101
|
Harrewijn A, Ruiz SG, Abend R, Haller SP, Subar AR, Swetlitz C, Valadez EA, Brotman MA, Chen G, Chronis-Tuscano A, Leibenluft E, Bar-Haim Y, Fox NA, Pine DS. Development of Neural Mechanisms Underlying Threat Processing: Associations With Childhood Social Reticence and Adolescent Anxiety. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:893-901. [PMID: 37881548 PMCID: PMC10593903 DOI: 10.1016/j.bpsgos.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Background Social reticence in early childhood is characterized by shy and anxiously avoidant behavior, and it confers risk for pediatric anxiety disorders later in development. Aberrant threat processing may play a critical role in this association between early reticent behavior and later psychopathology. The goal of this longitudinal study is to characterize developmental trajectories of neural mechanisms underlying threat processing and relate these trajectories to associations between early-childhood social reticence and adolescent anxiety. Methods In this 16-year longitudinal study, social reticence was assessed from 2 to 7 years of age; anxiety symptoms and neural mechanisms during the dot-probe task were assessed at 10, 13, and 16 years of age. The sample included 144 participants: 71 children provided data at age 10 (43 girls, meanage = 10.62), 85 at age 13 (46 girls, meanage = 13.25), and 74 at age 16 (36 girls, meanage = 16.27). Results A significant interaction manifested among social reticence, anxiety symptoms, and time, on functional connectivity between the left amygdala and the left dorsolateral prefrontal cortex, voxelwise p < .001, clusterwise familywise error p < .05. Children with high social reticence showed a negative association between amygdala-dorsolateral prefrontal cortex connectivity and anxiety symptoms with age, compared to children with low social reticence, suggesting distinct neurodevelopmental pathways to anxiety. Conclusions These findings were present across all conditions, suggesting task-general effects in potential threat processing. Additionally, the timing of these neurodevelopmental pathways differed for children with high versus low social reticence, which could affect the timing of effective preventive interventions.
Collapse
Affiliation(s)
- Anita Harrewijn
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Sonia G. Ruiz
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Rany Abend
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
- School of Psychology, Reichman University, Herzliya, Israel
| | - Simone P. Haller
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Anni R. Subar
- Department of Psychology, University of Denver, Denver, Colorado
| | | | - Emilio A. Valadez
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland
| | - Melissa A. Brotman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, Maryland
| | | | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Yair Bar-Haim
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nathan A. Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland
| | - Daniel S. Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
102
|
Zhang H, Meng C, Di X, Wu X, Biswal B. Static and dynamic functional connectome reveals reconfiguration profiles of whole-brain network across cognitive states. Netw Neurosci 2023; 7:1034-1050. [PMID: 37781145 PMCID: PMC10473282 DOI: 10.1162/netn_a_00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/21/2023] [Indexed: 10/03/2023] Open
Abstract
Assessment of functional connectivity (FC) has revealed a great deal of knowledge about the macroscale spatiotemporal organization of the brain network. Recent studies found task-versus-rest network reconfigurations were crucial for cognitive functioning. However, brain network reconfiguration remains unclear among different cognitive states, considering both aggregate and time-resolved FC profiles. The current study utilized static FC (sFC, i.e., long timescale aggregate FC) and sliding window-based dynamic FC (dFC, i.e., short timescale time-varying FC) approaches to investigate the similarity and alterations of edge weights and network topology at different cognitive loads, particularly their relationships with specific cognitive process. Both dFC/sFC networks showed subtle but significant reconfigurations that correlated with task performance. At higher cognitive load, brain network reconfiguration displayed increased functional integration in the sFC-based aggregate network, but faster and larger variability of modular reorganization in the dFC-based time-varying network, suggesting difficult tasks require more integrated and flexible network reconfigurations. Moreover, sFC-based network reconfigurations mainly linked with the sensorimotor and low-order cognitive processes, but dFC-based network reconfigurations mainly linked with the high-order cognitive process. Our findings suggest that reconfiguration profiles of sFC/dFC networks provide specific information about cognitive functioning, which could potentially be used to study brain function and disorders.
Collapse
Affiliation(s)
- Heming Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Xiao Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
103
|
Ye J, Sun H, Gao S, Dadashkarimi J, Rosenblatt M, Rodriguez RX, Mehta S, Jiang R, Noble S, Westwater ML, Scheinost D. Altered Brain Dynamics Across Bipolar Disorder and Schizophrenia During Rest and Task Switching Revealed by Overlapping Brain States. Biol Psychiatry 2023; 94:580-590. [PMID: 37031780 PMCID: PMC10524212 DOI: 10.1016/j.biopsych.2023.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Individuals with bipolar disorder (BD) and schizophrenia (SCZ) show aberrant brain dynamics (i.e., altered recruitment or traversal through different brain states over time). Existing investigations of brain dynamics typically assume that one dominant brain state characterizes each time point. However, as multiple brain states likely are engaged at any given moment, this approach can obscure alterations in less prominent but critical brain states. Here, we examined brain dynamics in BD and SCZ by implementing a novel framework that simultaneously assessed the engagement of multiple brain states. METHODS Four recurring brain states were identified by applying nonlinear manifold learning and k-means clustering to the Human Connectome Project task-based functional magnetic resonance imaging data. We then assessed moment-to-moment state engagement in 2 independent samples of healthy control participants and patients with BD or SCZ using resting-state (N = 336) or task-based (N = 217) functional magnetic resonance imaging data. Relative state engagement and state engagement variability were extracted and compared across groups using multivariate analysis of covariance, controlling for site, medication, age, and sex. RESULTS Our framework identified dynamic alterations in BD and SCZ, while a state discretization approach revealed no significant group differences. Participants with BD or SCZ showed reduced state engagement variability, but not relative state engagement, across multiple brain states during resting-state and task-based functional magnetic resonance imaging. We found decreased state engagement variability in older participants and preliminary evidence suggesting an association with avolition. CONCLUSIONS Assessing multiple brain states simultaneously can reflect the complexity of aberrant brain dynamics in BD and SCZ, providing a more comprehensive understanding of the neural mechanisms underpinning these conditions.
Collapse
Affiliation(s)
- Jean Ye
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut.
| | - Huili Sun
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Siyuan Gao
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Saloni Mehta
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Margaret L Westwater
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Child Study Center, Yale School of Medicine, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut
| |
Collapse
|
104
|
Sankar A, Shen X, Colic L, Goldman DA, Villa LM, Kim JA, Pittman B, Scheinost D, Constable RT, Blumberg HP. Predicting depressed and elevated mood symptomatology in bipolar disorder using brain functional connectomes. Psychol Med 2023; 53:6656-6665. [PMID: 36891769 PMCID: PMC10491744 DOI: 10.1017/s003329172300003x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 03/10/2023]
Abstract
BACKGROUND The study is aimed to identify brain functional connectomes predictive of depressed and elevated mood symptomatology in individuals with bipolar disorder (BD) using the machine learning approach Connectome-based Predictive Modeling (CPM). METHODS Functional magnetic resonance imaging data were obtained from 81 adults with BD while they performed an emotion processing task. CPM with 5000 permutations of leave-one-out cross-validation was applied to identify functional connectomes predictive of depressed and elevated mood symptom scores on the Hamilton Depression and Young Mania rating scales. The predictive ability of the identified connectomes was tested in an independent sample of 43 adults with BD. RESULTS CPM predicted the severity of depressed [concordance between actual and predicted values (r = 0.23, pperm (permutation test) = 0.031) and elevated (r = 0.27, pperm = 0.01) mood. Functional connectivity of left dorsolateral prefrontal cortex and supplementary motor area nodes, with inter- and intra-hemispheric connections to other anterior and posterior cortical, limbic, motor, and cerebellar regions, predicted depressed mood severity. Connectivity of left fusiform and right visual association area nodes with inter- and intra-hemispheric connections to the motor, insular, limbic, and posterior cortices predicted elevated mood severity. These networks were predictive of mood symptomatology in the independent sample (r ⩾ 0.45, p = 0.002). CONCLUSIONS This study identified distributed functional connectomes predictive of depressed and elevated mood severity in BD. Connectomes subserving emotional, cognitive, and psychomotor control predicted depressed mood severity, while those subserving emotional and social perceptual functions predicted elevated mood severity. Identification of these connectome networks may help inform the development of targeted treatments for mood symptoms.
Collapse
Affiliation(s)
- Anjali Sankar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lejla Colic
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health, Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Danielle A. Goldman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
| | - Luca M. Villa
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jihoon A. Kim
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
105
|
Makowski C, Brown TT, Zhao W, Hagler DJ, Parekh P, Garavan H, Nichols TE, Jernigan TL, Dale AM. Leveraging the Adolescent Brain Cognitive Development Study to improve behavioral prediction from neuroimaging in smaller replication samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545340. [PMID: 37398195 PMCID: PMC10312746 DOI: 10.1101/2023.06.16.545340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Magnetic resonance imaging (MRI) is a popular and useful non-invasive method to map patterns of brain structure and function to complex human traits. Recently published observations in multiple large scale studies cast doubt upon these prospects, particularly for prediction of cognitive traits from structural and resting state functional MRI, which seems to account for little behavioral variability. We leverage baseline data from thousands of children in the Adolescent Brain Cognitive DevelopmentSM (ABCD®) Study to inform the replication sample size required with both univariate and multivariate methods across different imaging modalities to detect reproducible brain-behavior associations. We demonstrate that by applying multivariate methods to high-dimensional brain imaging data, we can capture lower dimensional patterns of structural and functional brain architecture that correlate robustly with cognitive phenotypes and are reproducible with only 41 individuals in the replication sample for working memory-related functional MRI, and ~100 subjects for structural MRI. Even with 100 random re-samplings of 50 subjects in the discovery sample, prediction can be adequately powered with 98 subjects in the replication sample for multivariate prediction of cognition with working memory task functional MRI. These results point to an important role for neuroimaging in translational neurodevelopmental research and showcase how findings in large samples can inform reproducible brain-behavior associations in small sample sizes that are at the heart of many investigators' research programs and grants.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Timothy T Brown
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Weiqi Zhao
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Cognitive Science, University of California San Diego, La Jolla, California USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Pravesh Parekh
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, Vermont, USA
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU
| | - Terry L Jernigan
- Department of Cognitive Science, University of California San Diego, La Jolla, California USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
106
|
Ju Y, Wang M, Liu J, Liu B, Yan D, Lu X, Sun J, Dong Q, Zhang L, Guo H, Zhao F, Liao M, Zhang L, Zhang Y, Li L. Modulation of resting-state functional connectivity in default mode network is associated with the long-term treatment outcome in major depressive disorder. Psychol Med 2023; 53:5963-5975. [PMID: 36164996 DOI: 10.1017/s0033291722002628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Treatment non-response and recurrence are the main sources of disease burden in major depressive disorder (MDD). However, little is known about its neurobiological mechanism concerning the brain network changes accompanying pharmacotherapy. The present study investigated the changes in the intrinsic brain networks during 6-month antidepressant treatment phase associated with the treatment response and recurrence in MDD. METHODS Resting-state functional magnetic resonance imaging was acquired from untreated patients with MDD and healthy controls at baseline. The patients' depressive symptoms were monitored by using the Hamilton Rating Scale for Depression (HAMD). After 6 months of antidepressant treatment, patients were re-scanned and followed up every 6 months over 2 years. Traditional statistical analysis as well as machine learning approaches were conducted to investigate the longitudinal changes in macro-scale resting-state functional network connectivity (rsFNC) strength and micro-scale resting-state functional connectivity (rsFC) associated with long-term treatment outcome in MDD. RESULTS Repeated measures of the general linear model demonstrated a significant difference in the default mode network (DMN) rsFNC change before and after the 6-month antidepressant treatment between remitters and non-remitters. The difference in the rsFNC change over the 6-month antidepressant treatment between recurring and stable MDD was also specific to DMN. Machine learning analysis results revealed that only the DMN rsFC change successfully distinguished non-remitters from the remitters at 6 months and recurring from stable MDD during the 2-year follow-up. CONCLUSION Our findings demonstrated that the intrinsic DMN connectivity could be a unique and important target for treatment and recurrence prevention in MDD.
Collapse
Affiliation(s)
- Yumeng Ju
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Mi Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Jin Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Bangshan Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Danfeng Yan
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Xiaowen Lu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Jinrong Sun
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Qiangli Dong
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Liang Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian, Henan 463000, China
| | - Futao Zhao
- Zhumadian Psychiatric Hospital, Zhumadian, Henan 463000, China
| | - Mei Liao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Li Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Yan Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| | - Lingjiang Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Technology Institute of Psychiatry, Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan 410011, China
| |
Collapse
|
107
|
Pizzagalli D, Whitton A, Treadway M, Rutherford A, Kumar P, Ironside M, Kaiser R, Ren B, Dan R. Brain-based graph-theoretical predictive modeling to map the trajectory of transdiagnostic symptoms of anhedonia, impulsivity, and hypomania from the human functional connectome. RESEARCH SQUARE 2023:rs.3.rs-3168186. [PMID: 37841877 PMCID: PMC10571608 DOI: 10.21203/rs.3.rs-3168186/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Clinical assessments often fail to discriminate between unipolar and bipolar depression and identify individuals who will develop future (hypo)manic episodes. To address this challenge, we developed a brain-based graph-theoretical predictive model (GPM) to prospectively map symptoms of anhedonia, impulsivity, and (hypo)mania. Individuals seeking treatment for mood disorders (n = 80) underwent an fMRI scan, including (i) resting-state and (ii) a reinforcement-learning (RL) task. Symptoms were assessed at baseline as well as at 3- and 6-month follow-ups. A whole-brain functional connectome was computed for each fMRI task, and the GPM was applied for symptom prediction using cross-validation. Prediction performance was evaluated by comparing the GPM's mean square error (MSE) to that of a corresponding null model. In addition, the GPM was compared to the connectome-based predictive modeling (CPM). Cross-sectionally, the GPM predicted anhedonia from the global efficiency (a graph theory metric that quantifies information transfer across the connectome) during the RL task, and impulsivity from the centrality (a metric that captures the importance of a region for information spread) of the left anterior cingulate cortex during resting-state. At 6-month follow-up, the GPM predicted (hypo)manic symptoms from the local efficiency of the left nucleus accumbens during the RL task and anhedonia from the centrality of the left caudate during resting-state. Notably, the GPM outperformed the CPM, and GPM derived from individuals with unipolar disorders predicted anhedonia and impulsivity symptoms for individuals with bipolar disorders, highlighting transdiagnostic generalization. Taken together, across DSM mood diagnoses, efficiency and centrality of the reward circuit predicted symptoms of anhedonia, impulsivity, and (hypo)mania, cross-sectionally and prospectively. The GPM is an innovative modeling approach that may ultimately inform clinical prediction at the individual level. ClinicalTrials.gov identifier: NCT01976975.
Collapse
Affiliation(s)
| | - Alexis Whitton
- Black Dog Institute, University of New South Wales, Sydney
| | | | | | | | | | | | - Boyu Ren
- McLean Hospital / Harvard Medical School
| | - Rotem Dan
- McLean Hospital / Harvard Medical School
| |
Collapse
|
108
|
Dhamala E, Rong Ooi LQ, Chen J, Ricard JA, Berkeley E, Chopra S, Qu Y, Zhang XH, Lawhead C, Yeo BTT, Holmes AJ. Brain-Based Predictions of Psychiatric Illness-Linked Behaviors Across the Sexes. Biol Psychiatry 2023; 94:479-491. [PMID: 37031778 PMCID: PMC10524434 DOI: 10.1016/j.biopsych.2023.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Individual differences in functional brain connectivity can be used to predict both the presence of psychiatric illness and variability in associated behaviors. However, despite evidence for sex differences in functional network connectivity and in the prevalence, presentation, and trajectory of psychiatric illnesses, the extent to which disorder-relevant aspects of network connectivity are shared or unique across the sexes remains to be determined. METHODS In this work, we used predictive modeling approaches to evaluate whether shared or unique functional connectivity correlates underlie the expression of psychiatric illness-linked behaviors in males and females in data from the Adolescent Brain Cognitive Development Study (N = 5260; 2571 females). RESULTS We demonstrate that functional connectivity profiles predict individual differences in externalizing behaviors in males and females but predict internalizing behaviors only in females. Furthermore, models trained to predict externalizing behaviors in males generalize to predict internalizing behaviors in females, and models trained to predict internalizing behaviors in females generalize to predict externalizing behaviors in males. Finally, the neurobiological correlates of many behaviors are largely shared within and across sexes: functional connections within and between heteromodal association networks, including default, limbic, control, and dorsal attention networks, are associated with internalizing and externalizing behaviors. CONCLUSIONS Taken together, these findings suggest that shared neurobiological patterns may manifest as distinct behaviors across the sexes. Based on these results, we recommend that both clinicians and researchers carefully consider how sex may influence the presentation of psychiatric illnesses, especially those along the internalizing-externalizing spectrum.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, New York; Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut.
| | - Leon Qi Rong Ooi
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore
| | - Jianzhong Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore
| | - Jocelyn A Ricard
- Department of Psychology, Yale University, New Haven, Connecticut
| | | | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Yueyue Qu
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Xi-Han Zhang
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Connor Lawhead
- Department of Psychology, Yale University, New Haven, Connecticut
| | - B T Thomas Yeo
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut; Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, New Jersey.
| |
Collapse
|
109
|
Chen X, Dong D, Zhou F, Gao X, Liu Y, Wang J, Qin J, Tian Y, Xiao M, Xu X, Li W, Qiu J, Feng T, He Q, Lei X, Chen H. Connectome-based prediction of eating disorder-associated symptomatology. Psychol Med 2023; 53:5786-5799. [PMID: 36177890 DOI: 10.1017/s0033291722003026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Despite increasing knowledge on the neuroimaging patterns of eating disorder (ED) symptoms in non-clinical populations, studies using whole-brain machine learning to identify connectome-based neuromarkers of ED symptomatology are absent. This study examined the association of connectivity within and between large-scale functional networks with specific symptomatic behaviors and cognitions using connectome-based predictive modeling (CPM). METHODS CPM with ten-fold cross-validation was carried out to probe functional networks that were predictive of ED-associated symptomatology, including body image concerns, binge eating, and compensatory behaviors, within the discovery sample of 660 participants. The predictive ability of the identified networks was validated using an independent sample of 821 participants. RESULTS The connectivity predictive of body image concerns was identified within and between networks implicated in cognitive control (frontoparietal and medial frontal), reward sensitivity (subcortical), and visual perception (visual). Crucially, the set of connections in the positive network related to body image concerns identified in one sample was generalized to predict body image concerns in an independent sample, suggesting the replicability of this effect. CONCLUSIONS These findings point to the feasibility of using the functional connectome to predict ED symptomatology in the general population and provide the first evidence that functional interplay among distributed networks predicts body shape/weight concerns.
Collapse
Affiliation(s)
- Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Junjie Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jingmin Qin
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yun Tian
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Mingyue Xiao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiaofei Xu
- School of Computing Technologies, RMIT University, Melbourne, Australia
| | - Wei Li
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
110
|
Ju U. Task and Resting-State Functional Connectivity Predict Driving Violations. Brain Sci 2023; 13:1236. [PMID: 37759837 PMCID: PMC10526865 DOI: 10.3390/brainsci13091236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Aberrant driving behaviors cause accidents; however, there is a lack of understanding of the neural mechanisms underlying these behaviors. To address this issue, a task and resting-state functional connectivity was used to predict aberrant driving behavior and associated personality traits. The study included 29 right-handed participants with driving licenses issued for more than 1 year. During the functional magnetic resonance imaging experiment, participants first recorded their resting state and then watched a driving video while continuously rating the risk and speed on each block. Functional connectome-based predictive modeling was employed for whole brain tasks and resting-state functional connectivity to predict driving behavior (violation, error, and lapses), sensation-seeking, and impulsivity. Resting state and task-based functional connectivity were found to significantly predict driving violations, with resting state significantly predicting lapses and task-based functional connectivity showing a tendency to predict errors. Conversely, neither impulsivity nor sensation-seeking was associated with functional connectivity. The results suggest a significant association between aberrant driving behavior, but a nonsignificant association between impulsivity and sensation-seeking, and task-based or resting state functional connectivity. This could provide a deeper understanding of the neural processing underlying reckless driving that may ultimately be used to prevent accidents.
Collapse
Affiliation(s)
- Uijong Ju
- Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
111
|
Lichenstein SD, Kohler R, Ye F, Potenza MN, Kiluk B, Yip SW. Distinct neural networks predict cocaine versus cannabis treatment outcomes. Mol Psychiatry 2023; 28:3365-3372. [PMID: 37308679 PMCID: PMC10713861 DOI: 10.1038/s41380-023-02120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
Treatment outcomes for individuals with substance use disorders (SUDs) are variable and more individualized approaches may be needed. Cross-validated, machine-learning methods are well-suited for probing neural mechanisms of treatment outcomes. Our prior work applied one such approach, connectome-based predictive modeling (CPM), to identify dissociable and substance-specific neural networks of cocaine and opioid abstinence. In Study 1, we aimed to replicate and extend prior work by testing the predictive ability of the cocaine network in an independent sample of 43 participants from a trial of cognitive-behavioral therapy for SUD, and evaluating its ability to predict cannabis abstinence. In Study 2, CPM was applied to identify an independent cannabis abstinence network. Additional participants were identified for a combined sample of 33 with cannabis-use disorder. Participants underwent fMRI scanning before and after treatment. Additional samples of 53 individuals with co-occurring cocaine and opioid-use disorders and 38 comparison subjects were used to assess substance specificity and network strength relative to participants without SUDs. Results demonstrated a second external replication of the cocaine network predicting future cocaine abstinence, however it did not generalize to cannabis abstinence. An independent CPM identified a novel cannabis abstinence network, which was (i) anatomically distinct from the cocaine network, (ii) specific for predicting cannabis abstinence, and for which (iii) network strength was significantly stronger in treatment responders relative to control particpants. Results provide further evidence for substance specificity of neural predictors of abstinence and provide insight into neural mechanisms of successful cannabis treatment, thereby identifying novel treatment targets. Clinical trials registation: "Computer-based training in cognitive-behavioral therapy web-based (Man VS Machine)", registration number: NCT01442597 . "Maximizing the Efficacy of Cognitive Behavior Therapy and Contingency Management", registration number: NCT00350649 . "Computer-Based Training in Cognitive Behavior Therapy (CBT4CBT)", registration number: NCT01406899 .
Collapse
Affiliation(s)
| | - Robert Kohler
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Marc N Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Brian Kiluk
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sarah W Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
112
|
Hawks ZW, Strong R, Jung L, Beck ED, Passell EJ, Grinspoon E, Singh S, Frumkin MR, Sliwinski M, Germine LT. Accurate Prediction of Momentary Cognition From Intensive Longitudinal Data. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:841-851. [PMID: 36922302 PMCID: PMC10264553 DOI: 10.1016/j.bpsc.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/08/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Deficits in cognitive performance are implicated in the development and maintenance of psychopathology. Emerging evidence further suggests that within-person fluctuations in cognitive performance may represent sensitive early markers of neuropsychiatric decline. Incorporating routine cognitive assessments into standard clinical care-to identify between-person differences and monitor within-person fluctuations-has the potential to improve diagnostic screening and treatment planning. In support of these goals, it is critical to understand to what extent cognitive performance varies under routine, remote assessment conditions (i.e., momentary cognition) in relation to a wide range of possible predictors. METHODS Using data-driven, high-dimensional methods, we ranked strong predictors of momentary cognition and evaluated out-of-sample predictive accuracy. Our approach leveraged innovations in digital technology, including ambulatory assessment of cognition and behavior 1) at scale (n = 122 participants, n = 94 females), 2) in naturalistic environments, and 3) within an intensive longitudinal study design (mean = 25.5 assessments/participant). RESULTS Reaction time (R2 > 0.70) and accuracy (0.56 >R2 > 0.35) were strongly predicted by age, between-person differences in mean performance, and time of day. Effects of self-reported, intraindividual fluctuations in environmental (e.g., noise) and internal (e.g., stress) states were also observed. CONCLUSIONS Our results provide robust estimates of effect size to characterize sources of cognitive variability, to support the identification of optimal windows for psychosocial interventions, and to possibly inform clinical evaluation under remote neuropsychological assessment conditions.
Collapse
Affiliation(s)
- Zoë W Hawks
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Cambridge, Massachusetts.
| | - Roger Strong
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Cambridge, Massachusetts
| | - Laneé Jung
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts
| | - Emorie D Beck
- Department of Psychology, University of California, Davis, Davis, California
| | - Eliza J Passell
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts
| | - Elizabeth Grinspoon
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts
| | - Shifali Singh
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Cambridge, Massachusetts
| | - Madelyn R Frumkin
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Martin Sliwinski
- Department of Human Development and Family Studies, Pennsylvania State University, University Park, Pennsylvania
| | - Laura T Germine
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Cambridge, Massachusetts
| |
Collapse
|
113
|
Wu J, Li J, Eickhoff SB, Scheinost D, Genon S. The challenges and prospects of brain-based prediction of behaviour. Nat Hum Behav 2023; 7:1255-1264. [PMID: 37524932 DOI: 10.1038/s41562-023-01670-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/27/2023] [Indexed: 08/02/2023]
Abstract
Relating individual brain patterns to behaviour is fundamental in system neuroscience. Recently, the predictive modelling approach has become increasingly popular, largely due to the recent availability of large open datasets and access to computational resources. This means that we can use machine learning models and interindividual differences at the brain level represented by neuroimaging features to predict interindividual differences in behavioural measures. By doing so, we could identify biomarkers and neural correlates in a data-driven fashion. Nevertheless, this budding field of neuroimaging-based predictive modelling is facing issues that may limit its potential applications. Here we review these existing challenges, as well as those that we anticipate as the field develops. We focus on the impacts of these challenges on brain-based predictions. We suggest potential solutions to address the resolvable challenges, while keeping in mind that some general and conceptual limitations may also underlie the predictive modelling approach.
Collapse
Affiliation(s)
- Jianxiao Wu
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Jingwei Li
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT, USA
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
114
|
Rosenblatt M, Rodriguez RX, Westwater ML, Dai W, Horien C, Greene AS, Constable RT, Noble S, Scheinost D. Connectome-based machine learning models are vulnerable to subtle data manipulations. PATTERNS (NEW YORK, N.Y.) 2023; 4:100756. [PMID: 37521052 PMCID: PMC10382940 DOI: 10.1016/j.patter.2023.100756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 08/01/2023]
Abstract
Neuroimaging-based predictive models continue to improve in performance, yet a widely overlooked aspect of these models is "trustworthiness," or robustness to data manipulations. High trustworthiness is imperative for researchers to have confidence in their findings and interpretations. In this work, we used functional connectomes to explore how minor data manipulations influence machine learning predictions. These manipulations included a method to falsely enhance prediction performance and adversarial noise attacks designed to degrade performance. Although these data manipulations drastically changed model performance, the original and manipulated data were extremely similar (r = 0.99) and did not affect other downstream analysis. Essentially, connectome data could be inconspicuously modified to achieve any desired prediction performance. Overall, our enhancement attacks and evaluation of existing adversarial noise attacks in connectome-based models highlight the need for counter-measures that improve the trustworthiness to preserve the integrity of academic research and any potential translational applications.
Collapse
Affiliation(s)
- Matthew Rosenblatt
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06510, USA
| | - Raimundo X. Rodriguez
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Margaret L. Westwater
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Wei Dai
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Abigail S. Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - R. Todd Constable
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06510, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06510, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT 06510, USA
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
115
|
Greene AS, Horien C, Barson D, Scheinost D, Constable RT. Why is everyone talking about brain state? Trends Neurosci 2023; 46:508-524. [PMID: 37164869 PMCID: PMC10330476 DOI: 10.1016/j.tins.2023.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
The rapid and coordinated propagation of neural activity across the brain provides the foundation for complex behavior and cognition. Technical advances across neuroscience subfields have advanced understanding of these dynamics, but points of convergence are often obscured by semantic differences, creating silos of subfield-specific findings. In this review we describe how a parsimonious conceptualization of brain state as the fundamental building block of whole-brain activity offers a common framework to relate findings across scales and species. We present examples of the diverse techniques commonly used to study brain states associated with physiology and higher-order cognitive processes, and discuss how integration across them will enable a more comprehensive and mechanistic characterization of the neural dynamics that are crucial to survival but are disrupted in disease.
Collapse
Affiliation(s)
- Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Daniel Barson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; MD/PhD program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT 06520, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
116
|
Heckner MK, Cieslik EC, Oliveros LKP, Eickhoff SB, Patil KR, Langner R. Predicting Executive Functioning from Brain Networks: Modality Specificity and Age Effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547036. [PMID: 37425780 PMCID: PMC10327061 DOI: 10.1101/2023.06.29.547036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Healthy aging is associated with structural and functional network changes in the brain, which have been linked to deterioration in executive functioning (EF), while their neural implementation at the individual level remains unclear. As the biomarker potential of individual resting-state functional connectivity (RSFC) patterns has been questioned, we investigated to what degree individual EF abilities can be predicted from gray-matter volume (GMV), regional homogeneity, fractional amplitude of low-frequency fluctuations (fALFF), and RSFC within EF-related, perceptuo-motor, and whole-brain networks in young and old adults. We examined whether differences in out-of-sample prediction accuracy were modality-specific and depended on age or task-demand levels. Both uni- and multivariate analysis frameworks revealed overall low prediction accuracies and moderate to weak brain-behavior associations (R2 < .07, r < .28), further challenging the idea of finding meaningful markers for individual EF performance with the metrics used. Regional GMV, well linked to overall atrophy, carried the strongest information about individual EF differences in older adults, whereas fALFF, measuring functional variability, did so for younger adults. Our study calls for future research analyzing more global properties of the brain, different task-states and applying adaptive behavioral testing to result in sensitive predictors for young and older adults, respectively.
Collapse
Affiliation(s)
- Marisa K. Heckner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Edna C. Cieslik
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lya K. Paas Oliveros
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R. Patil
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
117
|
Wehrheim MH, Faskowitz J, Sporns O, Fiebach CJ, Kaschube M, Hilger K. Few temporally distributed brain connectivity states predict human cognitive abilities. Neuroimage 2023:120246. [PMID: 37364742 DOI: 10.1016/j.neuroimage.2023.120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Human functional brain connectivity can be temporally decomposed into states of high and low cofluctuation, defined as coactivation of brain regions over time. Rare states of particularly high cofluctuation have been shown to reflect fundamentals of intrinsic functional network architecture and to be highly subject-specific. However, it is unclear whether such network-defining states also contribute to individual variations in cognitive abilities - which strongly rely on the interactions among distributed brain regions. By introducing CMEP, a new eigenvector-based prediction framework, we show that as few as 16 temporally separated time frames (< 1.5% of 10min resting-state fMRI) can significantly predict individual differences in intelligence (N = 263, p < .001). Against previous expectations, individual's network-defining time frames of particularly high cofluctuation do not predict intelligence. Multiple functional brain networks contribute to the prediction, and all results replicate in an independent sample (N = 831). Our results suggest that although fundamentals of person-specific functional connectomes can be derived from few time frames of highest connectivity, temporally distributed information is necessary to extract information about cognitive abilities. This information is not restricted to specific connectivity states, like network-defining high-cofluctuation states, but rather reflected across the entire length of the brain connectivity time series.
Collapse
Affiliation(s)
- Maren H Wehrheim
- Department of Psychology, Goethe University Frankfurt, D-60323 Frankfurt am Main, Germany; Department of Computer Science, Goethe University Frankfurt, D-60325 Frankfurt am Main, Germany.
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405.
| | - Christian J Fiebach
- Department of Psychology, Goethe University Frankfurt, D-60323 Frankfurt am Main, Germany; Brain Imaging Center, Goethe University, D-60528 Frankfurt am Main, Germany.
| | - Matthias Kaschube
- Department of Computer Science, Goethe University Frankfurt, D-60325 Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany.
| | - Kirsten Hilger
- Department of Psychology, Goethe University Frankfurt, D-60323 Frankfurt am Main, Germany; Department of Psychology I, Julius Maximilian University, D-97070 Würzburg, Germany.
| |
Collapse
|
118
|
Misaki M, Tsuchiyagaito A, Guinjoan SM, Rohan ML, Paulus MP. Trait repetitive negative thinking in depression is associated with functional connectivity in negative thinking state rather than resting state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533932. [PMID: 36993382 PMCID: PMC10055358 DOI: 10.1101/2023.03.23.533932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Resting-state functional connectivity (RSFC) has been proposed as a potential indicator of repetitive negative thinking (RNT) in depression. However, identifying the specific functional process associated with RSFC alterations is challenging, and it remains unclear whether alterations in RSFC for depressed individuals are directly related to the RNT process or to individual characteristics distinct from the negative thinking process per se. To investigate the relationship between RSFC alterations and the RNT process in individuals with major depressive disorder (MDD), we compared RSFC with functional connectivity during an induced negative-thinking state (NTFC) in terms of their predictability of RNT traits and associated whole-brain connectivity patterns using connectome-based predictive modeling (CPM) and connectome-wide association (CWA) analyses. Thirty-six MDD participants and twenty-six healthy control participants underwent both resting state and induced negative thinking state fMRI scans. Both RSFC and NTFC distinguished between healthy and depressed individuals with CPM. However, trait RNT in depressed individuals, as measured by the Ruminative Responses Scale-Brooding subscale, was only predictable from NTFC, not from RSFC. CWA analysis revealed that negative thinking in depression was associated with higher functional connectivity between the default mode and executive control regions, which was not observed in RSFC. These findings suggest that RNT in depression involves an active mental process encompassing multiple brain regions across functional networks, which is not represented in the resting state. Although RSFC indicates brain functional alterations in MDD, they may not directly reflect the negative thinking process.
Collapse
Affiliation(s)
- Masaya Misaki
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Aki Tsuchiyagaito
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Salvador M. Guinjoan
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Department of Psychiatry, Oklahoma University Health Sciences Center at Tulsa, Tulsa, OK, USA
| | | | | |
Collapse
|
119
|
Frank LE, Zeithamova D. Evaluating methods for measuring background connectivity in slow event-related functional magnetic resonance imaging designs. Brain Behav 2023; 13:e3015. [PMID: 37062880 PMCID: PMC10275534 DOI: 10.1002/brb3.3015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
INTRODUCTION Resting-state functional magnetic resonance imaging (fMRI) is widely used for measuring functional interactions between brain regions, significantly contributing to our understanding of large-scale brain networks and brain-behavior relationships. Furthermore, idiosyncratic patterns of resting-state connections can be leveraged to identify individuals and predict individual differences in clinical symptoms, cognitive abilities, and other individual factors. Idiosyncratic connectivity patterns are thought to persist across task states, suggesting task-based fMRI can be similarly leveraged for individual differences analyses. METHOD Here, we tested the degree to which functional interactions occurring in the background of a task during slow event-related fMRI parallel or differ from those captured during resting-state fMRI. We compared two approaches for removing task-evoked activity from task-based fMRI: (1) applying a low-pass filter to remove task-related frequencies in the signal, or (2) extracting residuals from a general linear model (GLM) that accounts for task-evoked responses. RESULT We found that the organization of large-scale cortical networks and individual's idiosyncratic connectivity patterns are preserved during task-based fMRI. In contrast, individual differences in connection strength can vary more substantially between rest and task. Compared to low-pass filtering, background connectivity obtained from GLM residuals produced idiosyncratic connectivity patterns and individual differences in connection strength that more resembled rest. However, all background connectivity measures were highly similar when derived from the low-pass-filtered signal or GLM residuals, indicating that both methods are suitable for measuring background connectivity. CONCLUSION Together, our results highlight new avenues for the analysis of task-based fMRI datasets and the utility of each background connectivity method.
Collapse
Affiliation(s)
- Lea E. Frank
- Department of PsychologyUniversity of OregonEugeneOregonUSA
| | | |
Collapse
|
120
|
Luettich A, Sievers C, Alfaro Almagro F, Allen M, Jbabdi S, Smith SM, Pattinson KTS. Functional connectivity between interoceptive brain regions is associated with distinct health-related domains: A population-based neuroimaging study. Hum Brain Mapp 2023; 44:3210-3221. [PMID: 36939141 PMCID: PMC10171512 DOI: 10.1002/hbm.26275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/21/2023] Open
Abstract
Interoception is the sensation, perception, and integration of signals from within the body. It has been associated with a broad range of physiological and psychological processes. Further, interoceptive variables are related to specific regions and networks in the human brain. However, it is not clear whether or how these networks relate empirically to different domains of physiological and psychological health at the population level. We analysed a data set of 19,020 individuals (10,055 females, 8965 males; mean age: 63 years, age range: 45-81 years), who have participated in the UK Biobank Study, a very large-scale prospective epidemiological health study. Using canonical correlation analysis (CCA), allowing for the examination of associations between two sets of variables, we related the functional connectome of brain regions implicated in interoception to a selection of nonimaging health and lifestyle related phenotypes, exploring their relationship within modes of population co-variation. In one integrated and data driven analysis, we obtained four statistically significant modes. Modes could be categorised into domains of arousal and affect and cardiovascular health, respiratory health, body mass, and subjective health (all p < .0001) and were meaningfully associated with distinct neural circuits. Circuits represent specific neural "fingerprints" of functional domains and set the scope for future studies on the neurobiology of interoceptive involvement in different lifestyle and health-related phenotypes. Therefore, our research contributes to the conceptualisation of interoception and may lead to a better understanding of co-morbid conditions in the light of shared interoceptive structures.
Collapse
Affiliation(s)
- Alexander Luettich
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Carolin Sievers
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Fidel Alfaro Almagro
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Micah Allen
- Center of Functionally Integrative NeuroscienceAarhus UniversityAarhusDenmark
- Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
- Cambridge PsychiatryUniversity of CambridgeCambridgeUK
| | - Saad Jbabdi
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Stephen M. Smith
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Kyle T. S. Pattinson
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| |
Collapse
|
121
|
Yan X, Kong R, Xue A, Yang Q, Orban C, An L, Holmes AJ, Qian X, Chen J, Zuo XN, Zhou JH, Fortier MV, Tan AP, Gluckman P, Chong YS, Meaney MJ, Bzdok D, Eickhoff SB, Yeo BTT. Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity. Neuroimage 2023; 273:120010. [PMID: 36918136 PMCID: PMC10212507 DOI: 10.1016/j.neuroimage.2023.120010] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Resting-state fMRI is commonly used to derive brain parcellations, which are widely used for dimensionality reduction and interpreting human neuroscience studies. We previously developed a model that integrates local and global approaches for estimating areal-level cortical parcellations. The resulting local-global parcellations are often referred to as the Schaefer parcellations. However, the lack of homotopic correspondence between left and right Schaefer parcels has limited their use for brain lateralization studies. Here, we extend our previous model to derive homotopic areal-level parcellations. Using resting-fMRI and task-fMRI across diverse scanners, acquisition protocols, preprocessing and demographics, we show that the resulting homotopic parcellations are as homogeneous as the Schaefer parcellations, while being more homogeneous than five publicly available parcellations. Furthermore, weaker correlations between homotopic parcels are associated with greater lateralization in resting network organization, as well as lateralization in language and motor task activation. Finally, the homotopic parcellations agree with the boundaries of a number of cortical areas estimated from histology and visuotopic fMRI, while capturing sub-areal (e.g., somatotopic and visuotopic) features. Overall, these results suggest that the homotopic local-global parcellations represent neurobiologically meaningful subdivisions of the human cerebral cortex and will be a useful resource for future studies. Multi-resolution parcellations estimated from 1479 participants are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Yan2023_homotopic).
Collapse
Affiliation(s)
- Xiaoxuan Yan
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Ru Kong
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Aihuiping Xue
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Qing Yang
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Csaba Orban
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Lijun An
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Avram J Holmes
- Yale University, Departments of Psychology and Psychiatry, New Haven, CT, Unites States of America
| | - Xing Qian
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jianzhong Chen
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Xi-Nian Zuo
- State Key Laboratory of Cognitive Neuroscience and Learning/IDG McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; National Basic Public Science Data Center, China
| | - Juan Helen Zhou
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore; Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peter Gluckman
- UK Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - B T Thomas Yeo
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health and Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, Unites States of America.
| |
Collapse
|
122
|
Hardi FA, Goetschius LG, McLoyd V, Lopez‐Duran NL, Mitchell C, Hyde LW, Beltz AM, Monk CS. Adolescent functional network connectivity prospectively predicts adult anxiety symptoms related to perceived COVID-19 economic adversity. J Child Psychol Psychiatry 2023; 64:918-929. [PMID: 36579796 PMCID: PMC9880614 DOI: 10.1111/jcpp.13749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Stressful events, such as the COVID-19 pandemic, are major contributors to anxiety and depression, but only a subset of individuals develop psychopathology. In a population-based sample (N = 174) with a high representation of marginalized individuals, this study examined adolescent functional network connectivity as a marker of susceptibility to anxiety and depression in the context of adverse experiences. METHODS Data-driven network-based subgroups were identified using an unsupervised community detection algorithm within functional neural connectivity. Neuroimaging data collected during emotion processing (age 15) were extracted from a priori regions of interest linked to anxiety and depression. Symptoms were self-reported at ages 15, 17, and 21 (during COVID-19). During COVID-19, participants reported on pandemic-related economic adversity. Differences across subgroup networks were first examined, then subgroup membership and subgroup-adversity interaction were tested to predict change in symptoms over time. RESULTS Two subgroups were identified: Subgroup A, characterized by relatively greater neural network variation (i.e., heterogeneity) and density with more connections involving the amygdala, subgenual cingulate, and ventral striatum; and the more homogenous Subgroup B, with more connections involving the insula and dorsal anterior cingulate. Accounting for initial symptoms, subgroup A individuals had greater increases in symptoms across time (β = .138, p = .042), and this result remained after adjusting for additional covariates (β = .194, p = .023). Furthermore, there was a subgroup-adversity interaction: compared with Subgroup B, Subgroup A reported greater anxiety during the pandemic in response to reported economic adversity (β = .307, p = .006), and this remained after accounting for initial symptoms and many covariates (β = .237, p = .021). CONCLUSIONS A subgrouping algorithm identified young adults who were susceptible to adversity using their personalized functional network profiles derived from a priori brain regions. These results highlight potential prospective neural signatures involving heterogeneous emotion networks that predict individuals at the greatest risk for anxiety when experiencing adverse events.
Collapse
Affiliation(s)
| | | | - Vonnie McLoyd
- Department of PsychologyUniversity of MichiganAnn ArborMIUSA
| | | | - Colter Mitchell
- Survey Research Center of the Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
- Population Studies Center of the Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
| | - Luke W. Hyde
- Department of PsychologyUniversity of MichiganAnn ArborMIUSA
- Survey Research Center of the Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
| | | | - Christopher S. Monk
- Department of PsychologyUniversity of MichiganAnn ArborMIUSA
- Survey Research Center of the Institute for Social ResearchUniversity of MichiganAnn ArborMIUSA
- Neuroscience Graduate Program University of MichiganAnn ArborMIUSA
- Department of PsychiatryUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
123
|
Heckner MK, Cieslik EC, Patil KR, Gell M, Eickhoff SB, Hoffstädter F, Langner R. Predicting executive functioning from functional brain connectivity: network specificity and age effects. Cereb Cortex 2023; 33:6495-6507. [PMID: 36635227 PMCID: PMC10233269 DOI: 10.1093/cercor/bhac520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
Healthy aging is associated with altered executive functioning (EF). Earlier studies found age-related differences in EF performance to be partially accounted for by changes in resting-state functional connectivity (RSFC) within brain networks associated with EF. However, it remains unclear which role RSFC in EF-associated networks plays as a marker for individual differences in EF performance. Here, we investigated to what degree individual abilities across 3 different EF tasks can be predicted from RSFC within EF-related, perceptuo-motor, whole-brain, and random networks separately in young and old adults. Specifically, we were interested if (i) young and old adults differ in predictability depending on network or EF demand level (high vs. low), (ii) an EF-related network outperforms EF-unspecific networks when predicting EF abilities, and (iii) this pattern changes with demand level. Both our uni- and multivariate analysis frameworks analyzing interactions between age × demand level × networks revealed overall low prediction accuracies and a general lack of specificity regarding neurobiological networks for predicting EF abilities. This questions the idea of finding markers for individual EF performance in RSFC patterns and calls for future research replicating the current approach in different task states, brain modalities, different, larger samples, and with more comprehensive behavioral measures.
Collapse
Affiliation(s)
- Marisa K Heckner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Martin Gell
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Felix Hoffstädter
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
124
|
Morin TM, Moore KN, Isenburg K, Ma W, Stern CE. Functional reconfiguration of task-active frontoparietal control network facilitates abstract reasoning. Cereb Cortex 2023; 33:5761-5773. [PMID: 36420534 DOI: 10.1093/cercor/bhac457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/25/2022] Open
Abstract
While the brain's functional network architecture is largely conserved between resting and task states, small but significant changes in functional connectivity support complex cognition. In this study, we used a modified Raven's Progressive Matrices Task to examine symbolic and perceptual reasoning in human participants undergoing fMRI scanning. Previously, studies have focused predominantly on discrete symbolic versions of matrix reasoning, even though the first few trials of the Raven's Advanced Progressive Matrices task consist of continuous perceptual stimuli. Our analysis examined the activation patterns and functional reconfiguration of brain networks associated with resting state and both symbolic and perceptual reasoning. We found that frontoparietal networks, including the cognitive control and dorsal attention networks, were significantly activated during abstract reasoning. We determined that these same task-active regions exhibited flexibly-reconfigured functional connectivity when transitioning from resting state to the abstract reasoning task. Conversely, we showed that a stable network core of regions in default and somatomotor networks was maintained across both resting and task states. We propose that these regionally-specific changes in the functional connectivity of frontoparietal networks puts the brain in a "task-ready" state, facilitating efficient task-based activation.
Collapse
Affiliation(s)
- Thomas M Morin
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Kylie N Moore
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Kylie Isenburg
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Weida Ma
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
| | - Chantal E Stern
- Graduate Program for Neuroscience, Boston University, 677 Beacon St., Boston, MA 02215, United States
- Cognitive Neuroimaging Center, Boston University, 610 Commonwealth Ave., Boston, MA 02215, United States
- Department of Psychological and Brain Sciences, 64 Cummington Mall, Boston University, Boston, MA 02215, United States
| |
Collapse
|
125
|
Horien C, Greene AS, Shen X, Fortes D, Brennan-Wydra E, Banarjee C, Foster R, Donthireddy V, Butler M, Powell K, Vernetti A, Mandino F, O’Connor D, Lake EMR, McPartland JC, Volkmar FR, Chun M, Chawarska K, Rosenberg MD, Scheinost D, Constable RT. A generalizable connectome-based marker of in-scan sustained attention in neurodiverse youth. Cereb Cortex 2023; 33:6320-6334. [PMID: 36573438 PMCID: PMC10183743 DOI: 10.1093/cercor/bhac506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.
Collapse
Affiliation(s)
- Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- MD-PhD Program, Yale School of Medicine, New Haven, CT, United States
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- MD-PhD Program, Yale School of Medicine, New Haven, CT, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Diogo Fortes
- Yale Child Study Center, New Haven, CT, United States
| | | | | | - Rachel Foster
- Yale Child Study Center, New Haven, CT, United States
| | | | | | - Kelly Powell
- Yale Child Study Center, New Haven, CT, United States
| | | | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - David O’Connor
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - James C McPartland
- Yale Child Study Center, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Fred R Volkmar
- Yale Child Study Center, New Haven, CT, United States
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Marvin Chun
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Katarzyna Chawarska
- Yale Child Study Center, New Haven, CT, United States
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, United States
| | - Monica D Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, United States
- Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Yale Child Study Center, New Haven, CT, United States
- Department of Statistics and Data Science, Yale University, New Haven, CT, United States
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
126
|
Ficek-Tani B, Horien C, Ju S, Xu W, Li N, Lacadie C, Shen X, Scheinost D, Constable T, Fredericks C. Sex differences in default mode network connectivity in healthy aging adults. Cereb Cortex 2023; 33:6139-6151. [PMID: 36563018 PMCID: PMC10183749 DOI: 10.1093/cercor/bhac491] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
Women show an increased lifetime risk of Alzheimer's disease (AD) compared with men. Characteristic brain connectivity changes, particularly within the default mode network (DMN), have been associated with both symptomatic and preclinical AD, but the impact of sex on DMN function throughout aging is poorly understood. We investigated sex differences in DMN connectivity over the lifespan in 595 cognitively healthy participants from the Human Connectome Project-Aging cohort. We used the intrinsic connectivity distribution (a robust voxel-based metric of functional connectivity) and a seed connectivity approach to determine sex differences within the DMN and between the DMN and whole brain. Compared with men, women demonstrated higher connectivity with age in posterior DMN nodes and lower connectivity in the medial prefrontal cortex. Differences were most prominent in the decades surrounding menopause. Seed-based analysis revealed higher connectivity in women from the posterior cingulate to angular gyrus, which correlated with neuropsychological measures of declarative memory, and hippocampus. Taken together, we show significant sex differences in DMN subnetworks over the lifespan, including patterns in aging women that resemble changes previously seen in preclinical AD. These findings highlight the importance of considering sex in neuroimaging studies of aging and neurodegeneration.
Collapse
Affiliation(s)
- Bronte Ficek-Tani
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06520, United States
| | - Suyeon Ju
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Wanwan Xu
- Department of Biostatistics, Yale School of Medicine, New Haven, CT 06520, United States
| | - Nancy Li
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Cheryl Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Carolyn Fredericks
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
127
|
Cardin V, Kremneva E, Komarova A, Vinogradova V, Davidenko T, Zmeykina E, Kopnin PN, Iriskhanova K, Woll B. Resting-state functional connectivity in deaf and hearing individuals and its link to executive processing. Neuropsychologia 2023; 185:108583. [PMID: 37142052 DOI: 10.1016/j.neuropsychologia.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Sensory experience shapes brain structure and function, and it is likely to influence the organisation of functional networks of the brain, including those involved in cognitive processing. Here we investigated the influence of early deafness on the organisation of resting-state networks of the brain and its relation to executive processing. We compared resting-state connectivity between deaf and hearing individuals across 18 functional networks and 400 ROIs. Our results showed significant group differences in connectivity between seeds of the auditory network and most large-scale networks of the brain, in particular the somatomotor and salience/ventral attention networks. When we investigated group differences in resting-state fMRI and their link to behavioural performance in executive function tasks (working memory, inhibition and switching), differences between groups were found in the connectivity of association networks of the brain, such as the salience/ventral attention and default-mode networks. These findings indicate that sensory experience influences not only the organisation of sensory networks, but that it also has a measurable impact on the organisation of association networks supporting cognitive processing. Overall, our findings suggest that different developmental pathways and functional organisation can support executive processing in the adult brain.
Collapse
Affiliation(s)
- Velia Cardin
- Deafness, Cognition and Language Research Centre, UCL, London, UK.
| | - Elena Kremneva
- Department of Radiology, Research Center of Neurology, Moscow, Russia
| | - Anna Komarova
- Galina Zaitseva Centre for Deaf Studies and Sign Language, Moscow, Russia; Language Department, Moscow State Linguistics University, Moscow, Russia
| | - Valeria Vinogradova
- Deafness, Cognition and Language Research Centre, UCL, London, UK; Galina Zaitseva Centre for Deaf Studies and Sign Language, Moscow, Russia; School of Psychology, University of East Anglia, Norwich, UK
| | - Tatiana Davidenko
- Galina Zaitseva Centre for Deaf Studies and Sign Language, Moscow, Russia
| | - Elina Zmeykina
- Department of Radiology, Research Center of Neurology, Moscow, Russia; Department of Neurology, University Medical Center Göttingen, Germany
| | - Petr N Kopnin
- Department of Neurorehabilitation and Physiotherapy, Research Center of Neurology, Moscow, Russia
| | - Kira Iriskhanova
- Language Department, Moscow State Linguistics University, Moscow, Russia
| | - Bencie Woll
- Deafness, Cognition and Language Research Centre, UCL, London, UK
| |
Collapse
|
128
|
Xie C, Xiang S, Shen C, Peng X, Kang J, Li Y, Cheng W, He S, Bobou M, Broulidakis MJ, van Noort BM, Zhang Z, Robinson L, Vaidya N, Winterer J, Zhang Y, King S, Banaschewski T, Barker GJ, Bokde ALW, Bromberg U, Büchel C, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Ittermann B, Lemaître H, Martinot JL, Martinot MLP, Nees F, Orfanos DP, Paus T, Poustka L, Fröhner JH, Schmidt U, Sinclair J, Smolka MN, Stringaris A, Walter H, Whelan R, Desrivières S, Sahakian BJ, Robbins TW, Schumann G, Jia T, Feng J. A shared neural basis underlying psychiatric comorbidity. Nat Med 2023; 29:1232-1242. [PMID: 37095248 PMCID: PMC10202801 DOI: 10.1038/s41591-023-02317-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Recent studies proposed a general psychopathology factor underlying common comorbidities among psychiatric disorders. However, its neurobiological mechanisms and generalizability remain elusive. In this study, we used a large longitudinal neuroimaging cohort from adolescence to young adulthood (IMAGEN) to define a neuropsychopathological (NP) factor across externalizing and internalizing symptoms using multitask connectomes. We demonstrate that this NP factor might represent a unified, genetically determined, delayed development of the prefrontal cortex that further leads to poor executive function. We also show this NP factor to be reproducible in multiple developmental periods, from preadolescence to early adulthood, and generalizable to the resting-state connectome and clinical samples (the ADHD-200 Sample and the Stratify Project). In conclusion, we identify a reproducible and general neural basis underlying symptoms of multiple mental health disorders, bridging multidimensional evidence from behavioral, neuroimaging and genetic substrates. These findings may help to develop new therapeutic interventions for psychiatric comorbidities.
Collapse
Affiliation(s)
- Chao Xie
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Shitong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Chun Shen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Xuerui Peng
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Yuzhu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
| | - Shiqi He
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- School of Health Sciences, The University of Manchester, Manchester, UK
| | - Marina Bobou
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M John Broulidakis
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Zuo Zhang
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lauren Robinson
- Department of Psychological Medicine, Section for Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Nilakshi Vaidya
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jeanne Winterer
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Yuning Zhang
- Psychology Department, University of Southampton, Southampton, UK
| | - Sinead King
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- School of Medicine, Center for Neuroimaging, Cognition and Genomics, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, C.E.A., Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Hervé Lemaître
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 'Trajectoires développementales en psychiatrie', Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS UMR9010, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U1299 'Trajectoires développementales en psychiatrie', Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS UMR9010, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Tomáš Paus
- Department of Psychiatry and Neuroscience and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Quebec, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Schmidt
- Department of Psychological Medicine, Section for Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Julia Sinclair
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Argyris Stringaris
- Division of Psychiatry and Department of Clinical, Educational & Health Psychology, University College London, London, UK
| | - Henrik Walter
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara J Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Trevor W Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Gunter Schumann
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Sports and Health Sciences, University of Potsdam, Potsdam, Germany
- PONS Centre, Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
129
|
Chen J, Ooi LQR, Tan TWK, Zhang S, Li J, Asplund CL, Eickhoff SB, Bzdok D, Holmes AJ, Yeo BTT. Relationship Between Prediction Accuracy and Feature Importance Reliability: an Empirical and Theoretical Study. Neuroimage 2023; 274:120115. [PMID: 37088322 DOI: 10.1016/j.neuroimage.2023.120115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
There is significant interest in using neuroimaging data to predict behavior. The predictive models are often interpreted by the computation of feature importance, which quantifies the predictive relevance of an imaging feature. Tian and Zalesky (2021) suggest that feature importance estimates exhibit low split-half reliability, as well as a trade-off between prediction accuracy and feature importance reliability across parcellation resolutions. However, it is unclear whether the trade-off between prediction accuracy and feature importance reliability is universal. Here, we demonstrate that, with a sufficient sample size, feature importance (operationalized as Haufe-transformed weights) can achieve fair to excellent split-half reliability. With a sample size of 2600 participants, Haufe-transformed weights achieve average intra-class correlation coefficients of 0.75, 0.57 and 0.53 for cognitive, personality and mental health measures respectively. Haufe-transformed weights are much more reliable than original regression weights and univariate FC-behavior correlations. Original regression weights are not reliable even with 2600 participants. Intriguingly, feature importance reliability is strongly positively correlated with prediction accuracy across phenotypes. Within a particular behavioral domain, there is no clear relationship between prediction performance and feature importance reliability across regression models. Furthermore, we show mathematically that feature importance reliability is necessary, but not sufficient, for low feature importance error. In the case of linear models, lower feature importance error is mathematically related to lower prediction error. Therefore, higher feature importance reliability might yield lower feature importance error and higher prediction accuracy. Finally, we discuss how our theoretical results relate with the reliability of imaging features and behavioral measures. Overall, the current study provides empirical and theoretical insights into the relationship between prediction accuracy and feature importance reliability.
Collapse
Affiliation(s)
- Jianzhong Chen
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore
| | - Leon Qi Rong Ooi
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
| | - Trevor Wei Kiat Tan
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
| | - Shaoshi Zhang
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore
| | - Jingwei Li
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher L Asplund
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Division of Social Sciences, Yale-NUS College, Singapore; Department of Psychology, National University of Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Danilo Bzdok
- Department of Biomedical Engineering, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Mila - Quebec AI Institute, Montreal, Canada
| | - Avram J Holmes
- Yale University, Departments of Psychology and Psychiatry, New Haven, CT, USA
| | - B T Thomas Yeo
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
130
|
Dhamala E, Yeo BTT, Holmes AJ. One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry. Biol Psychiatry 2023; 93:717-728. [PMID: 36577634 DOI: 10.1016/j.biopsych.2022.09.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022]
Abstract
Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut.
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
131
|
Zhao W, Makowski C, Hagler DJ, Garavan HP, Thompson WK, Greene DJ, Jernigan TL, Dale AM. Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity. Neuroimage 2023; 270:119946. [PMID: 36801369 PMCID: PMC11037888 DOI: 10.1016/j.neuroimage.2023.119946] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Characterizing the optimal fMRI paradigms for detecting behaviorally relevant functional connectivity (FC) patterns is a critical step to furthering our knowledge of the neural basis of behavior. Previous studies suggested that FC patterns derived from task fMRI paradigms, which we refer to as task-based FC, are better correlated with individual differences in behavior than resting-state FC, but the consistency and generalizability of this advantage across task conditions was not fully explored. Using data from resting-state fMRI and three fMRI tasks from the Adolescent Brain Cognitive Development Study ® (ABCD), we tested whether the observed improvement in behavioral prediction power of task-based FC can be attributed to changes in brain activity induced by the task design. We decomposed the task fMRI time course of each task into the task model fit (the fitted time course of the task condition regressors from the single-subject general linear model) and the task model residuals, calculated their respective FC, and compared the behavioral prediction performance of these FC estimates to resting-state FC and the original task-based FC. The FC of the task model fit was better than the FC of the task model residual and resting-state FC at predicting a measure of general cognitive ability or two measures of performance on the fMRI tasks. The superior behavioral prediction performance of the FC of the task model fit was content-specific insofar as it was only observed for fMRI tasks that probed similar cognitive constructs to the predicted behavior of interest. To our surprise, the task model parameters, the beta estimates of the task condition regressors, were equally if not more predictive of behavioral differences than all FC measures. These results showed that the observed improvement of behavioral prediction afforded by task-based FC was largely driven by the FC patterns associated with the task design. Together with previous studies, our findings highlighted the importance of task design in eliciting behaviorally meaningful brain activation and FC patterns.
Collapse
Affiliation(s)
- Weiqi Zhao
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | - Carolina Makowski
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | - Donald J Hagler
- University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | | | | | - Deanna J Greene
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA
| | - Terry L Jernigan
- Department of Cognitive Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA; Center for Human Development, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92161, USA; Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | - Anders M Dale
- Department of Radiology, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Center for Multimodal Imaging and Genetics, University of California, San Diego School of Medicine, 9444 Medical Center Dr, La Jolla, CA 92037, USA; Department of Neuroscience, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA; Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92037, USA.
| |
Collapse
|
132
|
Ovando-Tellez M, Kenett YN, Benedek M, Bernard M, Belo J, Beranger B, Bieth T, Volle E. Brain Connectivity-Based Prediction of Combining Remote Semantic Associates for Creative Thinking. CREATIVITY RESEARCH JOURNAL 2023. [DOI: 10.1080/10400419.2023.2192563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Marcela Ovando-Tellez
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, Paris, France
| | - Yoed N. Kenett
- Faculty of Data and Decision Sciences, Technion – Israel Institute of Technology,Haifa Israel
| | | | - Matthieu Bernard
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, Paris, France
| | - Joan Belo
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, Paris, France
| | - Benoit Beranger
- Sorbonne University, CENIR at Paris Brain Institute (ICM), INSERM, CNRS, Paris, France
| | - Theophile Bieth
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, Paris, France
- Neurology department, Pitié-Salpêtrière hospital, AP-HP, Paris, France
| | - Emmanuelle Volle
- Sorbonne University, FrontLab at Paris Brain Institute (ICM), INSERM, CNRS, Paris, France
| |
Collapse
|
133
|
Corriveau A, Yoo K, Kwon YH, Chun MM, Rosenberg MD. Functional connectome stability and optimality are markers of cognitive performance. Cereb Cortex 2023; 33:5025-5041. [PMID: 36408606 PMCID: PMC10110430 DOI: 10.1093/cercor/bhac396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022] Open
Abstract
Patterns of whole-brain fMRI functional connectivity, or connectomes, are unique to individuals. Previous work has identified subsets of functional connections within these patterns whose strength predicts aspects of attention and cognition. However, overall features of these connectomes, such as how stable they are over time and how similar they are to a group-average (typical) or high-performance (optimal) connectivity pattern, may also reflect cognitive and attentional abilities. Here, we test whether individuals who express more stable, typical, optimal, and distinctive patterns of functional connectivity perform better on cognitive tasks using data from three independent samples. We find that individuals with more stable task-based functional connectivity patterns perform better on attention and working memory tasks, even when controlling for behavioral performance stability. Additionally, we find initial evidence that individuals with more typical and optimal patterns of functional connectivity also perform better on these tasks. These results demonstrate that functional connectome stability within individuals and similarity across individuals predicts individual differences in cognition.
Collapse
Affiliation(s)
- Anna Corriveau
- Department of Psychology, The University of Chicago, Chicago, IL 60637, USA
| | - Kwangsun Yoo
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Young Hye Kwon
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Marvin M Chun
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Monica D Rosenberg
- Department of Psychology, The University of Chicago, Chicago, IL 60637, USA
- Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
134
|
Li X, Towe SL, Bell RP, Jiang R, Hall SA, Calhoun VD, Meade CS, Sui J. The Individualized Prediction of Neurocognitive Function in People Living With HIV Based on Clinical and Multimodal Connectome Data. IEEE J Biomed Health Inform 2023; 27:2094-2104. [PMID: 37022271 PMCID: PMC10387132 DOI: 10.1109/jbhi.2023.3240508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neurocognitive impairment continues to be common comorbidity for people living with HIV (PLWH). Given the chronic nature of HIV disease, identifying reliable biomarkers of these impairments is essential to advance our understanding of the underlying neural foundation and facilitate screening and diagnosis in clinical care. While neuroimaging provides immense potential for such biomarkers, to date, investigations in PLWH have been mostly limited to either univariate mass techniques or a single neuroimaging modality. In the present study, connectome-based predictive modeling (CPM) was proposed to predict individual differences of cognitive functioning in PLWH, using resting-state functional connectivity (FC), white matter structural connectivity (SC), and clinical relevant measures. We also adopted an efficient feature selection approach to identify the most predictive features, which achieved an optimal prediction accuracy of r = 0.61 in the discovery dataset (n = 102) and r = 0.45 in an independent validation HIV cohort (n = 88). Two brain templates and nine distinct prediction models were also tested for better modeling generalizability. Results show that combining multimodal FC and SC features enabled higher prediction accuracy of cognitive scores in PLWH, while adding clinical and demographic metrics may further improve the prediction by introducing complementary information, which may help better evaluate the individual-level cognitive performance in PLWH.
Collapse
|
135
|
Ju S, Horien C, Shen X, Abuwarda H, Trainer A, Constable RT, Fredericks CA. Connectome-based predictive modeling shows sex differences in brain-based predictors of memory performance. FRONTIERS IN DEMENTIA 2023; 2:1126016. [PMID: 39082002 PMCID: PMC11285565 DOI: 10.3389/frdem.2023.1126016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) takes a more aggressive course in women than men, with higher prevalence and faster progression. Amnestic AD specifically targets the default mode network (DMN), which subserves short-term memory; past research shows relative hyperconnectivity in the posterior DMN in aging women. Higher reliance on this network during memory tasks may contribute to women's elevated AD risk. Here, we applied connectome-based predictive modeling (CPM), a robust linear machine-learning approach, to the Lifespan Human Connectome Project-Aging (HCP-A) dataset (n = 579). We sought to characterize sex-based predictors of memory performance in aging, with particular attention to the DMN. Models were evaluated using cross-validation both across the whole group and for each sex separately. Whole-group models predicted short-term memory performance with accuracies ranging from ρ = 0.21-0.45. The best-performing models were derived from an associative memory task-based scan. Sex-specific models revealed significant differences in connectome-based predictors for men and women. DMN activity contributed more to predicted memory scores in women, while within- and between- visual network activity contributed more to predicted memory scores in men. While men showed more segregation of visual networks, women showed more segregation of the DMN. We demonstrate that women and men recruit different circuitry when performing memory tasks, with women relying more on intra-DMN activity and men relying more on visual circuitry. These findings are consistent with the hypothesis that women draw more heavily upon the DMN for recollective memory, potentially contributing to women's elevated risk of AD.
Collapse
Affiliation(s)
- Suyeon Ju
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, United States
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | - Hamid Abuwarda
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Anne Trainer
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
136
|
Colenbier N, Sareen E, Del-Aguila Puntas T, Griffa A, Pellegrino G, Mantini D, Marinazzo D, Arcara G, Amico E. Task matters: Individual MEG signatures from naturalistic and neurophysiological brain states. Neuroimage 2023; 271:120021. [PMID: 36918139 DOI: 10.1016/j.neuroimage.2023.120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
The discovery that human brain connectivity data can be used as a "fingerprint" to identify a given individual from a population, has become a burgeoning research area in the neuroscience field. Recent studies have identified the possibility to extract these brain signatures from the temporal rich dynamics of resting-state magneto encephalography (MEG) recordings. Nevertheless, it is still uncertain to what extent MEG signatures can serve as an indicator of human identifiability during task-related conduct. Here, using MEG data from naturalistic and neurophysiological tasks, we show that identification improves in tasks relative to resting-state, providing compelling evidence for a task dependent axis of MEG signatures. Notably, improvements in identifiability were more prominent in strictly controlled tasks. Lastly, the brain regions contributing most towards individual identification were also modified when engaged in task activities. We hope that this investigation advances our understanding of the driving factors behind brain identification from MEG signals.
Collapse
Affiliation(s)
| | - Ekansh Sareen
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Tamara Del-Aguila Puntas
- Laboratorio de Psicobiologia, Departmento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Spain
| | - Alessandra Griffa
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Switzerland; Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | | | - Enrico Amico
- Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Switzerland.
| |
Collapse
|
137
|
Izakson L, Gal S, Shahar M, Tavor I, Levy DJ. Similar functional networks predict performance in both perceptual and value-based decision tasks. Cereb Cortex 2023; 33:2669-2681. [PMID: 35724432 DOI: 10.1093/cercor/bhac234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
There are numerous commonalities between perceptual and preferential decision processes. For instance, previous studies have shown that both of these decision types are influenced by context. Also, the same computational models can explain both. However, the neural processes and functional connections that underlie these similarities between perceptual and value-based decisions are still unclear. Hence, in the current study, we examine whether perceptual and preferential processes can be explained by similar functional networks utilizing data from the Human Connectome Project. We used resting-state functional magnetic resonance imaging data to predict performance of 2 different decision-making tasks: a value-related task (the delay discounting task) and a perceptual task (the flanker task). We then examined the existence of shared predictive-network features across these 2 decision tasks. Interestingly, we found a significant positive correlation between the functional networks, which predicted the value-based and perceptual tasks. In addition, a larger functional connectivity between visual and frontal decision brain areas was a critical feature in the prediction of both tasks. These results demonstrate that functional connections between perceptual and value-related areas in the brain are inherently related to decision-making processes across domains.
Collapse
Affiliation(s)
- Liz Izakson
- Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Coller School of Management, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Shachar Gal
- Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Moni Shahar
- Center of AI and Data Science, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Ido Tavor
- Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Strauss Center for Computational Neuroimaging, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Dino J Levy
- Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
- Coller School of Management, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| |
Collapse
|
138
|
Porter A, Nielsen A, Dorn M, Dworetsky A, Edmonds D, Gratton C. Masked features of task states found in individual brain networks. Cereb Cortex 2023; 33:2879-2900. [PMID: 35802477 PMCID: PMC10016040 DOI: 10.1093/cercor/bhac247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Completing complex tasks requires that we flexibly integrate information across brain areas. While studies have shown how functional networks are altered during different tasks, this work has generally focused on a cross-subject approach, emphasizing features that are common across people. Here we used extended sampling "precision" fMRI data to test the extent to which task states generalize across people or are individually specific. We trained classifiers to decode state using functional network data in single-person datasets across 5 diverse task states. Classifiers were then tested on either independent data from the same person or new individuals. Individualized classifiers were able to generalize to new participants. However, classification performance was significantly higher within a person, a pattern consistent across model types, people, tasks, feature subsets, and even for decoding very similar task conditions. Notably, these findings also replicated in a new independent dataset. These results suggest that individual-focused approaches can uncover robust features of brain states, including features obscured in cross-subject analyses. Individual-focused approaches have the potential to deepen our understanding of brain interactions during complex cognition.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
| | - Ashley Nielsen
- Department of Neurology, Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO 63130, United States
| | - Megan Dorn
- Department of Psychology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
| | - Ally Dworetsky
- Department of Psychology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
| | - Donnisa Edmonds
- Department of Psychology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
| | - Caterina Gratton
- Department of Psychology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
- Department of Neurology, Northwestern University, 633 Clark St, Evanston, IL 60208, United States
| |
Collapse
|
139
|
Kurtin DL, Scott G, Hebron H, Skeldon AC, Violante IR. Task-based differences in brain state dynamics and their relation to cognitive ability. Neuroimage 2023; 271:119945. [PMID: 36870433 DOI: 10.1016/j.neuroimage.2023.119945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Transient patterns of interregional connectivity form and dissipate in response to varying cognitive demands. Yet, it is not clear how different cognitive demands influence brain state dynamics, and whether these dynamics relate to general cognitive ability. Here, using functional magnetic resonance imaging (fMRI) data, we characterised shared, recurrent, global brain states in 187 participants across the working memory, emotion, language, and relation tasks from the Human Connectome Project. Brain states were determined using Leading Eigenvector Dynamics Analysis (LEiDA). In addition to the LEiDA-based metrics of brain state lifetimes and probabilities, we also computed information-theoretic measures of Block Decomposition Method of complexity, Lempel-Ziv complexity and transition entropy. Information theoretic metrics are notable in their ability to compute relationships amongst sequences of states over time, compared to lifetime and probability, which capture the behaviour of each state in isolation. We then related task-based brain state metrics to fluid intelligence. We observed that brain states exhibited stable topology across a range of numbers of clusters (K = 2:15). Most metrics of brain state dynamics, including state lifetime, probability, and all information theoretic metrics, reliably differed between tasks. However, relationships between state dynamic metrics and cognitive abilities varied according to the task, the metric, and the value of K, indicating that there are contextual relationships between task-dependant state dynamics and trait cognitive ability. This study provides evidence that the brain reconfigures across time in response to cognitive demands, and that there are contextual, rather than generalisable, relationships amongst task, state dynamics, and cognitive ability.
Collapse
Affiliation(s)
- Danielle L Kurtin
- NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Gregory Scott
- UK Dementia Research Institute, Care Research and Technology Centre at Imperial College, London and the University of Surrey, Guildford, UK; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Henry Hebron
- NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research and Technology Centre at Imperial College, London and the University of Surrey, Guildford, UK
| | - Anne C Skeldon
- UK Dementia Research Institute, Care Research and Technology Centre at Imperial College, London and the University of Surrey, Guildford, UK; Department of Mathematics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Ines R Violante
- NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
140
|
Wang X, Zwosta K, Wolfensteller U, Ruge H. Changes in global functional network properties predict individual differences in habit formation. Hum Brain Mapp 2023; 44:1565-1578. [PMID: 36413054 PMCID: PMC9921330 DOI: 10.1002/hbm.26158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
Prior evidence suggests that sensorimotor regions play a crucial role in habit formation. Yet, whether and how their global functional network properties might contribute to a more comprehensive characterization of habit formation still remains unclear. Capitalizing on advances in Elastic Net regression and predictive modeling, we examined whether learning-related functional connectivity alterations distributed across the whole brain could predict individual habit strength. Using the leave-one-subject-out cross-validation strategy, we found that the habit strength score of the novel unseen subjects could be successfully predicted. We further characterized the contribution of both, individual large-scale networks and individual brain regions by calculating their predictive weights. This highlighted the pivotal role of functional connectivity changes involving the sensorimotor network and the cingulo-opercular network in subject-specific habit strength prediction. These results contribute to the understanding the neural basis of human habit formation by demonstrating the importance of global functional network properties especially also for predicting the observable behavioral expression of habits.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Fakultät Psychologie, Technische Universität Dresden, Dresden, Germany
| | - Katharina Zwosta
- Fakultät Psychologie, Technische Universität Dresden, Dresden, Germany
| | - Uta Wolfensteller
- Fakultät Psychologie, Technische Universität Dresden, Dresden, Germany
| | - Hannes Ruge
- Fakultät Psychologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
141
|
Yuan D, Hahn S, Allgaier N, Owens MM, Chaarani B, Potter A, Garavan H. Machine learning approaches linking brain function to behavior in the ABCD STOP task. Hum Brain Mapp 2023; 44:1751-1766. [PMID: 36534603 PMCID: PMC9921227 DOI: 10.1002/hbm.26172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
The stop-signal task (SST) is one of the most common fMRI tasks of response inhibition, and its performance measure, the stop-signal reaction-time (SSRT), is broadly used as a measure of cognitive control processes. The neurobiology underlying individual or clinical differences in response inhibition remain unclear, consistent with the general pattern of quite modest brain-behavior associations that have been recently reported in well-powered large-sample studies. Here, we investigated the potential of multivariate, machine learning (ML) methods to improve the estimation of individual differences in SSRT with multimodal structural and functional region of interest-level neuroimaging data from 9- to 11-year-olds children in the ABCD Study. Six ML algorithms were assessed across modalities and fMRI tasks. We verified that SST activation performed best in predicting SSRT among multiple modalities including morphological MRI (cortical surface area/thickness), diffusion tensor imaging, and fMRI task activations, and then showed that SST activation explained 12% of the variance in SSRT using cross-validation and out-of-sample lockbox data sets (n = 7298). Brain regions that were more active during the task and that showed more interindividual variation in activation were better at capturing individual differences in performance on the task, but this was only true for activations when successfully inhibiting. Cortical regions outperformed subcortical areas in explaining individual differences but the two hemispheres performed equally well. These results demonstrate that the detection of reproducible links between brain function and performance can be improved with multivariate approaches and give insight into a number of brain systems contributing to individual differences in this fundamental cognitive control process.
Collapse
Affiliation(s)
- Dekang Yuan
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Sage Hahn
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | | | - Max M. Owens
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Bader Chaarani
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Alexandra Potter
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| | - Hugh Garavan
- Department of PsychiatryUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
142
|
Cutts SA, Faskowitz J, Betzel RF, Sporns O. Uncovering individual differences in fine-scale dynamics of functional connectivity. Cereb Cortex 2023; 33:2375-2394. [PMID: 35690591 DOI: 10.1093/cercor/bhac214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity (FC) profiles contain subject-specific features that are conserved across time and have potential to capture brain-behavior relationships. Most prior work has focused on spatial features (nodes and systems) of these FC fingerprints, computed over entire imaging sessions. We propose a method for temporally filtering FC, which allows selecting specific moments in time while also maintaining the spatial pattern of node-based activity. To this end, we leverage a recently proposed decomposition of FC into edge time series (eTS). We systematically analyze functional magnetic resonance imaging frames to define features that enhance identifiability across multiple fingerprinting metrics, similarity metrics, and data sets. Results show that these metrics characteristically vary with eTS cofluctuation amplitude, similarity of frames within a run, transition velocity, and expression of functional systems. We further show that data-driven optimization of features that maximize fingerprinting metrics isolates multiple spatial patterns of system expression at specific moments in time. Selecting just 10% of the data can yield stronger fingerprints than are obtained from the full data set. Our findings support the idea that FC fingerprints are differentially expressed across time and suggest that multiple distinct fingerprints can be identified when spatial and temporal characteristics are considered simultaneously.
Collapse
Affiliation(s)
- Sarah A Cutts
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.,Network Science Institute, Indiana University, Bloomington, IN 47408, United States.,Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.,Network Science Institute, Indiana University, Bloomington, IN 47408, United States.,Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
143
|
He H, Lin W, Yang J, Chen Y, Tan S, Guan Q. Age-related intrinsic functional connectivity underlying emotion utilization. Cereb Cortex 2023:7033308. [PMID: 36758953 DOI: 10.1093/cercor/bhad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Previous studies investigated the age-related positivity effect in terms of emotion perception and management, whereas little is known about whether the positivity effect is shown in emotion utilization (EU). If yes, the EU-related intrinsic functional connectivity and its age-associated alterations remain to be elucidated. In this study, we collected resting-state functional magnetic resonance imaging data from 62 healthy older adults and 72 undergraduates as well as their self-ratings of EU. By using the connectome-based predictive modeling (CPM) method, we constructed a predictive model of the positive relationship between EU self-ratings and resting-state functional connectivity. Lesion simulation analyses revealed that the medial-frontal network, default mode network, frontoparietal network, and subcortical regions played key roles in the EU-related CPM. Older subjects showed significantly higher EU self-ratings than undergraduates, which was associated with strengthened connectivity between the left dorsolateral prefrontal cortex and bilateral frontal poles, and between the left frontal pole and thalamus. A mediation analysis indicated that the age-related EU network mediated the age effect on EU self-ratings. Our findings extend previous research on the age-related "positivity effect" to the EU domain, suggesting that the positivity effect on the self-evaluation of EU is probably associated with emotion knowledge which accumulates with age.
Collapse
Affiliation(s)
- Hao He
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Magnetic Resonance Imaging Center, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Wenyi Lin
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Magnetic Resonance Imaging Center, Shenzhen University, Shenzhen, China
| | - Jiawang Yang
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Magnetic Resonance Imaging Center, Shenzhen University, Shenzhen, China
| | - Yiqi Chen
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Magnetic Resonance Imaging Center, Shenzhen University, Shenzhen, China.,Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Siping Tan
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qing Guan
- Center for Brain Disorders and Cognitive Sciences, School of Psychology, Magnetic Resonance Imaging Center, Shenzhen University, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
144
|
Wu X, Yang Q, Xu C, Huo H, Seger CA, Peng Z, Chen Q. Connectome-based predictive modeling of compulsion in obsessive-compulsive disorder. Cereb Cortex 2023; 33:1412-1425. [PMID: 35443038 DOI: 10.1093/cercor/bhac145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Compulsion is one of core symptoms of obsessive-compulsive disorder (OCD). Although many studies have investigated the neural mechanism of compulsion, no study has used brain-based measures to predict compulsion. Here, we used connectome-based predictive modeling (CPM) to identify networks that could predict the levels of compulsion based on whole-brain functional connectivity in 57 OCD patients. We then applied a computational lesion version of CPM to examine the importance of specific brain areas. We also compared the predictive network strength in OCD with unaffected first-degree relatives (UFDR) of patients and healthy controls. CPM successfully predicted individual level of compulsion and identified networks positively (primarily subcortical areas of the striatum and limbic regions of the hippocampus) and negatively (primarily frontoparietal regions) correlated with compulsion. The prediction power of the negative model significantly decreased when simulating lesions to the prefrontal cortex and cerebellum, supporting the importance of these regions for compulsion prediction. We found a similar pattern of network strength in the negative predictive network for OCD patients and their UFDR, demonstrating the potential of CPM to identify vulnerability markers for psychopathology.
Collapse
Affiliation(s)
- Xiangshu Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Qiong Yang
- Affiliated Brain Hospital of Guangzhou Medical University, 510370 Guangzhou, China
| | - Chuanyong Xu
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518047, China
| | - Hangfeng Huo
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Carol A Seger
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.,Department of Psychology, Colorado State University, Fort Collins, CO 80523, United States
| | - Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.,Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen 518061, China
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
145
|
Boyle R, Connaughton M, McGlinchey E, Knight SP, De Looze C, Carey D, Stern Y, Robertson IH, Kenny RA, Whelan R. Connectome-based predictive modelling of cognitive reserve using task-based functional connectivity. Eur J Neurosci 2023; 57:490-510. [PMID: 36512321 PMCID: PMC10107737 DOI: 10.1111/ejn.15896] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Cognitive reserve supports cognitive function in the presence of pathology or atrophy. Functional neuroimaging may enable direct and accurate measurement of cognitive reserve which could have considerable clinical potential. The present study aimed to develop and validate a measure of cognitive reserve using task-based fMRI data that could then be applied to independent resting-state data. Connectome-based predictive modelling with leave-one-out cross-validation was applied to predict a residual measure of cognitive reserve using task-based functional connectivity from the Cognitive Reserve/Reference Ability Neural Network studies (n = 220, mean age = 51.91 years, SD = 17.04 years). This model generated summary measures of connectivity strength that accurately predicted a residual measure of cognitive reserve in unseen participants. The theoretical validity of these measures was established via a positive correlation with a socio-behavioural proxy of cognitive reserve (verbal intelligence) and a positive correlation with global cognition, independent of brain structure. This fitted model was then applied to external test data: resting-state functional connectivity data from The Irish Longitudinal Study on Ageing (TILDA, n = 294, mean age = 68.3 years, SD = 7.18 years). The network-strength predicted measures were not positively associated with a residual measure of cognitive reserve nor with measures of verbal intelligence and global cognition. The present study demonstrated that task-based functional connectivity data can be used to generate theoretically valid measures of cognitive reserve. Further work is needed to establish if, and how, measures of cognitive reserve derived from task-based functional connectivity can be applied to independent resting-state data.
Collapse
Affiliation(s)
- Rory Boyle
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Michael Connaughton
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
- Department of Psychiatry, School of MedicineTrinity College DublinDublinIreland
| | - Eimear McGlinchey
- School of Nursing and MidwiferyTrinity College DublinDublinIreland
- Global Brain Health InstituteTrinity College DublinDublinIreland
| | - Silvin P. Knight
- The Irish Longitudinal Study on Aging (TILDA), School of MedicineTrinity College DublinDublinIreland
| | - Céline De Looze
- The Irish Longitudinal Study on Aging (TILDA), School of MedicineTrinity College DublinDublinIreland
| | - Daniel Carey
- The Irish Longitudinal Study on Aging (TILDA), School of MedicineTrinity College DublinDublinIreland
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of NeurologyColumbia UniversityNew York CityNew YorkUSA
| | - Ian H. Robertson
- Global Brain Health InstituteTrinity College DublinDublinIreland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Aging (TILDA), School of MedicineTrinity College DublinDublinIreland
- Mercer's Institute for Successful AgeingSt. James's HospitalDublinIreland
| | - Robert Whelan
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
- Global Brain Health InstituteTrinity College DublinDublinIreland
| |
Collapse
|
146
|
Krämer C, Stumme J, da Costa Campos L, Rubbert C, Caspers J, Caspers S, Jockwitz C. Classification and prediction of cognitive performance differences in older age based on brain network patterns using a machine learning approach. Netw Neurosci 2023; 7:122-147. [PMID: 37339286 PMCID: PMC10270720 DOI: 10.1162/netn_a_00275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/22/2022] [Indexed: 09/22/2023] Open
Abstract
Age-related cognitive decline varies greatly in healthy older adults, which may partly be explained by differences in the functional architecture of brain networks. Resting-state functional connectivity (RSFC) derived network parameters as widely used markers describing this architecture have even been successfully used to support diagnosis of neurodegenerative diseases. The current study aimed at examining whether these parameters may also be useful in classifying and predicting cognitive performance differences in the normally aging brain by using machine learning (ML). Classifiability and predictability of global and domain-specific cognitive performance differences from nodal and network-level RSFC strength measures were examined in healthy older adults from the 1000BRAINS study (age range: 55-85 years). ML performance was systematically evaluated across different analytic choices in a robust cross-validation scheme. Across these analyses, classification performance did not exceed 60% accuracy for global and domain-specific cognition. Prediction performance was equally low with high mean absolute errors (MAEs ≥ 0.75) and low to none explained variance (R2 ≤ 0.07) for different cognitive targets, feature sets, and pipeline configurations. Current results highlight limited potential of functional network parameters to serve as sole biomarker for cognitive aging and emphasize that predicting cognition from functional network patterns may be challenging.
Collapse
Affiliation(s)
- Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johanna Stumme
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lucas da Costa Campos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
147
|
Goldman DA, Sankar A, Rich A, Kim JA, Pittman B, Constable RT, Scheinost D, Blumberg HP. A graph theory neuroimaging approach to distinguish the depression of bipolar disorder from major depressive disorder in adolescents and young adults. J Affect Disord 2022; 319:15-26. [PMID: 36103935 PMCID: PMC9669784 DOI: 10.1016/j.jad.2022.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Markers to differentiate depressions of bipolar disorder (BD-Dep) from depressions of major depressive disorder (MDD-Dep), and for more targeted treatments, are critically needed to decrease current high rates of misdiagnosis that can lead to ineffective or potentially deleterious treatments. Distinguishing, and specifically treating the depressions, during the adolescent/young adult epoch is especially important to decrease illness progression and improve prognosis, and suicide, as it is the epoch when suicide thoughts and behaviors often emerge. With differences in functional connectivity patterns reported when BD-Dep and MDD-Dep have been studied separately, this study used a graph theory approach aimed to identify functional connectivity differences in their direct comparison. METHODS Functional magnetic resonance imaging whole-brain functional connectivity (Intrinsic Connectivity Distribution, ICD) measures were compared across adolescents/young adults with BD-Dep (n = 28), MDD-Dep (n = 20) and HC (n = 111). Follow-up seed-based connectivity was conducted on regions of significant ICD differences. Relationships with demographic and clinical measures were assessed. RESULTS Compared to the HC group, both the BD-Dep and MDD-Dep groups exhibited left-sided frontal, insular, and medial temporal ICD increases. The BD-Dep group had additional right-sided ICD increases in frontal, basal ganglia, and fusiform areas. In seed-based analyses, the BD-Dep group exhibited increased interhemispheric functional connectivity between frontal areas not seen in the MDD-Dep group. LIMITATIONS Modest sample size; medications not studied systematically. CONCLUSIONS This study supports bilateral and interhemispheric functional dysconnectivity as features of BD-Dep that may differentiate it from MDD-Dep in adolescents/young adults and serve as a target for early diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Danielle A Goldman
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511, United States of America; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, United States of America
| | - Anjali Sankar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, United States of America; Department of Neurology and Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alexandra Rich
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511, United States of America
| | - Jihoon A Kim
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, United States of America
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, United States of America
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511, United States of America
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511, United States of America
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, United States of America; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06511, United States of America; Child Study Center, Yale School of Medicine, New Haven, CT 06511, United States of America.
| |
Collapse
|
148
|
Ma SS, Zhang JT, Song KR, Zhao R, Fang RH, Wang LB, Yao ST, Hu YF, Jiang XY, Potenza MN, Fang XY. Connectome-based prediction of marital quality in husbands' processing of spousal interactions. Soc Cogn Affect Neurosci 2022; 17:1055-1067. [PMID: 35560211 PMCID: PMC9714425 DOI: 10.1093/scan/nsac034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023] Open
Abstract
Marital quality may decrease during the early years of marriage. Establishing models predicting individualized marital quality may help develop timely and effective interventions to maintain or improve marital quality. Given that marital interactions have an important impact on marital well-being cross-sectionally and prospectively, neural responses during marital interactions may provide insight into neural bases underlying marital well-being. The current study applies connectome-based predictive modeling, a recently developed machine-learning approach, to functional magnetic resonance imaging (fMRI) data from both partners of 25 early-stage Chinese couples to examine whether an individual's unique pattern of brain functional connectivity (FC) when responding to spousal interactive behaviors can reliably predict their own and their partners' marital quality after 13 months. Results revealed that husbands' FC involving multiple large networks, when responding to their spousal interactive behaviors, significantly predicted their own and their wives' marital quality, and this predictability showed gender specificity. Brain connectivity patterns responding to general emotional stimuli and during the resting state were not significantly predictive. This study demonstrates that husbands' differences in large-scale neural networks during marital interactions may contribute to their variability in marital quality and highlights gender-related differences. The findings lay a foundation for identifying reliable neuroimaging biomarkers for developing interventions for marital quality early in marriages.
Collapse
Affiliation(s)
- Shan-Shan Ma
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Jin-Tao Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Kun-Ru Song
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Rui Zhao
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Ren-Hui Fang
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Luo-Bin Wang
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Shu-Ting Yao
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Yi-Fan Hu
- Department of Human Development and Family Studies, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Xin-Ying Jiang
- Institute of Developmental Psychology, Beijing Normal University, Beijing 100875, China
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT 06519, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT 06109, USA
- Connecticut Mental Health Center, New Haven, CT 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Xiao-Yi Fang
- Correspondence should be addressed to Xiao-Yi Fang, Institute of Developmental Psychology, Beijing Normal University, No. 19, Xinjiekou Wai Street, Haidian District, Beijing 100875, China. E-mail:
| |
Collapse
|
149
|
Dan R, Weinstock M, Goelman G. Emotional states as distinct configurations of functional brain networks. Cereb Cortex 2022; 33:5727-5739. [PMID: 36453449 DOI: 10.1093/cercor/bhac455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 12/05/2022] Open
Abstract
Abstract
The conceptualization of emotional states as patterns of interactions between large-scale brain networks has recently gained support. Yet, few studies have directly examined the brain’s network structure during emotional experiences. Here, we investigated the brain’s functional network organization during experiences of sadness, amusement, and neutral states elicited by movies, in addition to a resting-state. We tested the effects of the experienced emotion on individual variability in the brain’s functional connectome. Next, for each state, we defined a community structure of the brain and quantified its segregation and integration. We found that sadness, relative to amusement, was associated with higher modular integration and increased connectivity of cognitive control networks: the salience and fronto-parietal networks. Moreover, in both the functional connectome and the emotional report, the similarity between individuals was dependent on the sex. Our results suggest that the experience of emotion is linked to a reconfiguration of whole-brain distributed, not emotion-specific, functional networks and that the brain’s topological structure carries information about the subjective emotional experience.
Collapse
Affiliation(s)
- Rotem Dan
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem , Jerusalem, 9190401 , Israel
- Department of Neurology, Hadassah Hebrew University Medical Center , Jerusalem, 9112001 , Israel
| | - Marta Weinstock
- Institute of Drug Research, The Hebrew University of Jerusalem , Jerusalem, 9112001 , Israel
| | - Gadi Goelman
- Department of Neurology, Hadassah Hebrew University Medical Center , Jerusalem, 9112001 , Israel
| |
Collapse
|
150
|
Chamberlain TA, Rosenberg MD. Propofol selectively modulates functional connectivity signatures of sustained attention during rest and narrative listening. Cereb Cortex 2022; 32:5362-5375. [PMID: 35285485 DOI: 10.1093/cercor/bhac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
Sustained attention is a critical cognitive function reflected in an individual's whole-brain pattern of functional magnetic resonance imaging functional connectivity. However, sustained attention is not a purely static trait. Rather, attention waxes and wanes over time. Do functional brain networks that underlie individual differences in sustained attention also underlie changes in attentional state? To investigate, we replicate the finding that a validated connectome-based model of individual differences in sustained attention tracks pharmacologically induced changes in attentional state. Specifically, preregistered analyses revealed that participants exhibited functional connectivity signatures of stronger attention when awake than when under deep sedation with the anesthetic agent propofol. Furthermore, this effect was relatively selective to the predefined sustained attention networks: propofol administration modulated strength of the sustained attention networks more than it modulated strength of canonical resting-state networks and a network defined to predict fluid intelligence, and the functional connections most affected by propofol sedation overlapped with the sustained attention networks. Thus, propofol modulates functional connectivity signatures of sustained attention within individuals. More broadly, these findings underscore the utility of pharmacological intervention in testing both the generalizability and specificity of network-based models of cognitive function.
Collapse
Affiliation(s)
- Taylor A Chamberlain
- Department of Psychology, The University of Chicago, 5848 S University Ave, IL 60637, Chicago
| | - Monica D Rosenberg
- Department of Psychology, The University of Chicago, 5848 S University Ave, IL 60637, Chicago.,Neuroscience Institute, The University of Chicago, 5812 South Ellis Ave., MC 0912, Suite P-400, IL 60637, Chicago
| |
Collapse
|