioMedicine 2023; 90:104501. [PMID: 36870198 PMCID: PMC9996386 DOI: 10.1016/j.ebiom.2023.104501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are immunological disorders characterized by variable susceptibility to infections, immune dysregulation and/or malignancies, as a consequence of damaging germline variants in single genes. Though initially identified among patients with unusual, severe or recurrent infections, non-infectious manifestations and especially immune dysregulation in the form of autoimmunity or autoinflammation can be the first or dominant phenotypic aspect of IEIs. An increasing number of IEIs causing autoimmunity or autoinflammation, including rheumatic disease have been reported over the last decade. Despite their rarity, identification of those disorders provided insight into the pathomechanisms of immune dysregulation, which may be relevant for understanding the pathogenesis of systemic rheumatic disorders. In this review, we present novel IEIs primarily causing autoimmunity or autoinflammation along with their pathogenic mechanisms. In addition, we explore the likely pathophysiological and clinical relevance of IEIs in systemic rheumatic disorders.
Collapse
|
128
|
Frontzek F, Staiger AM, Wullenkord R, Grau M, Zapukhlyak M, Kurz KS, Horn H, Erdmann T, Fend F, Richter J, Klapper W, Lenz P, Hailfinger S, Tasidou A, Trautmann M, Hartmann W, Rosenwald A, Quintanilla-Martinez L, Ott G, Anagnostopoulos I, Lenz G. Molecular profiling of EBV associated diffuse large B-cell lymphoma. Leukemia 2023; 37:670-679. [PMID: 36604606 PMCID: PMC9991915 DOI: 10.1038/s41375-022-01804-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Epstein-Barr virus (EBV) associated diffuse large B-cell lymphoma (DLBCL) represents a rare aggressive B-cell lymphoma subtype characterized by an adverse clinical outcome. EBV infection of lymphoma cells has been associated with different lymphoma subtypes while the precise role of EBV in lymphomagenesis and specific molecular characteristics of these lymphomas remain elusive. To further unravel the biology of EBV associated DLBCL, we present a comprehensive molecular analysis of overall 60 primary EBV positive (EBV+) DLBCLs using targeted sequencing of cancer candidate genes (CCGs) and genome-wide determination of recurrent somatic copy number alterations (SCNAs) in 46 cases, respectively. Applying the LymphGen classifier 2.0, we found that less than 20% of primary EBV + DLBCLs correspond to one of the established molecular DLBCL subtypes underscoring the unique biology of this entity. We have identified recurrent mutations activating the oncogenic JAK-STAT and NOTCH pathways as well as frequent amplifications of 9p24.1 contributing to immune escape by PD-L1 overexpression. Our findings enable further functional preclinical and clinical studies exploring the therapeutic potential of targeting these aberrations in patients with EBV + DLBCL to improve outcome.
Collapse
Affiliation(s)
- Fabian Frontzek
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Ramona Wullenkord
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Michael Grau
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Myroslav Zapukhlyak
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Katrin S Kurz
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany
| | - Heike Horn
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | - Tabea Erdmann
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, Reference Center for Haematopathology University Hospital, Tübingen Eberhard-Karls-University, Tübingen, Germany
| | - Julia Richter
- Division of Hematophathology, Christian-Albrechts-University, Kiel, Germany
| | - Wolfram Klapper
- Division of Hematophathology, Christian-Albrechts-University, Kiel, Germany
| | - Peter Lenz
- Department of Physics, University of Marburg, Marburg, Germany
| | - Stephan Hailfinger
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Anna Tasidou
- Department of Hematopathology, Evangelismos General Hospital, Athens, Greece
| | - Marcel Trautmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Münster, Germany
| | | | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Reference Center for Haematopathology University Hospital, Tübingen Eberhard-Karls-University, Tübingen, Germany
| | - German Ott
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tuebingen, Germany
| | | | - Georg Lenz
- Department of Medicine A, Department of Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
129
|
Wijerathna HMSM, Nadarajapillai K, Shanaka KASN, Kasthuriarachchi TDW, Jung S, Lee S, Lee J. Molecular characterization and immune response of suppressor of cytokine signaling 5b from redlip mullet (Planiliza haematocheilus): Disclosing its anti-viral potential and effect on cell proliferation. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108629. [PMID: 36822381 DOI: 10.1016/j.fsi.2023.108629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/27/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The suppressor of cytokine signaling (SOCS) proteins family comprising eight proteins (SOCS1-7 and cytokine-inducible SH2-containing (CIS)) are classical feedback inhibitors of cytokine signaling. Although the biological role of CIS and SOCS1-3 have been extensively studied, the biological functions of SOCS4-7 remain unclear. Here, we elucidated the molecular characteristics, expression profile, immune response, anti-viral potential, and effect on cell proliferation of Phsocs5b, a member of the SOCS protein family from redlip mullet (Planiliza haematocheilus); phsocs5b comprised 1695 nucleotides. It was 564 amino acids long with a molecular weight of 62.3 kDa and a theoretical isoelectric point of 8.95. Like SOCS4-7 proteins, Phsocs5b comprised an SH2 domain, SOCS box domain, and a long N-terminal. SH2 domain is highly identical to its orthologs in other vertebrates. Phsocs5b, highly expressed in the brain tissue, was localized in the cytoplasm. Temporal changes in phsocs5b expression were observed following immune stimulation with polyinosinic: polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. In FHM cells, Phsocs5b overexpression suppressed the viral hemorrhagic septicemia virus (VHSV) infection and epidermal growth factor receptor (egfr) expression but increased the mRNA levels of pi3k, akt, pro-inflammatory cytokines (il1β and il8), and anti-viral genes (isg15 and ifn). Overall, our findings suggest that Phsocs5b attenuates VHSV infection, either by hindering the cell entry via degradation of Egfr, enhancing pro-inflammatory cytokines and anti-viral factor production, or both. The results also indicated that Phsocs5b could directly activate Pi3k/Akt pathway by itself, thus enhancing the proliferation and migration of cells. Taken together, Phsocs5b may be considered a potential therapeutic target to enhance immune responses while positively regulating the proliferation and migration of cells.
Collapse
Affiliation(s)
- H M S M Wijerathna
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - T D W Kasthuriarachchi
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Seongdo Lee
- National Fishery Product Quality Management Service, Busan, 49111, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
130
|
Zanin N, Viaris de Lesegno C, Podkalicka J, Meyer T, Gonzalez Troncoso P, Bun P, Danglot L, Chmiest D, Urbé S, Piehler J, Blouin CM, Lamaze C. STAM and Hrs interact sequentially with IFN-α Receptor to control spatiotemporal JAK-STAT endosomal activation. Nat Cell Biol 2023; 25:425-438. [PMID: 36797476 DOI: 10.1038/s41556-022-01085-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
Activation of the JAK-STAT pathway by type I interferons (IFNs) requires clathrin-dependent endocytosis of the IFN-α and -β receptor (IFNAR), indicating a role for endosomal sorting in this process. The molecular machinery that brings the selective activation of IFN-α/β-induced JAK-STAT signalling on endosomes remains unknown. Here we show that the constitutive association of STAM with IFNAR1 and TYK2 kinase at the plasma membrane prevents TYK2 activation by type I IFNs. IFN-α-stimulated IFNAR endocytosis delivers the STAM-IFNAR complex to early endosomes where it interacts with Hrs, thereby relieving TYK2 inhibition by STAM and triggering signalling of IFNAR at the endosome. In contrast, when stimulated by IFN-β, IFNAR signalling occurs independently of Hrs as IFNAR is sorted to a distinct endosomal subdomain. Our results identify the molecular machinery that controls the spatiotemporal activation of IFNAR by IFN-α and establish the central role of endosomal sorting in the differential regulation of JAK-STAT signalling by IFN-α and IFN-β.
Collapse
Affiliation(s)
- Natacha Zanin
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Namur Research Institute for Life Sciences (NARILIS), URBC, University of Namur, Namur, Belgium
| | - Christine Viaris de Lesegno
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Joanna Podkalicka
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, Paris, France.,Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Thomas Meyer
- Department of Biology and Center for Cellular Nanoanalytics, University of Osnabruck, Osnabruck, Germany
| | - Pamela Gonzalez Troncoso
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Philippe Bun
- Membrane Traffic in Healthy and Diseased Brain, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Lydia Danglot
- Membrane Traffic in Healthy and Diseased Brain, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France.,NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Université de Paris, Paris, France
| | - Daniela Chmiest
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France.,Department of Biochemistry, CIIL Biomedical Research Center, University of Lausanne, Epalinges, Switzerland
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics, University of Osnabruck, Osnabruck, Germany
| | - Cédric M Blouin
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie-Centre de Recherche, PSL Research University, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France. .,Centre National de la Recherche Scientifique (CNRS), Paris, France.
| |
Collapse
|
131
|
Coelho MA, Cooper S, Strauss ME, Karakoc E, Bhosle S, Gonçalves E, Picco G, Burgold T, Cattaneo CM, Veninga V, Consonni S, Dinçer C, Vieira SF, Gibson F, Barthorpe S, Hardy C, Rein J, Thomas M, Marioni J, Voest EE, Bassett A, Garnett MJ. Base editing screens map mutations affecting interferon-γ signaling in cancer. Cancer Cell 2023; 41:288-303.e6. [PMID: 36669486 PMCID: PMC9942875 DOI: 10.1016/j.ccell.2022.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
Interferon-γ (IFN-γ) signaling mediates host responses to infection, inflammation and anti-tumor immunity. Mutations in the IFN-γ signaling pathway cause immunological disorders, hematological malignancies, and resistance to immune checkpoint blockade (ICB) in cancer; however, the function of most clinically observed variants remains unknown. Here, we systematically investigate the genetic determinants of IFN-γ response in colorectal cancer cells using CRISPR-Cas9 screens and base editing mutagenesis. Deep mutagenesis of JAK1 with cytidine and adenine base editors, combined with pathway-wide screens, reveal loss-of-function and gain-of-function mutations, including causal variants in hematological malignancies and mutations detected in patients refractory to ICB. We functionally validate variants of uncertain significance in primary tumor organoids, where engineering missense mutations in JAK1 enhanced or reduced sensitivity to autologous tumor-reactive T cells. We identify more than 300 predicted missense mutations altering IFN-γ pathway activity, generating a valuable resource for interpreting gene variant function.
Collapse
Affiliation(s)
- Matthew A Coelho
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Sarah Cooper
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | | | - Emre Karakoc
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Shriram Bhosle
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Emanuel Gonçalves
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Instituto Superior Técnico, Universidade de Lisboa, 1049-001, and, INESC-ID, 1000-029, Lisbon, Portugal
| | - Gabriele Picco
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Thomas Burgold
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK
| | - Chiara M Cattaneo
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Open Targets, Cambridge, UK
| | - Vivien Veninga
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Open Targets, Cambridge, UK
| | - Sarah Consonni
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Cansu Dinçer
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Sara F Vieira
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Freddy Gibson
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Syd Barthorpe
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK
| | - Claire Hardy
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Hinxton, UK
| | - Joel Rein
- Cellular Operations and Stem Cell Informatics, Wellcome Sanger Institute, Hinxton, UK
| | - Mark Thomas
- Cellular Operations and Stem Cell Informatics, Wellcome Sanger Institute, Hinxton, UK
| | - John Marioni
- EMBL-European Bioinformatics Institute, Cambridge, UK
| | - Emile E Voest
- Department of Immunology and Molecular Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Open Targets, Cambridge, UK
| | - Andrew Bassett
- Gene Editing and Cellular Research and Development, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK
| | - Mathew J Garnett
- Translational Cancer Genomics, Wellcome Sanger Institute, Hinxton, UK; Open Targets, Cambridge, UK.
| |
Collapse
|
132
|
Dong S, Hou B, Yang C, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. Comparative Hypothalamic Transcriptome Analysis Reveals Crucial mRNAs, lncRNAs, and circRNAs Affecting Litter Size in Goats. Genes (Basel) 2023; 14:444. [PMID: 36833370 PMCID: PMC9956962 DOI: 10.3390/genes14020444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Litter size is an important indicator to measure the reproductive performance of goats, which is affected by the reproductive function of animals. The hypothalamus, as the regulatory center of the endocrine system, plays an important role in the reproduction of female animals. Here, we performed high-throughput RNA sequencing using hypothalamic tissue from high-fecundity and low-fecundity Leizhou goats to explore critical functional genes associated with litter size. Differentially expressed mRNA, lncRNA, and circRNAs were screened using DESeq and were enriched, and then analyzed by Gene Ontology and Kyoto Encyclopedia of Gene and Genome. Results showed that some of these differentially expressed mRNAs could be enriched in reproductive processes, jak-STAT, prolactin signaling pathway, and other signaling pathways related to reproduction, such as SOCS3. Furthermore, the central proteins POSTN, MFAP5, and DCN from protein-protein interaction may regulate animal reproductive activity by affecting cell proliferation and apoptosis. lncRNA MSTRG.33887.2 as well as circRNAs chicirc_098002, chicirc_072583, and chicirc_053531 may be able to influence animal reproduction by participating in folate metabolism and energy metabolism homeostasis through their respective target genes. Our results expand the molecular mechanism of hypothalamic regulation on animal reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guangbin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
133
|
Zalewski A, Szepietowski JC. Topical and systemic JAK inhibitors in hand eczema - a narrative review. Expert Rev Clin Immunol 2023; 19:365-373. [PMID: 36708316 DOI: 10.1080/1744666x.2023.2174526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Hand eczema is a chronic inflammatory skin disease characterized by significant prevalence and impact on patients' Quality of Life (QoL). Because of its complex and diverse clinical picture, HE management requires patient-specific treatment which may constitute a challenge. First described in the 1990s, Janus kinase inhibitors (JAK inhibitors) state a group of modern therapeuticals, which exhibit good bioavailability and are well tolerated by patients in both - topical and systemic - routes of administration. They are an immunomodulating small molecules, impacting JAKs' enzymatic activity. AREAS COVERED This review provides a summary of available data concerning JAK inhibitors' use in HE patients, regarding also clinical trials for the HE treatment. EXPERT OPINION Recent studies are introducing JAK inhibitors as an alternative for other topical and systemic therapies in HE patients. Treatment targeting specific immune pathways enables precise management and extends range of potential therapeutic options. Despite early promising results, future studies need to evaluate JAK inhibitors' safety, potential risks and benefits resulting from the treatment, as well as impact of the therapy on patients' QoL.
Collapse
Affiliation(s)
- Adam Zalewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| |
Collapse
|
134
|
Ren Y, Wang Y, Fang L, Ma M, Ge L, Su C, Xin L, He J, Yang J, Liu X. Deregulation of PRDM5 promotes cell proliferation by regulating JAK/STAT signaling pathway through SOCS1 in human lung adenocarcinoma. Cancer Med 2023; 12:4568-4578. [PMID: 36127737 PMCID: PMC9972168 DOI: 10.1002/cam4.5251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/19/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND PRDM5 is considered a tumor suppressor in several types of solid tumors and is involved in multiple cellular processes. However, target genes regulated by PRDM5 in lung cancer and its potential mechanism are poorly defined. METHODS Survival analysis was conducted using Kaplan-Meier estimates based on the online databases. RNA-sequencing and bioinformatics analysis were performed to identify the differentially expressed genes in PRDM5-overexpressed A549 cells. RESULTS We observed deregulated PRDM5 in several lung adenocarcinoma cell lines and its association with a poor prognosis. PRDM5 overexpression inhibited the proliferation of lung adenocarcinoma cells in vitro and suppressed tumor growth in a xenograft model. PRDM5 upregulated the promoter activity of SOCS1, which then inhibited the phosphorylation of JAK2 and STAT3. CONCLUSIONS Our study suggests that the low expression of PRDM5 promotes the proliferation of lung adenocarcinoma cells by downregulating SOCS1 and then upregulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yuanyuan Ren
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ye Wang
- Sinovac Biotech Co. Ltd, Beijing, China
| | | | - Mengchu Ma
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Ge
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chao Su
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lingbiao Xin
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinyan He
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
135
|
Hosseinalizadeh H, Mohamadzadeh O, Kahrizi MS, Razaghi Bahabadi Z, Klionsky DJ, Mirzei H. TRIM8: a double-edged sword in glioblastoma with the power to heal or hurt. Cell Mol Biol Lett 2023; 28:6. [PMID: 36690946 PMCID: PMC9869596 DOI: 10.1186/s11658-023-00418-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive primary brain tumor and one of the most lethal central nervous system tumors in adults. Despite significant breakthroughs in standard treatment, only about 5% of patients survive 5 years or longer. Therefore, much effort has been put into the search for identifying new glioma-associated genes. Tripartite motif-containing (TRIM) family proteins are essential regulators of carcinogenesis. TRIM8, a member of the TRIM superfamily, is abnormally expressed in high-grade gliomas and is associated with poor clinical prognosis in patients with glioma. Recent research has shown that TRIM8 is a molecule of duality (MoD) that can function as both an oncogene and a tumor suppressor gene, making it a "double-edged sword" in glioblastoma development. This characteristic is due to its role in selectively regulating three major cellular signaling pathways: the TP53/p53-mediated tumor suppression pathway, NFKB/NF-κB, and the JAK-STAT pathway essential for stem cell property support in glioma stem cells. In this review, TRIM8 is analyzed in detail in the context of GBM and its involvement in essential signaling and stem cell-related pathways. We also discuss the basic biological activities of TRIM8 in macroautophagy/autophagy, regulation of bipolar spindle formation and chromosomal stability, and regulation of chemoresistance, and as a trigger of inflammation.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Omid Mohamadzadeh
- Department of Neurosurgery, Tehran University of Medical Science, Tehran, Iran
| | | | - Zahra Razaghi Bahabadi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Hamed Mirzei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
136
|
Anti-obesity potential of heat-killed Lactiplantibacillus plantarum K8 in 3T3-L1 cells and high-fat diet mice. Heliyon 2023; 9:e12926. [PMID: 36699277 PMCID: PMC9868538 DOI: 10.1016/j.heliyon.2023.e12926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Probiotics exert anti-obesity effects in high-fat diet (HFD) obese mice, but there are few studies on anti-obesity using heat-killed probiotics. Here, we investigated the effect of heat-killed Lactiplantibacillus plantarum K8 (K8HK) on the anti-differentiation of 3T3-L1 preadipocytes and on anti-obesity in HFD mice. K8HK decreased triglyceride (TG) accumulation in 3T3-L1 cells. Specifically, 1 × 109 CFU/mL K8HK showed the greatest anti-obesity effect, while the same concentration of live L. plantarum K8 (K8 Live) showed cytotoxicity. K8HK increased suppressor of cytokine signaling (SOCS)-1, which might affect the JAK2-STAT3 signaling pathway activated during differentiation. As a result, the levels of transcription factors of adipogenesis such as Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) decreased in K8HK-treated cells. We also observed a decrease in the lipogenic enzymes and fatty acid binding protein 4 (FABP4). In the mouse study, oral ingestion of K8 Live and K8HK showed weight reduction and decrease in blood TG content at 12 weeks of feeding. In addition, TG synthesis was suppressed in liver and adipose tissues, and genes related to fat metabolism were suppressed. This study suggests that K8HK could be a good material to prevent obesity by inhibiting adipogenesis genes related to fat metabolism.
Collapse
|
137
|
Bolte AC, Shapiro DA, Dutta AB, Ma WF, Bruch KR, Kovacs MA, Royo Marco A, Ennerfelt HE, Lukens JR. The meningeal transcriptional response to traumatic brain injury and aging. eLife 2023; 12:e81154. [PMID: 36594818 PMCID: PMC9810333 DOI: 10.7554/elife.81154] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence suggests that the meningeal compartment plays instrumental roles in various neurological disorders, however, we still lack fundamental knowledge about meningeal biology. Here, we utilized high-throughput RNA sequencing (RNA-seq) techniques to investigate the transcriptional response of the meninges to traumatic brain injury (TBI) and aging in the sub-acute and chronic time frames. Using single-cell RNA sequencing (scRNA-seq), we first explored how mild TBI affects the cellular and transcriptional landscape in the meninges in young mice at one-week post-injury. Then, using bulk RNA-seq, we assessed the differential long-term outcomes between young and aged mice following TBI. In our scRNA-seq studies, we highlight injury-related changes in differential gene expression seen in major meningeal cell populations including macrophages, fibroblasts, and adaptive immune cells. We found that TBI leads to an upregulation of type I interferon (IFN) signature genes in macrophages and a controlled upregulation of inflammatory-related genes in the fibroblast and adaptive immune cell populations. For reasons that remain poorly understood, even mild injuries in the elderly can lead to cognitive decline and devastating neuropathology. To better understand the differential outcomes between the young and the elderly following brain injury, we performed bulk RNA-seq on young and aged meninges 1.5 months after TBI. Notably, we found that aging alone induced upregulation of meningeal genes involved in antibody production by B cells and type I IFN signaling. Following injury, the meningeal transcriptome had largely returned to its pre-injury signature in young mice. In stark contrast, aged TBI mice still exhibited upregulation of immune-related genes and downregulation of genes involved in extracellular matrix remodeling. Overall, these findings illustrate the dynamic transcriptional response of the meninges to mild head trauma in youth and aging.
Collapse
Affiliation(s)
- Ashley C Bolte
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Daniel A Shapiro
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Arun B Dutta
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Biochemistry and Molecular Genetics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Wei Feng Ma
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Center for Public Health Genomics, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Katherine R Bruch
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - Michael A Kovacs
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Ana Royo Marco
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of MedicineCharlottesvilleUnited States
| | - Hannah E Ennerfelt
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
| | - John R Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of MedicineCharlottesvilleUnited States
- Medical Scientist Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
- Immunology Training Program, University of Virginia School of MedicineCharlottesvilleUnited States
| |
Collapse
|
138
|
Wang T, Hu Y, Dusi S, Qi F, Sartoris S, Ugel S, De Sanctis F. "Open Sesame" to the complexity of pattern recognition receptors of myeloid-derived suppressor cells in cancer. Front Immunol 2023; 14:1130060. [PMID: 36911674 PMCID: PMC9992799 DOI: 10.3389/fimmu.2023.1130060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Pattern recognition receptors are primitive sensors that arouse a preconfigured immune response to broad stimuli, including nonself pathogen-associated and autologous damage-associated molecular pattern molecules. These receptors are mainly expressed by innate myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells. Recent investigations have revealed new insights into these receptors as key players not only in triggering inflammation processes against pathogen invasion but also in mediating immune suppression in specific pathological states, including cancer. Myeloid-derived suppressor cells are preferentially expanded in many pathological conditions. This heterogeneous cell population includes immunosuppressive myeloid cells that are thought to be associated with poor prognosis and impaired response to immune therapies in various cancers. Identification of pattern recognition receptors and their ligands increases the understanding of immune-activating and immune-suppressive myeloid cell functions and sheds light on myeloid-derived suppressor cell differences from cognate granulocytes and monocytes in healthy conditions. This review summarizes the different expression, ligand recognition, signaling pathways, and cancer relations and identifies Toll-like receptors as potential new targets on myeloid-derived suppressor cells in cancer, which might help us to decipher the instruction codes for reverting suppressive myeloid cells toward an antitumor phenotype.
Collapse
Affiliation(s)
- Tian Wang
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Yushu Hu
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Dusi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Fang Qi
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy
| |
Collapse
|
139
|
Chen Q, Zheng W, Guan J, Liu H, Dan Y, Zhu L, Song Y, Zhou Y, Zhao X, Zhang Y, Bai Y, Pan Y, Zhang J, Shao C. SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ 2023; 30:137-151. [PMID: 35995846 PMCID: PMC9883449 DOI: 10.1038/s41418-022-01051-7] [Citation(s) in RCA: 169] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023] Open
Abstract
Radioresistance is a principal culprit for the failure of radiotherapy in hepatocellular carcinoma (HCC). Insights on the regulation genes of radioresistance and underlying mechanisms in HCC are awaiting for profound investigation. In this study, the suppressor of cytokine signaling 2 (SOCS2) were screened out by RNA-seq and bioinformatics analyses as a potential prognosis predictor of HCC radiotherapy and then were determined to promote radiosensitivity in HCC both in vivo or in vitro. Meanwhile, the measurements of ferroptosis negative regulatory proteins of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), intracellular lipid peroxidation and Fe2+ concentration suggested that a high level of ferroptosis contributed to the radiosensitization of HCC. Moreover, SOCS2 and SLC7A11 were expressed oppositely in HCC clinical tissues and tumour xenografts with different radiosensitivities. Mechanistically, the N-terminal domain of SLC7A11 was specifically recognized by the SH2-structural domain of SOCS2. While the L162 and C166 of SOCS2-BOX region could bind elongin B/C compound to co-form a SOCS2/elongin B/C complex to recruit ubiquitin molecules. Herein, SOCS2 served as a bridge to transfer the attached ubiquitin to SLC7A11 and promoted K48-linked polyubiquitination degradation of SLC7A11, which ultimately led to the onset of ferroptosis and radiosensitization of HCC. In conclusion, it was demonstrated for the first time that high-expressed SOCS2 was one of the biomarkers predicting radiosensitivity of HCC by advancing the ubiquitination degradation of SLC7A11 and promoting ferroptosis, which indicates that targeting SOCS2 may enhance the efficiency of HCC radiotherapy and improve the prognosis of patients.
Collapse
Affiliation(s)
- Qianping Chen
- grid.8547.e0000 0001 0125 2443Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Wang Zheng
- grid.8547.e0000 0001 0125 2443Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jian Guan
- grid.416466.70000 0004 1757 959XDepartment of Radiation Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong 510515 China
| | - Hongxia Liu
- grid.8547.e0000 0001 0125 2443Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yao Dan
- grid.8547.e0000 0001 0125 2443Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Lin Zhu
- grid.8547.e0000 0001 0125 2443Department of Radiation Oncology, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yimeng Song
- grid.8547.e0000 0001 0125 2443Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yuchuan Zhou
- grid.8547.e0000 0001 0125 2443Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Xinrui Zhao
- grid.8547.e0000 0001 0125 2443Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yuhong Zhang
- grid.8547.e0000 0001 0125 2443Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yang Bai
- grid.8547.e0000 0001 0125 2443Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
140
|
Jain NK, Tailang M, Jain HK, Chandrasekaran B, Sahoo BM, Subramanian A, Thangavel N, Aldahish A, Chidambaram K, Alagusundaram M, Kumar S, Selvam P. Therapeutic implications of current Janus kinase inhibitors as anti-COVID agents: A review. Front Pharmacol 2023; 14:1135145. [PMID: 37021053 PMCID: PMC10067607 DOI: 10.3389/fphar.2023.1135145] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
Severe cases of COVID-19 are characterized by hyperinflammation induced by cytokine storm, ARDS leading to multiorgan failure and death. JAK-STAT signaling has been implicated in immunopathogenesis of COVID-19 infection under different stages such as viral entry, escaping innate immunity, replication, and subsequent inflammatory processes. Prompted by this fact and prior utilization as an immunomodulatory agent for several autoimmune, allergic, and inflammatory conditions, Jakinibs have been recognized as validated small molecules targeting the rapid release of proinflammatory cytokines, primarily IL-6, and GM-CSF. Various clinical trials are under investigation to evaluate Jakinibs as potential candidates for treating COVID-19. Till date, there is only one small molecule Jakinib known as baricitinib has received FDA-approval as a standalone immunomodulatory agent in treating critical COVID-19 patients. Though various meta-analyses have confirmed and validated the safety and efficacy of Jakinibs, further studies are required to understand the elaborated pathogenesis of COVID-19, duration of Jakinib treatment, and assess the combination therapeutic strategies. In this review, we highlighted JAK-STAT signalling in the pathogenesis of COVID-19 and clinically approved Jakinibs. Moreover, this review described substantially the promising use of Jakinibs and discussed their limitations in the context of COVID-19 therapy. Hence, this review article provides a concise, yet significant insight into the therapeutic implications of Jakinibs as potential anti-COVID agents which opens up a new horizon in the treatment of COVID-19, effectively.
Collapse
Affiliation(s)
- Nem Kumar Jain
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Mukul Tailang
- School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Hemant Kumar Jain
- Department of General Medicine, Government Medical College, Datia, Madhya Pradesh, India
| | - Balakumar Chandrasekaran
- Faculty of Pharmacy, Philadelphia University, Amman, Jordan
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| | - Biswa Mohan Sahoo
- Roland Institute of Pharmaceutical Sciences, Berhampur, Odisha, India
| | - Anandhalakshmi Subramanian
- Department of Microbiology and Clinical Parasitology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Neelaveni Thangavel
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - M. Alagusundaram
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, India
| | - Santosh Kumar
- School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Palani Selvam
- School of Medicine, College of Medicine and Health Sciences, Jijiga University, Jijiga, Ethiopia
- *Correspondence: Balakumar Chandrasekaran, ; Palani Selvam,
| |
Collapse
|
141
|
Subramani A, Hite MEL, Garcia S, Maxwell J, Kondee H, Millican GE, McClelland EE, Seipelt-Thiemann RL, Nelson DE. Regulation of macrophage IFNγ-stimulated gene expression by the transcriptional coregulator CITED1. J Cell Sci 2023; 136:jcs260529. [PMID: 36594555 PMCID: PMC10112972 DOI: 10.1242/jcs.260529] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/21/2022] [Indexed: 01/04/2023] Open
Abstract
Macrophages serve as a first line of defense against microbial pathogens. Exposure to interferon-γ (IFNγ) increases interferon-stimulated gene (ISG) expression in these cells, resulting in enhanced antimicrobial and proinflammatory activity. Although this response must be sufficiently vigorous to ensure the successful clearance of pathogens, it must also be carefully regulated to prevent tissue damage. This is controlled in part by CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 2 (CITED2), a transcriptional coregulator that limits ISG expression by inhibiting STAT1 and IRF1. Here, we show that the closely related Cited1 is an ISG, which is expressed in a STAT1-dependent manner, and that IFNγ stimulates the nuclear accumulation of CITED1 protein. In contrast to CITED2, ectopic CITED1 enhanced the expression of a subset of ISGs, including Ccl2, Ifit3b, Isg15 and Oas2. This effect was reversed in a Cited1-null cell line produced by CRISPR-based genomic editing. Collectively, these data show that CITED1 maintains proinflammatory gene expression during periods of prolonged IFNγ exposure and suggest that there is an antagonistic relationship between CITED proteins in the regulation of macrophage inflammatory function. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aarthi Subramani
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Maria E. L. Hite
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Sarah Garcia
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Jack Maxwell
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Hursha Kondee
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Grace E. Millican
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| | - Erin E. McClelland
- College of Osteopathic Medicine, Marian University, Indianapolis, IN 46222, USA
| | | | - David E. Nelson
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA
| |
Collapse
|
142
|
Suzuki Y, Lutshumba J, Chen KC, Abdelaziz MH, Sa Q, Ochiai E. IFN-γ production by brain-resident cells activates cerebral mRNA expression of a wide spectrum of molecules critical for both innate and T cell-mediated protective immunity to control reactivation of chronic infection with Toxoplasma gondii. Front Cell Infect Microbiol 2023; 13:1110508. [PMID: 36875520 PMCID: PMC9975934 DOI: 10.3389/fcimb.2023.1110508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
We previously demonstrated that brain-resident cells produce IFN-γ in response to reactivation of cerebral infection with Toxoplasma gondii. To obtain an overall landscape view of the effects of IFN-γ from brain-resident cells on the cerebral protective immunity, in the present study we employed NanoString nCounter assay and quantified mRNA levels for 734 genes in myeloid immunity in the brains of T and B cell-deficient, bone marrow chimeric mice with and without IFN-γ production by brain-resident cells in response to reactivation of cerebral T. gondii infection. Our study revealed that IFN-γ produced by brain-resident cells amplified mRNA expression for the molecules to activate the protective innate immunity including 1) chemokines for recruitment of microglia and macrophages (CCL8 and CXCL12) and 2) the molecules for activating those phagocytes (IL-18, TLRs, NOD1, and CD40) for killing tachyzoites. Importantly, IFN-γ produced by brain-resident cells also upregulated cerebral expression of molecules for facilitating the protective T cell immunity, which include the molecules for 1) recruiting effector T cells (CXCL9, CXCL10, and CXCL11), 2) antigen processing (PA28αβ, LMP2, and LMP7), transporting the processed peptides (TAP1 and TAP2), assembling the transported peptides to the MHC class I molecules (Tapasin), and the MHC class I (H2-K1 and H2-D1) and Ib molecules (H2-Q1, H-2Q2, and H2-M3) for presenting antigens to activate the recruited CD8+ T cells, 3) MHC class II molecules (H2-Aa, H2-Ab1, H2-Eb1, H2-Ea-ps, H2-DMa, H2-Ob, and CD74) to present antigens for CD4+ T cell activation, 4) co-stimulatory molecules (ICOSL) for T cell activation, and 5) cytokines (IL-12, IL-15, and IL-18) facilitating IFN-γ production by NK and T cells. Notably, the present study also revealed that IFN-γ production by brain-resident cells also upregulates cerebral expressions of mRNA for the downregulatory molecules (IL-10, STAT3, SOCS1, CD274 [PD-L1], IL-27, and CD36), which can prevent overly stimulated IFN-γ-mediated pro-inflammatory responses and tissue damages. Thus, the present study uncovered the previously unrecognized the capability of IFN-γ production by brain-resident cells to upregulate expressions of a wide spectrum of molecules for coordinating both innate and T cell-mediated protective immunity with a fine-tuning regulation system to effectively control cerebral infection with T. gondii.
Collapse
Affiliation(s)
- Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
- *Correspondence: Yasuhiro Suzuki,
| | - Jenny Lutshumba
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Kuey Chu Chen
- Department of Pharmacology and Nutritional Science, University of Kentucky College of Medicine, Lexington, KY, United States
- Genomics Core Laboratory, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Mohamed H. Abdelaziz
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Qila Sa
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Eri Ochiai
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
143
|
Sun H, Ma D, Cheng Y, Li J, Zhang W, Jiang T, Li Z, Li X, Meng H. The JAK-STAT Signaling Pathway in Epilepsy. Curr Neuropharmacol 2023; 21:2049-2069. [PMID: 36518035 PMCID: PMC10556373 DOI: 10.2174/1570159x21666221214170234] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is defined as spontaneous recurrent seizures in the brain. There is increasing evidence that inflammatory mediators and immune cells are involved in epileptic seizures. As more research is done on inflammatory factors and immune cells in epilepsy, new targets for the treatment of epilepsy will be revealed. The Janus kinase-signal transducer and transcriptional activator (JAKSTAT) signaling pathway is strongly associated with many immune and inflammatory diseases, At present, more and more studies have found that the JAK-STAT pathway is involved in the development and development of epilepsy, indicating the JAK-STAT pathway's potential promise as a target in epilepsy treatment. In this review, we discuss the composition, activation, and regulation of the JAK-STAT pathway and the relationship between the JAK-STAT pathway and epilepsy. In addition, we summarize the common clinical inhibitors of JAK and STAT that we would expect to be used in epilepsy treatment in the future.
Collapse
Affiliation(s)
- Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Cheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaai Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Ting Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Zhaoran Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuewei Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
144
|
Alkashgari HR, Ruiz-Jimenez C, Stoian C, Coats JS, Baez I, Chirshev E, Martinez SR, Dovat S, Francis-Boyle OL, Casiano CA, Payne KJ. TSLP as a Potential Therapy in the Treatment of CRLF2 B Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 24:474. [PMID: 36613920 PMCID: PMC9820664 DOI: 10.3390/ijms24010474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Cytokine receptor-like factor 2 B-cell acute lymphoblastic leukemia (CRLF2 B-ALL) is a high-risk subtype characterized by CRLF2 overexpression with poor survival rates in children and adults. CRLF2 and interleukin-7 receptor alpha (IL-7Rα) form a receptor for the cytokine thymic stromal lymphopoietin (TSLP), which induces JAK/STAT and PI3K/AKT/mTOR pathway signals. Previous studies from our group showed that low TSLP doses increased STAT5, AKT, and S6 phosphorylation and contributed to CRLF2 B-ALL cell survival. Here we investigated the role of TSLP in the survival and proliferation of CRLF2 B-ALL cells in vitro and in vivo. We hypothesized that high doses of TSLP increase CRLF2 signals and contribute to increased proliferation of CRLF2 B-ALL cells in vitro and in vivo. Interestingly, we observed the opposite effect. Specifically, high doses of TSLP induced apoptosis in human CRLF2 B-ALL cell lines in vitro, prevented engraftment of CRLF2 B-ALL cells, and prolonged the survival of +TSLP patient-derived-xenograft mice. Mechanistically, we showed that high doses of TSLP induced loss of its receptor and loss of CRLF2 signals in vitro. These results suggest that high doses of TSLP could be further investigated as a potential therapy for the treatment of CRLF2 B-ALL.
Collapse
Affiliation(s)
- Hossam R. Alkashgari
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Physiology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Caleb Ruiz-Jimenez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Cornelia Stoian
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Jacqueline S. Coats
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Ineavely Baez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Evgeny Chirshev
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Shannalee R. Martinez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Sinisa Dovat
- College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Olivia L. Francis-Boyle
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Rheumatology Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Kimberly J. Payne
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
145
|
Rai KR, Liao Y, Cai M, Qiu H, Wen F, Peng M, Wang S, Liu S, Guo G, Chi X, Maarouf M, Chen Y, Huang S, Chen JL. MIR155HG Plays a Bivalent Role in Regulating Innate Antiviral Immunity by Encoding Long Noncoding RNA-155 and microRNA-155-5p. mBio 2022; 13:e0251022. [PMID: 36321836 PMCID: PMC9765511 DOI: 10.1128/mbio.02510-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/13/2022] [Indexed: 01/25/2023] Open
Abstract
MIR155HG encodes a precursor RNA of microRNA-155 (miRNA-155). We previously identified this RNA also as a long noncoding RNA (lncRNA) that we call lncRNA-155. To define the functions of miRNA-155 and lncRNA-155, we generated miRNA-155 knockout (KO) mice lacking only 19 bp of the miRNA-155 core sequence without affecting the expression of lncRNA-155. Surprisingly, compared with the miRNA-155KO mice, previously generated lncRNA-155KO mice were more susceptible to both influenza virus (RNA virus) and pseudorabies virus (DNA virus) infection, as characterized by lower survival rate, higher body weight loss, and higher viral load. We found that miRNA-155-5p enhanced antiviral responses by positively regulating activation of signal transducer and activator of transcription 1 (STAT1), but the STAT1 activity differed greatly in the animals (lncRNA-155KO < miRNA-155KO < wild type). In line with this, expression levels of several critical interferon-stimulated genes (ISGs) were also significantly different (lncRNA-155KO < miRNA-155KO < wild type). We found that lncRNA-155 augmented interferon beta (IFN-β) production during the viral infection, but miRNA-155 had no significant effect on the virus-induced IFN-β expression. Furthermore, we observed that lncRNA-155 loss in mice resulted in dramatic inhibition of virus-induced activation of interferon regulatory factor 3 compared to both miRNA-155KO and wild-type (WT) animals. Moreover, lncRNA-155 still significantly suppressed the viral infection even though the miRNA-155 derived from lncRNA-155 was deleted or blocked. These results reveal that lncRNA-155 and miRNA-155 regulate antiviral responses through distinct mechanisms, indicating a bivalent role for MIR155HG in innate immunity. IMPORTANCE Here, we found that lncRNA-155KO mice lacking most of the lncRNA-155 sequences along with pre-miRNA-155, were more susceptible to influenza virus or pseudorabies virus infection than miRNA-155KO mice lacking only 19 bp of the miRNA-155 core sequence without affecting the expression of lncRNA-155, as evidenced by faster body weight loss, poorer survival, and higher viral load, suggesting an additional role of lncRNA-155 in regulating viral pathogenesis besides via processing miRNA-155. Congruously, miRNA-155-deleted lncRNA-155 significantly attenuated the viral infection. Mechanistically, we demonstrated miRNA-155-5p potentiated antiviral responses by promoting STAT1 activation but could not directly regulate the IFN-β expression. In contrast, lncRNA-155 enhanced virus-induced IFN-β production by regulating the activation of interferon regulatory factor 3. This finding reveals a bivalent role of MIR155HG in regulating antiviral responses through encoding lncRNA-155 and miRNA-155-5p and provides new insights into complicated mechanisms underlying interaction between virus and host innate immunity.
Collapse
Affiliation(s)
- Kul Raj Rai
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Liao
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengjuan Cai
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haori Qiu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Faxin Wen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Peng
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Song Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shasha Liu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guijie Guo
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojuan Chi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
146
|
Benaglio P, Zhu H, Okino ML, Yan J, Elgamal R, Nariai N, Beebe E, Korgaonkar K, Qiu Y, Donovan MK, Chiou J, Wang G, Newsome J, Kaur J, Miller M, Preissl S, Corban S, Aylward A, Taipale J, Ren B, Frazer KA, Sander M, Gaulton KJ. Type 1 diabetes risk genes mediate pancreatic beta cell survival in response to proinflammatory cytokines. CELL GENOMICS 2022; 2:100214. [PMID: 36778047 PMCID: PMC9903835 DOI: 10.1016/j.xgen.2022.100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/17/2022] [Accepted: 10/15/2022] [Indexed: 11/13/2022]
Abstract
We combined functional genomics and human genetics to investigate processes that affect type 1 diabetes (T1D) risk by mediating beta cell survival in response to proinflammatory cytokines. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) in beta cells using ATAC-seq and snATAC-seq and linked them to target genes using co-accessibility and HiChIP. Using a genome-wide CRISPR screen in EndoC-βH1 cells, we identified 867 genes affecting cytokine-induced survival, and genes promoting survival and up-regulated in cytokines were enriched at T1D risk loci. Using SNP-SELEX, we identified 2,229 variants in cytokine-responsive cCREs altering transcription factor (TF) binding, and variants altering binding of TFs regulating stress, inflammation, and apoptosis were enriched for T1D risk. At the 16p13 locus, a fine-mapped T1D variant altering TF binding in a cytokine-induced cCRE interacted with SOCS1, which promoted survival in cytokine exposure. Our findings reveal processes and genes acting in beta cells during inflammation that modulate T1D risk.
Collapse
Affiliation(s)
- Paola Benaglio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Han Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mei-Lin Okino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jian Yan
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- School of Medicine, Northwest University, Xi’an, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Ruth Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Naoki Nariai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elisha Beebe
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Katha Korgaonkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Yunjiang Qiu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Joshua Chiou
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jacklyn Newsome
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jaspreet Kaur
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Sierra Corban
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Aylward
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Kelly A. Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Maike Sander
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
147
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
148
|
Bhattacharya A, Shukla VK, Kachariya N, Preeti, Sehrawat P, Kumar A. Disorder in the Human Skp1 Structure is the Key to its Adaptability to Bind Many Different Proteins in the SCF Complex Assembly. J Mol Biol 2022; 434:167830. [PMID: 36116539 DOI: 10.1016/j.jmb.2022.167830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Skp1(S-phase kinase-associated protein 1 - Homo sapiens) is an adapter protein of the SCF(Skp1-Cullin1-Fbox) complex, which links the constant components (Cul1-RBX) and the variable receptor (F-box proteins) in Ubiquitin E3 ligase. It is intriguing how Skp1 can recognise and bind to a variety of structurally different F-box proteins. For practical reasons, previous efforts have used truncated Skp1, and thus it has not been possible to track the crucial aspects of the substrate recognition process. In this background, we report the solution structure of the full-length Skp1 protein determined by NMR spectroscopy for the first time and investigate the sequence-dependent dynamics in the protein. The solution structure reveals that Skp1 has an architecture: β1-β2-H1-H2-L1-H3-L2-H4-H5-H6-H7(partially formed) and a long tail-like disordered C-terminus. Structural analysis using DALI (Distance Matrix Alignment) reveals conserved domain structure across species for Skp1. Backbone dynamics investigated using NMR relaxation suggest substantial variation in the motional timescales along the length of the protein. The loops and the C-terminal residues are highly flexible, and the (R2/R1) data suggests μs-ms timescale motions in the helices as well. Further, the dependence of amide proton chemical shift on temperature and curved profiles of their residuals indicate that the residues undergo transitions between native state and excited state. The curved profiles for several residues across the length of the protein suggest that there are native-like low-lying excited states, particularly for several C-terminal residues. Our results provide a rationale for how the protein can adapt itself, bind, and get functionally associated with other proteins in the SCF complex by utilising its flexibility and conformational sub-states.
Collapse
Affiliation(s)
- Amrita Bhattacharya
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vaibhav Kumar Shukla
- Biophysical Chemistry & Structural Biology Laboratory, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India. https://twitter.com/bhu_vaibhav
| | - Nitin Kachariya
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Preeti
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Parveen Sehrawat
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
149
|
Xia F, Bo W, Ding J, Yu Y, Wang J, Wang J, Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University, Jiangsu, China, Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University, Jiangsu, China, Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University, Jiangsu, China, Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University, Jiangsu, China. MiR-222-3p Aggravates the Inflammatory Response by Targeting SOCS1 to Activate STAT3 Signaling in Ulcerative Colitis. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2022; 33:934-944. [PMID: 35946880 PMCID: PMC9797778 DOI: 10.5152/tjg.2022.21769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ulcerative colitis is characterized by relapsing inflammation in the gastrointestinal tract with limited treatment options. The aim of the present study was to assess the anti-inflammatory effect of Suppressor of cytokine signaling (SOCS1) on lipopolysac- charide-stimulated RAW264.7 cells and to investigate its potential mechanisms. METHODS The in vitro ulcerative colitis model was established by using lipopolysaccharide-stimulated RAW264.7 cells. Western blot- ting was used to detect the protein expression levels of SOCS1, JAK2, STAT3, and VDR. Reverse transcription-quantitative polymerase chain reaction was used to measure the mRNA expression of SOCS1, miR-222-3p, and VDR. An enzyme-linked immunosorbent assay was performed to measure the levels of inflammatory cytokines. A luciferase assay assessed the binding of SOCS1 to miR-222-3p. A total of 15 patients with ulcerative colitis and 18 healthy controls were recruited. The expression levels of SOCS1 and miR-222-3p in the colonic mucosa tissues of patients with ulcerative colitis and healthy controls were determined by reverse transcription-quantitative polymerase chain reaction. RESULTS SOCS1 upregulation inhibited the lipopolysaccharide-induced inflammation in RAW264.7 cells. SOCS1 was confirmed to be tar- geted by miR-222-3p. Silencing SOCS1 significantly abolished the inhibitory effects of miR-222-3p downregulation on inflammation. MiR-222-3p activated STAT3 signaling and reduced VDR expression by targeting SOCS1 in lipopolysaccharide-treated RAW264.7 cells. Additionally, miR-222-3p expression was upregulated in ulcerative colitis patients (P = 5.16E-10), while SOCS1 (P = 2.75E-10) and VDR (P = 52.5E-9) expression was downregulated in ulcerative colitis patients. Endoscopic scores (UCEIS) revealed significant positive cor- relation with miR-222-3p and negative correlation with SOCS1 and VDR. CONCLUSION MiR-222-3p targets SOCS1 to aggravate the inflammatory response by suppressing VDR and activating STAT3 signaling in ulcerative colitis.
Collapse
Affiliation(s)
| | | | | | - Yanqiu Yu
- Corresponding authors: Yanqiu Yu or Jianning Wang, e-mail: ;
| | - Jianning Wang
- Corresponding authors: Yanqiu Yu or Jianning Wang, e-mail: ;
| | | | | | | | | | | |
Collapse
|
150
|
Michniacki TF, Walkovich K, DeMeyer L, Saad N, Hannibal M, Basiaga ML, Horst KK, Mohan S, Chen L, Brodeur K, Du Y, Frame D, Ngo S, Simoneau J, Brown N, Lee PY. SOCS1 Haploinsufficiency Presenting as Severe Enthesitis, Bone Marrow Hypocellularity, and Refractory Thrombocytopenia in a Pediatric Patient with Subsequent Response to JAK Inhibition. J Clin Immunol 2022; 42:1766-1777. [PMID: 35976468 PMCID: PMC9381392 DOI: 10.1007/s10875-022-01346-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022]
Abstract
Haploinsufficiency of suppressor of cytokine signaling 1 (SOCS1) is a recently discovered autoinflammatory disorder with significant rheumatologic, immunologic, and hematologic manifestations. Here we report a case of SOCS1 haploinsufficiency in a 5-year-old child with profound arthralgias and immune-mediated thrombocytopenia unmasked by SARS-CoV-2 infection. Her clinical manifestations were accompanied by excessive B cell activity, eosinophilia, and elevated IgE levels. Uniquely, this is the first report of SOCS1 haploinsufficiency in the setting of a chromosomal deletion resulting in complete loss of a single SOCS1 gene with additional clinical findings of bone marrow hypocellularity and radiologic evidence of severe enthesitis. Immunologic profiling showed a prominent interferon signature in the patient's peripheral blood mononuclear cells, which were also hypersensitive to stimulation by type I and type II interferons. The patient showed excellent clinical and functional laboratory response to tofacitinib, a Janus kinase inhibitor that disrupts interferon signaling. Our case highlights the need to utilize a multidisciplinary diagnostic approach and consider a comprehensive genetic evaluation for inborn errors of immunity in patients with an atypical immune-mediated thrombocytopenia phenotype.
Collapse
Affiliation(s)
- Thomas F Michniacki
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
| | - Kelly Walkovich
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Lauren DeMeyer
- Division of Genetics, Metabolism & Genomic Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Nadine Saad
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Mark Hannibal
- Division of Genetics, Metabolism & Genomic Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Matthew L Basiaga
- Division of Pediatric Rheumatology, Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
| | - Kelly K Horst
- Division of Pediatric Radiology, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Smriti Mohan
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Liang Chen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kailey Brodeur
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan Du
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Frame
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Sandra Ngo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Jillian Simoneau
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|