101
|
Johnson CB, Zhang J, Lucas D. The Role of the Bone Marrow Microenvironment in the Response to Infection. Front Immunol 2020; 11:585402. [PMID: 33324404 PMCID: PMC7723962 DOI: 10.3389/fimmu.2020.585402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.
Collapse
Affiliation(s)
- Courtney B Johnson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
102
|
Zhang L, Mack R, Breslin P, Zhang J. Molecular and cellular mechanisms of aging in hematopoietic stem cells and their niches. J Hematol Oncol 2020; 13:157. [PMID: 33228751 PMCID: PMC7686726 DOI: 10.1186/s13045-020-00994-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023] Open
Abstract
Aging drives the genetic and epigenetic changes that result in a decline in hematopoietic stem cell (HSC) functioning. Such changes lead to aging-related hematopoietic/immune impairments and hematopoietic disorders. Understanding how such changes are initiated and how they progress will help in the development of medications that could improve the quality life for the elderly and to treat and possibly prevent aging-related hematopoietic diseases. Here, we review the most recent advances in research into HSC aging and discuss the role of HSC-intrinsic events, as well as those that relate to the aging bone marrow niche microenvironment in the overall processes of HSC aging. In addition, we discuss the potential mechanisms by which HSC aging is regulated.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Department of Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Department of Pathology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
103
|
González-Hernández S, Gómez MJ, Sánchez-Cabo F, Méndez-Ferrer S, Muñoz-Cánoves P, Isern J. Sox17 Controls Emergence and Remodeling of Nestin-Expressing Coronary Vessels. Circ Res 2020; 127:e252-e270. [PMID: 32921258 DOI: 10.1161/circresaha.120.317121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RATIONALE The molecular mechanisms underlying the formation of coronary arteries during development and during cardiac neovascularization after injury are poorly understood. However, a detailed description of the relevant signaling pathways and functional TFs (transcription factors) regulating these processes is still incomplete. OBJECTIVE The goal of this study is to identify novel cardiac transcriptional mechanisms of coronary angiogenesis and vessel remodeling by defining the molecular signatures of coronary vascular endothelial cells during these complex processes. METHODS AND RESULTS We demonstrate that Nes-gfp and Nes-CreERT2 transgenic mouse lines are novel tools for studying the emergence of coronary endothelium and targeting sprouting coronary vessels (but not ventricular endocardium) during development. Furthermore, we identify Sox17 as a critical TF upregulated during the sprouting and remodeling of coronary vessels, visualized by a specific neural enhancer from the Nestin gene that is strongly induced in developing arterioles. Functionally, genetic-inducible endothelial deletion of Sox17 causes deficient cardiac remodeling of coronary vessels, resulting in improper coronary artery formation. CONCLUSIONS We demonstrated that Sox17 TF regulates the transcriptional activation of Nestin's enhancer in developing coronary vessels while its genetic deletion leads to inadequate coronary artery formation. These findings identify Sox17 as a critical regulator for the remodeling of coronary vessels in the developing heart.
Collapse
Affiliation(s)
- Sara González-Hernández
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (S.G.-H., M.J.G., F.S.-C., P.M.-C., J.I.)
| | - Manuel J Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (S.G.-H., M.J.G., F.S.-C., P.M.-C., J.I.)
- Bioinformatics Unit, CNIC, Madrid, Spain (M.J.G., F.S.-C.)
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (S.G.-H., M.J.G., F.S.-C., P.M.-C., J.I.)
- Bioinformatics Unit, CNIC, Madrid, Spain (M.J.G., F.S.-C.)
| | - Simón Méndez-Ferrer
- WT-MRC Cambridge Stem Cell Institute and NHS-Blood and Transplant, Cambridge, United Kingdom (S.M.-F.)
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (S.G.-H., M.J.G., F.S.-C., P.M.-C., J.I.)
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain (P.M.-C., J.I.)
| | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (S.G.-H., M.J.G., F.S.-C., P.M.-C., J.I.)
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain (P.M.-C., J.I.)
| |
Collapse
|
104
|
Ito T, Kometani K, Minato N, Hamazaki Y. Bone Marrow Endothelial Cells Take Up Blood-Borne Immune Complexes via Fcγ Receptor IIb2 in an Erythropoietin-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2020; 205:2008-2015. [PMID: 32907997 DOI: 10.4049/jimmunol.1901101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 08/10/2020] [Indexed: 11/19/2022]
Abstract
Immune complexes (ICs) in blood are efficiently removed mainly by liver reticuloendothelial systems consisting of sinusoidal endothelial cells and Kupffer cells expressing FcγR. The bone marrow (BM) also has sinusoidal vasculatures, and sinusoidal BM endothelial cells (BMECs) bear unique function, including hematopoietic niches and traffic regulation of hematopoietic cells. In this study, we found that sinusoidal BMECs express FcγRIIb2, which is markedly increased in anemic conditions or by the administration of erythropoietin (Epo) in healthy mice. BMECs expressed Epo receptor (EpoR), and the Epo-induced increase in FcγRIIb2 expression was abolished in Epor-/- ::HG1-Epor transgenic mice, which lack EpoR in BMECs except for BM erythroblasts, suggesting the effect was directly mediated via EpoR on BMECs. Further, although BMECs hardly captured i.v.-injected soluble ICs in healthy mice, Epo administration induced a remarkable increase in the uptake of ICs in a FcγRIIb-dependent manner. Enhancement of the IC incorporation capacity by Epo was also observed in cultured BMECs in vitro, suggesting the direct effect of Epo on BMECs. Moreover, we found that i.v.-injected ICs in Epo-treated mice were more rapidly removed from the circulation than in PBS-treated mice. These results reveal a novel function of BMECs to efficiently remove circulating blood-borne ICs in an FcγRIIb2-mediated manner.
Collapse
Affiliation(s)
- Takeshi Ito
- Center for iPS Cell Research and Application, Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; and
| | - Kohei Kometani
- Center for iPS Cell Research and Application, Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; and
| | - Nagahiro Minato
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoko Hamazaki
- Center for iPS Cell Research and Application, Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; and
| |
Collapse
|
105
|
Helbling PM, Piñeiro-Yáñez E, Gerosa R, Boettcher S, Al-Shahrour F, Manz MG, Nombela-Arrieta C. Global Transcriptomic Profiling of the Bone Marrow Stromal Microenvironment during Postnatal Development, Aging, and Inflammation. Cell Rep 2020; 29:3313-3330.e4. [PMID: 31801092 DOI: 10.1016/j.celrep.2019.11.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Bone marrow (BM) stromal cells provide the regulatory framework for hematopoiesis and contribute to developmental stage-specific niches, such as those preserving hematopoietic stem cells. Despite advances in our understanding of stromal function, little is known about the transcriptional changes that this compartment undergoes throughout lifespan and during adaptation to stress. Using RNA sequencing, we perform transcriptional analyses of four principal stromal subsets, namely CXCL12-abundant reticular, platelet-derived growth factor receptor (PDGFR)-α+Sca1+, sinusoidal, and arterial endothelial cells, from early postnatal, adult, and aged mice. Our data reveal (1) molecular fingerprints defining cell-specific anatomical and functional features, (2) a radical reprogramming of pro-hematopoietic, immune, and matrisomic transcriptional programs during the transition from juvenile stages to adulthood, and (3) the aging-driven progressive upregulation of pro-inflammatory gene expression in stroma. We further demonstrate that transcriptomic pathways elicited in vivo by prototypic microbial molecules are largely recapitulated during aging, thereby supporting the inflammatory basis of age-related adaptations of BM hematopoietic function.
Collapse
Affiliation(s)
- Patrick M Helbling
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Rahel Gerosa
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Steffen Boettcher
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
106
|
Single-cell and spatial transcriptomics approaches of the bone marrow microenvironment. Curr Opin Oncol 2020; 32:146-153. [PMID: 31833957 DOI: 10.1097/cco.0000000000000602] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE OF REVIEW The bone marrow is home to hematopoietic stem cells responsible for lifelong blood production, alongside mesenchymal stem cells required for skeletal regeneration. In the bone marrow, a unique combination of signals derived from a multitude of cell types results in the establishment of so-called niches that regulate stem-cell maintenance and differentiation. Recently, single-cell and spatially resolved transcriptomics technologies have been utilized to characterize the murine bone marrow microenvironment during homeostasis, stress and upon cancer-induced remodeling. In this review, we summarize the major findings of these studies. RECENT FINDINGS Single-cell technologies applied to bone marrow provided the first systematic and label-free identification of bone marrow cell types, enabled their molecular and spatial characterization, and clarified the cellular sources of key prohematopoietic factors. Large transcriptional heterogeneity and novel subpopulations were observed in compartments previously thought to be homogenous. For example, Lepr Cxcl12-abundant reticular cells were shown to constitute the major source of prohematopoietic factors, but consist of subpopulations differing in their adipogenic versus osteogenic priming, morphology and localization. These subpopulations were suggested to act as professional cytokine secreting cells, thereby establishing distinct bone marrow niches. SUMMARY Single-cell and spatially resolved transcriptomics approaches have clarified the molecular identity and localization of bone marrow-resident cell types, paving the road for a deeper exploration of bone marrow niches in the mouse and humans.
Collapse
|
107
|
Xu C, Lee SK, Zhang D, Frenette PS. The Gut Microbiome Regulates Psychological-Stress-Induced Inflammation. Immunity 2020; 53:417-428.e4. [PMID: 32735844 DOI: 10.1016/j.immuni.2020.06.025] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/13/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023]
Abstract
Psychological stress has adverse effects on various human diseases, including those of the cardiovascular system. However, the mechanisms by which stress influences disease activity remain unclear. Here, using vaso-occlusive episodes (VOEs) of sickle cell disease as a vascular disease model, we show that stress promotes VOEs by eliciting a glucocorticoid hormonal response that augments gut permeability, leading to microbiota-dependent interleukin-17A (IL-17A) secretion from T helper 17 (Th17) cells of the lamina propria, followed by the expansion of the circulating pool of aged neutrophils that trigger VOEs. We identify segmented filamentous bacteria as the commensal essential for the stress-induced expansion of aged neutrophils that enhance VOEs in mice. Importantly, the inhibition of glucocorticoids synthesis, blockade of IL-17A, or depletion of the Th17 cell-inducing gut microbiota markedly reduces stress-induced VOEs. These results offer potential therapeutic targets to limit the impact of psychological stress on acute vascular occlusion.
Collapse
Affiliation(s)
- Chunliang Xu
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sung Kyun Lee
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dachuan Zhang
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Paul S Frenette
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
108
|
Mitroulis I, Kalafati L, Bornhäuser M, Hajishengallis G, Chavakis T. Regulation of the Bone Marrow Niche by Inflammation. Front Immunol 2020; 11:1540. [PMID: 32849521 PMCID: PMC7396603 DOI: 10.3389/fimmu.2020.01540] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSC) reside in the bone marrow (BM) within a specialized micro-environment, the HSC niche, which comprises several cellular constituents. These include cells of mesenchymal origin, endothelial cells and HSC progeny, such as megakaryocytes and macrophages. The BM niche and its cell populations ensure the functional preservation of HSCs. During infection or systemic inflammation, HSCs adapt to and respond directly to inflammatory stimuli, such as pathogen-derived signals and elicited cytokines, in a process termed emergency myelopoiesis, which includes HSC activation, expansion, and enhanced myeloid differentiation. The cell populations of the niche participate in the regulation of emergency myelopoiesis, in part through secretion of paracrine factors in response to pro-inflammatory stimuli, thereby indirectly affecting HSC function. Here, we review the crosstalk between HSCs and cell populations in the BM niche, specifically focusing on the adaptation of the HSC niche to inflammation and how this inflammatory adaptation may, in turn, regulate emergency myelopoiesis.
Collapse
Affiliation(s)
- Ioannis Mitroulis
- First Department of Internal Medicine, Department of Haematology and Laboratory of Molecular Hematology, Democritus University of Thrace, Alexandroupolis, Greece.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lydia Kalafati
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Internal Medicine I, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| |
Collapse
|
109
|
Men Y, Wang Y, Yi Y, Jing D, Luo W, Shen B, Stenberg W, Chai Y, Ge WP, Feng JQ, Zhao H. Gli1+ Periodontium Stem Cells Are Regulated by Osteocytes and Occlusal Force. Dev Cell 2020; 54:639-654.e6. [PMID: 32652075 DOI: 10.1016/j.devcel.2020.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/04/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Teeth are attached to alveolar bone by the periodontal ligament (PDL), which contains stem cells supporting tissue turnover. Here, we identified Gli1+ cells in adult mouse molar PDL as multi-potential stem cells (PDLSCs) giving rise to PDL, alveolar bone, and cementum. They support periodontium tissue turnover and injury repair. Gli1+ PDLSCs are surrounding the neurovascular bundle and more enriched in the apical region. Canonical Wnt signaling is essential for their activation. Alveolar bone osteocytes negatively regulate Gli1+ PDLSCs activity through sclerostin, a Wnt inhibitor. Blockage of sclerostin accelerates the PDLSCs lineage contribution rate in vivo. Sclerostin expression is modulated by physiological occlusal force. Removal of occlusal force upregulates sclerostin and inhibits PDLSCs activation. In summary, Gli1+ cells are the multipotential PDLSCs in vivo. Osteocytes provide negative feedback to PDLSCs and inhibit their activities through sclerostin. Physiological occlusal force indirectly regulates PDLSCs activities by fine-tuning this feedback loop.
Collapse
Affiliation(s)
- Yi Men
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuhong Wang
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Dian Jing
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Wenjing Luo
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Bo Shen
- Children's Research Institute, UT Southwestern Medical Center Dallas, TX 75235, USA
| | - William Stenberg
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Herman Ostrow School of Dentistry, Los Angeles, CA 90089, USA
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jian Q Feng
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA.
| |
Collapse
|
110
|
Kazianka L, Staber PB. The Bone's Role in Myeloid Neoplasia. Int J Mol Sci 2020; 21:E4712. [PMID: 32630305 PMCID: PMC7369750 DOI: 10.3390/ijms21134712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
The interaction of hematopoietic stem and progenitor cells with their direct neighboring cells in the bone marrow (the so called hematopoietic niche) evolves as a key principle for understanding physiological and malignant hematopoiesis. Significant progress in this matter has recently been achieved making use of emerging high-throughput techniques that allow characterization of the bone marrow microenvironment at single cell resolution. This review aims to discuss these single cell findings in the light of other conventional niche studies that together define the current notion of the niche's implication in i) normal hematopoiesis, ii) myeloid neoplasms and iii) disease-driving pathways that can be exploited to establish novel therapeutic strategies in the future.
Collapse
Affiliation(s)
| | - Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria;
| |
Collapse
|
111
|
He X, Hawkins C, Lawley L, Freeman K, Phan TM, Zhang J, Xu Y, Fang J. Whole body deletion of Gpr68 does not change hematopoietic stem cell function. Stem Cell Res 2020; 47:101869. [PMID: 32592951 PMCID: PMC7749853 DOI: 10.1016/j.scr.2020.101869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022] Open
Abstract
G protein-coupled receptor 68 (GPR68) responds to extracellular protons, thus called the proton-sensing G protein-coupled receptor (GPCR), leading to activation of the phospholipase C-β (PLCβ)/calcium (Ca2+) pathway or the adenylyl cyclase (AC)/cyclic AMP (cAMP) pathway. We recently found that whole body deletion of Gpr68 (Gpr68-/- mice) reduced the number of B lymphocytes with age and during hematopoietic regeneration, such as in response to fluorouracil (5-FU) administration. This prompted us to characterize the hematopoietic stem cell (HSC) phenotype in Gpr68-/- mice. Despite high level of Gpr68 protein expression on HSC in bone marrow (BM), the pool size of HSC was unaltered in Gpr68-/- mice either under steady state or upon stress, including aging and 5-FU treatment. HSC from Gpr68-/- mice exhibited comparable cellular features, such as cell cycle quiescence and cell survival. HSC from Gpr68-/- mice also exhibited comparable competitiveness after serial transplantation. Surprisingly, cytosolic Ca2+ accumulation was increased in HSC from Gpr68-/- mice. In contrast, cAMP levels were reduced in hematopoietic stem and progenitor cells (HSPC) from Gpr68-/- mice. Intriguingly, we found high level of Gpr68 protein expression on non-hematopoietic cells in BM, especially endothelial cells that function as HSC niche. In addition, expression of other proton-sensing GPCR was upregulated in HSPC from Gpr68-/- mice. Our studies suggest that Gpr68-/- mice display insignificant phenotype on HSC biology, possibly due to the function of Gpr68 in non-hematopoietic cells and/or the compensatory effects from other proton-sensing GPCR.
Collapse
Affiliation(s)
- Xiaofei He
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Caleb Hawkins
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Lauren Lawley
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Kennedy Freeman
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Tra Mi Phan
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, University of South Carolina Arnold School of Public Health, Columbia, SC, USA
| | - Yan Xu
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing Fang
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA.
| |
Collapse
|
112
|
Gomes AC, Saraiva M, Gomes MS. The bone marrow hematopoietic niche and its adaptation to infection. Semin Cell Dev Biol 2020; 112:37-48. [PMID: 32553581 DOI: 10.1016/j.semcdb.2020.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Hematopoiesis is responsible for the formation of all blood cells from hematopoietic stem cells (HSC) in the bone marrow (BM). It is a highly regulated process, in order to adapt its cellular output to changing body requirements. Specific microenvironmental conditions within the BM must exist in order to maintain HSC pluripotency and self-renewal, as well as to ensure appropriate differentiation of progenitor cells towards each hematopoietic lineage. Those conditions were coined "the hematopoietic niche" and their identity in terms of cell types, location and soluble molecular components has been the subject of intense research in the last decades. Infections are one of the environmental challenges to which hematopoiesis must respond, to feed the immune system with functional cell components and compensate for cellular losses. However, how infections impact the bone marrow hematopoietic niche(s) remains elusive and most of the mechanisms involved are still largely unknown. Here, we review the most recent advances on our knowledge on the hematopoietic niche composition and regulation during homeostasis and also on how the niche responds to infectious stress.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Maria Salomé Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
113
|
Gadomski S, Singh SK, Singh S, Sarkar T, Klarmann KD, Berenschot M, Seaman S, Jakubison B, Gudmundsson KO, Lockett S, Keller JR. Id1 and Id3 Maintain Steady-State Hematopoiesis by Promoting Sinusoidal Endothelial Cell Survival and Regeneration. Cell Rep 2020; 31:107572. [PMID: 32348770 PMCID: PMC8459380 DOI: 10.1016/j.celrep.2020.107572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Investigating mechanisms that regulate endothelial cell (EC) growth and survival is important for understanding EC homeostasis and how ECs maintain stem cell niches. We report here that targeted loss of Id genes in adult ECs results in dilated, leaky sinusoids and a pro-inflammatory state that increases in severity over time. Disruption in sinusoidal integrity leads to increased hematopoietic stem cell (HSC) proliferation, differentiation, migration, and exhaustion. Mechanistically, sinusoidal ECs (SECs) show increased apoptosis because of reduced Bcl2-family gene expression following Id gene ablation. Furthermore, Id1-/-Id3-/- SECs and upstream type H vessels show increased expression of cyclin-dependent kinase inhibitors p21 and p27 and impaired ability to proliferate, which is rescued by reducing E2-2 expression. Id1-/-Id3-/- mice do not survive sublethal irradiation because of impaired vessel regeneration and hematopoietic failure. Thus, Id genes are required for the survival and regeneration of BM SECs during homeostasis and stress to maintain HSC development.
Collapse
Affiliation(s)
- Stephen Gadomski
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Satyendra K Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Maximillian Berenschot
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Steven Seaman
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Brad Jakubison
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kristbjorn O Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA; Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| |
Collapse
|
114
|
Hoyer FF, Zhang X, Coppin E, Vasamsetti SB, Modugu G, Schloss MJ, Rohde D, McAlpine CS, Iwamoto Y, Libby P, Naxerova K, Swirski FK, Dutta P, Nahrendorf M. Bone Marrow Endothelial Cells Regulate Myelopoiesis in Diabetes Mellitus. Circulation 2020; 142:244-258. [PMID: 32316750 DOI: 10.1161/circulationaha.120.046038] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Diabetes mellitus is a prevalent public health problem that affects about one-third of the US population and leads to serious vascular complications with increased risk for coronary artery disease. How bone marrow hematopoiesis contributes to diabetes mellitus complications is incompletely understood. We investigated the role of bone marrow endothelial cells in diabetic regulation of inflammatory myeloid cell production. METHODS In 3 types of mouse diabetes mellitus, including streptozotocin, high-fat diet, and genetic induction using leptin-receptor-deficient db/db mice, we assayed leukocytes, hematopoietic stem and progenitor cells (HSPC). In addition, we investigated bone marrow endothelial cells with flow cytometry and expression profiling. RESULTS In diabetes mellitus, we observed enhanced proliferation of HSPC leading to augmented circulating myeloid cell numbers. Analysis of bone marrow niche cells revealed that endothelial cells in diabetic mice expressed less Cxcl12, a retention factor promoting HSPC quiescence. Transcriptome-wide analysis of bone marrow endothelial cells demonstrated enrichment of genes involved in epithelial growth factor receptor (Egfr) signaling in mice with diet-induced diabetes mellitus. To explore whether endothelial Egfr plays a functional role in myelopoiesis, we generated mice with endothelial-specific deletion of Egfr (Cdh5Cre Egfrfl/fl). We found enhanced HSPC proliferation and increased myeloid cell production in Cdh5Cre Egfrfl/fl mice compared with wild-type mice with diabetes mellitus. Disrupted Egfr signaling in endothelial cells decreased their expression of the HSPC retention factor angiopoietin-1. We tested the functional relevance of these findings for wound healing and atherosclerosis, both implicated in complications of diabetes mellitus. Inflammatory myeloid cells accumulated more in skin wounds of diabetic Cdh5Cre Egfrfl/fl mice, significantly delaying wound closure. Atherosclerosis was accelerated in Cdh5Cre Egfrfl/fl mice, leading to larger and more inflamed atherosclerotic lesions in the aorta. CONCLUSIONS In diabetes mellitus, bone marrow endothelial cells participate in the dysregulation of bone marrow hematopoiesis. Diabetes mellitus reduces endothelial production of Cxcl12, a quiescence-promoting niche factor that reduces stem cell proliferation. We describe a previously unknown counterregulatory pathway, in which protective endothelial Egfr signaling curbs HSPC proliferation and myeloid cell production.
Collapse
Affiliation(s)
- Friedrich Felix Hoyer
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Xinyi Zhang
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.).,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (X.Z.)
| | - Emilie Coppin
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Sathish Babu Vasamsetti
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Ganesh Modugu
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Maximilian J Schloss
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - David Rohde
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Cameron S McAlpine
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Yoshiko Iwamoto
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (P.L.)
| | - Kamila Naxerova
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Filip K Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.)
| | - Partha Dutta
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, PA (X.Z., E.C., S.B.V., G.M., P.D.)
| | - Matthias Nahrendorf
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Simches Research Building, Boston (F.F.H., M.J.S., D.R., C.S.A., Y.I., K.N., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Würzburg, Germany (M.N.)
| |
Collapse
|
115
|
Varlamov O, Bucher M, Myatt L, Newman N, Grant KA. Daily Ethanol Drinking Followed by an Abstinence Period Impairs Bone Marrow Niche and Mitochondrial Function of Hematopoietic Stem/Progenitor Cells in Rhesus Macaques. Alcohol Clin Exp Res 2020; 44:1088-1098. [PMID: 32220015 DOI: 10.1111/acer.14328] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Unhealthy consumption of alcohol is a major public health crisis with strong associations between immunological dysfunctions, high vulnerability to infectious disease, anemia, and an increase in the risk of hematological malignancies. However, there is a lack of studies addressing alcohol-induced changes in bone marrow (BM) and hematopoiesis as fundamental aspects of immune system function. METHODS To address the effect of chronic alcohol consumption on hematopoietic stem and progenitor cells (HSPCs) and the BM niche, we used an established rhesus macaque model of voluntary alcohol drinking. A cohort of young adult male rhesus macaques underwent a standard ethanol self-administration protocol that allowed a choice of drinking alcohol or water 22 hours/day with periods of forced abstinence that elevated subsequent intakes when alcohol availability resumed. Following the last month of forced abstinence, the monkeys were euthanized. HSPCs and bone samples were collected and analyzed in functional assays and by confocal microscopy. RESULTS HSPCs from alcohol animals exhibited reduced ability to form granulocyte-monocyte and erythroid colonies in vitro. HSPCs also displayed a decrease in mitochondrial oxygen consumption linked to ATP production and basal respiratory capacity. Chronic alcohol use led to vascular remodeling of the BM niche, a reduction in the number of primitive HSPCs, and a shift in localization of HSPCs from an adipose to a perivascular niche. CONCLUSIONS Our study demonstrates, for the first time, that chronic voluntary alcohol drinking in rhesus macaque monkeys leads to the long-term impairment of HSPC function, a reduction in mitochondrial respiratory activity, and alterations in the BM microenvironment. Further studies are needed to determine whether these changes in hematopoiesis are persistent or adaptive during the abstinent period and whether an initial imprinting to alcohol primes BM to become more vulnerable to future exposure to alcohol.
Collapse
Affiliation(s)
- Oleg Varlamov
- From the, Division of Cardiometabolic Health, (OV), Oregon National Primate Center, Oregon Health & Science University, Portland, Oregon
| | - Matthew Bucher
- Division of Obstetrics and Gynecology, (MB, LM), Oregon Health & Science University, Portland, Oregon
| | - Leslie Myatt
- Division of Obstetrics and Gynecology, (MB, LM), Oregon Health & Science University, Portland, Oregon
| | - Natali Newman
- Division of Neuroscience, (NN, KAG), Oregon National Primate Center, Oregon Health & Science University, Portland, Oregon
| | - Kathleen A Grant
- Division of Neuroscience, (NN, KAG), Oregon National Primate Center, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
116
|
Morikawa T, Tamaki S, Fujita S, Suematsu M, Takubo K. Identification and local manipulation of bone marrow vasculature during intravital imaging. Sci Rep 2020; 10:6422. [PMID: 32286470 PMCID: PMC7156750 DOI: 10.1038/s41598-020-63533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/01/2020] [Indexed: 02/02/2023] Open
Abstract
Physiological regulation of blood flow in bone marrow is important to maintain oxygen and glucose supplies but also the physiological hypoxic state of the hematopoietic stem cell (HSC) niche. However, regulatory mechanisms underlying microcirculation in the bone marrow (BM) niche remain unclear. Here, we identify vessels functioning in control of blood flow in bone marrow and assess their contractility. To evaluate contractile potential of Alexa Fluor 633 (AF633; an arterial marker)-positive vessels, we performed immunohistochemistry for α-smooth muscle actin (α-SMA) and found it expressed around AF633+ vessels in the femoral and calvarial marrow. To validate AF633+ vessel contractility, we developed a simple system to locally administer vasoactive agents that penetrate BM through transcalvarial vessels. After exposure of the calvarial surface to FITC-dextran (70 kDa), FITC intensity in calvarial bone marrow gradually increased. When we evaluated the effect of transcalvarial administration (TCA) of norepinephrine (NE) on vascular tone of AF633+ arteries and behavior of transplanted blood cells, NE administration decreased artery diameter and transendothelial migration of transplanted cells, suggesting that adrenergic signaling regulates the HSC niche microcirculation and blood cell migration into the BM via effects on BMarteries. We conclude that TCA is a useful tool for bone marrow research.
Collapse
Affiliation(s)
- Takayuki Morikawa
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shinpei Tamaki
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shinya Fujita
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan.
| |
Collapse
|
117
|
|
118
|
Abstract
A central feature of atherosclerosis, the most prevalent chronic vascular disease and root cause of myocardial infarction and stroke, is leukocyte accumulation in the arterial wall. These crucial immune cells are produced in specialized niches in the bone marrow, where a complex cell network orchestrates their production and release. A growing body of clinical studies has documented a correlation between leukocyte numbers and cardiovascular disease risk. Understanding how leukocytes are produced and how they contribute to atherosclerosis and its complications is, therefore, critical to understanding and treating the disease. In this review, we focus on the key cells and products that regulate hematopoiesis under homeostatic conditions, during atherosclerosis and after myocardial infarction.
Collapse
Affiliation(s)
- Wolfram C Poller
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Matthias Nahrendorf
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- From the Center for Systems Biology (W.C.P., M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
- Department of Radiology (M.N., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
119
|
Robino JJ, Pamir N, Rosario S, Crawford LB, Burwitz BJ, Roberts CT, Kurre P, Varlamov O. Spatial and biochemical interactions between bone marrow adipose tissue and hematopoietic stem and progenitor cells in rhesus macaques. Bone 2020; 133:115248. [PMID: 31972314 PMCID: PMC7085416 DOI: 10.1016/j.bone.2020.115248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/11/2019] [Accepted: 01/18/2020] [Indexed: 01/11/2023]
Abstract
Recent developments in in situ microscopy have enabled unparalleled resolution of the architecture of the bone marrow (BM) niche for murine hematopoietic stem and progenitor cells (HSPCs). However, the extent to which these observations can be extrapolated to human BM remains unknown. In humans, adipose tissue occupies a significant portion of the BM medullary cavity, making quantitative immunofluorescent analysis difficult due to lipid-mediated light scattering. In this study, we employed optical clearing, confocal microscopy and nearest neighbor analysis to determine the spatial distribution of CD34+ HSPCs in the BM in a translationally relevant rhesus macaque model. Immunofluorescent analysis revealed that femoral BM adipocytes are associated with the branches of vascular sinusoids, with half of HSPCs localizing in close proximity of the nearest BM adipocyte. Immunofluorescent microscopy and flow cytometric analysis demonstrate that BM adipose tissue exists as a multicellular niche consisted of adipocytes, endothelial cells, granulocytes, and macrophages. Analysis of BM adipose tissue conditioned media using liquid chromatography-tandem mass spectrometry revealed the presence of multiple bioactive proteins involved in regulation of hematopoiesis, inflammation, and bone development, with many predicted to reside inside microvesicles. Pretreatment of purified HSPCs with BM adipose tissue conditioned media, comprising soluble and exosomal/microvesicle-derived factors, led to enhanced proliferation and an increase in granulocyte-monocyte differentiation potential ex vivo. Our work extends extensive studies in murine models, indicating that BM adipose tissue is a central paracrine regulator of hematopoiesis in nonhuman primates and possibly in humans.
Collapse
Affiliation(s)
- Jacob J Robino
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sara Rosario
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lindsey B Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Benjamin J Burwitz
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; Division of Pathobiology and Immunology, Oregon National Primate Center, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006, USA; Division of Reproductive and Developmental Sciences, Oregon National Primate Center, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| |
Collapse
|
120
|
Al-Sharea A, Lee MKS, Purton LE, Hawkins ED, Murphy AJ. The haematopoietic stem cell niche: a new player in cardiovascular disease? Cardiovasc Res 2020; 115:277-291. [PMID: 30590405 DOI: 10.1093/cvr/cvy308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Haematopoiesis, the process of blood production, can be altered during the initiation or progression of many diseases. Cardiovascular disease (CVD) has been shown to be heavily influenced by changes to the haematopoietic system, including the types and abundance of immune cells produced. It is now well established that innate immune cells are increased in people with CVD, and the mechanisms contributing to this can be vastly different depending on the risk factors or comorbidities present. Many of these changes begin at the level of the haematopoietic stem and progenitor cells (HSPCs) that reside in the bone marrow (BM). In general, the HSPCs and downstream myeloid progenitors are expanded via increased proliferation in the setting of atherosclerotic CVD. However, HSPCs can also be encouraged to leave the BM and colonise extramedullary sites (i.e. the spleen). Within the BM, HSPCs reside in specialized microenvironments, often referred to as a niche. To date in depth studies assessing the damage or dysregulation that occurs in the BM niche in varying CVDs are scarce. In this review, we provide a general overview of the complex components and interactions within the BM niche and how they influence the function of HSPCs. Additionally, we discuss the main findings regarding changes in the HSPC niche that influence the progression of CVD. We hypothesize that understanding the influence of the BM niche in CVD will aid in delineating new pathways for therapeutic interventions.
Collapse
Affiliation(s)
- Annas Al-Sharea
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | - Man Kit Sam Lee
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | | | - Edwin D Hawkins
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Haematopoiesis and Leukocyte Biology, Baker Heart & Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| |
Collapse
|
121
|
Pinho S, Frenette PS. Haematopoietic stem cell activity and interactions with the niche. Nat Rev Mol Cell Biol 2020; 20:303-320. [PMID: 30745579 DOI: 10.1038/s41580-019-0103-9] [Citation(s) in RCA: 658] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The haematopoietic stem cell (HSC) microenvironment in the bone marrow, termed the niche, ensures haematopoietic homeostasis by controlling the proliferation, self-renewal, differentiation and migration of HSCs and progenitor cells at steady state and in response to emergencies and injury. Improved methods for HSC isolation, driven by advances in single-cell and molecular technologies, have led to a better understanding of their behaviour, heterogeneity and lineage fate and of the niche cells and signals that regulate their function. Niche regulatory signals can be in the form of cell-bound or secreted factors and other local physical cues. A combination of technological advances in bone marrow imaging and genetic manipulation of crucial regulatory factors has enabled the identification of several candidate cell types regulating the niche, including both non-haematopoietic (for example, perivascular mesenchymal stem and endothelial cells) and HSC-derived (for example, megakaryocytes, macrophages and regulatory T cells), with better topographical understanding of HSC localization in the bone marrow. Here, we review advances in our understanding of HSC regulation by niches during homeostasis, ageing and cancer, and we discuss their implications for the development of therapies to rejuvenate aged HSCs or niches or to disrupt self-reinforcing malignant niches.
Collapse
Affiliation(s)
- Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA. .,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY, USA.
| |
Collapse
|
122
|
Witkowski MT, Kousteni S, Aifantis I. Mapping and targeting of the leukemic microenvironment. J Exp Med 2020; 217:e20190589. [PMID: 31873722 PMCID: PMC7041707 DOI: 10.1084/jem.20190589] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/04/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous studies support a role of the microenvironment in maintenance of the leukemic clone, as well as in treatment resistance. It is clear that disruption of the normal bone marrow microenvironment is sufficient to promote leukemic transformation and survival in both a cell autonomous and non-cell autonomous manner. In this review, we provide a snapshot of the various cell types shown to contribute to the leukemic microenvironment as well as treatment resistance. Several of these studies suggest that leukemic blasts occupy specific cellular and biochemical "niches." Effective dissection of critical leukemic niche components using single-cell approaches has allowed a more precise and extensive characterization of complexity that underpins both the healthy and malignant bone marrow microenvironment. Knowledge gained from these observations can have an important impact in the development of microenvironment-directed targeted approaches aimed at mitigating disease relapse.
Collapse
Affiliation(s)
- Matthew T. Witkowski
- Department of Pathology, New York University School of Medicine, New York, NY
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Stavroula Kousteni
- Department of Physiology & Cellular Biophysics, Columbia University Irving Medical Center, New York, NY
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
123
|
Baccin C, Al-Sabah J, Velten L, Helbling PM, Grünschläger F, Hernández-Malmierca P, Nombela-Arrieta C, Steinmetz LM, Trumpp A, Haas S. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat Cell Biol 2020; 22:38-48. [PMID: 31871321 PMCID: PMC7610809 DOI: 10.1038/s41556-019-0439-6] [Citation(s) in RCA: 548] [Impact Index Per Article: 109.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
The bone marrow constitutes the primary site for life-long blood production and skeletal regeneration. However, its cellular and spatial organization remains controversial. Here, we combine single-cell and spatially resolved transcriptomics to systematically map the molecular, cellular and spatial composition of distinct bone marrow niches. This allowed us to transcriptionally profile all major bone-marrow-resident cell types, determine their localization and clarify sources of pro-haematopoietic factors. Our data demonstrate that Cxcl12-abundant-reticular (CAR) cell subsets (Adipo-CAR and Osteo-CAR) differentially localize to sinusoidal and arteriolar surfaces, act locally as 'professional cytokine-secreting cells' and thereby establish peri-vascular micro-niches. Importantly, the three-dimensional bone-marrow organization can be accurately inferred from single-cell transcriptome data using the RNA-Magnet algorithm described here. Together, our study reveals the cellular and spatial organization of bone marrow niches and offers a systematic approach to dissect the complex organization of whole organs.
Collapse
Affiliation(s)
- Chiara Baccin
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Faculty of Biosciences, Joint PhD degree from EMBL and Heidelberg University, Heidelberg, Germany
| | - Jude Al-Sabah
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lars Velten
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Center for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Patrick M Helbling
- Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zürich, Switzerland
| | - Florian Grünschläger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Pablo Hernández-Malmierca
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University Hospital and University of Zürich, Zürich, Switzerland
| | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Genome Technology Center, Palo Alto, CA, USA.
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
124
|
Ulyanova T, Georgolopoulos G, Papayannopoulou T. Reappraising the role of α5 integrin and the microenvironmental support in stress erythropoiesis. Exp Hematol 2019; 81:16-31.e4. [PMID: 31887343 DOI: 10.1016/j.exphem.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
We previously studied the role of β1 integrin and some of its different α partners relevant to erythropoiesis. Although clear and consistent answers regarding the role of α4β1 (VLA-4) were evident, the role of its companion integrin α5β1 (VLA-5) was clouded by inconsistent outcomes in all prior publications. Furthermore, the functional consequences of integrin deficiencies only in microenvironmental (ME) cells supporting erythroid cell expansion and maturation post stress have never been explored. In the study described here, we created several additional mouse models in the aim of addressing unanswered questions regarding functional consequences of single or combined integrin deficiencies in erythroid cells or only in ME supporting cells. Our novel and expansive data solidified the intrinsic requirement of both α4 and α5 integrins in erythroid cells for their proliferative expansion and maturation in response to stress; α5 integrin alone, deleted either early in all hematopoietic cells or only in erythroid cell, has only a redundant role in proliferative expansion and is dispensable for erythroid maturation. By contrast, α4 integrin, on its own, exerts a dominant effect on timely and optimal erythroid maturation. Deficiency of both α4 and α5 integrins in ME cells, including macrophages, does not negatively influence stress response by normal erythroid cells, in great contrast to the effect of ME cells deficient in all β1 integrins. Collectively the present data offer deeper insight into the coordination of different β1 integrin functional activities in erythroid cells or in ME cells for optimal erythroid stress response.
Collapse
Affiliation(s)
- Tatyana Ulyanova
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
125
|
Chen Q, Liu Y, Jeong HW, Stehling M, Dinh VV, Zhou B, Adams RH. Apelin + Endothelial Niche Cells Control Hematopoiesis and Mediate Vascular Regeneration after Myeloablative Injury. Cell Stem Cell 2019; 25:768-783.e6. [PMID: 31761723 PMCID: PMC6900750 DOI: 10.1016/j.stem.2019.10.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/02/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
Radiotherapy and chemotherapy disrupt bone vasculature, but the underlying causes and mechanisms enabling vessel regeneration after bone marrow (BM) transplantation remain poorly understood. Here, we show that loss of hematopoietic cells per se, in response to irradiation and other treatments, triggers vessel dilation, permeability, and endothelial cell (EC) proliferation. We further identify a small subpopulation of Apelin-expressing (Apln+) ECs, representing 0.003% of BM cells, that is critical for physiological homeostasis and transplant-induced BM regeneration. Genetic ablation of Apln+ ECs or Apln-CreER-mediated deletion of Kitl and Vegfr2 disrupt hematopoietic stem cell (HSC) maintenance and contributions to regeneration. Consistently, the fraction of Apln+ ECs increases substantially after irradiation and promotes normalization of the bone vasculature in response to VEGF-A, which is provided by transplanted hematopoietic stem and progenitor cells (HSPCs). Together, these findings reveal critical functional roles for HSPCs in maintaining vascular integrity and for Apln+ ECs in hematopoiesis, suggesting potential targets for improving BM transplantation. Loss of hematopoietic cells phenocopies irradiation-induced vascular defects Identification and characterization of Apln+ ECs in adult BM Apln+ ECs regulate HSC maintenance and steady-state hematopoiesis Apln+ ECs expand, respond to HSPCs, and drive post-transplantation recovery
Collapse
Affiliation(s)
- Qi Chen
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Yang Liu
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hyun-Woo Jeong
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Martin Stehling
- Electron Microscopy and Flow Cytometry Units, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Van Vuong Dinh
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, A-2112, Shanghai 200031, China
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
126
|
Daniel MG, Rapp K, Schaniel C, Moore KA. Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic microenvironment. Ann N Y Acad Sci 2019; 1466:59-72. [PMID: 31621095 DOI: 10.1111/nyas.14246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
The induction of hematopoiesis in various cell types via transcription factor (TF) reprogramming has been demonstrated by several strategies. The eventual goal of these approaches is to generate a product for unmet needs in hematopoietic cell transplantation therapies. The most successful strategies hew closely to clues provided from developmental hematopoiesis in terms of factor expression and environmental cues. In this review, we aim to summarize the TFs that play important roles in developmental hematopoiesis primarily and to also touch on adult hematopoiesis. Several aspects of cellular and molecular biology coalesce in this process, with TFs and surrounding cellular signals playing a major role in the overall development of the hematopoietic lineage. We attempt to put these elements into the context of reprogramming and highlight their roles.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,The Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York.,Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
127
|
Hastreiter AA, Galvão Dos Santos G, Cavalcante Santos EW, Makiyama EN, Borelli P, Fock RA. Protein malnutrition impairs bone marrow endothelial cells affecting hematopoiesis. Clin Nutr 2019; 39:1551-1559. [PMID: 31326233 DOI: 10.1016/j.clnu.2019.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Protein malnutrition (PM) affects hematopoiesis leading to bone marrow (BM) hypoplasia and arrests hematopoietic stem cells (HSC) in G0/G1 cell cycle phases, which cause anemia and leukopenia. Hematopoiesis is mainly regulated by BM niches where endothelial cells (EC) present a key regulatory role. Thus, our objective is to evaluate whether PM affects the modulatory capacity of EC on hematopoiesis. METHODS C57BL/6 male mice received for 5 weeks a normal protein diet (12% casein) or a low protein diet (2% casein). MSC were isolated and differentiated in vitro into EC and the synthesis of SCF, Ang-1, CXCL-12, IL-11, TGF-β and G-CSF were evaluated. The HSC and hematopoietic progenitors were quantified and the EC capacity to modulate the hematopoietic system was also evaluated. Moreover, the ability of PM bone marrow to support hematopoieisis was assessed by proliferation of infused leukemic myelo-monoblasts cells. RESULTS PM decreases HSC and hematopoietic progenitor pool and promotes cell cycle arrest and a lower proliferation rate of leukemic myelo-monoblasts. PM also committed hematopoietic regulatory characteristics from EC, resulting in the modification of both cell cycle pattern and hematopoietic differentiation. CONCLUSION BM microenvironment is compromised in PM, and since PM disturbs EC, it becomes one of the factors responsible for the hematopoietic cell cycle arrest and impairment of HSC differentiation.
Collapse
Affiliation(s)
- Araceli Aparecida Hastreiter
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme Galvão Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ed Wilson Cavalcante Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edson Naoto Makiyama
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
128
|
Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 2019; 19:626-642. [PMID: 31186549 DOI: 10.1038/s41577-019-0178-8] [Citation(s) in RCA: 471] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
In terrestrial vertebrates, bone tissue constitutes the 'osteoimmune' system, which functions as a locomotor organ and a mineral reservoir as well as a primary lymphoid organ where haematopoietic stem cells are maintained. Bone and mineral metabolism is maintained by the balanced action of bone cells such as osteoclasts, osteoblasts and osteocytes, yet subverted by aberrant and/or prolonged immune responses under pathological conditions. However, osteoimmune interactions are not restricted to the unidirectional effect of the immune system on bone metabolism. In recent years, we have witnessed the discovery of effects of bone cells on immune regulation, including the function of osteoprogenitor cells in haematopoietic stem cell regulation and osteoblast-mediated suppression of haematopoietic malignancies. Moreover, the dynamic reciprocal interactions between bone and malignancies in remote organs have attracted attention, extending the horizon of osteoimmunology. Here, we discuss emerging concepts in the osteoimmune dialogue in health and disease.
Collapse
|
129
|
A juxtacrine/paracrine loop between C-Kit and stem cell factor promotes cancer stem cell survival in epithelial ovarian cancer. Cell Death Dis 2019; 10:412. [PMID: 31138788 PMCID: PMC6538673 DOI: 10.1038/s41419-019-1656-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Receptors tyrosine kinase (RTK) enable normal and tumor cells to perceive and adapt to stimuli present in the microenvironment. These stimuli, also known as growth factors, are important molecular cues actively supporting cancer stem cell (CSC) self-renewal and viability. Since in epithelial ovarian cancer (EOC) the expression of c-Kit (CD117) has been identified as a CSC hallmark, we investigated the existence of a tumor growth-promoting loop between c-Kit and its ligand Stem Cell Factor (SCF). SCF exists as a soluble or transmembrane protein and through c-Kit interaction regulates cell viability, proliferation, and differentiation both in physiological and pathological conditions. High amounts of SCF were found in the ascitic effusions collected from EOC patients. While tumor cells and CSC only expressed the membrane-associated SCF isoform, both secreted and membrane-bound isoforms were expressed by tumor-associated macrophages (TAM, here shown to be M2-like) and fibroblasts (TAF). Circulating monocytes from EOC-bearing patients and healthy donors did not express both SCF isoforms. However, monocytes isolated from healthy donors produced SCF upon in vitro differentiation into macrophages, irrespectively of M1 or M2 polarization. In vitro, both SCF isoforms were able to activate the Akt pathway in c-Kit+ cells, and this effect was counteracted by the tyrosine kinase inhibitor imatinib. In addition, our results indicated that SCF could help c-Kit+ CSC survival in selective culture conditions and promote their canonical stemness properties, thus indicating the possible existence of a juxtacrine/paracrine circuit in EOC.
Collapse
|
130
|
Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, Kokkaliaris KD, Mercier F, Tabaka M, Hofree M, Dionne D, Papazian A, Lee D, Ashenberg O, Subramanian A, Vaishnav ED, Rozenblatt-Rosen O, Regev A, Scadden DT. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell 2019; 177:1915-1932.e16. [PMID: 31130381 DOI: 10.1016/j.cell.2019.04.040] [Citation(s) in RCA: 608] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/05/2019] [Accepted: 04/23/2019] [Indexed: 01/23/2023]
Abstract
Stroma is a poorly defined non-parenchymal component of virtually every organ with key roles in organ development, homeostasis, and repair. Studies of the bone marrow stroma have defined individual populations in the stem cell niche regulating hematopoietic regeneration and capable of initiating leukemia. Here, we use single-cell RNA sequencing (scRNA-seq) to define a cellular taxonomy of the mouse bone marrow stroma and its perturbation by malignancy. We identified seventeen stromal subsets expressing distinct hematopoietic regulatory genes spanning new fibroblastic and osteoblastic subpopulations including distinct osteoblast differentiation trajectories. Emerging acute myeloid leukemia impaired mesenchymal osteogenic differentiation and reduced regulatory molecules necessary for normal hematopoiesis. These data suggest that tissue stroma responds to malignant cells by disadvantaging normal parenchymal cells. Our taxonomy of the stromal compartment provides a comprehensive bone marrow cell census and experimental support for cancer cell crosstalk with specific stromal elements to impair normal tissue function and thereby enable emergent cancer.
Collapse
Affiliation(s)
- Ninib Baryawno
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Childhood Cancer Research Unit, Dep. of Children's and Women's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dariusz Przybylski
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Monika S Kowalczyk
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Konstantinos D Kokkaliaris
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Francois Mercier
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ani Papazian
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dongjun Lee
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Convergence Medical Science, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ayshwarya Subramanian
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
131
|
Cossío I, Lucas D, Hidalgo A. Neutrophils as regulators of the hematopoietic niche. Blood 2019; 133:2140-2148. [PMID: 30898859 PMCID: PMC6524561 DOI: 10.1182/blood-2018-10-844571] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
The niche that supports hematopoietic stem and progenitor cells (HSPCs) in the bone marrow is a highly dynamic structure. It maintains core properties of HSPCs in the steady state, and modulates their proliferation and differentiation in response to changing physiological demands or pathological insults. The dynamic and environment-sensing properties of the niche are shared by the innate immune system. Thus, it is not surprising that innate immune cells, including macrophages and neutrophils, are now recognized as important regulators of the hematopoietic niche and, ultimately, of the stem cells from which they derive. This review synthesizes emerging concepts on niche regulation by immune cells, with a particular emphasis on neutrophils. We argue that the unique developmental, circadian, and migratory properties of neutrophils underlie their critical contributions as regulators of the hematopoietic niche.
Collapse
Affiliation(s)
- Itziar Cossío
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität, Munich, Germany
| |
Collapse
|
132
|
Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Domínguez Á, Pinho S, Akhmetzyanova I, Gao J, Witkowski M, Guillamot M, Gutkin MC, Zhang Y, Marier C, Diefenbach C, Kousteni S, Heguy A, Zhong H, Fooksman DR, Butler JM, Economides A, Frenette PS, Adams RH, Satija R, Tsirigos A, Aifantis I. The bone marrow microenvironment at single-cell resolution. Nature 2019; 569:222-228. [PMID: 30971824 DOI: 10.1038/s41586-019-1104-8] [Citation(s) in RCA: 634] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2019] [Indexed: 01/06/2023]
Abstract
The bone marrow microenvironment has a key role in regulating haematopoiesis, but its molecular complexity and response to stress are incompletely understood. Here we map the transcriptional landscape of mouse bone marrow vascular, perivascular and osteoblast cell populations at single-cell resolution, both at homeostasis and under conditions of stress-induced haematopoiesis. This analysis revealed previously unappreciated levels of cellular heterogeneity within the bone marrow niche and resolved cellular sources of pro-haematopoietic growth factors, chemokines and membrane-bound ligands. Our studies demonstrate a considerable transcriptional remodelling of niche elements under stress conditions, including an adipocytic skewing of perivascular cells. Among the stress-induced changes, we observed that vascular Notch delta-like ligands (encoded by Dll1 and Dll4) were downregulated. In the absence of vascular Dll4, haematopoietic stem cells prematurely induced a myeloid transcriptional program. These findings refine our understanding of the cellular architecture of the bone marrow niche, reveal a dynamic and heterogeneous molecular landscape that is highly sensitive to stress and illustrate the utility of single-cell transcriptomic data in evaluating the regulation of haematopoiesis by discrete niche populations.
Collapse
Affiliation(s)
- Anastasia N Tikhonova
- Department of Pathology, NYU School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| | - Igor Dolgalev
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.,Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA
| | - Hai Hu
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany
| | - Edlira Hoxha
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Álvaro Cuesta-Domínguez
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sandra Pinho
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Jie Gao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Matthew Witkowski
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Maria Guillamot
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Michael C Gutkin
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | - Yutong Zhang
- Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA
| | - Christian Marier
- Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA
| | - Catherine Diefenbach
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Adriana Heguy
- Department of Pathology, NYU School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.,Genome Technology Center, Division of Advanced Research Technologies, NYU School of Medicine, New York, NY, USA
| | - Hua Zhong
- Division of Biostatistics, Department of Population Health, NYU School of Medicine, New York, NY, USA
| | - David R Fooksman
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Jason M Butler
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
| | | | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany
| | | | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA. .,Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA.
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
133
|
Lucas D. Leukocyte Trafficking and Regulation of Murine Hematopoietic Stem Cells and Their Niches. Front Immunol 2019; 10:387. [PMID: 30891044 PMCID: PMC6412148 DOI: 10.3389/fimmu.2019.00387] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/14/2019] [Indexed: 12/28/2022] Open
Abstract
Hematopoietic stem cells (HSC) are the most powerful type of adult stem cell found in the body. Hematopoietic stem cells are multipotent and capable of giving rise to all other types of hematopoietic cells found in the organism. A single HSC is capable of regenerating a functional hematopoietic system when transplanted into a recipient. Hematopoietic stem cells reside in the bone marrow in specific multicellular structures called niches. These niches are indispensable for maintaining and regulating HSC numbers and function. It has become increasingly clearer that HSC and their niches can also be regulated by migrating leukocytes. Here we will discuss the composition of murine bone marrow niches and how HSC and their niches are regulated by different types of leukocytes that traffic between the periphery and the niche. Unless otherwise indicated all the studies discussed below were performed in mouse models.
Collapse
Affiliation(s)
- Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
134
|
Balzano M, De Grandis M, Vu Manh TP, Chasson L, Bardin F, Farina A, Sergé A, Bidaut G, Charbord P, Hérault L, Bailly AL, Cartier-Michaud A, Boned A, Dalod M, Duprez E, Genever P, Coles M, Bajenoff M, Xerri L, Aurrand-Lions M, Schiff C, Mancini SJ. Nidogen-1 Contributes to the Interaction Network Involved in Pro-B Cell Retention in the Peri-sinusoidal Hematopoietic Stem Cell Niche. Cell Rep 2019; 26:3257-3271.e8. [DOI: 10.1016/j.celrep.2019.02.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/24/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
|
135
|
Stem cell damage after chemotherapy- can we do better? Best Pract Res Clin Haematol 2019; 32:31-39. [DOI: 10.1016/j.beha.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
|
136
|
Comazzetto S, Murphy MM, Berto S, Jeffery E, Zhao Z, Morrison SJ. Restricted Hematopoietic Progenitors and Erythropoiesis Require SCF from Leptin Receptor+ Niche Cells in the Bone Marrow. Cell Stem Cell 2019; 24:477-486.e6. [PMID: 30661958 DOI: 10.1016/j.stem.2018.11.022] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) are maintained in a perivascular niche in bone marrow, in which leptin receptor+ (LepR) stromal cells and endothelial cells synthesize factors required for HSC maintenance, including stem cell factor (SCF). An important question is why LepR+ cells are one hundred times more frequent than HSCs. Here, we show that SCF from LepR+ cells is also necessary to maintain many c-kit+-restricted hematopoietic progenitors. Conditional deletion of Scf from LepR+ cells depleted common myeloid progenitors (CMPs), common lymphoid progenitors (CLPs), granulocyte-macrophage progenitors (GMPs), megakaryocyte-erythrocyte progenitors (MEPs), pre-megakaryocyte-erythrocyte progenitors (PreMegEs), and colony-forming units-erythroid (CFU-Es), as well as myeloid and erythroid blood cells. This was not caused by HSC depletion, as many other restricted progenitors were unaffected. Moreover, Scf deletion from endothelial cells depleted HSCs, but not progenitors. Early erythroid progenitors were closely associated with perisinusoidal LepR+ cells. This reveals cellular specialization within the niche: SCF from LepR+ cells is broadly required by HSCs and restricted progenitors while SCF from endothelial cells is required mainly by HSCs.
Collapse
Affiliation(s)
- Stefano Comazzetto
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Malea M Murphy
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elise Jeffery
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
137
|
Zhang W, Bado I, Wang H, Lo HC, Zhang XHF. Bone Metastasis: Find Your Niche and Fit in. Trends Cancer 2019; 5:95-110. [PMID: 30755309 DOI: 10.1016/j.trecan.2018.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Metastasis to bones is determined by both intrinsic traits of metastatic tumor cells and properties appertaining to the bone microenvironment. Bone marrow niches are critical for all major steps of metastasis, including the seeding of disseminated tumor cells (DTCs) to bone, the survival of DTCs and microscopic metastases under dormancy, and the eventual outgrowth of overt metastases. In this review, we discuss the role of bone marrow niches in bone colonization. The emphasis is on complicated and dynamic nature of cancer cells-niche interaction, which may underpin the long-standing mystery of metastasis dormancy, and represent a therapeutic target for elimination of minimal residue diseases and prevention of life-taking, overt metastases.
Collapse
Affiliation(s)
- Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hin-Ching Lo
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
138
|
Xu H, Du Y, He J, Wang L, Sun G. MicroRNA-378 protects human umbilical vein endothelial cells from injuries by soluble CD226 through down-regulating the expression of soluble CD226 in natural killer cells. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1640075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Huiying Xu
- Department of Obstetrics and Gynecology, The First People’s Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Yu Du
- Department of Obstetrics and Gynecology, The First People’s Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Jing He
- Department of Obstetrics and Gynecology, The First People’s Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Liping Wang
- Department of Obstetrics and Gynecology, The First People’s Hospital of Lanzhou City, Lanzhou, P.R. China
| | - Gaogao Sun
- Department of Obstetrics and Gynecology, The First People’s Hospital of Lanzhou City, Lanzhou, P.R. China
| |
Collapse
|
139
|
Abstract
Purpose of review In this review, we aim to discuss the role of the bone marrow microenvironment in supporting hematopoiesis, with particular focus on the contribution of the endothelial niche in dictating hematopoietic stem cell (HSC) fate. Recent findings Evidence gathered in the past two decades revealed that specific cell types within the bone marrow niche influence the hematopoietic system. Endothelial cells have emerged as a key component of the HSC niche, directly affecting stem cell quiescence, self-renewal, and lineage differentiation. Physiological alterations of the bone marrow niche occurring in aging have been described to be sufficient to promote functional aging of young HSCs. Furthermore, a growing body of evidence suggests that aberrant activation of endothelial-derived signaling pathways can aid or trigger neoplastic transformation. Summary Several groups have contributed to the characterization of the different cell types that comprise the complex bone marrow environment, whose function was long perceived as an undiscernible sum of many parts. Further studies will need to uncover niche cell-type-specific pathways, in order to provide new targets and therapeutic options that aim at withdrawing the microenvironmental support to malignant cells while sparing normal HSCs.
Collapse
|