101
|
Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020; 13:E18. [PMID: 33374540 PMCID: PMC7793109 DOI: 10.3390/cancers13010018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. Our knowledge of DSB induction and repair has increased dramatically since the discovery of ionizing radiation-induced foci (IRIFs), initiating the possibility of spatiotemporally monitoring the assembly and disassembly of repair complexes in single cells. IRIF exploration revealed that all post-irradiation processes-DSB formation, repair and misrepair-are strongly dependent on the characteristics of DSB damage and the microarchitecture of the whole affected chromatin domain in addition to the cell status. The microscale features of IRIFs, such as their morphology, mobility, spatiotemporal distribution, and persistence kinetics, have been linked to repair mechanisms. However, the influence of various biochemical and structural factors and their specific combinations on IRIF architecture remains unknown, as does the hierarchy of these factors in the decision-making process for a particular repair mechanism at each individual DSB site. New insights into the relationship between the physical properties of the incident radiation, chromatin architecture, IRIF architecture, and DSB repair mechanisms and repair efficiency are expected from recent developments in optical superresolution microscopy (nanoscopy) techniques that have shifted our ability to analyze chromatin and IRIF architectures towards the nanoscale. In the present review, we discuss this relationship, attempt to correlate still rather isolated nanoscale studies with already better-understood aspects of DSB repair at the microscale, and consider whether newly emerging "correlated multiscale structuromics" can revolutionarily enhance our knowledge in this field.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
102
|
Xu B, Amallraja A, Swaminathan P, Elsey R, Davis C, Theel S, Viet S, Petersen J, Krie A, Davies G, Williams CB, Ehli E, Meißner T. Case report: 16-yr life history and genomic evolution of an ER + HER2 - breast cancer. Cold Spring Harb Mol Case Stud 2020; 6:a005629. [PMID: 33008833 PMCID: PMC7784492 DOI: 10.1101/mcs.a005629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/28/2020] [Indexed: 11/25/2022] Open
Abstract
Metastatic breast cancer is one of the leading causes of cancer-related death in women. Limited studies have been done on the genomic evolution between primary and metastatic breast cancer. We reconstructed the genomic evolution through the 16-yr history of an ER+ HER2- breast cancer patient to investigate molecular mechanisms of disease relapse and treatment resistance after long-term exposure to hormonal therapy. Genomic and transcriptome profiling was performed on primary breast tumor (2002), initial recurrence (2012), and liver metastasis (2015) samples. Cell-free DNA analysis was performed at 11 time points (2015-2017). Mutational analysis revealed a low mutational burden in the primary tumor that doubled at the time of progression, with driver mutations in PI3K-Akt and RAS-RAF signaling pathways. Phylogenetic analysis showed an early branching off between primary tumor and metastasis. Liquid biopsies, although initially negative, started to detect an ESR1 E380Q mutation in 2016 with increasing allele frequency until the end of 2017. Transcriptome analysis revealed 721 (193 up, 528 down) genes to be differentially expressed between primary tumor and first relapse. The most significantly down-regulated genes were TFF1 and PGR, indicating resistance to aromatase inhibitor (AI) therapy. The most up-regulated genes included PTHLH, S100P, and SOX2, promoting tumor growth and metastasis. This phylogenetic reconstruction of the life history of a single patient's cancer as well as monitoring tumor progression through liquid biopsies allowed for uncovering the molecular mechanisms leading to initial relapse, metastatic spread, and treatment resistance.
Collapse
Affiliation(s)
- Bing Xu
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Anu Amallraja
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Padmapriya Swaminathan
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Rachel Elsey
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Christel Davis
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Stephanie Theel
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Sarah Viet
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Jason Petersen
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Amy Krie
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Gareth Davies
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Casey B Williams
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| | - Erik Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota 57108, USA
| | - Tobias Meißner
- Center for Precision Oncology, Avera Cancer Institute, Sioux Falls, South Dakota 57105, USA
| |
Collapse
|
103
|
Mutations in BRCA1 and BRCA2 differentially affect the tumor microenvironment and response to checkpoint blockade immunotherapy. ACTA ACUST UNITED AC 2020; 1:1188-1203. [PMID: 33834176 DOI: 10.1038/s43018-020-00139-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Immune checkpoint blockade (ICB) has improved outcomes for patients with advanced cancer, but the determinants of response remain poorly understood. Here we report differential effects of mutations in the homologous recombination genes BRCA1 and BRCA2 on response to ICB in mouse and human tumors, and further show that truncating mutations in BRCA2 are associated with superior response compared to those in BRCA1. Mutations in BRCA1 and BRCA2 result in distinct mutational landscapes and differentially modulate the tumor-immune microenvironment, with gene expression programs related to both adaptive and innate immunity enriched in BRCA2-deficient tumors. Single-cell RNA sequencing further revealed distinct T cell, natural killer, macrophage, and dendritic cell populations enriched in BRCA2-deficient tumors. Taken together, our findings reveal the divergent effects of BRCA1 and BRCA2-deficiency on ICB outcome, and have significant implications for elucidating the genetic and microenvironmental determinants of response to immunotherapy.
Collapse
|
104
|
Wijetunga NA, Yu Y, Morris LG, Lee N, Riaz N. The head and neck cancer genome in the era of immunotherapy. Oral Oncol 2020; 112:105040. [PMID: 33197752 DOI: 10.1016/j.oraloncology.2020.105040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022]
Abstract
The recent success of immunotherapy in head and neck squamous cell carcinoma (HNSCC) has necessitated a new perspective on the cancer genome. Here we review recent advances in the carcinogenesis and molecular genetics of HNSCC with an eye on their implications for cancer immunity. Newer sequencing technologies have recently facilitated dissection of the complex interaction between the HPV virus, tumor, host factors, and the tumor microenvironment (TME) that help shed light on how the immune system interacts with head and neck malignancies.
Collapse
Affiliation(s)
- N Ari Wijetunga
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yao Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc G Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
105
|
Carrassa L, Colombo I, Damia G, Bertoni F. Targeting the DNA damage response for patients with lymphoma: Preclinical and clinical evidences. Cancer Treat Rev 2020; 90:102090. [DOI: 10.1016/j.ctrv.2020.102090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
|
106
|
Burdak-Rothkamm S, Mansour WY, Rothkamm K. DNA Damage Repair Deficiency in Prostate Cancer. Trends Cancer 2020; 6:974-984. [DOI: 10.1016/j.trecan.2020.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022]
|
107
|
Hu X, Xu Z, De S. Characteristics of mutational signatures of unknown etiology. NAR Cancer 2020; 2:zcaa026. [PMID: 33015626 PMCID: PMC7520824 DOI: 10.1093/narcan/zcaa026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/01/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Although not all somatic mutations are cancer drivers, their mutational signatures, i.e. the patterns of genomic alterations at a genome-wide scale, provide insights into past exposure to mutagens, DNA damage and repair processes. Computational deconvolution of somatic mutation patterns and expert curation pan-cancer studies have identified a number of mutational signatures associated with point mutations, dinucleotide substitutions, insertions and deletions, and rearrangements, and have established etiologies for a subset of these signatures. However, the mechanisms underlying nearly one-third of all mutational signatures are not yet understood. The signatures with established etiology and those with hitherto unknown origin appear to have some differences in strand bias, GC content and nucleotide context diversity. It is possible that some of the hitherto ‘unknown’ signatures predominantly occur outside gene regions. While nucleotide contexts might be adequate to establish etiologies of some mutational signatures, in other cases additional features, such as broader (epi)genomic contexts, including chromatin, replication timing, processivity and local mutational patterns, may help fully understand the underlying DNA damage and repair processes. Nonetheless, remarkable progress in characterization of mutational signatures has provided fundamental insights into the biology of cancer, informed disease etiology and opened up new opportunities for cancer prevention, risk management, and therapeutic decision making.
Collapse
Affiliation(s)
- Xiaoju Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhuxuan Xu
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
108
|
Essers PB, van der Heijden M, Vossen D, de Roest RH, Leemans CR, Brakenhoff RH, van den Brekel MW, Bartelink H, Verheij M, Vens C. Ovarian cancer-derived copy number alterations signatures are prognostic in chemoradiotherapy-treated head and neck squamous cell carcinoma. Int J Cancer 2020; 147:1732-1739. [PMID: 32167160 PMCID: PMC7496441 DOI: 10.1002/ijc.32962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
DNA copy number alterations (CNAs) are frequent in cancer, and recently developed CNA signatures revealed their value in molecular tumor stratification for patient prognosis and platinum resistance prediction in ovarian cancer. Head and neck squamous cell carcinoma (HNSCC) is also characterized by high CNAs. In this study, we determined CNA in 173 human papilloma virus-negative HNSCC from a Dutch multicenter cohort by low-coverage whole genome sequencing and tested the prognostic value of seven cancer-derived CNA signatures for these cisplatin- and radiotherapy-treated patients. We find that a high CNA signature 1 (s1) score is associated with low values for all other signatures and better patient outcomes in the Dutch cohorts and The Cancer Genome Atlas HNSCC data set. High s5 and s7 scores are associated with increased distant metastasis rates and high s6 scores with poor overall survival. High cumulative cisplatin doses result in improved outcomes in chemoradiotherapy-treated HNSCC patients. Here we find that tumors high in s1 or low in s6 are most responsive to a change in cisplatin dose. High s5 values, however, significantly increase the risk for metastasis in patients with low cumulative cisplatin doses. Together this suggests that the processes causing these CNA signatures affect cisplatin response in HNSCC. In conclusion, CNA signatures derived from a different cancer type were prognostic and associated with cisplatin response in HNSCC, suggesting they represent underlying molecular processes that define patient outcome.
Collapse
Affiliation(s)
- Paul B.M. Essers
- Division of Cell BiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Martijn van der Heijden
- Division of Cell BiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Head and Neck Oncology and SurgeryThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - David Vossen
- Division of Cell BiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Reinout H. de Roest
- Amsterdam UMCVrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center AmsterdamThe Netherlands
| | - C. René Leemans
- Amsterdam UMCVrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center AmsterdamThe Netherlands
| | - Ruud H. Brakenhoff
- Amsterdam UMCVrije Universiteit Amsterdam, Otolaryngology/Head and Neck Surgery, Cancer Center AmsterdamThe Netherlands
| | | | - Harry Bartelink
- Department of Radiation OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Marcel Verheij
- Division of Cell BiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Radiation OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Conchita Vens
- Division of Cell BiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Radiation OncologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
109
|
Malapelle U, Parente P, Pepe F, De Luca C, Cerino P, Covelli C, Balestrieri M, Russo G, Bonfitto A, Pisapia P, Fiordelisi F, D’Armiento M, Bruzzese D, Loupakis F, Pietrantonio F, Triassi M, Fassan M, Troncone G, Graziano P. Impact of Pre-Analytical Factors on MSI Test Accuracy in Mucinous Colorectal Adenocarcinoma: A Multi-Assay Concordance Study. Cells 2020; 9:2019. [PMID: 32887373 PMCID: PMC7565496 DOI: 10.3390/cells9092019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Immunohistochemistry (IHC) and polymerase chain reaction (PCR) and fragment separation by capillary electrophoresis represent the current clinical laboratory standard for the evaluation of microsatellite instability (MSI) status. The importance of reporting MSI status in colorectal cancer is based on its potential for guiding treatment and as a prognostic indicator. It is also used to identify patients for Lynch syndrome testing. Our aim was to evaluate pre-analytical factors, such as age of formalin-fixed and paraffin-embedded (FFPE) block, neoplastic cell percentage, mucinous component, and DNA integrity, that may influence the accuracy of MSI testing and assess the concordance between three different MSI evaluation approaches. We selected the mucinous colorectal cancer (CRC) histotype for this study as it may possibly represent an intrinsic diagnostic issue due to its low tumor cellularity. Seventy-five cases of mucinous CRC and corresponding normal colon tissue samples were retrospectively selected. MMR proteins were evaluated by IHC. After DNA quality and quantity evaluation, the Idylla™ and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Seventy-three (97.3%) cases were successfully analyzed by the three methodologies. Overall, the Idylla™ platform showed a concordance rate with IHC of 98.0% for microsatellite stable (MSS)/proficient MMR (pMMR) cases and 81.8% for MSI/deficient MMR (dMMR) cases. The TapeStation 4200 system showed a concordance rate with IHC of 96.0% for MSS/pMMR cases and 45.4% for MSI/dMMR cases. The concordance rates of the TapeStation 4200 system with respect to the Idylla™ platform were 98.1% for MSS profile and 57.8% for MSI profile. Discordant cases were analyzed using the Titano MSI kit. Considering pre-analytical factors, no significant variation in concordance rate among IHC analyses and molecular systems was observed by considering the presence of an acellular mucus cut-off >50% of the tumor area, FFPE year preparation, and DNA concentration. Conversely, the Idylla™ platform showed a significant variation in concordance rate with the IHC approach by considering a neoplastic cell percentage >50% (p-value = 0.002), and the TapeStation 4200 system showed a significant variation in concordance rate with the IHC approach by considering a DNA integrity number (DIN) ≥4 as cut-off (p-value = 0.009). Our data pinpoint a central role of the pre-analytical phase in the diagnostic outcome of MSI testing in CRC.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/diagnosis
- Adenocarcinoma, Mucinous/genetics
- Adenocarcinoma, Mucinous/pathology
- Aged
- Case-Control Studies
- Colorectal Neoplasms/diagnosis
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis
- Colorectal Neoplasms, Hereditary Nonpolyposis/genetics
- Colorectal Neoplasms, Hereditary Nonpolyposis/pathology
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Diagnosis, Differential
- Electrophoresis, Capillary/standards
- Female
- Humans
- Immunohistochemistry/standards
- Male
- Microsatellite Instability
- Middle Aged
- Polymerase Chain Reaction/standards
- Prognosis
- Retrospective Studies
- Tissue Embedding/methods
- Tissue Embedding/standards
- Tissue Fixation/methods
- Tissue Fixation/standards
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.C.); (G.R.); (P.P.); (M.D.); (D.B.); (M.T.)
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (A.B.); (F.F.); (P.G.)
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.C.); (G.R.); (P.P.); (M.D.); (D.B.); (M.T.)
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.C.); (G.R.); (P.P.); (M.D.); (D.B.); (M.T.)
| | - Pellegrino Cerino
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.C.); (G.R.); (P.P.); (M.D.); (D.B.); (M.T.)
| | - Claudia Covelli
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (A.B.); (F.F.); (P.G.)
| | - Mariangela Balestrieri
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.B.); (M.F.)
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.C.); (G.R.); (P.P.); (M.D.); (D.B.); (M.T.)
| | - Antonio Bonfitto
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (A.B.); (F.F.); (P.G.)
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.C.); (G.R.); (P.P.); (M.D.); (D.B.); (M.T.)
| | - Fabiola Fiordelisi
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (A.B.); (F.F.); (P.G.)
| | - Maria D’Armiento
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.C.); (G.R.); (P.P.); (M.D.); (D.B.); (M.T.)
| | - Dario Bruzzese
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.C.); (G.R.); (P.P.); (M.D.); (D.B.); (M.T.)
| | - Fotios Loupakis
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Istituto Oncologico Veneto (IRCSS), 35128 Padua, Italy;
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, 20133 Milano, Italy;
- Oncology and Hemato-Oncology Department, University of Milan, 20133 Milan, Italy
| | - Maria Triassi
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.C.); (G.R.); (P.P.); (M.D.); (D.B.); (M.T.)
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.B.); (M.F.)
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.C.); (G.R.); (P.P.); (M.D.); (D.B.); (M.T.)
| | - Paolo Graziano
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (A.B.); (F.F.); (P.G.)
| |
Collapse
|
110
|
Fassan M, Scarpa A, Remo A, De Maglio G, Troncone G, Marchetti A, Doglioni C, Ingravallo G, Perrone G, Parente P, Luchini C, Mastracci L. Current prognostic and predictive biomarkers for gastrointestinal tumors in clinical practice. Pathologica 2020; 112:248-259. [PMID: 33179625 PMCID: PMC7931577 DOI: 10.32074/1591-951x-158] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The pathologist emerged in the personalized medicine era as a central actor in the definition of the most adequate diagnostic and therapeutic algorithms. In the last decade, gastrointestinal oncology has seen a significantly increased clinical request for the integration of novel prognostic and predictive biomarkers in histopathological reports. This request couples with the significant contraction of invasive sampling of the disease, thus conferring to the pathologist the role of governor for both proper pathologic characterization and customized processing of the biospecimens. This overview will focus on the most commonly adopted immunohistochemical and molecular biomarkers in the routine clinical characterization of gastrointestinal neoplasms referring to the most recent published recommendations, guidelines and expert opinions.
Collapse
Affiliation(s)
- Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre, University of Verona, Italy
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Remo
- Pathology Unit, Service Department, ULSS9 “Scaligera”, Verona, Italy
| | | | - Giancarlo Troncone
- Department of Public Health, Federico II University Medical School Naples, Italy
| | - Antonio Marchetti
- Center of Predictive Molecular Medicine, Center for Excellence on Aging and Translational Medicine, University of Chieti-Pescara, Italy
| | - Claudio Doglioni
- Vita e Salute University, Milan, Italy
- Pathology Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, Section of Pathological Anatomy, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Perrone
- Department of Pathology, Campus Bio-Medico University, Rome, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Mastracci
- Anatomic Pathology, San Martino IRCCS Hospital,, Genova, Italy
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| |
Collapse
|
111
|
Donoghue MTA, Schram AM, Hyman DM, Taylor BS. Discovery through clinical sequencing in oncology. ACTA ACUST UNITED AC 2020; 1:774-783. [PMID: 35122052 PMCID: PMC8985175 DOI: 10.1038/s43018-020-0100-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
Abstract
The molecular characterization of tumors now informs clinical cancer care for many patients. This advent of molecular oncology is driven by the expanding number of therapeutic biomarkers that can predict sensitivity to both approved and investigational agents. Beyond its role in driving clinical trial enrollments and guiding therapy in individual patients, large-scale clinical genomics in oncology also represents a rapidly expanding research resource for translational scientific discovery. Here, we review the progress, opportunities, and challenges of scientific and translational discovery from prospective clinical genomic screening programs now routinely conducted in cancer patients.
Collapse
|
112
|
Yang HC, Stern A, Chiu DTY. G6PD: A hub for metabolic reprogramming and redox signaling in cancer. Biomed J 2020; 44:285-292. [PMID: 33097441 PMCID: PMC8358196 DOI: 10.1016/j.bj.2020.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/11/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic hubs play a major role in the initiation and development of cancer. Oncogenic signaling pathways drive metabolic reprogramming and alter redox homeostasis. G6PD has potential oncogenic activity and it plays a pivotal role in cell proliferation, survival and stress responses. Aberrant activation of G6PD via metabolic reprogramming alters NADPH levels, leading to an antioxidant or a pro-oxidant environment which can either enhance DNA oxidative damage and genomic instability or initiate oncogenic signaling. Nutrient deprivation can rewire metabolism, which leads to mutations that determine a cancer cell's fate. Deregulated G6PD status and oxidative stress form a vicious cycle, which paves the way for cancer progression. This review aims to update and focus the potential role of G6PD in metabolic reprogramming and redox signaling in cancer.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA
| | - Daniel Tsun-Yee Chiu
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Pediatric Hematology/Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
113
|
Mazzotta M, Filetti M, Occhipinti M, Marinelli D, Scalera S, Terrenato I, Sperati F, Pallocca M, Rizzo F, Gelibter A, Botticelli A, Scafetta G, Di Napoli A, Krasniqi E, Pizzuti L, Barba M, Carpano S, Vici P, Fanciulli M, De Nicola F, Ciuffreda L, Goeman F, De Maria R, Vecchione A, Giusti R, Ciliberto G, Marchetti P, Maugeri-Saccà M. Efficacy of immunotherapy in lung cancer with co-occurring mutations in NOTCH and homologous repair genes. J Immunother Cancer 2020; 8:jitc-2020-000946. [PMID: 32759236 PMCID: PMC7409965 DOI: 10.1136/jitc-2020-000946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) provide significant survival benefits in non-small cell lung cancer (NSCLC). Nevertheless, while some patients obtain a prolonged benefit, a non-negligible fraction of patients experiences an ultrarapid disease progression. Identifying specific molecular backgrounds predicting opposite outcomes is instrumental to optimize the use of these agents in clinical practice. Methods We carried out an observational study with prospective design envisioning targeted next-generation sequencing (NGS) with an approved assay in 55 patients with metastatic NSCLC (Rome cohort), of whom 35 were treated with ICIs. Data from three clinically comparable datasets were collected and combined into a metadataset containing 779 patients. The datasets were related to the Memorial Sloan Kettering Cancer Center (MSKCC) cohort (tissue-based NGS) and the randomized phase II and III POPLAR and OAK trials (blood-based NGS). Results In patients treated with ICIs in the Rome cohort, co-occurring mutations in NOTCH1-3 and homologous repair (HR) genes were associated with durable clinical benefit. Using the MSKCC/POPLAR/OAK metadaset, we confirmed the relationship between the NOTCHmut/HRmut signature and longer progression-free survival (PFS) in ICI-treated patients (multivariate Cox: HR 0.51, 95% CI 0.34 to 0.76, p=0.001). The NOTCHmut/HRmut genomic predictor was also associated with longer survival (log-rank p=0.008), despite patients whose tumors carried the NOTCHmut/HRmut signature had higher metastatic burden as compared with their negative counterpart. Finally, we observed that this genomic predictor was also associated with longer survival in patients with other tumor types treated with ICIs (n=1311, log-rank p=0.002). Conclusions Co-occurring mutations in the NOTCH and HR pathways are associated with increased efficacy of immunotherapy in advanced NSCLC. This genomic predictor deserves further investigation to fully assess its potential in informing therapeutic decisions.
Collapse
Affiliation(s)
- Marco Mazzotta
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Filetti
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Mario Occhipinti
- Medical Oncology Unit B, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Daniele Marinelli
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Irene Terrenato
- Biostatistics-Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Sperati
- Biostatistics Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Matteo Pallocca
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Rizzo
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Alain Gelibter
- Medical Oncology Unit B, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Andrea Botticelli
- Medical Oncology Unit B, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giorgia Scafetta
- Department of Clinical and Molecular Medicine, Pathology Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Arianna Di Napoli
- Department of Clinical and Molecular Medicine, Pathology Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Eriseld Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maddalena Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Carpano
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizia Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ludovica Ciuffreda
- SAFU Laboratory, Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Institute of General Pathology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Pathology Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.,Medical Oncology Unit B, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Marcello Maugeri-Saccà
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
114
|
Zhu M, Bassam Sonbol M, Halfdanarson T, Hobday T, Ahn D, Ma WW, Bekaii‐Saab T. Homologous Recombination Repair Defect May Predict Treatment Response to Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors. Oncologist 2020; 25:e1246-e1248. [PMID: 32510802 PMCID: PMC7418337 DOI: 10.1634/theoncologist.2020-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022] Open
Abstract
Lutetium-177-dotatate (177 Lu-dotatate), a form of peptide receptor radionuclide therapy, was approved by the U.S. Food and Drug Administration for the treatment of advanced somatostatin receptor-positive gastroenteropancreatic neuroendocrine tumors (NETs) in 2018 based on the promising results of the NETTER-1 trial for grade 1-2 midgut NETs. Here, we present a patient with a grade 3 pancreatic neuroendocrine tumor and BRCA1 germline mutation who had a significant response to 177 Lu-dotatate.
Collapse
|
115
|
Zhou L, Xu J, Allix M, Kuang X. Development of Melilite-Type Oxide Ion Conductors. CHEM REC 2020; 20:1117-1128. [PMID: 32729677 DOI: 10.1002/tcr.202000069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Lowering the operating temperature of solid oxide fuel cells (SOFCs) requires high performance oxide ion conductor electrolytes. Recently tetrahedra-based structures have been attracting considerable attention for oxide ion conductor development, among which the layered tetrahedral network melilite structure appears particularly interesting owing to its remarkable capability to accommodate and transport interstitial oxide ions, compared with isolated tetrahedral anion structures. Stabilization and migration mechanisms of interstitial oxide ions in melilites have been systematically investigated using local structural relaxation from both electrostatic Coulomb interaction and chemical bonding aspects based on atomic and electronic structures respectively using experimental and theoretical approaches. These reveal cationic size and chemical bonding effects on stabilization and migration mechanisms of interstitial oxide ions. Lately, full crystallization from glass, an innovative synthesis method, was employed to produce new metastable melilite oxide ion conductors which are inaccessible using classic solid state reaction owing to cationic size effect. Finally, the thermal and chemical stability at low temperature and the high oxide ion conductivity of the best melilite oxide ion conductors based on LaSrGa3 O7 are likely to provide real possibilities of applications of melilite-type electrolytes in SOFCs and other related devices.
Collapse
Affiliation(s)
- Lijia Zhou
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Jungu Xu
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Mathieu Allix
- CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071, Orléans, France
| | - Xiaojun Kuang
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| |
Collapse
|
116
|
Schubert SA, Morreau H, de Miranda NFCC, van Wezel T. The missing heritability of familial colorectal cancer. Mutagenesis 2020; 35:221-231. [PMID: 31605533 PMCID: PMC7352099 DOI: 10.1093/mutage/gez027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Pinpointing heritability factors is fundamental for the prevention and early detection of cancer. Up to one-quarter of colorectal cancers (CRCs) occur in the context of familial aggregation of this disease, suggesting a strong genetic component. Currently, only less than half of the heritability of CRC can be attributed to hereditary syndromes or common risk loci. Part of the missing heritability of this disease may be explained by the inheritance of elusive high-risk variants, polygenic inheritance, somatic mosaicism, as well as shared environmental factors, among others. A great deal of the missing heritability in CRC is expected to be addressed in the coming years with the increased application of cutting-edge next-generation sequencing technologies, routine multigene panel testing and tumour-focussed germline predisposition screening approaches. On the other hand, it will be important to define the contribution of environmental factors to familial aggregation of CRC incidence. This review provides an overview of the known genetic causes of familial CRC and aims at providing clues that explain the missing heritability of this disease.
Collapse
Affiliation(s)
- Stephanie A Schubert
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| |
Collapse
|
117
|
Baraibar I, Ros J, Mulet N, Salvà F, Argilés G, Martini G, Cuadra JL, Sardo E, Ciardiello D, Tabernero J, Élez E. Incorporating traditional and emerging biomarkers in the clinical management of metastatic colorectal cancer: an update. Expert Rev Mol Diagn 2020; 20:653-664. [PMID: 32552041 DOI: 10.1080/14737159.2020.1782194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Molecular profiling has led to significantly longer survival in metastatic colorectal cancer (mCRC) patients. Clinical guidelines recommend testing for KRAS/NRAS, BRAF and MSI status, and new biomarkers such as HER2 amplification and NTRK fusions have emerged more recently in refractory CRC, supported by overwhelming clinical relevance. These biomarkers can guide treatment management to improve clinical outcomes in these patients. AREAS COVERED Preclinical and clinical data over the last decade were reviewed for known and novel biomarkers with clinical implications in refractory CRC. Molecular alterations are described for classic and novel biomarkers, and data for completed and ongoing studies with targeted and immunotherapies are presented. EXPERT OPINION Use of targeted therapies based on biomarker testing in CRC has enabled impressive improvements in clinical outcomes in refractory patients. BRAF, MSI, NRAS and KRAS should be tested upfront in all patients given their indisputable therapeutic implications. Other molecular alterations such as HER2 and NTRK are emerging. Testing for these alterations may further improve outcomes for refractory CRC patients. Nonetheless, many key aspects remain to be defined including the optimal timing and technique for testing, the most adequate panel, and whether all patients should be tested for all alterations.
Collapse
Affiliation(s)
- Iosune Baraibar
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| | - Javier Ros
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| | - Nuria Mulet
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain.,Department of Medical Oncology, Institut Català D' oncologia-IDIBELL , Barcelona, Spain
| | - Francesc Salvà
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| | - Guillem Argilés
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| | - Giulia Martini
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain.,Dipartimento di Medicina di Precisione, Università Degli Studi Della Campania Luigi Vanvitelli , Naples, Italy
| | | | - Emilia Sardo
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain
| | - Davide Ciardiello
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain.,Dipartimento di Medicina di Precisione, Università Degli Studi Della Campania Luigi Vanvitelli , Naples, Italy
| | - Josep Tabernero
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| | - Elena Élez
- Department of Medical Oncology, Vall d'Hebron University Hospital , Barcelona, Spain.,Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO) , Barcelona, Spain
| |
Collapse
|
118
|
Shah C, Ouhib Z, Kamrava M, Koyfman SA, Campbell SR, Bhatnagar A, Canavan J, Husain Z, Barker CA, Cohen GN, Strasswimmer J, Joshi N. The American Brachytherapy society consensus statement for skin brachytherapy. Brachytherapy 2020; 19:415-426. [PMID: 32409128 DOI: 10.1016/j.brachy.2020.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Keratinocyte carcinoma (KC, previously nonmelanoma skin cancer) represents the most common cancer worldwide. While surgical treatment is commonly utilized, various radiation therapy techniques are available including external beam and brachytherapy. As such, the American Brachytherapy Society has created an updated consensus statement regarding the use of brachytherapy in the treatment of KCs. METHODS Physicians and physicists with expertise in skin cancer and brachytherapy created a consensus statement for appropriate patient selection, data, dosimetry, and utilization of skin brachytherapy and techniques based on a literature search and clinical experience. RESULTS Guidelines for patient selection, evaluation, and dose/fractionation schedules to optimize outcomes for patients with KC undergoing brachytherapy are presented. Studies of electronic brachytherapy are emerging, although limited long-term data or comparative data are available. Radionuclide-based brachytherapy represents an appropriate option for patients with small KCs with multiple techniques available. CONCLUSIONS Skin brachytherapy represents a standard of care option for appropriately selected patients with KC. Radionuclide-based brachytherapy represents a well-established technique; however, the current recommendation is that electronic brachytherapy be used for KC on prospective clinical trial or registry because of a paucity of mature data.
Collapse
Affiliation(s)
- Chirag Shah
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| | - Zoubir Ouhib
- Lynn Cancer Institute, Boca Raton Regional Hospital, Boca Raton, FL
| | - Mitchell Kamrava
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Shlomo A Koyfman
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Shauna R Campbell
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Ajay Bhatnagar
- Department of Radiation Oncology, Alliance Oncology, Casa Grande, AZ
| | - Joycelin Canavan
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Zain Husain
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Christopher A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gil'ad N Cohen
- Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John Strasswimmer
- College of Medicine (Dermatology) and College of Sciences (Biochemistry), Florida Atlantic University, Boca Raton, FL
| | - Nikhil Joshi
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
119
|
Lyu X, Garret J, Rätsch G, Lehmann KV. Mutational signature learning with supervised negative binomial non-negative matrix factorization. Bioinformatics 2020; 36:i154-i160. [PMID: 32657388 PMCID: PMC7355241 DOI: 10.1093/bioinformatics/btaa473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Understanding the underlying mutational processes of cancer patients has been a long-standing goal in the community and promises to provide new insights that could improve cancer diagnoses and treatments. Mutational signatures are summaries of the mutational processes, and improving the derivation of mutational signatures can yield new discoveries previously obscured by technical and biological confounders. Results from existing mutational signature extraction methods depend on the size of available patient cohort and solely focus on the analysis of mutation count data without considering the exploitation of metadata. RESULTS Here we present a supervised method that utilizes cancer type as metadata to extract more distinctive signatures. More specifically, we use a negative binomial non-negative matrix factorization and add a support vector machine loss. We show that mutational signatures extracted by our proposed method have a lower reconstruction error and are designed to be more predictive of cancer type than those generated by unsupervised methods. This design reduces the need for elaborate post-processing strategies in order to recover most of the known signatures unlike the existing unsupervised signature extraction methods. Signatures extracted by a supervised model used in conjunction with cancer-type labels are also more robust, especially when using small and potentially cancer-type limited patient cohorts. Finally, we adapted our model such that molecular features can be utilized to derive an according mutational signature. We used APOBEC expression and MUTYH mutation status to demonstrate the possibilities that arise from this ability. We conclude that our method, which exploits available metadata, improves the quality of mutational signatures as well as helps derive more interpretable representations. AVAILABILITY AND IMPLEMENTATION https://github.com/ratschlab/SNBNMF-mutsig-public. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Jean Garret
- Department of Mathematics, ETH Zürich, Zürich 8092, Switzerland
| | - Gunnar Rätsch
- Department of Computer Science.,Swiss Institute for Bioinformatics, Lausanne 1015, Switzerland.,University Hospital Zurich, Zürich 8091, Switzerland.,Department of Biology, ETH Zürich, Zürich 8093, Switzerland.,Center for Learning Systems, ETH Zürich Switzerland
| | - Kjong-Van Lehmann
- Department of Computer Science.,Swiss Institute for Bioinformatics, Lausanne 1015, Switzerland.,University Hospital Zurich, Zürich 8091, Switzerland
| |
Collapse
|
120
|
Caracciolo D, Riillo C, Arbitrio M, Di Martino MT, Tagliaferri P, Tassone P. Error-prone DNA repair pathways as determinants of immunotherapy activity: an emerging scenario for cancer treatment. Int J Cancer 2020; 147:2658-2668. [PMID: 32383203 DOI: 10.1002/ijc.33038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/18/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Defects in DNA repair machinery play a critical role in the pathogenesis and progression of human cancer. When they occur, the tumor cells activate error-prone mechanisms which lead to genomic instability and high mutation rate. These defects represent, therefore, a cancer Achilles'heel which could be therapeutically exploited by the use of DNA damage response inhibitors. Moreover, experimental and clinical evidence indicates that DNA repair deregulation has a pivotal role also in promoting immune recognition and immune destruction of cancer cells. Indeed, immune checkpoint inhibitors have received regulatory approval in tumors characterized by high genomic instability, such as melanomas and lung cancer. Here, we discuss how deregulation of DNA repair, through activation of error-prone mechanisms, increases immune activation against cancer. Finally, we address the potential strategies to use DNA repair components as biomarkers and/or therapeutic targets to empower immune-oncology treatment of human cancer.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
121
|
Maynard S, Keijzers G, Akbari M, Ezra MB, Hall A, Morevati M, Scheibye-Knudsen M, Gonzalo S, Bartek J, Bohr VA. Lamin A/C promotes DNA base excision repair. Nucleic Acids Res 2020; 47:11709-11728. [PMID: 31647095 DOI: 10.1093/nar/gkz912] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 12/17/2022] Open
Abstract
The A-type lamins (lamin A/C), encoded by the LMNA gene, are important structural components of the nuclear lamina. LMNA mutations lead to degenerative disorders known as laminopathies, including the premature aging disease Hutchinson-Gilford progeria syndrome. In addition, altered lamin A/C expression is found in various cancers. Reports indicate that lamin A/C plays a role in DNA double strand break repair, but a role in DNA base excision repair (BER) has not been described. We provide evidence for reduced BER efficiency in lamin A/C-depleted cells (Lmna null MEFs and lamin A/C-knockdown U2OS). The mechanism involves impairment of the APE1 and POLβ BER activities, partly effectuated by associated reduction in poly-ADP-ribose chain formation. Also, Lmna null MEFs displayed reduced expression of several core BER enzymes (PARP1, LIG3 and POLβ). Absence of Lmna led to accumulation of 8-oxoguanine (8-oxoG) lesions, and to an increased frequency of substitution mutations induced by chronic oxidative stress including GC>TA transversions (a fingerprint of 8-oxoG:A mismatches). Collectively, our results provide novel insights into the functional interplay between the nuclear lamina and cellular defenses against oxidative DNA damage, with implications for cancer and aging.
Collapse
Affiliation(s)
- Scott Maynard
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Guido Keijzers
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mansour Akbari
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Ben Ezra
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Arnaldur Hall
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Marya Morevati
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Susana Gonzalo
- Department of Biochemistry and Molecular Biology, Saint Louis University, School of Medicine, Saint Louis, MO 63104, USA
| | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark.,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Vilhelm A Bohr
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
122
|
Kim YA, Wojtowicz D, Sarto Basso R, Sason I, Robinson W, Hochbaum DS, Leiserson MDM, Sharan R, Vadin F, Przytycka TM. Network-based approaches elucidate differences within APOBEC and clock-like signatures in breast cancer. Genome Med 2020; 12:52. [PMID: 32471470 PMCID: PMC7260830 DOI: 10.1186/s13073-020-00745-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Studies of cancer mutations have typically focused on identifying cancer driving mutations that confer growth advantage to cancer cells. However, cancer genomes accumulate a large number of passenger somatic mutations resulting from various endogenous and exogenous causes, including normal DNA damage and repair processes or cancer-related aberrations of DNA maintenance machinery as well as mutations triggered by carcinogenic exposures. Different mutagenic processes often produce characteristic mutational patterns called mutational signatures. Identifying mutagenic processes underlying mutational signatures shaping a cancer genome is an important step towards understanding tumorigenesis. METHODS To investigate the genetic aberrations associated with mutational signatures, we took a network-based approach considering mutational signatures as cancer phenotypes. Specifically, our analysis aims to answer the following two complementary questions: (i) what are functional pathways whose gene expression activities correlate with the strengths of mutational signatures, and (ii) are there pathways whose genetic alterations might have led to specific mutational signatures? To identify mutated pathways, we adopted a recently developed optimization method based on integer linear programming. RESULTS Analyzing a breast cancer dataset, we identified pathways associated with mutational signatures on both expression and mutation levels. Our analysis captured important differences in the etiology of the APOBEC-related signatures and the two clock-like signatures. In particular, it revealed that clustered and dispersed APOBEC mutations may be caused by different mutagenic processes. In addition, our analysis elucidated differences between two age-related signatures-one of the signatures is correlated with the expression of cell cycle genes while the other has no such correlation but shows patterns consistent with the exposure to environmental/external processes. CONCLUSIONS This work investigated, for the first time, a network-level association of mutational signatures and dysregulated pathways. The identified pathways and subnetworks provide novel insights into mutagenic processes that the cancer genomes might have undergone and important clues for developing personalized drug therapies.
Collapse
Affiliation(s)
- Yoo-Ah Kim
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, 20894 USA
| | - Damian Wojtowicz
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, 20894 USA
| | - Rebecca Sarto Basso
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, 20894 USA
- Department of Industrial Engineering and Operations Research, University of California, Berkeley, 94720 CA USA
| | - Itay Sason
- School of Computer Science, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Welles Robinson
- Center for Bioinformatics and Computational Biology, University of Maryland, 8314 Paint Branch Dr, College Park, 20742 USA
| | - Dorit S. Hochbaum
- Department of Industrial Engineering and Operations Research, University of California, Berkeley, 94720 CA USA
| | - Mark D. M. Leiserson
- Center for Bioinformatics and Computational Biology, University of Maryland, 8314 Paint Branch Dr, College Park, 20742 USA
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Fabio Vadin
- Department of Information Engineering, University of Padova, Via Gradenigo 6/A, Padua, I-35131 Italy
| | - Teresa M. Przytycka
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, 20894 USA
| |
Collapse
|
123
|
Crumbaker M, Chan EKF, Gong T, Corcoran N, Jaratlerdsiri W, Lyons RJ, Haynes AM, Kulidjian AA, Kalsbeek AMF, Petersen DC, Stricker PD, Jamieson CAM, Croucher PI, Hovens CM, Joshua AM, Hayes VM. The Impact of Whole Genome Data on Therapeutic Decision-Making in Metastatic Prostate Cancer: A Retrospective Analysis. Cancers (Basel) 2020; 12:E1178. [PMID: 32392735 PMCID: PMC7280976 DOI: 10.3390/cancers12051178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND While critical insights have been gained from evaluating the genomic landscape of metastatic prostate cancer, utilizing this information to inform personalized treatment is in its infancy. We performed a retrospective pilot study to assess the current impact of precision medicine for locally advanced and metastatic prostate adenocarcinoma and evaluate how genomic data could be harnessed to individualize treatment. METHODS Deep whole genome-sequencing was performed on 16 tumour-blood pairs from 13 prostate cancer patients; whole genome optical mapping was performed in a subset of 9 patients to further identify large structural variants. Tumour samples were derived from prostate, lymph nodes, bone and brain. RESULTS Most samples had acquired genomic alterations in multiple therapeutically relevant pathways, including DNA damage response (11/13 cases), PI3K (7/13), MAPK (10/13) and Wnt (9/13). Five patients had somatic copy number losses in genes that may indicate sensitivity to immunotherapy (LRP1B, CDK12, MLH1) and one patient had germline and somatic BRCA2 alterations. CONCLUSIONS Most cases, whether primary or metastatic, harboured therapeutically relevant alterations, including those associated with PARP inhibitor sensitivity, immunotherapy sensitivity and resistance to androgen pathway targeting agents. The observed intra-patient heterogeneity and presence of genomic alterations in multiple growth pathways in individual cases suggests that a precision medicine model in prostate cancer needs to simultaneously incorporate multiple pathway-targeting agents. Our whole genome approach allowed for structural variant assessment in addition to the ability to rapidly reassess an individual's molecular landscape as knowledge of relevant biomarkers evolve. This retrospective oncological assessment highlights the genomic complexity of prostate cancer and the potential impact of assessing genomic data for an individual at any stage of the disease.
Collapse
Affiliation(s)
- Megan Crumbaker
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
- Kinghorn Cancer Centre, Department of Medical Oncology, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Eva K. F. Chan
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
| | - Tingting Gong
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- Central Clinical School, University of Sydney, Sydney, Camperdown, NSW 2050, Australia
| | - Niall Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC 3121, Australia;
- Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
- Division of Urology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Weerachai Jaratlerdsiri
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Ruth J. Lyons
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Anne-Maree Haynes
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Anna A. Kulidjian
- Department of Orthopedic Surgery, Scripps Clinic, La Jolla, CA 92037, USA.;
- Orthopedic Oncology Program, Scripps MD Anderson Cancer Center, La Jolla, CA 92037, USA
| | - Anton M. F. Kalsbeek
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Desiree C. Petersen
- The Centre for Proteomic and Genomic Research, Cape Town 7925, South Africa;
| | - Phillip D. Stricker
- Department of Urology, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia;
| | - Christina A. M. Jamieson
- Department of Urology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA;
| | - Peter I. Croucher
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC 3121, Australia;
- Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony M. Joshua
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
- Kinghorn Cancer Centre, Department of Medical Oncology, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Vanessa M. Hayes
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
- Central Clinical School, University of Sydney, Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
124
|
Ragu S, Matos-Rodrigues G, Lopez BS. Replication Stress, DNA Damage, Inflammatory Cytokines and Innate Immune Response. Genes (Basel) 2020; 11:E409. [PMID: 32283785 PMCID: PMC7230342 DOI: 10.3390/genes11040409] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
Complete and accurate DNA replication is essential to genome stability maintenance during cellular division. However, cells are routinely challenged by endogenous as well as exogenous agents that threaten DNA stability. DNA breaks and the activation of the DNA damage response (DDR) arising from endogenous replication stress have been observed at pre- or early stages of oncogenesis and senescence. Proper detection and signalling of DNA damage are essential for the autonomous cellular response in which the DDR regulates cell cycle progression and controls the repair machinery. In addition to this autonomous cellular response, replicative stress changes the cellular microenvironment, activating the innate immune response that enables the organism to protect itself against the proliferation of damaged cells. Thereby, the recent descriptions of the mechanisms of the pro-inflammatory response activation after replication stress, DNA damage and DDR defects constitute important conceptual novelties. Here, we review the links of replication, DNA damage and DDR defects to innate immunity activation by pro-inflammatory paracrine effects, highlighting the implications for human syndromes and immunotherapies.
Collapse
Affiliation(s)
| | | | - Bernard S. Lopez
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Université de Paris, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France; (S.R.); (G.M.-R.)
| |
Collapse
|
125
|
Xu J, Saklatvala R, Mittal S, Deshmukh S, Procopio A. Recent Progress of Potentiating Immune Checkpoint Blockade with External Stimuli-an Industry Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903394. [PMID: 32328428 PMCID: PMC7175294 DOI: 10.1002/advs.201903394] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/30/2020] [Indexed: 05/14/2023]
Abstract
The past decade has seen the materialization of immune checkpoint blockade as an emerging approach to cancer treatment. However, the overall response and patient survival are still modest. Various efforts to study the "cancer immunogram" have highlighted complex biology that necessitates a multipronged approach. This includes increasing the antigenicity of the tumor, strengthening the immune infiltration in the tumor microenvironment, removing the immunosuppressive mechanisms, and reducing immune cell exhaustion. The coordination of these approaches, as well as the ability to enhance them through delivery, is evaluated. Due to their success in multiple preclinical models, external-stimuli-responsive nanoparticles have received tremendous attention. Several studies report success in distantly located tumor regression, metastases, and reoccurrence in preclinical mouse models. However, clinical translation in this space remains low. Herein, the recent advancement in external-stimuli-responsive nanoconstruct-synergized immune checkpoint blockade is summarized, offering an industry perspective on the limitations of current academic innovations and discussing challenges in translation from a technical, manufacturing, and regulatory perspective. These limitations and challenges will need to be addressed to establish external-stimuli-based therapeutic strategies for patients.
Collapse
Affiliation(s)
- Jun Xu
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| | - Robert Saklatvala
- Discovery Pharmaceutical SciencesMRLMerck & Co., Inc.33 Avenue Louis PasteurBostonMA02115USA
| | - Sachin Mittal
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| | - Smeet Deshmukh
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| | - Adam Procopio
- Sterile and Specialty ProductsMRLMerck & Co., Inc.2000 Galloping Hill RdKenilworthNJ07033USA
| |
Collapse
|
126
|
Clementi E, Inglin L, Beebe E, Gsell C, Garajova Z, Markkanen E. Persistent DNA damage triggers activation of the integrated stress response to promote cell survival under nutrient restriction. BMC Biol 2020; 18:36. [PMID: 32228693 PMCID: PMC7106853 DOI: 10.1186/s12915-020-00771-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Base-excision repair (BER) is a central DNA repair mechanism responsible for the maintenance of genome integrity. Accordingly, BER defects have been implicated in cancer, presumably by precipitating cellular transformation through an increase in the occurrence of mutations. Hence, tight adaptation of BER capacity is essential for DNA stability. However, counterintuitive to this, prolonged exposure of cells to pro-inflammatory molecules or DNA-damaging agents causes a BER deficiency by downregulating the central scaffold protein XRCC1. The rationale for this XRCC1 downregulation in response to persistent DNA damage remains enigmatic. Based on our previous findings that XRCC1 downregulation causes wide-ranging anabolic changes, we hypothesised that BER depletion could enhance cellular survival under stress, such as nutrient restriction. RESULTS Here, we demonstrate that persistent single-strand breaks (SSBs) caused by XRCC1 downregulation trigger the integrated stress response (ISR) to promote cellular survival under nutrient-restricted conditions. ISR activation depends on DNA damage signalling via ATM, which triggers PERK-mediated eIF2α phosphorylation, increasing translation of the stress-response factor ATF4. Furthermore, we demonstrate that SSBs, induced either through depletion of the transcription factor Sp1, responsible for XRCC1 levels, or through prolonged oxidative stress, trigger ISR-mediated cell survival under nutrient restriction as well. Finally, the ISR pathway can also be initiated by persistent DNA double-strand breaks. CONCLUSIONS Our results uncover a previously unappreciated connection between persistent DNA damage, caused by a decrease in BER capacity or direct induction of DNA damage, and the ISR pathway that supports cell survival in response to genotoxic stress with implications for tumour biology and beyond.
Collapse
Affiliation(s)
- Elena Clementi
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Larissa Inglin
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Erin Beebe
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Corina Gsell
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Zuzana Garajova
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland
| | - Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, 8057, Zürich, Switzerland.
| |
Collapse
|
127
|
Ray U, Raul SK, Gopinatha VK, Ghosh D, Rangappa KS, Mantelingu K, Raghavan SC. Identification and characterization of novel SCR7-based small-molecule inhibitor of DNA end-joining, SCR130 and its relevance in cancer therapeutics. Mol Carcinog 2020; 59:618-628. [PMID: 32189406 DOI: 10.1002/mc.23186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Targeting DNA repair with small-molecule inhibitors is an attractive strategy for cancer therapy. Majority of DNA double-strand breaks in mammalian cells are repaired through nonhomologous end-joining (NHEJ). It has been shown that small-molecule inhibitors of NHEJ can block efficient repair inside cancer cells, leading to cell death. Previously, we have reported that SCR7, an inhibitor of NHEJ can induce tumor regression in mice. Later studies have shown that different forms of SCR7 can inhibit DNA end-joining in Ligase IV-dependent manner. Recently, we have derivatized SCR7 by introducing spiro ring into core structure. Here, we report the identification of a novel inhibitor of NHEJ, named SCR130 with 20-fold higher efficacy in inducing cytotoxicity in cancer cell lines. SCR130 inhibited DNA end-joining catalyzed by rat tissue extract. Specificity analysis revealed that while SCR130 was specific to Ligase IV, it showed minimal or no effect on Ligase III and Ligase I mediated joining. Importantly, SCR130 exhibited the least cytotoxicity in Ligase IV-null cell line as compared with wild type, confirming Ligase IV-specificity. Furthermore, we demonstrate that SCR130 can potentiate the effect of radiation in cancer cells when used in combination with γ-radiation. Various cellular assays in conjunction with Western blot analysis revealed that treatment with SCR130 led to loss of mitochondrial membrane potential leading to cell death by activating both intrinsic and extrinsic pathways of apoptosis. Thus, we describe a novel inhibitor of NHEJ with higher efficacy and may have the potential to be developed as cancer therapeutic.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Sanjay Kumar Raul
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vindya K Gopinatha
- Department of Studies in Chemistry, ManasaganFindo-frgotri, University of Mysore, Mysuru, India
| | - Dipayan Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Kempegowda Mantelingu
- Department of Studies in Chemistry, ManasaganFindo-frgotri, University of Mysore, Mysuru, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
128
|
Rebouissou S, Nault JC. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol 2020; 72:215-229. [PMID: 31954487 DOI: 10.1016/j.jhep.2019.08.017] [Citation(s) in RCA: 326] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) arises from hepatocytes through the sequential accumulation of multiple genomic and epigenomic alterations resulting from Darwinian selection. Genes from various signalling pathways such as telomere maintenance, Wnt/β-catenin, P53/cell cycle regulation, oxidative stress, epigenetic modifiers, AKT/mTOR and MAP kinase are frequently mutated in HCC. Several subclasses of HCC have been identified based on transcriptomic dysregulation and genetic alterations that are closely related to risk factors, pathological features and prognosis. Undoubtedly, integration of data obtained from both preclinical models and human studies can help to accelerate the identification of robust predictive biomarkers of response to targeted biotherapy and immunotherapy. The aim of this review is to describe the main advances in HCC in terms of molecular biology and to discuss how this knowledge could be used in clinical practice in the future.
Collapse
Affiliation(s)
- Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, F-75006 Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Functional Genomics of Solid Tumors Laboratory, F-75006 Paris, France; Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
129
|
Sun C, Cao W, Qiu C, Li C, Dongol S, Zhang Z, Dong R, Song K, Yang X, Zhang Q, Kong B. MiR-509-3 augments the synthetic lethality of PARPi by regulating HR repair in PDX model of HGSOC. J Hematol Oncol 2020; 13:9. [PMID: 32005272 PMCID: PMC6995078 DOI: 10.1186/s13045-020-0844-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/15/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND PARP inhibitors have been the most promising target drugs with widely proven benefits among ovarian cancer patients. Although platinum-response, HR-related genes, or HRD genomic scar detection are acceptably used in assessment of Olaparib response, there are still evident limitations in the present approaches. Therefore, we aim to investigate more accurate approaches to predict Olaparib sensitivity and effective synergistic treatment strategies. METHODS We probed two databases (TCGA and Qilu Hospital) in order to quest novel miRNAs associated with platinum-sensitivity or HR-related genes. Cellular experiments in vitro or in vivo and PDX models were utilized to validate their role in tumor suppression and Olaparib sensitizing. Furthermore, HR gene mutation was analyzed through WES to explore the relation between HR gene mutation and Olaparib response. RESULTS High miR-509-3 expression indicated better response to platinum and longer progression-free and overall survival in two independent ovarian cancer patient cohorts (high vs. low miR-509-3 expression; PFS: TCGA P < 0.05, Qilu P < 0.05; OS: TCGA P < 0.05, Qilu P < 0.01). MiR-509-3 could impair the proliferation, migration, and invasion ability but enhance the sensitivity to Olaparib of ovarian cancer cell in vitro and in vivo by directly targeting HMGA2 and RAD51. In two PDX cases (PDX1 and PDX9), miR-509-3 could significantly increase the sensitivity to Olaparib along with the decrease of RAD51 positive rate (mean tumor weight NC + Olaparib vs. miR-509 + Olaparib; PDX1 P < 0.05, PDX9 P < 0.05). Additionally, in PDX8, miR-509-3 treatment dramatically reversed the Olaparib insensitivity (P < 0.05) by downregulating RAD51 expression. RAD51 functional detection revealed that all Olaparib sensitive cases exhibited low RAD51 positive rate (lesser than 50%) in treated groups. Furthermore, among the four HR gene mutation patients, three harbored HR core gene mutation and were sensitive to Olaparib while the remaining one with non-HR core gene mutation did not respond well to Olaparib. CONCLUSIONS MiR-509-3 can sensitize ovarian cancer cells to Olaparib by impeding HR, which makes it a potential target in PARPi synergistic treatment. HR core gene analysis and RAD51 functional detection are prospectively feasible in prediction of PARPi response.
Collapse
Affiliation(s)
- Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China
| | - Wenyu Cao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China
| | - Chunping Qiu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China
| | - Chengcheng Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China
| | - Samina Dongol
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China
| | - Ruifen Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China. .,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China.
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, People's Republic of China. .,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
130
|
Development of a Precision Medicine Workflow in Hematological Cancers, Aalborg University Hospital, Denmark. Cancers (Basel) 2020; 12:cancers12020312. [PMID: 32013121 PMCID: PMC7073219 DOI: 10.3390/cancers12020312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Within recent years, many precision cancer medicine initiatives have been developed. Most of these have focused on solid cancers, while the potential of precision medicine for patients with hematological malignancies, especially in the relapse situation, are less elucidated. Here, we present a demographic unbiased and observational prospective study at Aalborg University Hospital Denmark, referral site for 10% of the Danish population. We developed a hematological precision medicine workflow based on sequencing analysis of whole exome tumor DNA and RNA. All steps involved are outlined in detail, illustrating how the developed workflow can provide relevant molecular information to multidisciplinary teams. A group of 174 hematological patients with progressive disease or relapse was included in a non-interventional and population-based study, of which 92 patient samples were sequenced. Based on analysis of small nucleotide variants, copy number variants, and fusion transcripts, we found variants with potential and strong clinical relevance in 62% and 9.5% of the patients, respectively. The most frequently mutated genes in individual disease entities were in concordance with previous studies. We did not find tumor mutational burden or micro satellite instability to be informative in our hematologic patient cohort.
Collapse
|
131
|
Yamamoto S, Midorikawa Y, Nagae G, Tatsuno K, Ueda H, Moriyama M, Takayama T, Aburatani H. Spatial and temporal expansion of intrahepatic metastasis by molecularly-defined clonality in multiple liver cancers. Cancer Sci 2020; 111:601-609. [PMID: 31845427 PMCID: PMC7004543 DOI: 10.1111/cas.14282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Multiple hepatocellular carcinoma (HCC) is divided into two categories: intrahepatic metastasis (IM), which is a true relapse of HCC, and multicentric origin (MO), which is a second primary tumor. Clinical diagnosis of multiple HCC is usually made based on tumor location and/or time to recurrence; however, it is often difficult to distinguish the two types of multiple HCC. Using 41 matched pairs of multiple HCC specimens, we confirmed the accuracy of clinical diagnoses using exome sequence data and investigated the importance of discriminating the type of multiple HCC. Genomic analysis revealed that 18 (43.9%) patients diagnosed as having genomic IM had common mutations in a pair of HCC tumors with the main tumor of these patients being more progressive compared to those with genomic MO. The accuracy of clinical diagnosis based on lobe (Definition 1) and segment (Definition 2) were 68.3% and 78.0%, respectively. Intriguingly, recurrence ≥2 years after initial surgery for 3 patients was IM. The survival of patients with clinical IM was significantly shorter than for those with clinical MO based on both Definition 1 (P = 0.045) and Definition 2 (P = 0.043). However, mean survival was not different between the patients with genomic IM and those with MO (P = 0.364). Taken together, genomic analysis elucidated that liver cancer may spread more extensively and more slowly than previously thought. In addition, distinguishing multiple HCC as IM or MC may have provided biological information but was not of clinical importance with respect to patient prognosis.
Collapse
Affiliation(s)
- Shogo Yamamoto
- Genome Science Division, RCAST, University of Tokyo, Tokyo, Japan
| | - Yutaka Midorikawa
- Genome Science Division, RCAST, University of Tokyo, Tokyo, Japan.,Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, RCAST, University of Tokyo, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science Division, RCAST, University of Tokyo, Tokyo, Japan
| | - Hiroki Ueda
- Genome Science Division, RCAST, University of Tokyo, Tokyo, Japan
| | - Mitsuhiko Moriyama
- Gastroenterology and Hepatology, Nihon University School of Medicine, Tokyo, Japan
| | - Tadatoshi Takayama
- Department of Digestive Surgery, Nihon University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
132
|
Sinha S, Mitchell KA, Zingone A, Bowman E, Sinha N, Schäffer AA, Lee JS, Ruppin E, Ryan BM. Higher prevalence of homologous recombination deficiency in tumors from African Americans versus European Americans. NATURE CANCER 2020; 1:112-121. [PMID: 35121843 PMCID: PMC8921973 DOI: 10.1038/s43018-019-0009-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/22/2019] [Indexed: 04/18/2023]
Abstract
To improve our understanding of longstanding disparities in incidence and mortality in lung cancer across ancestry, we performed a systematic comparative analysis of molecular features in tumors from African Americans (AAs) and European Americans (EAs). We find that lung squamous cell carcinoma tumors from AAs exhibit higher genomic instability-the proportion of non-diploid genome-aggressive molecular features such as chromothripsis and higher homologous recombination deficiency (HRD). In The Cancer Genome Atlas, we demonstrate that high genomic instability, HRD and chromothripsis among tumors from AAs is found across many cancer types. The prevalence of germline HRD (that is, the total number of pathogenic variants in homologous recombination genes) is higher in tumors from AAs, suggesting that the somatic differences observed have genetic ancestry origins. We also identify AA-specific copy-number-based arm-, focal- and gene-level recurrent features in lung cancer, including higher frequencies of PTEN deletion and KRAS amplification. These results highlight the importance of including under-represented populations in genomics research.
Collapse
Affiliation(s)
- Sanju Sinha
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Khadijah A Mitchell
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Elise Bowman
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Neelam Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Computer Science, University of California, Merced, CA, USA
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Joo Sang Lee
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
133
|
Pietrantonio F, Randon G, Romagnoli D, Di Donato S, Benelli M, de Braud F. Biomarker-guided implementation of the old drug temozolomide as a novel treatment option for patients with metastatic colorectal cancer. Cancer Treat Rev 2020; 82:101935. [DOI: 10.1016/j.ctrv.2019.101935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
|
134
|
Trenner A, Sartori AA. Harnessing DNA Double-Strand Break Repair for Cancer Treatment. Front Oncol 2019; 9:1388. [PMID: 31921645 PMCID: PMC6921965 DOI: 10.3389/fonc.2019.01388] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly deleterious, with a single unrepaired DSB being sufficient to trigger cell death. Compared to healthy cells, cancer cells have a higher DSB burden due to oncogene-induced replication stress and acquired defects in DNA damage response (DDR) mechanisms. Consequently, hyperproliferating cancer cells rely on efficient DSB repair for their survival. Moreover, augmented DSB repair capacity is a major cause of radio- and chemoresistance and, ultimately, cancer recurrence. Although inherited DDR defects can predispose individuals to develop certain cancers, the very same vulnerability may be therapeutically exploited to preferentially kill tumor cells. A paradigm for DNA repair targeted therapy has emerged in cancers that exhibit mutations in BRCA1 or BRCA2 tumor suppressor genes, conferring a strong defect in homologous recombination, a major and error-free DSB repair pathway. Clinical validation of such approaches, commonly described as synthetic lethality (SL), has been provided by the regulatory approval of poly(ADP-ribose) polymerase 1 inhibitors (PARPi) as monotherapy for BRCA1/2-mutated breast and ovarian tumors. In this review, we will describe the different DSB repair mechanisms and discuss how their specific features could be exploited for cancer therapy. A major emphasis is put on advances in combinatorial treatment modalities and SL approaches arising from DSB repair pathway interdependencies.
Collapse
Affiliation(s)
- Anika Trenner
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
135
|
Liu T, Zuo L, Guo D, Chai X, Xu J, Cui Z, Wang Z, Hou C. Ginsenoside Rg3 regulates DNA damage in non-small cell lung cancer cells by activating VRK1/P53BP1 pathway. Biomed Pharmacother 2019; 120:109483. [PMID: 31629252 DOI: 10.1016/j.biopha.2019.109483] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. Ginsenoside Rg3 is the main ingredient of Ginseng which is used to treat non-small cell lung cancer (NSCLC). It has been found to enhance the efficiency of chemotherapy thereby reducing its side effects. Previous studies found that ginsenoside Rg3 can reduce the occurrence of NSCLC by inducing DNA damage. Yet, its anti-DNA damaging effects and mechanisms in tumor cells are still not fully understood. This study explored the effect of ginsenoside Rg3 on DNA repair and VRK1/P53BP1 signaling pathway. Ginsenoside Rg3 treatment significantly decreased the incidence and invasionin a mouse model of lung cancer induced by urethane. The results of cell survival assay and single cell gel electrophoresis showed that ginsenoside Rg3 protected lung adenocarcinoma cells from DNA damage as well as inhibited the proliferation of tumor cells. Ginsenoside Rg3 increased the mRNA and protein expression of VRK1 in NSCLC cells as measured by RT-qPCR and western blot, respectively. These findings suggests that ginsenoside Rg3 regulates VRK1 signaling. Immunofluorescence assays showed that P53BP1 and VRK1 protein level increased, and the VRK1 protein translocated between the nuclei and cytoplasm. Finally, this conclusion was confirmed by the reverse validation in VRK1-knockdown cells. Taken together, these results show that ginsenoside Rg3 upregulate VRK1 expression and P53BP1 foci formation in response to DNA damage thereby inhibiting the tumorigenesis and viability of cancer cells. These findings reveal the role of Rg3 in lung cancer and provides therapeutic targets for developing new drugs in the prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Tianhua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zuo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- School of Life science, Beijing University of Chinese Medicine, Beijing, China
| | - Xinlou Chai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaorui Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunying Hou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
136
|
Intragenomic variability and extended sequence patterns in the mutational signature of ultraviolet light. Proc Natl Acad Sci U S A 2019; 116:20411-20417. [PMID: 31548379 PMCID: PMC6789905 DOI: 10.1073/pnas.1909021116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutational signatures have emerged as essential tools in cancer genomics, providing clinically relevant insights as well as accurate background models needed when assessing signals of selection in cancer. Here, we observe that the mutational signature of ultraviolet (UV) light varies across chromatin states, highlighting a previously unappreciated aspect of mutational signatures. Our results imply that locally derived, rather than genome-wide or exome-wide, signatures are more accurate, which is of relevance in situations such as cancer driver gene detection, where correct modelling of signatures and expected mutation rates is critical. We also show that incorporation of longer contextual patterns into the signature further improves modeling of UV mutations. Mutational signatures can reveal properties of underlying mutational processes and are important when assessing signals of selection in cancer. Here, we describe the sequence characteristics of mutations induced by ultraviolet (UV) light, a major mutagen in several human cancers, in terms of extended (longer than trinucleotide) patterns as well as variability of the signature across chromatin states. Promoter regions display a distinct UV signature with reduced TCG > TTG transitions, and genome-wide mapping of UVB-induced DNA photoproducts (pyrimidine dimers) showed that this may be explained by decreased damage formation at hypomethylated promoter CpG sites. Further, an extended signature model encompassing additional information from longer contextual patterns improves modeling of UV mutations, which may enhance discrimination between drivers and passenger events. Our study presents a refined picture of the UV signature and underscores that the characteristics of a single mutational process may vary across the genome.
Collapse
|
137
|
Willers H, Keane FK, Kamran SC. Toward a New Framework for Clinical Radiation Biology. Hematol Oncol Clin North Am 2019; 33:929-945. [PMID: 31668212 DOI: 10.1016/j.hoc.2019.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiation biology has entered the era of precision oncology, and this article reviews time-tested factors that determine the effects of fractionated radiation therapy in a wide variety of tumor types and normal tissues: the association of tumor control with radiation dose, the importance of fractionation and overall treatment time, and the role of tumor hypoxia. Therapeutic gain can only be achieved if the increased tumor toxicity produced by biological treatment modifications is balanced against injury to early-responding and late-responding normal tissues. Developments in precision oncology and immuno-oncology will allow an emphasis on treatment individualization and predictive biomarker development.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Florence K Keane
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA. https://twitter.com/KatieKeaneMD
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA. https://twitter.com/sophia_kamran
| |
Collapse
|
138
|
Schumann F, Blanc E, Messerschmidt C, Blankenstein T, Busse A, Beule D. SigsPack, a package for cancer mutational signatures. BMC Bioinformatics 2019; 20:450. [PMID: 31477009 PMCID: PMC6720940 DOI: 10.1186/s12859-019-3043-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/21/2019] [Indexed: 01/10/2023] Open
Abstract
Background Mutational signatures are specific patterns of somatic mutations introduced into the genome by oncogenic processes. Several mutational signatures have been identified and quantified from multiple cancer studies, and some of them have been linked to known oncogenic processes. Identification of the processes contributing to mutations observed in a sample is potentially informative to understand the cancer etiology. Results We present here SigsPack, a Bioconductor package to estimate a sample’s exposure to mutational processes described by a set of mutational signatures. The package also provides functions to estimate stability of these exposures, using bootstrapping. The performance of exposure and exposure stability estimations have been validated using synthetic and real data. Finally, the package provides tools to normalize the mutation frequencies with respect to the tri-nucleotide contents of the regions probed in the experiment. The importance of this effect is illustrated in an example. Conclusion SigsPack provides a complete set of tools for individual sample exposure estimation, and for mutation catalogue & mutational signatures normalization. Electronic supplementary material The online version of this article (10.1186/s12859-019-3043-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franziska Schumann
- Core Unit Bioinformatics, Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, Berlin, 13092, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany
| | - Clemens Messerschmidt
- Core Unit Bioinformatics, Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany
| | - Thomas Blankenstein
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, Berlin, 13092, Germany.,Insitute of Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany.,Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany
| | - Antonia Busse
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany. .,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, Berlin, 13092, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany.
| |
Collapse
|
139
|
Abdel-Fatah TMA, Ali R, Sadiq M, Moseley PM, Mesquita KA, Ball G, Green AR, Rakha EA, Chan SYT, Madhusudan S. ERCC1 Is a Predictor of Anthracycline Resistance and Taxane Sensitivity in Early Stage or Locally Advanced Breast Cancers. Cancers (Basel) 2019; 11:cancers11081149. [PMID: 31405143 PMCID: PMC6721618 DOI: 10.3390/cancers11081149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 01/12/2023] Open
Abstract
Genomic instability could be a beneficial predictor for anthracycline or taxane chemotherapy. We interrogated 188 DNA repair genes in the METABRIC cohort (n = 1980) to identify genes that influence overall survival (OS). We then evaluated the clinicopathological significance of ERCC1 in early stage breast cancer (BC) (mRNA expression (n = 4640) and protein level, n = 1650 (test set), and n = 252 (validation)) and in locally advanced BC (LABC) (mRNA expression, test set (n = 2340) and validation (TOP clinical trial cohort, n = 120); and protein level (n = 120)). In the multivariate model, ERCC1 was independently associated with OS in the METABRIC cohort. In ER+ tumours, low ERCC1 transcript or protein level was associated with increased distant relapse risk (DRR). In ER−tumours, low ERCC1 transcript or protein level was linked to decreased DRR, especially in patients who received anthracycline chemotherapy. In LABC patients who received neoadjuvant anthracycline, low ERCC1 transcript was associated with higher pCR (pathological complete response) and decreased DRR. However, in patients with ER−tumours who received additional neoadjuvant taxane, high ERCC1 transcript was associated with a higher pCR and decreased DRR. High ERCC1 transcript was also linked to decreased DRR in ER+ LABC that received additional neoadjuvant taxane. ERCC1 based stratification is an attractive strategy for breast cancers.
Collapse
Affiliation(s)
| | - Reem Ali
- Translational Oncology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Maaz Sadiq
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Paul M Moseley
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Katia A Mesquita
- Translational Oncology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham NG11 8NS, UK
| | - Andrew R Green
- Academic Pathology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Emad A Rakha
- Academic Pathology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Stephen Y T Chan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK.
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK.
- Translational Oncology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK.
| |
Collapse
|
140
|
Luchini C, Bibeau F, Ligtenberg MJL, Singh N, Nottegar A, Bosse T, Miller R, Riaz N, Douillard JY, Andre F, Scarpa A. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol 2019; 30:1232-1243. [PMID: 31056702 DOI: 10.1093/annonc/mdz116] [Citation(s) in RCA: 657] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancers with a defective DNA mismatch repair (dMMR) system contain thousands of mutations most frequently located in monomorphic microsatellites and are thereby defined as having microsatellite instability (MSI). Therefore, MSI is a marker of dMMR. MSI/dMMR can be identified using immunohistochemistry to detect loss of MMR proteins and/or molecular tests to show microsatellite alterations. Together with tumour mutational burden (TMB) and PD-1/PD-L1 expression, it plays a role as a predictive biomarker for immunotherapy. METHODS To define best practices to implement the detection of dMMR tumours in clinical practice, the ESMO Translational Research and Precision Medicine Working Group launched a collaborative project, based on a systematic review-approach, to generate consensus recommendations on the: (i) definitions related to the concept of MSI/dMMR; (ii) methods of MSI/dMMR testing and (iii) relationships between MSI, TMB and PD-1/PD-L1 expression. RESULTS The MSI-related definitions, for which a consensus frame-work was used to establish definitions, included: 'microsatellites', 'MSI', 'DNA mismatch repair' and 'features of MSI tumour'. This consensus also provides recommendations on MSI testing; immunohistochemistry for the mismatch repair proteins MLH1, MSH2, MSH6 and PMS2 represents the first action to assess MSI/dMMR (consensus with strong agreement); the second method of MSI/dMMR testing is represented by polymerase chain reaction (PCR)-based assessment of microsatellite alterations using five microsatellite markers including at least BAT-25 and BAT-26 (strong agreement). Next-generation sequencing, coupling MSI and TMB analysis, may represent a decisive tool for selecting patients for immunotherapy, for common or rare cancers not belonging to the spectrum of Lynch syndrome (very strong agreement). The relationships between MSI, TMB and PD-1/PD-L1 expression are complex, and differ according to tumour types. CONCLUSIONS This ESMO initiative is a response to the urgent questions raised by the growing success of immunotherapy and provides also important insights on the relationships between MSI, TMB and PD-1/PD-L1.
Collapse
Affiliation(s)
- C Luchini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - F Bibeau
- Department of Pathology, Caen University Hospital, Caen, France
| | - M J L Ligtenberg
- Departments of Human Genetics Radboud university medical center, Nijmegen, The Netherlands; Departments of Pathology, Radboud university medical center, Nijmegen, The Netherlands
| | - N Singh
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - A Nottegar
- Department of Surgery, San Bortolo Hospital, Vicenza, Italy
| | - T Bosse
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - R Miller
- Department of Oncology, University College London, London, UK
| | - N Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - J-Y Douillard
- European Society for Medical Oncology, Lugano, Switzerland
| | - F Andre
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, France.
| | - A Scarpa
- ARC-Net Research Centre, University of Verona, Verona, Italy
| |
Collapse
|
141
|
Abstract
Alterations in DNA damage response (DDR) pathways are hallmarks of cancer. Incorrect repair of DNA lesions often leads to genomic instability. Ataxia telangiectasia mutated (ATM), a core component of the DNA repair system, is activated to enhance the homologous recombination (HR) repair pathway upon DNA double-strand breaks. Although ATM signaling has been widely studied in different types of cancer, its research is still lacking compared with other DDR-involved molecules such as PARP and ATR. There is still a vast research opportunity for the development of ATM inhibitors as anticancer agents. Here, we focus on the recent findings of ATM signaling in DNA repair of cancer. Previous studies have identified several partners of ATM, some of which promote ATM signaling, while others have the opposite effect. ATM inhibitors, including KU-55933, KU-60019, KU-59403, CP-466722, AZ31, AZ32, AZD0156, and AZD1390, have been evaluated for their antitumor effects. It has been revealed that ATM inhibition increases a cancer cell's sensitivity to radiotherapy. Moreover, the combination with PARP or ATR inhibitors has synergistic lethality in some cancers. Of note, among these ATM inhibitors, AZD0156 and AZD1390 achieve potent and highly selective ATM kinase inhibition and have an excellent ability to penetrate the blood-brain barrier. Currently, AZD0156 and AZD1390 are under investigation in phase I clinical trials. Taken together, targeting ATM may be a promising strategy for cancer treatment. Hence, further development of ATM inhibitors is urgently needed in cancer research.
Collapse
Affiliation(s)
- Mei Hua Jin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
142
|
Mechanisms of Genomic Instability in Breast Cancer. Trends Mol Med 2019; 25:595-611. [DOI: 10.1016/j.molmed.2019.04.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022]
|
143
|
Georgeson P, Walsh MD, Clendenning M, Daneshvar S, Pope BJ, Mahmood K, Joo JE, Jayasekara H, Jenkins MA, Winship IM, Buchanan DD. Tumor mutational signatures in sebaceous skin lesions from individuals with Lynch syndrome. Mol Genet Genomic Med 2019; 7:e00781. [PMID: 31162827 PMCID: PMC6625139 DOI: 10.1002/mgg3.781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/16/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Muir-Torre syndrome is defined by the development of sebaceous skin lesions in individuals who carry a germline mismatch repair (MMR) gene mutation. Loss of expression of MMR proteins is frequently observed in sebaceous skin lesions, but MMR-deficiency alone is not diagnostic for carrying a germline MMR gene mutation. METHODS Whole exome sequencing was performed on three MMR-deficient sebaceous lesions from individuals with MSH2 gene mutations (Lynch syndrome) and three MMR-proficient sebaceous lesions from individuals without Lynch syndrome with the aim of characterizing the tumor mutational signatures, somatic mutation burden, and microsatellite instability status. Thirty predefined somatic mutational signatures were calculated for each lesion. RESULTS Signature 1 was ubiquitous across the six lesions tested. Signatures 6 and 15, associated with defective DNA MMR, were significantly more prevalent in the MMR-deficient lesions from the MSH2 carriers compared with the MMR-proficient non-Lynch sebaceous lesions (mean ± SD=41.0 ± 8.2% vs. 2.3 ± 4.0%, p = 0.0018). Tumor mutation burden was, on average, significantly higher in the MMR-deficient lesions compared with the MMR-proficient lesions (23.3 ± 11.4 vs. 1.8 ± 0.8 mutations/Mb, p = 0.03). All four sebaceous lesions observed in sun exposed areas of the body demonstrated signature 7 related to ultraviolet light exposure. CONCLUSION Tumor mutational signatures 6 and 15 and somatic mutation burden were effective in differentiating Lynch-related from non-Lynch sebaceous lesions.
Collapse
Affiliation(s)
- Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical PathologyThe University of MelbourneParkvilleVic.Australia
- Victorian Comprehensive Cancer CentreUniversity of Melbourne Centre for Cancer ResearchParkvilleVic.Australia
| | | | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical PathologyThe University of MelbourneParkvilleVic.Australia
- Victorian Comprehensive Cancer CentreUniversity of Melbourne Centre for Cancer ResearchParkvilleVic.Australia
| | - Simin Daneshvar
- Colorectal Oncogenomics Group, Department of Clinical PathologyThe University of MelbourneParkvilleVic.Australia
- Dorevitch PathologyFrankston HospitalFrankstonVic.Australia
| | - Bernard J. Pope
- Colorectal Oncogenomics Group, Department of Clinical PathologyThe University of MelbourneParkvilleVic.Australia
- Melbourne BioinformaticsThe University of MelbourneCarltonVic.Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical PathologyThe University of MelbourneParkvilleVic.Australia
- Melbourne BioinformaticsThe University of MelbourneCarltonVic.Australia
| | - Jihoon E. Joo
- Colorectal Oncogenomics Group, Department of Clinical PathologyThe University of MelbourneParkvilleVic.Australia
- Victorian Comprehensive Cancer CentreUniversity of Melbourne Centre for Cancer ResearchParkvilleVic.Australia
| | - Harindra Jayasekara
- Colorectal Oncogenomics Group, Department of Clinical PathologyThe University of MelbourneParkvilleVic.Australia
- Victorian Comprehensive Cancer CentreUniversity of Melbourne Centre for Cancer ResearchParkvilleVic.Australia
- Cancer Epidemiology and Intelligence DivisionCancer Council VictoriaMelbourneVic.Australia
- Centre for Alcohol Policy ResearchLa Trobe UniversityMelbourneVic.Australia
| | - Mark A. Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVic.Australia
| | - Ingrid M. Winship
- Department of MedicineThe University of MelbourneParkvilleVic.Australia
- Genomic Medicine and Family Cancer ClinicRoyal Melbourne HospitalParkvilleVic.Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical PathologyThe University of MelbourneParkvilleVic.Australia
- Victorian Comprehensive Cancer CentreUniversity of Melbourne Centre for Cancer ResearchParkvilleVic.Australia
- Genomic Medicine and Family Cancer ClinicRoyal Melbourne HospitalParkvilleVic.Australia
| |
Collapse
|
144
|
Leichsenring J, Kazdal D, Ploeger C, Allgäuer M, Endris V, Volckmar AL, Neumann O, Kirchner M, Penzel R, Rempel E, Budczies J, Schirmacher P, Fröhling S, Stenzinger A. [From panel diagnostics to comprehensive genomic analysis : Infobesity or empowerment?]. DER PATHOLOGE 2019; 40:235-242. [PMID: 31089797 DOI: 10.1007/s00292-019-0608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Precision oncology is obtaining a central role in the therapy of malignant diseases. The indication for targeted therapy is based on the identification of molecular targets for which next-generation sequencing (NGS) is commonly used nowadays. All approved predictive biomarkers and molecular targets, including gene fusions and copy number alterations, can be identified depending on panel design and method applied. Some clinical scenarios, however, may require more holistic genomic approaches, such as whole-genome/whole-exome and transcriptome analysis, which must be embedded in a clinical trial. Here, key aspects and applications of each method are summarized and discussed.
Collapse
Affiliation(s)
- J Leichsenring
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - D Kazdal
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Ploeger
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - M Allgäuer
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - V Endris
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - A-L Volckmar
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - O Neumann
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - M Kirchner
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - R Penzel
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - E Rempel
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - J Budczies
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - P Schirmacher
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - S Fröhling
- Abteilung Translationale Medizinische Onkologie, Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg und Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
| | - A Stenzinger
- Pathologisches Institut, Molekularpathologisches Zentrum, Universitätsklinikum Heidelberg, Heidelberg, Deutschland.
| |
Collapse
|
145
|
Sweet-Cordero EA, Biegel JA. The genomic landscape of pediatric cancers: Implications for diagnosis and treatment. Science 2019; 363:1170-1175. [PMID: 30872516 PMCID: PMC7757338 DOI: 10.1126/science.aaw3535] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed a major increase in our understanding of the genetic underpinnings of childhood cancer. Genomic sequencing studies have highlighted key differences between pediatric and adult cancers. Whereas many adult cancers are characterized by a high number of somatic mutations, pediatric cancers typically have few somatic mutations but a higher prevalence of germline alterations in cancer predisposition genes. Also noteworthy is the remarkable heterogeneity in the types of genetic alterations that likely drive the growth of pediatric cancers, including copy number alterations, gene fusions, enhancer hijacking events, and chromoplexy. Because most studies have genetically profiled pediatric cancers only at diagnosis, the mechanisms underlying tumor progression, therapy resistance, and metastasis remain poorly understood. We discuss evidence that points to a need for more integrative approaches aimed at identifying driver events in pediatric cancers at both diagnosis and relapse. We also provide an overview of key aspects of germline predisposition for cancer in this age group.
Collapse
Affiliation(s)
- E Alejandro Sweet-Cordero
- Department of Pediatrics, Division of Hematology and Oncology, University of California, San Francisco, CA 94158, USA.
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.
| |
Collapse
|
146
|
ERCC1-XPF deficiency is a predictor of olaparib induced synthetic lethality and platinum sensitivity in epithelial ovarian cancers. Gynecol Oncol 2019; 153:416-424. [PMID: 30797591 DOI: 10.1016/j.ygyno.2019.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/24/2019] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE PARP inhibitor maintenance therapy in platinum sensitive sporadic ovarian cancers improves progression free survival. However, biomarker for synthetic lethality in platinum sensitive sporadic disease is yet to be defined. ERCC1-XPF heterodimer is a key player in nucleotide excision repair (NER) involved in the repair of platinum induced DNA damage. In the current study, we tested whether ERCC1-XPF deficiency would predict synthetic lethality to the PARP inhibitor Olaparib and platinum sensitivity in ovarian cancers. METHODS ERCC1, XPF and PARP1 protein expression was evaluated in tumors from a cohort of 331 patients treated at Nottingham University Hospitals and correlated to clinicopathological features and survival. Pre-clinically, ERCC1 and XPF was depleted in A2780 (platinum sensitive) and A2780cis (platinum resistant) ovarian cancer cell lines and tested for platinum sensitivity as well as for Olaparib induced synthetic lethality. RESULTS Low ERCC1 was significantly associated with improved progression free survival (PFS) in patients with ovarian cancers in univariate (p = 0.001) and multivariate (p = 0.002) analysis. In addition, low ERCC1/low XPF (p = 0.003) or low ERCC1/low PARP1 (p = 0.0001) tumors was also linked to better PFS compared to high ERCC1/high XPF or high ERCC1/high PARP1 tumors. Pre-clinically, ERCC1 or XPF depletion not only increased platinum sensitivity but also increased toxicity to Olaparib therapy. Increased sensitivity was associated with DNA double strand breaks (DSBs) accumulation, cell cycle arrest and increased apoptosis. CONCLUSION The data provide evidence that low ERCC1 is not only a predictor of platinum sensitivity but is also a promising biomarker for Olaparib induced synthetic lethality in ovarian cancers.
Collapse
|
147
|
Rush CM, Goodfellow PJ. Diverse mutational signatures in endometrial cancer: implications for tumor etiology and evolution. Gynecol Oncol 2019; 152:1-2. [DOI: 10.1016/j.ygyno.2018.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|