101
|
Camacho L, Zabala-Letona A, Cortazar AR, Astobiza I, Dominguez-Herrera A, Ercilla A, Crespo J, Viera C, Fernández-Ruiz S, Martinez-Gonzalez A, Torrano V, Martín-Martín N, Gomez-Muñoz A, Carracedo A. Identification of Androgen Receptor Metabolic Correlome Reveals the Repression of Ceramide Kinase by Androgens. Cancers (Basel) 2021; 13:cancers13174307. [PMID: 34503116 PMCID: PMC8431577 DOI: 10.3390/cancers13174307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men. Androgen receptor signaling plays a major role in this disease, and androgen deprivation therapy is a common therapeutic strategy in recurrent disease. Sphingolipid metabolism plays a central role in cell death, survival, and therapy resistance in cancer. Ceramide kinase (CERK) catalyzes the phosphorylation of ceramide to ceramide 1-phosphate, which regulates various cellular functions including cell growth and migration. Here we show that activated androgen receptor (AR) is a repressor of CERK expression. We undertook a bioinformatics strategy using PCa transcriptomics datasets to ascertain the metabolic alterations associated with AR activity. CERK was among the most prominent negatively correlated genes in our analysis. Interestingly, we demonstrated through various experimental approaches that activated AR reduces the mRNA expression of CERK: (i) expression of CERK is predominant in cell lines with low or negative AR activity; (ii) AR agonist and antagonist repress and induce CERK mRNA expression, respectively; (iii) orchiectomy in wildtype mice or mice with PCa (harboring prostate-specific Pten deletion) results in elevated Cerk mRNA levels in prostate tissue. Mechanistically, we found that AR represses CERK through interaction with its regulatory elements and that the transcriptional repressor EZH2 contributes to this process. In summary, we identify a repressive mode of AR that influences the expression of CERK in PCa.
Collapse
Affiliation(s)
- Laura Camacho
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
| | - Amaia Zabala-Letona
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ana R. Cortazar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ianire Astobiza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Asier Dominguez-Herrera
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
| | - Amaia Ercilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jana Crespo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Cristina Viera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Sonia Fernández-Ruiz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Ainara Martinez-Gonzalez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
| | - Veronica Torrano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Antonio Gomez-Muñoz
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (L.C.); (A.Z.-L.); (A.R.C.); (I.A.); (A.E.); (J.C.); (C.V.); (S.F.-R.); (A.M.-G.); (V.T.); (N.M.-M.)
- Biochemistry and Molecular Biology Department, University of the Basque Country, 48040 Bilbao, Spain; (A.D.-H.); (A.G.-M.)
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Correspondence:
| |
Collapse
|
102
|
Wang S, Alpsoy A, Sood S, Ordonez-Rubiano SC, Dhiman A, Sun Y, Jiao G, Krusemark CJ, Dykhuizen EC. A Potent, Selective CBX2 Chromodomain Ligand and Its Cellular Activity During Prostate Cancer Neuroendocrine Differentiation. Chembiochem 2021; 22:2335-2344. [PMID: 33950564 PMCID: PMC8358665 DOI: 10.1002/cbic.202100118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/04/2021] [Indexed: 12/16/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic regulators that facilitate both embryonic development and cancer progression. PcG proteins form Polycomb repressive complexes 1 and 2 (PRC1 and PRC2). PRC2 trimethylates histone H3 lysine 27 (H3K27me3), a histone mark recognized by the N-terminal chromodomain (ChD) of the CBX subunit of canonical PRC1. There are five PcG CBX paralogs in humans. CBX2 in particular is upregulated in a variety of cancers, particularly in advanced prostate cancers. Using CBX2 inhibitors to understand and target CBX2 in prostate cancer is highly desirable; however, high structural similarity among the CBX ChDs has been challenging for developing selective CBX ChD inhibitors. Here, we utilize selections of focused DNA encoded libraries (DELs) for the discovery of a selective CBX2 chromodomain probe, SW2_152F. SW2_152F binds to CBX2 ChD with a Kd of 80 nM and displays 24-1000-fold selectivity for CBX2 ChD over other CBX paralogs in vitro. SW2_152F is cell permeable, selectively inhibits CBX2 chromatin binding in cells, and blocks neuroendocrine differentiation of prostate cancer cell lines in response to androgen deprivation.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
- Purdue Life Science Interdisciplinary Graduate Program, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Surbhi Sood
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
- Purdue Life Science Interdisciplinary Graduate Program, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Sandra Carolina Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Yixing Sun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
- Purdue Center for Cancer Research, 201 S. University St. West Lafayette, IN, 47907 USA
| | - Emily C. Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 201 S. University St. West Lafayette, IN, 47907 USA
- Purdue Center for Cancer Research, 201 S. University St. West Lafayette, IN, 47907 USA
| |
Collapse
|
103
|
Quintanal-Villalonga A, Taniguchi H, Zhan YA, Hasan MM, Chavan SS, Meng F, Uddin F, Manoj P, Donoghue MTA, Won HH, Chan JM, Ciampricotti M, Chow A, Offin M, Chang JC, Ray-Kirton J, Tischfield SE, Egger J, Bhanot UK, Linkov I, Asher M, Sinha S, Silber J, Iacobuzio-Donahue CA, Roehrl MH, Hollmann TJ, Yu HA, Qiu J, de Stanchina E, Baine MK, Rekhtman N, Poirier JT, Loomis B, Koche RP, Rudin CM, Sen T. Multi-omic analysis of lung tumors defines pathways activated in neuroendocrine transformation. Cancer Discov 2021; 11:3028-3047. [PMID: 34155000 DOI: 10.1158/2159-8290.cd-20-1863] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung adenocarcinomas (LUADs) amenable to targeted therapy, transformation to small cell lung cancer (SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine (NE) transformation in lung cancer has been limited by a paucity of pre-/post-transformation clinical samples. Detailed genomic, epigenomic, transcriptomic, and protein characterization of combined LUAD/SCLC tumors, as well as pre-/post-transformation samples, support that NE transformation is primarily driven by transcriptional reprogramming rather than mutational events. We identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm. We observed enhanced expression of genes involved in PRC2 complex and PI3K/AKT and NOTCH pathways. Pharmacological inhibition of the PI3K/AKT pathway delayed tumor growth and NE transformation in an EGFR-mutant patient-derived xenograft model. Our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of neuroendocrine transformation in lung cancer.
Collapse
Affiliation(s)
| | | | - Yingqian A Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center
| | - Maysun M Hasan
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | - Fanli Meng
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | | | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | - Helen H Won
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | | | - Andrew Chow
- Medicine, Memorial Sloan Kettering Cancer Center
| | | | - Jason C Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | | | - Sam E Tischfield
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | | | - Umesh K Bhanot
- Pathology Core Facility, Memorial Sloan Kettering Cancer Center
| | | | - Marina Asher
- Department of Pathology, Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | - Helena A Yu
- Medicine, Memorial Sloan Kettering Cancer Center
| | - Juan Qiu
- Memorial Sloan Kettering Cancer Center
| | | | | | | | - John T Poirier
- Perlmutter Cancer Center, New York University Langone Health
| | - Brian Loomis
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center
| | - Charles M Rudin
- Druckenmiller Center for Lung Cancer Research and Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center
| | | |
Collapse
|
104
|
Doldi V, El Bezawy R, Zaffaroni N. MicroRNAs as Epigenetic Determinants of Treatment Response and Potential Therapeutic Targets in Prostate Cancer. Cancers (Basel) 2021; 13:2380. [PMID: 34069147 PMCID: PMC8156532 DOI: 10.3390/cancers13102380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the second most common tumor in men worldwide, and the fifth leading cause of male cancer-related deaths in western countries. PC is a very heterogeneous disease, meaning that optimal clinical management of individual patients is challenging. Depending on disease grade and stage, patients can be followed in active surveillance protocols or undergo surgery, radiotherapy, hormonal therapy, and chemotherapy. Although therapeutic advancements exist in both radiatiotherapy and chemotherapy, in a considerable proportion of patients, the treatment remains unsuccessful, mainly due to tumor poor responsiveness and/or recurrence and metastasis. microRNAs (miRNAs), small noncoding RNAs that epigenetically regulate gene expression, are essential actors in multiple tumor-related processes, including apoptosis, cell growth and proliferation, autophagy, epithelial-to-mesenchymal transition, invasion, and metastasis. Given that these processes are deeply involved in cell response to anti-cancer treatments, miRNAs have been considered as key determinants of tumor treatment response. In this review, we provide an overview on main PCa-related miRNAs and describe the biological mechanisms by which specific miRNAs concur to determine PCa response to radiation and drug therapy. Additionally, we illustrate whether miRNAs can be considered novel therapeutic targets or tools on the basis of the consequences of their expression modulation in PCa experimental models.
Collapse
Affiliation(s)
| | | | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (V.D.); (R.E.B.)
| |
Collapse
|
105
|
Filon M, Gawdzik J, Truong A, Allen G, Huang W, Khemees T, Machhi R, Lewis P, Yang B, Denu J, Jarrard D. Tandem histone methyltransferase upregulation defines a unique aggressive prostate cancer phenotype. Br J Cancer 2021; 125:247-254. [PMID: 33976366 DOI: 10.1038/s41416-021-01398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/06/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Histone modifications alter transcriptional gene function and participate in cancer progression. Enhancer-of-Zeste-Homologue-2 (EZH2) and Nuclear-Receptor-Binding-SET-domain2 (NSD2) methylate H3K27 and H3K36, respectively, to regulate transcription. Given the therapeutic interest in these enzymes, we investigated expression and coregulation in hormone-sensitive (HS) and castrate-resistant (CR) prostate cancer (PC). METHODS EZH2 and NSD2 levels were quantified using VECTRA analysis in HS and CRPC tissue microarrays (n = 105 + 66). Expression data from The Cancer Genome Atlas (n = 498), Memorial Sloan Kettering Cancer Center (n = 240), and Stand Up to Cancer/Prostate Cancer Foundation (n = 444) cBioportal datasets were queried, and associations between EZH2 and NSD2 and clinicopathologic variables determined. RESULTS Tumour expression of NSD2, but not EZH2, increased in CRPC (p = 0.05, 0.09). Epithelial nuclei co-expressing NSD2 and EZH2 increased in CRPC compared to HSPC (69 vs 42%, p = 0.02), and in metastatic tissue relative to benign (55 vs 35%, p = 0.02). cBioportal analysis revealed collinear NSD2/EZH2 expression (Spearman = 0.57, 0.58, 0.58, all p < 0.001). NSD2/EZH2 co-expression significantly associates with clinicopathologic characteristics including grade group, stage and seminal vesicle involvement. On univariate and multivariate analysis tumours co-expressing NSD2 and EZH2 conferred increased risk of recurrence (hazard ratio: 2.6, 95% confidence inerval: 1.2-5.4, p = 0.01). Kaplan-Meier analysis revealed reduced progression-free-survival of NSD2 and EZH2 co-expression patients in datasets (p < 0.001, 0.002). CONCLUSIONS Increased EZH2/NSD2 co-expression is overrepresented in CRPC, metastases and associates with shorter disease-free survival in PC patients. Coregulation of these two histone methyltransferases is a biomarker for aggressive PC and licenses them as therapeutic targets.
Collapse
Affiliation(s)
- Mikolaj Filon
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Joseph Gawdzik
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Andrew Truong
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Glenn Allen
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tariq Khemees
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Rehaan Machhi
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Peter Lewis
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA.,Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA.,Wisconsin Institute for Discovery and the Morgridge Institute for Research, University of Wisconsin, Madison, WI, USA
| | - Bing Yang
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - John Denu
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA.,Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA.,Wisconsin Institute for Discovery and the Morgridge Institute for Research, University of Wisconsin, Madison, WI, USA
| | - David Jarrard
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA. .,Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, USA. .,Molecular and Environmental Toxicology Program, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
106
|
Watson MJ, Berger PL, Banerjee K, Frank SB, Tang L, Ganguly SS, Hostetter G, Winn M, Miranti CK. Aberrant CREB1 activation in prostate cancer disrupts normal prostate luminal cell differentiation. Oncogene 2021; 40:3260-3272. [PMID: 33846571 PMCID: PMC10760404 DOI: 10.1038/s41388-021-01772-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The molecular mechanisms of luminal cell differentiation are not understood well enough to determine how differentiation goes awry during oncogenesis. Using RNA-Seq analysis, we discovered that CREB1 plays a central role in maintaining new luminal cell survival and that oncogenesis dramatically changes the CREB1-induced transcriptome. CREB1 is active in luminal cells, but not basal cells. We identified ING4 and its E3 ligase, JFK, as CREB1 transcriptional targets in luminal cells. During luminal cell differentiation, transient induction of ING4 expression is followed by a peak in CREB1 activity, while JFK increases concomitantly with CREB1 activation. Transient expression of ING4 is required for luminal cell induction; however, failure to properly down-regulate ING4 leads to luminal cell death. Consequently, blocking CREB1 increased ING4 expression, suppressed JFK, and led to luminal cell death. Thus, CREB1 is responsible for the suppression of ING4 required for luminal cell survival and maintenance. Oncogenic transformation by suppressing PTEN resulted in constitutive activation of CREB1. However, the tumor cells could no longer fully differentiate into luminal cells, failed to express ING4, and displayed a unique CREB1 transcriptome. Blocking CREB1 in tumorigenic cells suppressed tumor growth in vivo, rescued ING4 expression, and restored luminal cell formation, but ultimately induced luminal cell death. IHC of primary prostate tumors demonstrated a strong correlation between loss of ING4 and loss of PTEN. This is the first study to define a molecular mechanism whereby oncogenic loss of PTEN, leading to aberrant CREB1 activation, suppresses ING4 expression causing disruption of luminal cell differentiation.
Collapse
Affiliation(s)
- M J Watson
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - P L Berger
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - K Banerjee
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - S B Frank
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - L Tang
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - S S Ganguly
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - G Hostetter
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - M Winn
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - C K Miranti
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
107
|
Brennen WN, Zhu Y, Coleman IM, Dalrymple SL, Antony L, Patel RA, Hanratty B, Chikarmane R, Meeker AK, Zheng SL, Hooper JE, Luo J, De Marzo AM, Corey E, Xu J, Yegnasubramanian S, Haffner MC, Nelson PS, Nelson WG, Isaacs WB, Isaacs JT. Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCI Insight 2021; 6:146827. [PMID: 33724955 PMCID: PMC8119192 DOI: 10.1172/jci.insight.146827] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 01/02/2023] Open
Abstract
Resistance to AR signaling inhibitors (ARSis) in a subset of metastatic castration-resistant prostate cancers (mCRPCs) occurs with the emergence of AR– neuroendocrine prostate cancer (NEPC) coupled with mutations/deletions in PTEN, TP53, and RB1 and the overexpression of DNMTs, EZH2, and/or SOX2. To resolve whether the lack of AR is the driving factor for the emergence of the NE phenotype, molecular, cell, and tumor biology analyses were performed on 23 xenografts derived from patients with PC, recapitulating the full spectrum of genetic alterations proposed to drive NE differentiation. Additionally, phenotypic response to CRISPR/Cas9-mediated AR KO in AR+ CRPC cells was evaluated. These analyses document that (a) ARSi-resistant NEPC developed without androgen deprivation treatment; (b) ARS in ARSi-resistant AR+/NE+ double-positive “amphicrine” mCRPCs did not suppress NE differentiation; (c) the lack of AR expression did not necessitate acquiring a NE phenotype, despite concomitant mutations/deletions in PTEN and TP53, and the loss of RB1 but occurred via emergence of an AR–/NE– double-negative PC (DNPC); (d) despite DNPC cells having homogeneous genetic driver mutations, they were phenotypically heterogeneous, expressing basal lineage markers alone or in combination with luminal lineage markers; and (e) AR loss was associated with AR promoter hypermethylation in NEPCs but not in DNPCs.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yezi Zhu
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Susan L Dalrymple
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Radhika A Patel
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Roshan Chikarmane
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
| | - Alan K Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, North Shore University Health System, Evanston, Illinois, USA
| | - Jody E Hooper
- Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jianfeng Xu
- Program for Personalized Cancer Care, North Shore University Health System, Evanston, Illinois, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Urology and
| | - William G Nelson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| | - William B Isaacs
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, SKCCC, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
108
|
Novel, non-invasive markers for detecting therapy induced neuroendocrine differentiation in castration-resistant prostate cancer patients. Sci Rep 2021; 11:8279. [PMID: 33859239 PMCID: PMC8050049 DOI: 10.1038/s41598-021-87441-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/30/2021] [Indexed: 12/25/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC), a highly aggressive variant of castration-resistant prostate cancer (CRPC), often emerges upon treatment with androgen pathway inhibitors, via neuroendocrine differentiation. Currently, NEPC diagnosis is challenging as available markers are not sufficiently specific. Our objective was to identify novel, extracellular vesicles (EV)-based biomarkers for diagnosing NEPC. Towards this, we performed small RNA next generation sequencing in serum EVs isolated from a cohort of CRPC patients with adenocarcinoma characteristics (CRPC-Adeno) vs CRPC-NE and identified significant dysregulation of 182 known and 4 novel miRNAs. We employed machine learning algorithms to develop an 'EV-miRNA classifier' that could robustly stratify 'CRPC-NE' from 'CRPC-Adeno'. Examination of protein repertoire of exosomes from NEPC cellular models by mass spectrometry identified thrombospondin 1 (TSP1) as a specific biomarker. In view of our results, we propose that a miRNA panel and TSP1 can be used as novel, non-invasive tools to identify NEPC and guide treatment decisions. In conclusion, our study identifies for the first time, novel non-invasive exosomal/extracellular vesicle based biomarkers for detecting neuroendocrine differentiation in advanced castration resistant prostate cancer patients with important translational implications in clinical management of these patients that is currently extremely challenging.
Collapse
|
109
|
Resistance to second-generation androgen receptor antagonists in prostate cancer. Nat Rev Urol 2021; 18:209-226. [PMID: 33742189 DOI: 10.1038/s41585-021-00438-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The introduction of second-generation androgen receptor antagonists (SG-ARAs) has greatly impacted the treatment of metastatic prostate cancer, providing tolerable and efficacious alternatives to chemotherapy. SG-ARAs provide similar therapeutic benefit to abiraterone, a potent CYP17 inhibitor, and do not require the co-administration of prednisone. Despite considerable improvements in clinical outcomes in the settings of both castration sensitivity and castration resistance, the durability of clinical response to the SG-ARAs enzalutamide, apalutamide and darolutamide, similar to abiraterone, is limited by inevitable acquired resistance. Genomic aberrations that confer resistance to SG-ARAs or provide potential alternative treatment modalities have been identified in numerous studies, including alterations of the androgen receptor, DNA repair, cell cycle, PI3K-AKT-mTOR and Wnt-β-catenin pathways. To combat resistance, researchers have explored approaches to optimizing the utility of available treatments, as well as the use of alternative agents with a variety of targets, including AR-V7, AKT, EZH2 and HIF1α. Ongoing research to establish predictive biomarkers for the treatment of tumours with resistance to SG-ARAs led to the approval of the PARP inhibitors olaparib and rucaparib in pre-treated metastatic castration-resistant prostate cancer. The results of ongoing studies will help to shape precision medicine in prostate cancer and further optimize treatment paradigms to maximize clinical outcomes.
Collapse
|
110
|
Huq S, Kannapadi NV, Casaos J, Lott T, Felder R, Serra R, Gorelick NL, Ruiz-Cardozo MA, Ding AS, Cecia A, Medikonda R, Ehresman J, Brem H, Skuli N, Tyler BM. Preclinical efficacy of ribavirin in SHH and group 3 medulloblastoma. J Neurosurg Pediatr 2021; 27:482-488. [PMID: 33545678 DOI: 10.3171/2020.8.peds20561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/24/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and group 3 (Myc driven) subtypes that are associated with the activity of eukaryotic initiation factor 4E (eIF4E), a critical mediator of translation, and enhancer of zeste homolog 2 (EZH2), a histone methyltransferase and master regulator of transcription. Recent drug repurposing efforts in multiple solid and hematologic malignancies have demonstrated that eIF4E and EZH2 are both pharmacologically inhibited by the FDA-approved antiviral drug ribavirin. Given the molecular overlap between medulloblastoma biology and known ribavirin activity, the authors investigated the preclinical efficacy of repurposing ribavirin as a targeted therapeutic in cell and animal models of medulloblastoma. METHODS Multiple in vitro assays were performed using human ONS-76 (a primitive SHH model) and D425 (an aggressive group 3 model) cells. The impacts of ribavirin on cellular growth, death, migration, and invasion were quantified using proliferation and Cell Counting Kit-8 (CCK-8) assays, flow cytometry with annexin V (AnnV) staining, scratch wound assays, and Matrigel invasion chambers, respectively. Survival following daily ribavirin treatment (100 mg/kg) was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells. RESULTS Compared to controls, ribavirin treatment led to a significant reduction in medulloblastoma cell growth (ONS-76 proliferation assay, p = 0.0001; D425 CCK-8 assay, p < 0.0001) and a significant increase in cell death (flow cytometry for AnnV, ONS-76, p = 0.0010; D425, p = 0.0284). In ONS-76 cells, compared to controls, ribavirin significantly decreased cell migration and invasion (Matrigel invasion chamber assay, p = 0.0012). In vivo, ribavirin significantly extended survival in an aggressive group 3 medulloblastoma mouse model compared to vehicle-treated controls (p = 0.0004). CONCLUSIONS The authors demonstrate that ribavirin, a clinically used drug known to inhibit eIF4E and EZH2, has significant antitumor effects in multiple preclinical models of medulloblastoma, including an aggressive group 3 animal model. Ribavirin may represent a promising targeted therapeutic in medulloblastoma.
Collapse
|
111
|
Androgen Receptor Stimulates Hexokinase 2 and Induces Glycolysis by PKA/CREB Signaling in Hepatocellular Carcinoma. Dig Dis Sci 2021; 66:802-813. [PMID: 32274668 DOI: 10.1007/s10620-020-06229-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/20/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) escapes growth inhibition by upregulating hexokinase 2 (HK2); however, the mechanism by which tumor cells upregulate HK2 remains unclear. AIM We aimed to investigate the role of androgen receptor (AR) signalling in promoting HK2 expression in HCC. METHODS The expressions of AR and HK2 in HCC tissues were analyzed by immunohistochemistry. Cell proliferation was determined using the CCK-8 assay, and the molecular mechanism of AR in the regulation of HK2 was evaluated by immunoblotting and luciferase assays. RESULTS AR expression is positively correlated with HK2 staining by an immunohistochemical analysis. The manipulation of AR expression changed HK2 expression and glycolysis. AR signaling promoted the growth of HCC by enhancing HK2-mediated glycolysis. Moreover, AR stimulated HK2 levels and glycolysis by potentiating protein kinase A/cyclic adenosine monophosphate response element-binding (CREB) protein signaling. CREB silencing decreased HK2 expression and inhibited AR-mediated HCC glycolysis. AR affected the sensitivity of HCC cells to glycolysis inhibitors by regulating downstream phosphorylated (p)-CREB. CONCLUSIONS These results indicate that AR at least partially induced glycolysis via p-CREB regulation of HK2 in HCC cells. Thus, this pathway should be considered for the design of novel therapeutic methods to target AR-overexpressing HCC.
Collapse
|
112
|
Cheng WC, Wang HJ. Current advances of targeting epigenetic modifications in neuroendocrine prostate cancer. Tzu Chi Med J 2021; 33:224-232. [PMID: 34386358 PMCID: PMC8323647 DOI: 10.4103/tcmj.tcmj_220_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 11/15/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is the most lethal malignancy of prostate cancer (PCa). Treatment with next-generation androgen receptor (AR) pathway inhibitors (ARPIs) has successfully extended patients' lifespan. However, with the emergence of drug resistance, PCa tumors increasingly adapt to potent ARPI therapies by transitioning to alternative cellular lineage. Such therapy-induced drug resistance is largely driven from the cellular plasticity of PCa cells to alter their phenotypes of AR independence for cell growth and survival. Some of the resistant PCa cells undergo cellular reprogramming to form neuroendocrine phenotypes. Recent evidences suggest that this cellular reprogramming or the lineage plasticity is driven by dysregulation of the epigenome and transcriptional networks. Aberrant DNA methylation and altered expression of epigenetic modifiers, such as enhancer of zeste-homolog 2, transcription factors, histone demethylases, are hallmarks of NEPC. In this review, we discuss the nature of the epigenetic and transcriptional landscapes of PCa cells which lose their AR independence and transition to the neuroendocrine lineage. We also discuss how oncogenic signaling and metabolic reprogramming fuel epigenetic and transcriptional alterations. In addition, the current state of epigenetic therapies for NEPC is addressed.
Collapse
Affiliation(s)
- Wen-Chi Cheng
- SDGs Teaching and Research Headquarters, Tzu Chi University, Hualien, Taiwan
| | - Hung-Jung Wang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien, Taiwan
| |
Collapse
|
113
|
Kaarijärvi R, Kaljunen H, Ketola K. Molecular and Functional Links between Neurodevelopmental Processes and Treatment-Induced Neuroendocrine Plasticity in Prostate Cancer Progression. Cancers (Basel) 2021; 13:cancers13040692. [PMID: 33572108 PMCID: PMC7915380 DOI: 10.3390/cancers13040692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Treatment-induced neuroendocrine prostate cancer (t-NEPC) is a subtype of castration-resistant prostate cancer (CRPC) which develops under prolonged androgen deprivation therapy. The mechanisms and pathways underlying the t-NEPC are still poorly understood and there are no effective treatments available. Here, we summarize the literature on the molecules and pathways contributing to neuroendocrine phenotype in prostate cancer in the context of their known cellular neurodevelopmental processes. We also discuss the role of tumor microenvironment in neuroendocrine plasticity, future directions, and therapeutic options under clinical investigation for neuroendocrine prostate cancer. Abstract Neuroendocrine plasticity and treatment-induced neuroendocrine phenotypes have recently been proposed as important resistance mechanisms underlying prostate cancer progression. Treatment-induced neuroendocrine prostate cancer (t-NEPC) is highly aggressive subtype of castration-resistant prostate cancer which develops for one fifth of patients under prolonged androgen deprivation. In recent years, understanding of molecular features and phenotypic changes in neuroendocrine plasticity has been grown. However, there are still fundamental questions to be answered in this emerging research field, for example, why and how do the prostate cancer treatment-resistant cells acquire neuron-like phenotype. The advantages of the phenotypic change and the role of tumor microenvironment in controlling cellular plasticity and in the emergence of treatment-resistant aggressive forms of prostate cancer is mostly unknown. Here, we discuss the molecular and functional links between neurodevelopmental processes and treatment-induced neuroendocrine plasticity in prostate cancer progression and treatment resistance. We provide an overview of the emergence of neurite-like cells in neuroendocrine prostate cancer cells and whether the reported t-NEPC pathways and proteins relate to neurodevelopmental processes like neurogenesis and axonogenesis during the development of treatment resistance. We also discuss emerging novel therapeutic targets modulating neuroendocrine plasticity.
Collapse
|
114
|
Carneiro BA, Lotan TL, de Souza A, Aggarwal R. Emerging Subtypes and New Treatments for Castration-Resistant Prostate Cancer. Am Soc Clin Oncol Educ Book 2021; 40:e319-e332. [PMID: 32479115 DOI: 10.1200/edbk_100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Genomic characterization of metastatic castration-resistant prostate cancer (mCRPC) has been remodeling the treatment landscape of this disease in the past decade. The emergence of molecularly defined subsets of mCRPC is altering the treatment paradigm from therapeutics with nonspecific activity across the spectrum, including androgen receptor (AR)-directed treatments, docetaxel, and cabazitaxel, to targeted approaches directed at molecular subsets of disease. The meaningful benefit of PARP inhibitors in mCRPC carrying mutations in DNA repair genes demonstrated in a phase III trial epitomizes this transition in the treatment paradigm of mCRPC and brings new challenges related to how to sequence and integrate the targeted therapies on top of the treatments with broad activity in all mCRPC. To enable and sustain the advance of precision oncology in the management of mCRPC, genomic characterization is required, including somatic and germline testing, for all patients with the ultimate goal of longitudinal molecular profiling guiding treatment decisions and sequential treatments of this lethal disease. This article reviews the emerging molecular subtypes of mCRPC that are driving the evolution of mCRPC treatment.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Warren Alpert Medical School, Brown University, Providence, RI.,Lifespan Cancer Institute, Providence, RI
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD
| | - Andre de Souza
- Warren Alpert Medical School, Brown University, Providence, RI.,Lifespan Cancer Institute, Providence, RI
| | | |
Collapse
|
115
|
Zhang Q, Han Y, Zhang Y, Liu D, Ming J, Huang B, Qiu X. Treatment-Emergent Neuroendocrine Prostate Cancer: A Clinicopathological and Immunohistochemical Analysis of 94 Cases. Front Oncol 2021; 10:571308. [PMID: 33598420 PMCID: PMC7882702 DOI: 10.3389/fonc.2020.571308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose This study aimed to evaluate the pathological characteristics, immunophenotype, and prognosis of treatment-emergent neuroendocrine prostate cancer (T-NEPC). Materials and Methods We collected 231 repeated biopsy specimens of castration-resistant prostate cancer (CRPC) cases between 2008 and 2019. We used histopathological and immunohistochemical evaluations of Synaptophysin (SYN), ChromograninA (CgA), CD56, androgen receptor (AR), and prostate-specific antigen (PSA) to screen out T-NEPC cases. Multivariate analyses were performed to identify factors in the prognosis of T-NEPC. Further, the results were verified in the Surveillance, Epidemiology, and End Results (SEER) program. Results Among the 231 CRPC cases, 94 (40.7%) cases were T-NEPC. T-NEPC were more likely to present with negative immunohistochemistry for AR (30.9%) and PSA (47.9%) than that of CRPC (8.8% and 17.5%, respectively). Kaplan-Meier analysis revealed that patients with T-NEPC (median overall survival [OS]: 17.6 months, 95% CI: 15.3-19.9 months) had significantly worse survival compared with usual CRPC patients (median OS: 23.6 months, 95% CI: 21.3-25.9 months, log-rank P = 0.001), especially in metastasis cases (median OS: 15.7 months, 95% CI: 13.3-18.0 months) and patients with small cell carcinoma component (median OS: 9.7 months, 95% CI: 8.2-11.2 months). Prostate adenocarcinoma with diffuse NE differentiation (median OS: 18.8 months, 95% CI: 15.3-22.3 months) had poor outcome than those with usual CRPC (P = 0.027), while there was no significant change in the focal NE differentiation (median OS: 22.9 months, 95% CI: 18.1-27.7 months, P = 0.136). In the unadjusted model, an excess risk of overall death was observed in T-NEPC with PSA negative (HR = 2.86, 95% CI = 1.39-6.73). Among 476 NEPC cases in the SEER database from 2004 to 2017, we observed a higher hazard of overall death in patients aged 65 years and older (HR = 1.35, 95% CI = 1.08-1.69), patients with PSA ≤ 2.5 ng/ml (HR = 1.90, 95%CI = 1.44-2.52), patients with PSA 2.6-4.0 ng/ml (HR = 2.03, 95%CI = 1.38-2.99), stage IV tumor (HR = 2.13, 95%CI = 1.47-3.08) and other races (HR = 1.85, 95%CI = 1.17-2.94) in total NEPC, adjusting for confounders. Similar hazard ratios were observed in pure NEPC, while there was no significant results among prostate adenocarcinoma with NE differentiation tumors. Conclusion T-NEPC was associated with an unfavorable prognosis, negative immunohistochemistry for PSA in T-NEPC and serum PSA level ≤ 4 ng/ml had a worse prognosis. Urologists and pathologists should recognize the importance of the second biopsy in CRPC to avoid unnecessary diagnosis and treatment delays.
Collapse
Affiliation(s)
- Qingfu Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yunan Han
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States.,Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yao Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dan Liu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jian Ming
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| | - Bo Huang
- Department of Pathology, The Liaoning Cancer Hospital & Institute of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
116
|
Pan W, Zhang Z, Kimball H, Qu F, Berlind K, Stopsack KH, Lee GSM, Choueiri TK, Kantoff PW. Abiraterone Acetate Induces CREB1 Phosphorylation and Enhances the Function of the CBP-p300 Complex, Leading to Resistance in Prostate Cancer Cells. Clin Cancer Res 2021; 27:2087-2099. [PMID: 33495313 DOI: 10.1158/1078-0432.ccr-20-4391] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 01/19/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Abiraterone acetate (AA), an inhibitor of cytochrome P450 17alpha-hydroxylase/17, 20 lyase, is an FDA-approved drug for advanced prostate cancer. However, not all patients respond to AA, and AA resistance ultimately develops in patients who initially respond. We aimed to identify AA resistance mechanisms in prostate cancer cells. EXPERIMENTAL DESIGN We established several AA-resistant cell lines and performed a comprehensive study on mechanisms involved in AA resistance development. RNA sequencing and phospho-kinase array screenings were performed to discover that the cAMP-response element CRE binding protein 1 (CREB1) was a critical molecule in AA resistance development. RESULTS The drug-resistant cell lines are phenotypically stable without drug selection, and exhibit permanent global gene expression changes. The phosphorylated CREB1 (pCREB1) is increased in AA-resistant cell lines and is critical in controlling global gene expression. Upregulation of pCREB1 desensitized prostate cancer cells to AA, while blocking CREB1 phosphorylation resensitized AA-resistant cells to AA. AA treatment increases intracellular cyclic AMP (cAMP) levels, induces kinases activity, and leads to the phosphorylation of CREB1, which may subsequently augment the essential role of the CBP/p300 complex in AA-resistant cells because AA-resistant cells exhibit a relatively higher sensitivity to CBP/p300 inhibitors. Further pharmacokinetics studies demonstrated that AA significantly synergizes with CBP/p300 inhibitors in limiting the growth of prostate cancer cells. CONCLUSIONS Our studies suggest that AA treatment upregulates pCREB1, which enhances CBP/p300 activity, leading to global gene expression alterations, subsequently resulting in drug resistance development. Combining AA with therapies targeting resistance mechanisms may provide a more effective treatment strategy.
Collapse
Affiliation(s)
- Wenting Pan
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zhouwei Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hannah Kimball
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Fangfang Qu
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kyler Berlind
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Konrad H Stopsack
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gwo-Shu Mary Lee
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Toni K Choueiri
- Lank Center for Genitourinary Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
117
|
Yang S, Jiang W, Yang W, Yang C, Yang X, Chen K, Hu Y, Shen G, Lu L, Cheng F, Zhang F, Rao J, Wang X. Epigenetically modulated miR-1224 suppresses the proliferation of HCC through CREB-mediated activation of YAP signaling pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:944-958. [PMID: 33614242 PMCID: PMC7868928 DOI: 10.1016/j.omtn.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Mounting evidence has demonstrated that microRNA-1224 (miR-1224) is commonly downregulated and serves as a tumor suppressor in multiple malignancies. However, the role and mechanisms responsible for miR-1224 in hepatocellular carcinoma (HCC) remain unclear. In this study, we found that the expression of miR-1224 was downregulated in HCC. Low miR-1224 expression was associated with poor clinicopathologic features and short overall survival. Moreover, the methylation status of putative CpG islands was also found to be an important part in the modulation of miR-1224 expression. miR-1224 could induce HCC cells to arrest in G0/G1 phase and inhibited the proliferation of HCC cells both in vitro and in vivo. Mechanistic investigation showed that by binding with cyclic AMP (cAMP)-response element binding protein (CREB) miR-1224 could repress the transcription and the activation of Yes-associated protein (YAP) signaling pathway. Furthermore, the expression of miR-1224 was inhibited by CREB through EZH2-mediated histone 3 lysine 27 (H3K27me3) on miR-1224 promoter, thus forming a positive feedback circuit. Our findings identify a miR-1224/CREB feedback loop for HCC progression and that blocking this circuit may represent a promising target for HCC treatment.
Collapse
Affiliation(s)
- Shikun Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Wei Jiang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China.,Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 210500, China
| | - Wenjie Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Chao Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Xinchen Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Keyan Chen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Yuanchang Hu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Gefenqiang Shen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Ling Lu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Feng Cheng
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Feng Zhang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Jianhua Rao
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210029, China
| |
Collapse
|
118
|
Abstract
PURPOSE OF REVIEW Neuroendocrine prostate cancer (NEPC) is an aggressive histologic subtype of prostate cancer that most commonly arises in later stages of prostate cancer as a mechanism of treatment resistance. The poor prognosis of NEPC is attributed in part to late diagnosis and a lack of effective therapeutic agents. Here, we review the clinical and molecular features of NEPC based on recent studies and outline future strategies and directions. RECENT FINDINGS NEPC can arise "de novo" but most commonly develops as a result of lineage plasticity whereby prostate cancer cells adopt alternative lineage programs as a means to bypass therapy. Dependence on androgen receptor (AR) signaling is lost as tumors progress from a prostate adenocarcinoma to a NEPC histology, typically manifested by the downregulation of AR, PSA, and PSMA expression in tumors. Genomic analyses from patient biopsies combined with preclinical modeling have pointed to loss of tumor suppressors RB1 and TP53 as key facilitators of lineage plasticity. Activation of oncogenic drivers combined with significant epigenetic changes (e.g., EZH2 overexpression, DNA methylation) further drives tumor proliferation and expression of downstream neuronal and neuroendocrine lineage pathways controlled in part by pioneer and lineage determinant transcription factors (e.g., SOX2, ASCL1, BRN2). These biologic insights have provided a framework for the study of this subgroup of advanced prostate cancers and have started to provide rationale for the development of biomarker-driven therapeutic strategies. Further study of the dynamic process that leads to NEPC is required for the development of effective strategies to identify and treat patients developing lineage plasticity as a mechanism of treatment resistance.
Collapse
|
119
|
Long Z, Deng L, Li C, He Q, He Y, Hu X, Cai Y, Gan Y. Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Cell Death Dis 2021; 12:46. [PMID: 33414441 PMCID: PMC7790822 DOI: 10.1038/s41419-020-03326-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
The rising of a highly aggressive subtype of castration-resistant prostate cancer (CRPC) named treatment-induced neuroendocrine prostate cancer (t-NEPC) after androgen deprivation therapy (ADT) is well known for its features of the neuroendocrine differentiation (NED) and androgen receptor (AR) independence. However, t-NEPC is still largely unknown. Here, we found that EHF is notably depressed in t-NEPC tumors, patient-derived xenografts, transgenic mice, and cell models. Results from cell lines uncovered that ADT represses EHF expression, which is required for the ADT-induced NED. Mechanism dissection revealed that ADT decreases the EHF transcription via relieving the AR binding to different androgen-responsive elements, which then promotes the expression and enzymatic activity of enhancer of zeste homolog 2 (EZH2), consequently catalyzing tri-methylation lysine 27 of histone H3 for transcriptional repression of its downstream genes to promote the NED. Furthermore, preclinical studies from cell and mice models proved that recovery of EHF expression or using EZH2 inhibitor can attenuate aggressive properties of CRPC cells, hinder the progression of t-NEPC, and promote the response of CPRC cells to enzalutamide. Together, we elucidate that the ADT/AR/EHF/EZH2 signaling is required for the ADT-enhanced NED and plays a critical role in the progression of t-NEPC.
Collapse
Affiliation(s)
- Zhi Long
- Department of Urology, Andrology Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Liang Deng
- Department of Urology, Andrology Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Chao Li
- Department of Urology, Andrology Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qiangrong He
- Department of Urology, Andrology Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiheng Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yi Cai
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
120
|
Fernandes RC, Toubia J, Townley S, Hanson AR, Dredge BK, Pillman KA, Bert AG, Winter JM, Iggo R, Das R, Obinata D, Sandhu S, Risbridger GP, Taylor RA, Lawrence MG, Butler LM, Zoubeidi A, Gregory PA, Tilley WD, Hickey TE, Goodall GJ, Selth LA. Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine Transdifferentiation in Prostate Cancer. Cell Rep 2021; 34:108585. [PMID: 33406413 DOI: 10.1016/j.celrep.2020.108585] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/23/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Potent therapeutic inhibition of the androgen receptor (AR) in prostate adenocarcinoma can lead to the emergence of neuroendocrine prostate cancer (NEPC), a phenomenon associated with enhanced cell plasticity. Here, we show that microRNA-194 (miR-194) is a regulator of epithelial-neuroendocrine transdifferentiation. In clinical prostate cancer samples, miR-194 expression and activity were elevated in NEPC and inversely correlated with AR signaling. miR-194 facilitated the emergence of neuroendocrine features in prostate cancer cells, a process mediated by its ability to directly target a suite of genes involved in cell plasticity. One such target was FOXA1, which encodes a transcription factor with a vital role in maintaining the prostate epithelial lineage. Importantly, a miR-194 inhibitor blocked epithelial-neuroendocrine transdifferentiation and inhibited the growth of cell lines and patient-derived organoids possessing neuroendocrine features. Overall, our study reveals a post-transcriptional mechanism regulating the plasticity of prostate cancer cells and provides a rationale for targeting miR-194 in NEPC.
Collapse
Affiliation(s)
- Rayzel C Fernandes
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - John Toubia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Frome Road, Adelaide, SA 5005, Australia
| | - Scott Townley
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Adrienne R Hanson
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5005, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5005, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5005, Australia
| | - Jean M Winter
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Richard Iggo
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Institut Bergonié Unicancer, INSERM U1218, Bordeaux, France
| | - Rajdeep Das
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Transplant Immunology Laboratory, Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo 173-8610, Japan; Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Monash University, Clayton, VIC 3168, Australia
| | -
- Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Monash University, Clayton, VIC 3168, Australia; Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Shahneen Sandhu
- Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Monash University, Clayton, VIC 3168, Australia; Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3000, Australia
| | - Renea A Taylor
- Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia; Department of Physiology, Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Monash University, Clayton, VIC 3168, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Monash Partners Comprehensive Cancer Consortium, Monash Biomedicine Discovery Institute, Prostate Cancer Research Group, Monash University, Clayton, VIC 3168, Australia; Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lisa M Butler
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Philip A Gregory
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5005, Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5005, Australia; School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories and Freemasons Foundation Centre for Men's Health, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
121
|
Labanca E, Bizzotto J, Sanchis P, Anselmino N, Yang J, Shepherd PDA, Paez A, Antico-Arciuch V, Lage-Vickers S, Hoang AG, Tang X, Raso MG, Titus M, Efstathiou E, Cotignola J, Araujo J, Logothetis C, Vazquez E, Navone N, Gueron G. Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel. Oncogene 2021; 40:6284-6298. [PMID: 34584218 PMCID: PMC8566229 DOI: 10.1038/s41388-021-02008-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Prostate cancer (PCa) that progresses after androgen deprivation therapy (ADT) remains incurable. The underlying mechanisms that account for the ultimate emergence of resistance to ADT, progressing to castrate-resistant prostate cancer (CRPC), include those that reactivate androgen receptor (AR), or those that are entirely independent or cooperate with androgen signaling to underlie PCa progression. The intricacy of metabolic pathways associated with PCa progression spurred us to develop a metabolism-centric analysis to assess the metabolic shift occurring in PCa that progresses with low AR expression. We used PCa patient-derived xenografts (PDXs) to assess the metabolic changes after castration of tumor-bearing mice and subsequently confirmed main findings in human donor tumor that progressed after ADT. We found that relapsed tumors had a significant increase in fatty acids and ketone body (KB) content compared with baseline. We confirmed that critical ketolytic enzymes (ACAT1, OXCT1, BDH1) were dysregulated after castrate-resistant progression. Further, these enzymes are increased in the human donor tissue after progressing to ADT. In an in silico approach, increased ACAT1, OXCT1, BDH1 expression was also observed for a subset of PCa patients that relapsed with low AR and ERG (ETS-related gene) expression. Further, expression of these factors was also associated with decreased time to biochemical relapse and decreased progression-free survival. Our studies reveal the key metabolites fueling castration resistant progression in the context of a partial or complete loss of AR dependence.
Collapse
Affiliation(s)
- Estefania Labanca
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Juan Bizzotto
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Pablo Sanchis
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Nicolas Anselmino
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jun Yang
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Peter D. A. Shepherd
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Alejandra Paez
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina ,grid.7345.50000 0001 0056 1981Unidad de Transferencia Genética, Instituto de Oncología “Angel H Roffo”, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Antico-Arciuch
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Sofia Lage-Vickers
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Anh G. Hoang
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ximing Tang
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Maria Gabriela Raso
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Mark Titus
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Eleni Efstathiou
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Javier Cotignola
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - John Araujo
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Christopher Logothetis
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Elba Vazquez
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Nora Navone
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Geraldine Gueron
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| |
Collapse
|
122
|
Wang Y, Chen J, Wu Z, Ding W, Gao S, Gao Y, Xu C. Mechanisms of enzalutamide resistance in castration-resistant prostate cancer and therapeutic strategies to overcome it. Br J Pharmacol 2020; 178:239-261. [PMID: 33150960 DOI: 10.1111/bph.15300] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second most common malignancy in men and androgen deprivation therapy is the first-line therapy. However, most cases will eventually develop castration-resistant prostate cancer after androgen deprivation therapy treatment. Enzalutamide is a second-generation androgen receptor antagonist approved by the Food and Drug Administration to treat patients with castration-resistant prostate cancer. Unfortunately, patients receiving enzalutamide treatment will ultimately develop resistance via various complicated mechanisms. This review examines the emerging information on these resistance mechanisms, including androgen receptor-related signalling pathways, glucocorticoid receptor-related pathways and metabolic effects. Notably, lineage plasticity and phenotype switching, gene polymorphisms and the relationship between microRNAs and drug resistance are addressed. Furthermore, potential therapeutic strategies for enzalutamide-resistant castration-resistant prostate cancer treatment are suggested, which can help discover more effective and specific regimens to overcome enzalutamide resistance.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiyuan Chen
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhengjie Wu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shen Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
123
|
Wang P, Zeng Z, Lin C, Wang J, Xu W, Ma W, Xiang Q, Liu H, Liu SL. Thrombospondin-1 as a Potential Therapeutic Target: Multiple Roles in Cancers. Curr Pharm Des 2020; 26:2116-2136. [PMID: 32003661 DOI: 10.2174/1381612826666200128091506] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/27/2020] [Indexed: 01/16/2023]
Abstract
Thrombospondin-1, an extracellular matrix protein, is the first identified natural angiogenesis inhibitor. Thrombospondin-1 participates in a great number of physiological and pathological processes, including cell-cell and cell-matrix interactions via a number of cell receptors, including CD36 and CD47, which plays a vital role in mediating inflammation and performs a promoting effect in pulmonary arterial vasculopathy and diabetes. Thrombospondin-1 consists of six domains, which combine with different molecules and participate in various functions in cancers, serving as a critical member in diverse pathways in cancers. Thrombospondin-1 works as a cancer promotor in some pathways but as a cancer suppressor in others, which makes it highly possible that its erroneous functioning might lead to opposite effects. Therefore, subdividing the roles of thrombospondin-1 and distinguishing them in cancers are necessary. Complex structure and multiple roles take disadvantage of the research and application of thrombospondin-1. Compared with the whole thrombospondin-1 protein, each thrombospondin- 1 active peptide performs an uncomplicated structure and, nevertheless, a specific role. In other words, various thrombospondin-1 active peptides may function differently. For instance, thrombospondin-1 could both promote and inhibit glioblastoma, which is significantly inhibited by the three type I repeats, a thrombospondin-1 active peptide but promoted by the fragment 167-569, a thrombospondin-1 active peptide consisting of the procollagen homology domain and the three type I repeats. Further studies of the functions of thrombospondin-1 active peptides and applying them reasonably are necessary. In addition to mediating cancerogenesis, thrombospondin-1 is also affected by cancer development, as reflected by its expression in plasma and the cancer tissue. Therefore, thrombospondin-1 may be a potential biomarker for pre-clinical and clinical application. This review summarizes findings on the multiple roles of thrombospondin-1 in cancer processes, with a focus on its use as a potential therapeutic target.
Collapse
Affiliation(s)
- Pengfei Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Zheng Zeng
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Jiali Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenwen Xu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Wenqing Ma
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Qian Xiang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2N 4N1, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Heilongjiang, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
124
|
Liang F, Zhang H, Cheng D, Gao H, Wang J, Yue J, Zhang N, Wang J, Wang Z, Zhao B. Ablation of LGR4 signaling enhances radiation sensitivity of prostate cancer cells. Life Sci 2020; 265:118737. [PMID: 33171177 DOI: 10.1016/j.lfs.2020.118737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022]
Abstract
AIM Our previous study has shown that leucine-rich repeat containing GPCR-4 (LGR4, or GPR48) LGR4 plays a role in cell migration, invasion, proliferation and apoptosis of prostate cancer (PCa). In this study, we aimed to explore whether LGR4 would affect radiation response in PCa. MATERIALS AND METHODS LGR4 expression was silenced by shRNA transfection. qRT-PCR was employed to determine mRNA expression of LGR4 and DNA damage repair genes. Western blot was used to evaluate protein expression of LGR4, RSPO1-4, androgen receptor (AR), cyclic AMP response-element binding protein (CREB1), γH2A.X, and H2A.X. Cell proliferation was detected by CCK-8 assay and apoptosis was assayed by flow cytometry. Additionally, a xenograft model was also established to validate the role of LGR4 in PCa cells after radiation. KEY FINDINGS LGR4 expression was enhanced in PCa cells by radiation treatment in dose- and time-dependent means. RSPO1-4 were also upregulated post-radiation. Furthermore, LGR4 knockdown exacerbated apoptosis, reduced cell viabilities and strengthened nuclear γH2A.X staining in AR positive PCa cells but not in AR negative cells in the presence of radiation. Likewise, LGR4 ablation diminished AR and CREB1 expression induced by radiation. In contrast, RSPO1 stimulation augmented cell viabilities, promoted AR and CREB1 expression, and upregulated DNA repair gene expression, which could be reversed by enzalutamide, except for AR expression. Additionally, LGR4 knockdown further suppressed tumor growth and AR/CREB1 expression but enhanced γH2A.X expression in xenografts. SIGNIFICANCE In all, our study suggested that LGR4 might serve as an important regulator of radiation sensitivity in PCa.
Collapse
Affiliation(s)
- Fang Liang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China.
| | - Hao Zhang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Duo Cheng
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Hui Gao
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Junyong Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Junmin Yue
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Nan Zhang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Jingjing Wang
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Zhaoyang Wang
- Department of Urology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| | - Beibei Zhao
- Department of Oncology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou Central Hospital, Zhengzhou, China
| |
Collapse
|
125
|
Ton AT, Singh K, Morin H, Ban F, Leblanc E, Lee J, Lallous N, Cherkasov A. Dual-Inhibitors of N-Myc and AURKA as Potential Therapy for Neuroendocrine Prostate Cancer. Int J Mol Sci 2020; 21:ijms21218277. [PMID: 33167327 PMCID: PMC7663809 DOI: 10.3390/ijms21218277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Resistance to androgen-receptor (AR) directed therapies is, among other factors, associated with Myc transcription factors that are involved in development and progression of many cancers. Overexpression of N-Myc protein in prostate cancer (PCa) leads to its transformation to advanced neuroendocrine prostate cancer (NEPC) that currently has no approved treatments. N-Myc has a short half-life but acts as an NEPC stimulator when it is stabilized by forming a protective complex with Aurora A kinase (AURKA). Therefore, dual-inhibition of N-Myc and AURKA would be an attractive therapeutic avenue for NEPC. Following our computer-aided drug discovery approach, compounds exhibiting potent N-Myc specific inhibition and strong anti-proliferative activity against several N-Myc driven cell lines, were identified. Thereafter, we have developed dual inhibitors of N-Myc and AURKA through structure-based drug design approach by merging our novel N-Myc specific chemical scaffolds with fragments of known AURKA inhibitors. Favorable binding modes of the designed compounds to both N-Myc and AURKA target sites have been predicted by docking. A promising lead compound, 70812, demonstrated low-micromolar potency against both N-Myc and AURKA in vitro assays and effectively suppressed NEPC cell growth.
Collapse
|
126
|
Akoto T, Bhagirath D, Saini S. MicroRNAs in treatment-induced neuroendocrine differentiation in prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:804-818. [PMID: 33426506 PMCID: PMC7793563 DOI: 10.20517/cdr.2020.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a condition commonly associated with men worldwide. Androgen deprivation therapy remains one of the targeted therapies. However, after some years, there is biochemical recurrence and metastatic progression into castration-resistant prostate cancer (CRPC). CRPC cases are treated with second-line androgen deprivation therapy, after which, these CRPCs transdifferentiate to form neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. NEPC arises via a reversible transdifferentiation process, known as neuroendocrine differentiation (NED), which is associated with altered expression of lineage markers such as decreased expression of androgen receptor and increased expression of neuroendocrine lineage markers including enolase 2, chromogranin A and synaptophysin. The etiological factors and molecular basis for NED are poorly understood, contributing to a lack of adequate molecular biomarkers for its diagnosis and therapy. Therefore, there is a need to fully understand the underlying molecular basis for this cancer. Recent studies have shown that microRNAs (miRNAs) play a key epigenetic role in driving therapy-induced NED in prostate cancer. In this review, we briefly describe the role of miRNAs in prostate cancer and CRPCs, discuss some key players in NEPCs and elaborate on miRNA dysregulation as a key epigenetic process that accompanies therapy-induced NED in metastatic CRPC. This understanding will contribute to better clinical management of the disease.
Collapse
Affiliation(s)
- Theresa Akoto
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA 30912, USA
| | - Divya Bhagirath
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
127
|
Palanisamy N, Yang J, Shepherd PDA, Li-Ning-Tapia EM, Labanca E, Manyam GC, Ravoori MK, Kundra V, Araujo JC, Efstathiou E, Pisters LL, Wan X, Wang X, Vazquez ES, Aparicio AM, Carskadon SL, Tomlins SA, Kunju LP, Chinnaiyan AM, Broom BM, Logothetis CJ, Troncoso P, Navone NM. The MD Anderson Prostate Cancer Patient-derived Xenograft Series (MDA PCa PDX) Captures the Molecular Landscape of Prostate Cancer and Facilitates Marker-driven Therapy Development. Clin Cancer Res 2020; 26:4933-4946. [PMID: 32576626 PMCID: PMC7501166 DOI: 10.1158/1078-0432.ccr-20-0479] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/08/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Advances in prostate cancer lag behind other tumor types partly due to the paucity of models reflecting key milestones in prostate cancer progression. Therefore, we develop clinically relevant prostate cancer models. EXPERIMENTAL DESIGN Since 1996, we have generated clinically annotated patient-derived xenografts (PDXs; the MDA PCa PDX series) linked to specific phenotypes reflecting all aspects of clinical prostate cancer. RESULTS We studied two cell line-derived xenografts and the first 80 PDXs derived from 47 human prostate cancer donors. Of these, 47 PDXs derived from 22 donors are working models and can be expanded either as cell lines (MDA PCa 2a and 2b) or PDXs. The histopathologic, genomic, and molecular characteristics (androgen receptor, ERG, and PTEN loss) maintain fidelity with the human tumor and correlate with published findings. PDX growth response to mouse castration and targeted therapy illustrate their clinical utility. Comparative genomic hybridization and sequencing show significant differences in oncogenic pathways in pairs of PDXs derived from different areas of the same tumor. We also identified a recurrent focal deletion in an area that includes the speckle-type POZ protein-like (SPOPL) gene in PDXs derived from seven human donors of 28 studied (25%). SPOPL is a SPOP paralog, and SPOP mutations define a molecular subclass of prostate cancer. SPOPL deletions are found in 7% of The Cancer Genome Atlas prostate cancers, which suggests that our cohort is a reliable platform for targeted drug development. CONCLUSIONS The MDA PCa PDX series is a dynamic resource that captures the molecular landscape of prostate cancers progressing under novel treatments and enables optimization of prostate cancer-specific, marker-driven therapy.
Collapse
Affiliation(s)
- Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jun Yang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter D A Shepherd
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elsa M Li-Ning-Tapia
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Murali K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vikas Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John C Araujo
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Louis L Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xinhai Wan
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xuemei Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elba S Vazquez
- CONICET-Universidad de Buenos Aires. Instituto de Quimica Biologica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Ana M Aparicio
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shannon L Carskadon
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lakshmi P Kunju
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nora M Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
128
|
Kaur H, Samarska I, Lu J, Faisal F, Maughan BL, Murali S, Asrani K, Alshalalfa M, Antonarakis ES, Epstein JI, Joshu CE, Schaeffer EM, Mosquera JM, Lotan TL. Neuroendocrine differentiation in usual-type prostatic adenocarcinoma: Molecular characterization and clinical significance. Prostate 2020; 80:1012-1023. [PMID: 32649013 PMCID: PMC9524879 DOI: 10.1002/pros.24035] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Small cell neuroendocrine (NE) carcinomas of the prostate classically lose androgen receptor (AR) expression, may harbor loss of the RB1, TP53, and PTEN tumor suppressor genes, and are associated with a poor prognosis. However usual-type adenocarcinomas may also contain areas of NE differentiation, and in this context the molecular features and biological significance are less certain. METHODS We examined the molecular phenotype and oncologic outcomes of primary prostate adenocarcinomas with ≥5% NE differentiation (≥5% chromogranin A-positive NE cells in any given tumor spot on tissue microarray) using three independent study sets: a set of tumors with paneth cell-like NE differentiation (n = 26), a retrospective case-cohort of intermediate- and high-risk patients enriched for adverse outcomes (n = 267), and primary tumors from a retrospective series of men with eventual castration-resistant metastatic prostate cancer (CRPC) treated with abiraterone or enzalutamide (n = 55). RESULTS Benign NE cells expressed significantly lower quantified AR levels compared with paired benign luminal cells (P < .001). Similarly, paneth-like NE carcinoma cells or carcinoma cells expressing chromogranin A expressed significantly lower quantified AR levels than paired non-NE carcinoma cells (P < .001). Quantified ERG protein expression, was also lower in chromogranin A-labeled adenocarcinoma cells compared with unlabeled cells (P < .001) and tumors with NE differentiation showed lower gene expression scores for AR activity compared with those without. Despite evidence of lower AR signaling, adenocarcinomas with NE differentiation did not differ by prevalence of TP53 missense mutations, or PTEN or RB1 loss, compared with those without NE differentiation. Finally, NE differentiation was not associated with time to metastasis in intermediate- and high-risk patients (P = .6 on multivariate analysis), nor with progression-free survival in patients with CRPC treated with abiraterone or enzalutamide (P = .9). CONCLUSION NE differentiation in usual-type primary prostate adenocarcinoma is a molecularly and clinically distinct form of lineage plasticity from that occurring in small cell NE carcinoma.
Collapse
Affiliation(s)
- Harsimar Kaur
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Iryna Samarska
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Farzana Faisal
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Benjamin L. Maughan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sanjana Murali
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kaushal Asrani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Jonathan I. Epstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Corinne E. Joshu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Edward M. Schaeffer
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
129
|
Integrated Dissection of lncRNA-Perturbated Triplets Reveals Novel Prognostic Signatures Across Cancer Types. Int J Mol Sci 2020; 21:ijms21176087. [PMID: 32846981 PMCID: PMC7503457 DOI: 10.3390/ijms21176087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNA (lncRNA)/microRNA(miRNA)/mRNA triplets contribute to cancer biology. However, identifying significative triplets remains a major challenge for cancer research. The dynamic changes among factors of the triplets have been less understood. Here, by integrating target information and expression datasets, we proposed a novel computational framework to identify the triplets termed as “lncRNA-perturbated triplets”. We applied the framework to five cancer datasets in The Cancer Genome Atlas (TCGA) project and identified 109 triplets. We showed that the paired miRNAs and mRNAs were widely perturbated by lncRNAs in different cancer types. LncRNA perturbators and lncRNA-perturbated mRNAs showed significantly higher evolutionary conservation than other lncRNAs and mRNAs. Importantly, the lncRNA-perturbated triplets exhibited high cancer specificity. The pan-cancer perturbator OIP5-AS1 had higher expression level than that of the cancer-specific perturbators. These lncRNA perturbators were significantly enriched in known cancer-related pathways. Furthermore, among the 25 lncRNA in the 109 triplets, lncRNA SNHG7 was identified as a stable potential biomarker in lung adenocarcinoma (LUAD) by combining the TCGA dataset and two independent GEO datasets. Results from cell transfection also indicated that overexpression of lncRNA SNHG7 and TUG1 enhanced the expression of the corresponding mRNA PNMA2 and CDC7 in LUAD. Our study provides a systematic dissection of lncRNA-perturbated triplets and facilitates our understanding of the molecular roles of lncRNAs in cancers.
Collapse
|
130
|
Wu Y, Gao Y, Dou X, Yue J. Metastatic Castration-Resistant Prostate Cancer with Neuroendocrine Transformation and BRCA 1 Germ-Line Mutation: A Case Report and Literature Review. Onco Targets Ther 2020; 13:8049-8054. [PMID: 32848424 PMCID: PMC7429217 DOI: 10.2147/ott.s264347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
A 63-year-old man with a significantly high prostate-specific antigen level was diagnosed via pathology to have advanced prostate adenocarcinoma due to multiple lung metastases. He was then treated with androgen deprivation therapy (ADT) comprising bicalutamide and goserelin. Only after 6 months of stable disease, the cancer progressed and the drug was changed to abiraterone; however, no significant therapeutic effect was observed and the disease was considered as castration-resistant prostate cancer. The histopathologic analysis of the biopsied metastatic lymph node confirmed small-cell neuroendocrine carcinoma, and genetic testing revealed BRCA1 germ-line mutation. The oral PARP inhibitor olaparib was used and achieved a partial tumor response over a period of 2.5 months. Meanwhile, palliative radiotherapy was performed for pain control in the sacrococcygeal region with complete symptom relief. The combination chemotherapy strategy of etoposide and cisplatin was used after the failure of olaparib and achieved pain alleviation in the left leg. The patient received one cycle of this chemotherapy strategy and eventually died of a rapid tumor progression, respiratory failure, and heart failure on April 27, 2019.
Collapse
Affiliation(s)
- Yinhang Wu
- Department of Radiation Oncology, Shandong Cancer Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yongsheng Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xue Dou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| |
Collapse
|
131
|
Down-regulation of ADRB2 expression is associated with small cell neuroendocrine prostate cancer and adverse clinical outcomes in castration-resistant prostate cancer. Urol Oncol 2020; 38:931.e9-931.e16. [PMID: 32624423 DOI: 10.1016/j.urolonc.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/13/2020] [Accepted: 06/02/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVES The net oncogenic effect of β2-adrenergic receptor ADRB2, whose downstream elements induce neuroendocrine differentiation and whose expression is regulated by EZH2, is unclear. ADRB2 expression and associated clinical outcomes in metastatic castration-resistant prostate cancer (mCRPC) are unknown. METHODS AND MATERIALS This was a retrospective analysis of a multi-center, prospectively enrolled cohort of mCRPC patients. Metastatic biopsies were obtained at progression, and specimens underwent laser capture microdissection and RNA-seq. ADRB2 expression was stratified by histology and clustering based on unsupervised hierarchical transcriptome analysis and correlated with EZH2 expression; an external dataset was used for validation. The association between ADRB2 expression and overall survival (OS) was assessed by log-rank test and a multivariable Cox proportional hazard model. RESULTS One hundred and twenty-seven patients with progressive mCRPC had sufficient metastatic tumor for RNA-seq. ADRB2 expression was lowest in the small cell-enriched transcriptional cluster (P < 0.01) and correlated inversely with EZH2 expression (r = -0.28, P < 0.01). These findings were validated in an external cohort enriched for neuroendocrine differentiation. Patients with tumors harboring low ADRB2 expression (lowest quartile) had a shorter median OS than those with higher (9.5 vs. 20.5 months, P = 0.02). In multivariable analysis, low ADRB2 expression was associated with a trend toward shorter OS (HR for death = 1.54, 95%CI 0.98-2.44). Conversely, higher expression of upstream transcriptional regulator EZH2 was associated with shortened OS (HR for death = 3.01, 95%CI 1.12-8.09). CONCLUSIONS Low ADRB2 expression is associated with neuroendocrine differentiation and is associated with shortened survival. EZH2 is a potential therapeutic target for preventing neuroendocrine transdifferentiation and improving outcomes in mCRPC. Further studies of agents targeting β-adrenergic signaling are warranted.
Collapse
|
132
|
Kessel K, Seifert R, Weckesser M, Roll W, Humberg V, Schlack K, Bögemann M, Bernemann C, Rahbar K. Molecular analysis of circulating tumor cells of metastatic castration-resistant Prostate Cancer Patients receiving 177Lu-PSMA-617 Radioligand Therapy. Theranostics 2020; 10:7645-7655. [PMID: 32685010 PMCID: PMC7359074 DOI: 10.7150/thno.44556] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Rationale: Lu-177-PSMA-617 radioligand therapy (RLT) is currently under approval for treatment of metastatic castration resistant prostate cancer (mCRPC) patients with late stage disease. However, previous studies demonstrated both heterogeneity of prostate specific membrane antigen (PSMA) expression, as well as response to PSMA treatment among mCRPC patients. Thus, there is an unmet need for identifying predictive parametres prior or under PSMA-RLT treatment. We therefore aimed to correlate several clinical and molecular parameters with response to PSMA treatment in a cohort of mCRPC patients undergoing PSMA RLT followed by a detailed analysis of promising candidates. Methods: Nineteen patients, median age 68.8 years (range: 56.9 - 83.3) with mCRPC were included in this study. We performed baseline analysis of clinical parameters based on PSMA PET/CT, (metabolic tumor volume (MTV), total tumor volume (TTV)), serum PSA, ALP, LDH and gene expression analysis of circulating tumor cells (expression of AR full length (AR-FL), AR splice variant 7 (AR-V7), PSA and PSMA) as well as common markers for neuroendocrine differentiation (NED). Results: Patients presented with bone, lymph node, and visceral metastases (89%, 68%, and 21%, respectively). All patients were pretreated with docetaxel, either abiraterone or enzalutamide, or both. Biochemical response in terms of PSA decline ≥50 or ≥30% was observed in 42% and 63%, respectively. There were significant correlations between PSA and PSMA mRNA expression, as well as tumor volumes (both MTV and TTV), AR-FL and AR-V7 mRNA expression. However, there was no correlation with response to PSMA treatment. Furthermore, none of these parameters was significantly correlated with baseline serum PSA values. Common NED markers were shown to be specifically high expressed and revealed impact on OS independent from AR-V7 gene expression. Conclusion: We demonstrate that AR-FL and its splice variant AR-V7 might serve as prognostic biomarkers displaying high tumor burden in mCRPC patient prior to PSMA-RLT. Contrary, PSMA, which has been discussed as a biomarker for PSMA targeted treatment, does not display strong prognostic ability - at least on the mRNA level. Surprisingly, none of these parameters correlates to response to PSMA treatment. In contrast, commom NED markers such as SYP and ENO2 as well as FOXA1 expression level seem to predict OS, but not PFS, more reliably. We admit that a limitation of our study is the focus on mRNA expression of potential biomarkers only. Further investigations analyzing the potential role of protein expression of these markers are therefore warranted.
Collapse
|
133
|
Zhang C, Yu Y, Ma L, Fu P. Histamine H3 Receptor Promotes Cell Survival via Regulating PKA/CREB/CDKN1A Signal Pathway in Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:3765-3776. [PMID: 32440145 PMCID: PMC7213428 DOI: 10.2147/ott.s250655] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Background The histamine H3 receptor (HRH3) is mainly expressed in areas of the brain involved in the regulation of the release of various neurotransmitters. Recent studies have shown that HRH3 expression is increased in several types of carcinomas. However, the functional roles and underlying molecular mechanism by which HRH3 regulates cell survival in hepatocellular carcinoma (HCC) remain unknown. Methods The mRNA and protein expression level of target genes were evaluated by qRT-PCR, Western blot and immunohistochemistry, respectively. Cell viability and cell proliferation activity were assessed by MTS assay and EdU incorporation assay. Cell apoptosis and cell cycle were assessed by flow cytometry analysis. A xenograft mouse model was constructed to investigate the effect of HRH3 on tumor growth in vivo. Results Our results indicated that HRH3 was significantly upregulated in HCC, which promoted cell survival by accelerating cell proliferation and inhibiting cell apoptosis. Our results also showed that HRH3 in HCC downregulated the expression of cyclin-dependent kinase inhibitor p21 (CDKN1A) to promote G1-S phase transition by inactivating the cAMP/PKA/CREB pathway, which finally contributed to the malignant growth of HCC. Conclusion Our findings indicated that HRH3 functioned in promoting HCC survival by inactivating the cAMP/PKA/CREB pathway to downregulate CDKN1A expression. Thus, HRH3 might serve as a potential therapeutic target in HCC treatment.
Collapse
Affiliation(s)
- Chunle Zhang
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Yang Yu
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Liang Ma
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| | - Ping Fu
- Kidney Research Laboratory, Division of Nephrology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China.,Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
134
|
Ostano P, Mello-Grand M, Sesia D, Gregnanin I, Peraldo-Neia C, Guana F, Jachetti E, Farsetti A, Chiorino G. Gene Expression Signature Predictive of Neuroendocrine Transformation in Prostate Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21031078. [PMID: 32041153 PMCID: PMC7037893 DOI: 10.3390/ijms21031078] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) can arise de novo, but much more commonly occurs as a consequence of a selective pressure from androgen deprivation therapy or androgen receptor antagonists used for prostate cancer (PCa) treatment. The process is known as neuroendocrine transdifferentiation. There is little molecular characterization of NEPCs and consequently there is no standard treatment for this kind of tumors, characterized by highly metastases rates and poor survival. For this purpose, we profiled 54 PCa samples with more than 10-years follow-up for gene and miRNA expression. We divided samples into two groups (NE-like vs. AdenoPCa), according to their clinical and molecular features. NE-like tumors were characterized by a neuroendocrine fingerprint made of known neuroendocrine markers and novel molecules, including long non-coding RNAs and components of the estrogen receptor signaling. A gene expression signature able to predict NEPC was built and tested on independently published datasets. This study identified molecular features (protein-coding, long non-coding, and microRNAs), at the time of surgery, that may anticipate the NE transformation process of prostate adenocarcinoma. Our results may contribute to improving the diagnosis and treatment of this subgroup of tumors for which traditional therapy regimens do not show beneficial effects.
Collapse
Affiliation(s)
- Paola Ostano
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Maurizia Mello-Grand
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Debora Sesia
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Ilaria Gregnanin
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Caterina Peraldo-Neia
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Francesca Guana
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
| | - Elena Jachetti
- Department of Research, Molecular Immunology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Antonella Farsetti
- National Research Council - Institute of Analysis, Systems and Computer Science –CNR-IASI, 00185 Rome, Italy;
| | - Giovanna Chiorino
- Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia, via Malta 3, 13900 Biella, Italy; (P.O.); (M.M.-G.); (D.S.); (I.G.); (C.P.-N.); (F.G.)
- Correspondence:
| |
Collapse
|
135
|
Wang Z, Zhao Y, An Z, Li W. Molecular Links Between Angiogenesis and Neuroendocrine Phenotypes in Prostate Cancer Progression. Front Oncol 2020; 9:1491. [PMID: 32039001 PMCID: PMC6985539 DOI: 10.3389/fonc.2019.01491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
As a common therapy for prostate cancer, androgen deprivation therapy (ADT) is effective for the majority of patients. However, prolonged ADT promotes drug resistance and progression to an aggressive variant with reduced androgen receptor signaling, so called neuroendocrine prostate cancer (NEPC). Until present, NEPC is still poorly understood, and lethal with no effective treatments. Elevated expression of neuroendocrine related markers and increased angiogenesis are two prominent phenotypes of NEPC, and both of them are positively associated with cancers progression. However, direct molecular links between the two phenotypes in NEPC and their mechanisms remain largely unclear. Their elucidation should substantially expand our knowledge in NEPC. This knowledge, in turn, would facilitate the development of effective NEPC treatments. We recently showed that a single critical pathway regulates both ADT-enhanced angiogenesis and elevated expression of neuroendocrine markers. This pathway consists of CREB1, EZH2, and TSP1. Here, we seek new insights to identify molecules common to pathways promoting angiogenesis and neuroendocrine phenotypes in prostate cancer. To this end, our focus is to summarize the literature on proteins reported to regulate both neuroendocrine marker expression and angiogenesis as potential molecular links. These proteins, often described in separate biological contexts or diseases, include AURKA and AURKB, CHGA, CREB1, EZH2, FOXA2, GRK3, HIF1, IL-6, MYCN, ONECUT2, p53, RET, and RB1. We also present the current efforts in prostate cancer or other diseases to target some of these proteins, which warrants testing for NEPC, given the urgent unmet need in treating this aggressive variant of prostate cancer.
Collapse
Affiliation(s)
- Zheng Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Yicheng Zhao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| | - Wenliang Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, United States
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, United States
| |
Collapse
|
136
|
Cai C, Song X, Yu C. Identification of genes in hepatocellular carcinoma induced by non-alcoholic fatty liver disease. Cancer Biomark 2020; 29:69-78. [PMID: 32623384 PMCID: PMC7685598 DOI: 10.3233/cbm-190169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of mortality worldwide. In recent years, the incidence of HCC induced by NAFLD is growing rapidly. OBJECTIVE To screen for new pathogenic genes and related pathways both in NAFLD and HCC, and to explore the pathogenesis of progression from NAFLD to HCC. METHODS Gene expression microarrays (GSE74656, GSE62232) were used for identifying differentially expressed genes (DEGs). Functional enrichment and pathway enrichment analyses indicated that these DEGs were related to cell cycle and extracellular exosome, which were closely related to NAFLD and HCC development. We then used the Search Tool for the Retrieval of Interacting Genes (STRING) to establish the protein-protein interaction (PPI) network and visualized them in Cytoscape. And the overall survival (OS) analysis and gene expression validation in TCGA of hub genes was performed. RESULTS Seven hub genes, including CDK1, HSP90AA1, MAD2L1, PRKCD, ITGB3BP, CEP192, and RHOB were identified. Finally, we verified the expression level of ITGB3BP and CEP192 by quantitative real-time PCR in vitro. CONCLUSIONS The present study implied possible DEGs, especially the new gene CEP192, in the progression of NAFLD developing to HCC. Further rigorous experiments are required to verify the above results.
Collapse
Affiliation(s)
- Changzhou Cai
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Song
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chaohui Yu
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
137
|
Duan L, Chen Z, Lu J, Liang Y, Wang M, Roggero CM, Zhang QJ, Gao J, Fang Y, Cao J, Lu J, Zhao H, Dang A, Pong RC, Hernandez E, Chang CM, Hoang DT, Ahn JM, Xiao G, Wang RT, Yu KJ, Kapur P, Rizo J, Hsieh JT, Luo J, Liu ZP. Histone lysine demethylase KDM4B regulates the alternative splicing of the androgen receptor in response to androgen deprivation. Nucleic Acids Res 2019; 47:11623-11636. [PMID: 31647098 PMCID: PMC7145715 DOI: 10.1093/nar/gkz1004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 01/16/2023] Open
Abstract
Alternative splicing is emerging as an oncogenic mechanism. In prostate cancer, generation of constitutively active forms of androgen receptor (AR) variants including AR-V7 plays an important role in progression of castration-resistant prostate cancer (CRPC). AR-V7 is generated by alternative splicing that results in inclusion of cryptic exon CE3 and translation of truncated AR protein that lacks the ligand binding domain. Whether AR-V7 can be a driver for CRPC remains controversial as the oncogenic mechanism of AR-V7 activation remains elusive. Here, we found that KDM4B promotes AR-V7 and identified a novel regulatory mechanism. KDM4B is phosphorylated by protein kinase A under conditions that promote castration-resistance, eliciting its binding to the splicing factor SF3B3. KDM4B binds RNA specifically near the 5'-CE3, upregulates the chromatin accessibility, and couples the spliceosome to the chromatin. Our data suggest that KDM4B can function as a signal responsive trans-acting splicing factor and scaffold that recruits and stabilizes the spliceosome near the alternative exon, thus promoting its inclusion. Genome-wide profiling of KDM4B-regulated genes also identified additional alternative splicing events implicated in tumorigenesis. Our study defines KDM4B-regulated alternative splicing as a pivotal mechanism for generating AR-V7 and a contributing factor for CRPC, providing insight for mechanistic targeting of CRPC.
Collapse
Affiliation(s)
- Lingling Duan
- Department of Internal Medicine-Cardiology Division, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenhua Chen
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jun Lu
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Yanping Liang
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Ming Wang
- Nephrology Center of Integrated Traditional Chinese and Western Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Carlos M Roggero
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qing-Jun Zhang
- Department of Internal Medicine-Cardiology Division, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason Gao
- Department of Internal Medicine-Cardiology Division, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong Fang
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Jiazheng Cao
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen 529030, China
| | - Jian Lu
- Department of Urology, Jiangmen Hospital, Sun Yat-Sen University, Jiangmen 529030, China
| | - Hongwei Zhao
- Department of Urology, Affiliated Yantai Yuhuangding Hospital, Qingdao University Medical College, Yantai 264000, China
| | - Andrew Dang
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rey-Chen Pong
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Hernandez
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Mien Chang
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David T Hoang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Dallas, TX 75080, USA
| | - Jung-Mo Ahn
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Dallas, TX 75080, USA
| | - Guanghua Xiao
- Department of Clinical Science, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui-tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Kai-jiang Yu
- Department of Intensive Care Unit, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Payal Kapur
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Rizo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junhang Luo
- Department of Urology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Zhi-Ping Liu
- Department of Internal Medicine-Cardiology Division, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
138
|
Xie F, Fan Q, Li BX, Xiao X. Discovery of a Synergistic Inhibitor of cAMP-Response Element Binding Protein (CREB)-Mediated Gene Transcription with 666- 15. J Med Chem 2019; 62:11423-11429. [PMID: 31765143 DOI: 10.1021/acs.jmedchem.9b01207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CREB is a transcription factor implicated in the pathogenesis of multiple cancers. Targeting CREB is a promising strategy to develop potential cancer therapeutics. Previously, we identified 666-15 as a potent CREB inhibitor. Herein, we designed an ester prodrug of 666-15 through a long-range O,N-acyl transfer reaction for improved aqueous solubility. Unexpectedly, we discovered a small molecule 11 (653-47) that can potentiate the CREB inhibitory activity of 666-15 although 653-47 alone does not inhibit CREB.
Collapse
|
139
|
Wen S, Niu Y, Huang H. Posttranslational regulation of androgen dependent and independent androgen receptor activities in prostate cancer. Asian J Urol 2019; 7:203-218. [PMID: 33024699 PMCID: PMC7525085 DOI: 10.1016/j.ajur.2019.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed cancer among men in western countries. Androgen receptor (AR) signaling plays key roles in the development of PCa. Androgen deprivation therapy (ADT) remains the standard therapy for advanced PCa. In addition to its ligand androgen, accumulating evidence indicates that posttranscriptional modification is another important mechanism to regulate AR activities during the progression of PCa, especially in castration resistant prostate cancer (CRPC). To date, a number of posttranscriptional modifications of AR have been identified, including phosphorylation (e.g. by CDK1), acetylation (e.g. by p300 and recognized by BRD4), methylation (e.g. by EZH2), ubiquitination (e.g. by SPOP), and SUMOylation (e.g. by PIAS1). These modifications are essential for the maintenance of protein stability, nuclear localization and transcriptional activity of AR. This review summarizes posttranslational modifications that influence androgen-dependent and -independent activities of AR, PCa progression and therapy resistance. We further emphasize that in addition to androgen, posttranslational modification is another important way to regulate AR activity, suggesting that targeting AR posttranslational modifications, such as proteolysis targeting chimeras (PROTACs) of AR, represents a potential and promising alternate for effective treatment of CRPC. Potential areas to be investigated in the future in the field of AR posttranslational modifications are also discussed.
Collapse
Affiliation(s)
- Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, USA
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin Medical University, Tianjin, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, USA.,Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, USA
| |
Collapse
|
140
|
Hwang JH, Seo JH, Beshiri ML, Wankowicz S, Liu D, Cheung A, Li J, Qiu X, Hong AL, Botta G, Golumb L, Richter C, So J, Sandoval GJ, Giacomelli AO, Ly SH, Han C, Dai C, Pakula H, Sheahan A, Piccioni F, Gjoerup O, Loda M, Sowalsky AG, Ellis L, Long H, Root DE, Kelly K, Van Allen EM, Freedman ML, Choudhury AD, Hahn WC. CREB5 Promotes Resistance to Androgen-Receptor Antagonists and Androgen Deprivation in Prostate Cancer. Cell Rep 2019; 29:2355-2370.e6. [PMID: 31747605 PMCID: PMC6886683 DOI: 10.1016/j.celrep.2019.10.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022] Open
Abstract
Androgen-receptor (AR) inhibitors, including enzalutamide, are used for treatment of all metastatic castration-resistant prostate cancers (mCRPCs). However, some patients develop resistance or never respond. We find that the transcription factor CREB5 confers enzalutamide resistance in an open reading frame (ORF) expression screen and in tumor xenografts. CREB5 overexpression is essential for an enzalutamide-resistant patient-derived organoid. In AR-expressing prostate cancer cells, CREB5 interactions enhance AR activity at a subset of promoters and enhancers upon enzalutamide treatment, including MYC and genes involved in the cell cycle. In mCRPC, we found recurrent amplification and overexpression of CREB5. Our observations identify CREB5 as one mechanism that drives resistance to AR antagonists in prostate cancers.
Collapse
Affiliation(s)
- Justin H Hwang
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ji-Heui Seo
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael L Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephanie Wankowicz
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Liu
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Cheung
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ji Li
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Xintao Qiu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew L Hong
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ginevra Botta
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lior Golumb
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Jonathan So
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gabriel J Sandoval
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew O Giacomelli
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Seav Huong Ly
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Celine Han
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Chao Dai
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Anjali Sheahan
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Ole Gjoerup
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Massimo Loda
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Leigh Ellis
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Henry Long
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Eliezer M Van Allen
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew L Freedman
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Atish D Choudhury
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
141
|
Patel GK, Chugh N, Tripathi M. Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play. Cancers (Basel) 2019; 11:E1405. [PMID: 31547070 PMCID: PMC6826557 DOI: 10.3390/cancers11101405] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Our understanding of neuroendocrine prostate cancer (NEPC) has assumed a new perspective in light of the recent advances in research. Although classical NEPC is rarely seen in the clinic, focal neuroendocrine trans-differentiation of prostate adenocarcinoma occurs in about 30% of advanced prostate cancer (PCa) cases, and represents a therapeutic challenge. Even though our knowledge of the mechanisms that mediate neuroendocrine differentiation (NED) is still evolving, the role of androgen deprivation therapy (ADT) as a key driver of this phenomenon is increasingly becoming evident. In this review, we discuss the molecular, cellular, and therapeutic mediators of NED, and emphasize the role of the tumor microenvironment (TME) in orchestrating the phenotype. Understanding the role of the TME in mediating NED could provide us with valuable insights into the plasticity associated with the phenotype, and reveal potential therapeutic targets against this aggressive form of PCa.
Collapse
Affiliation(s)
- Girijesh Kumar Patel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Natasha Chugh
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Manisha Tripathi
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
142
|
Smentoch J, Szade J, Żaczek AJ, Eltze E, Semjonow A, Brandt B, Bednarz-Knoll N. Low Numbers of Vascular Vessels Correlate to Progression in Hormone-Naïve Prostate Carcinomas Undergoing Radical Prostatectomy. Cancers (Basel) 2019; 11:cancers11091356. [PMID: 31547460 PMCID: PMC6770894 DOI: 10.3390/cancers11091356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Vascularization influences tumor development by supporting the nutrition and dissemination of tumor cells. On the other hand, a low number of vascular vessels (VVlow) may induce hypoxia, accounting for selection of resistant clone(s) of tumor cells. This study aimed to evaluate the prognostic significance of vascular (VV) and lymphatic vessels (LV) in prostate cancer (PCa). Tumor samples from 400 PCa patients undergoing radical prostatectomy (RP) were prepared in duplex as tissue microarrays. Numbers of VV and LV were evaluated using immunohistochemistry detecting CD34 and podoplanin, respectively, and correlated to clinical data, biochemical recurrence (BR), and proteins analyzed in tumor cells. VVlow and LV were found in 32% and 43% of patients with informative PCa samples, respectively. VVlow correlated with a shorter time to BR 3, 5, and 10 years after RP in hormone-naïve patients (p = 0.028, p = 0.027 and p = 0.056, respectively). It was also shown to be an independent prognostic factor 5 years after surgery (multivariate analysis, p = 0.046). Tumors characterized by VVlow expressed the epithelial cell adhesion molecule, EpCAM, less frequently (p = 0.016) and revealed a borderline correlation to increased levels of tumor cell invasion marker Loxl-2 (p = 0.059). No correlations were found for LV. In summary, VVlow in hormone-naïve patients undergoing RP has prognostic potential and seems to be related to an aggressive phenotype of tumor cells.
Collapse
Affiliation(s)
- Julia Smentoch
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk 80-214, Poland;
| | - Anna J. Żaczek
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
| | - Elke Eltze
- Institute of Pathology Saarbruecken-Rastpfuhl, Saarbruecken 66113, Germany;
| | - Axel Semjonow
- Department of Urology, Prostate Center, University Clinic Münster, Münster 48149, Germany;
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Medical Centre Schleswig-Holstein, Kiel 24105, Germany;
| | - Natalia Bednarz-Knoll
- Laboratory of Cell Biology, Department of Medical Biotechnology, Medical University of Gdańsk, Gdańsk 80-211, Poland; (J.S.)
- Correspondence: ; Tel.: +48-58-349-14-34
| |
Collapse
|
143
|
Clermont PL, Ci X, Pandha H, Wang Y, Crea F. Treatment-emergent neuroendocrine prostate cancer: molecularly driven clinical guidelines. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2019. [DOI: 10.2217/ije-2019-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An increasingly recognized mechanism of prostate cancer resistance is the transdifferentiation from adenocarcinoma to treatment-emergent neuroendocrine prostate cancer (t-NEPC), an extremely aggressive malignancy. The incidence of t-NEPC has been increasing in recent years, in part due to novel treatments that target the androgen receptor pathway. While clinicians historically had very few options for t-NEPC detection and treatment, recent research has uncovered key diagnostic tools and therapeutic targets that can be translated into improved patient care. In this article, we will outline the clinical features of t-NEPC and its molecular pathogenesis. Importantly, we will also discuss recently uncovered molecularly based strategies aimed at improving the diagnosis and treatment of t-NEPC. Finally, we will propose a unified algorithm that integrates clinical and molecular information for the clinical management of t-NEPC.
Collapse
Affiliation(s)
- Pier-Luc Clermont
- Department of Medicine, Laval University, Quebec, QB, G1V 0A6, Canada
| | - Xinpei Ci
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Urology, Vancouver Prostate Centre, University of British Columbia, Vancouver, V5Z 4E6, Canada
| | - Hardev Pandha
- Department of Clinical & Experimental Medicine, Faculty of Health & Medical Science, Leggett Building, Daphne Jackson Road, University of Surrey, Guildford, GU2 7WG, UK
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Francesco Crea
- School of Life, Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| |
Collapse
|
144
|
Braadland PR, Ramberg H, Grytli HH, Urbanucci A, Nielsen HK, Guldvik IJ, Engedal A, Ketola K, Wang W, Svindland A, Mills IG, Bjartell A, Taskén KA. The β 2-Adrenergic Receptor Is a Molecular Switch for Neuroendocrine Transdifferentiation of Prostate Cancer Cells. Mol Cancer Res 2019; 17:2154-2168. [PMID: 31395667 DOI: 10.1158/1541-7786.mcr-18-0605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/25/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
The incidence of treatment-related neuroendocrine prostate cancer (t-NEPC) is rising as more potent drugs targeting the androgen signaling axis are clinically implemented. Neuroendocrine transdifferentiation (NEtD), an putative initial step in t-NEPC development, is induced by androgen-deprivation therapy (ADT) or anti-androgens, and by activation of the β2-adrenergic receptor (ADRB2) in prostate cancer cell lines. Thus, understanding whether ADRB2 is involved in ADT-initiated NEtD may assist in developing treatment strategies that can prevent or reverse t-NEPC emergence, thereby prolonging therapeutic responses. Here we found that in primary, treatment-naïve prostate cancers, ADRB2 mRNA was positively correlated with expression of luminal differentiation markers, and ADRB2 protein levels were inversely correlated with Gleason grade. ADRB2 mRNA was upregulated in metastatic prostate cancer, and progressively downregulated during ADT and t-NEPC emergence. In androgen-deprivated medium, high ADRB2 was required for LNCaP cells to undergo NEtD, measured as increased neurite outgrowth and expression of neuron differentiation and neuroendocrine genes. ADRB2 overexpression induced a neuroendocrine-like morphology in both androgen receptor (AR)-positive and -negative prostate cancer cell lines. ADRB2 downregulation in LNCaP cells increased canonical Wnt signaling, and GSK3α/β inhibition reduced the expression of neuron differentiation and neuroendocrine genes. In LNCaP xenografts, more pronounced castration-induced NEtD was observed in tumors derived from high than low ADRB2 cells. In conclusion, high ADRB2 expression is required for ADT-induced NEtD, characterized by ADRB2 downregulation and t-NEPC emergence. IMPLICATIONS: This data suggest a potential application of β-blockers to prevent cancer cells committed to a neuroendocrine lineage from evolving into t-NEPC.
Collapse
Affiliation(s)
- Peder R Braadland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Håkon Ramberg
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Helene Hartvedt Grytli
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,Department of Core Facilities, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Heidi Kristin Nielsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Jenny Guldvik
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Engedal
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Wanzhong Wang
- Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Aud Svindland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,Movember FASTMAN Centre of Excellence, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmö, Sweden.,Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmø, Sweden
| | - Kristin Austlid Taskén
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
145
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
146
|
Dysregulated Transcriptional Control in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20122883. [PMID: 31200487 PMCID: PMC6627928 DOI: 10.3390/ijms20122883] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Recent advances in whole-genome and transcriptome sequencing of prostate cancer at different stages indicate that a large number of mutations found in tumors are present in non-protein coding regions of the genome and lead to dysregulated gene expression. Single nucleotide variations and small mutations affecting the recruitment of transcription factor complexes to DNA regulatory elements are observed in an increasing number of cases. Genomic rearrangements may position coding regions under the novel control of regulatory elements, as exemplified by the TMPRSS2-ERG fusion and the amplified enhancer identified upstream of the androgen receptor (AR) gene. Super-enhancers are increasingly found to play important roles in aberrant oncogenic transcription. Several players involved in these processes are currently being evaluated as drug targets and may represent new vulnerabilities that can be exploited for prostate cancer treatment. They include factors involved in enhancer and super-enhancer function such as bromodomain proteins and cyclin-dependent kinases. In addition, non-coding RNAs with an important gene regulatory role are being explored. The rapid progress made in understanding the influence of the non-coding part of the genome and of transcription dysregulation in prostate cancer could pave the way for the identification of novel treatment paradigms for the benefit of patients.
Collapse
|
147
|
Shang Y, Li Y, Zhang Y, Wang J. ZNF436 promotes tumor cell proliferation through transcriptional activation of BCL10 in glioma. Biochem Biophys Res Commun 2019; 515:572-578. [PMID: 31178130 DOI: 10.1016/j.bbrc.2019.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/20/2023]
Abstract
Transcriptional factors (TFs) are key regulators in orchestrating gene transcription during cancer development. However, their roles in glioma remain elusive. Here, we analyzed the differential expression of TFs and identified ZNF436 is upregulated in glioblastoma and Lower Grade Glioma patients. High expression of ZNF436 is positively associated with poor overall survival and regulated by CREB1 in glioma cells. Knockdown of ZNF436 significantly abolished glioma cells proliferation in vitro. RNA sequencing revealed that ZNF436 regulates cell cycle and controlling BCL10 expression. Overexpression of BCL10 promoted glioma cells growth and rescued the malignant behavior in ZNF436-knockdown cells. High levels of BCL10 also result in a worse prognosis in glioma patients. Taken together, our findings identify the CREB1/ZNF436/BCL10 axis represents a novel, potential therapeutic target for glioma interventions.
Collapse
Affiliation(s)
- Yinwu Shang
- Department of Neurosurgery, Gansu Provincial People's Hospital, Lanzhou City, 730000, Gansu Province, China
| | - Yuchen Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yinian Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jianjun Wang
- Department of Pediatric Medicine, Gansu Provincial People's Hospital, Lanzhou City, 730000, Gansu Province, China.
| |
Collapse
|
148
|
Gorodetska I, Lukiyanchuk V, Peitzsch C, Kozeretska I, Dubrovska A. BRCA1 and EZH2 cooperate in regulation of prostate cancer stem cell phenotype. Int J Cancer 2019; 145:2974-2985. [DOI: 10.1002/ijc.32323] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/06/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz‐Zentrum Dresden ‐ Rossendorf Dresden Germany
| | - Vasyl Lukiyanchuk
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz‐Zentrum Dresden ‐ Rossendorf Dresden Germany
- Helmholtz‐Zentrum Dresden ‐ RossendorfInstitute of Radiooncology – OncoRay Dresden Germany
| | - Claudia Peitzsch
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz‐Zentrum Dresden ‐ Rossendorf Dresden Germany
- National Center for Tumor Diseases (NCT)Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz‐Zentrum Dresden ‐ Rossendorf (HZDR) Dresden Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg Germany
- German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Iryna Kozeretska
- Department of General and Medical GeneticsESC “The Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv Kyiv Ukraine
| | - Anna Dubrovska
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz‐Zentrum Dresden ‐ Rossendorf Dresden Germany
- Helmholtz‐Zentrum Dresden ‐ RossendorfInstitute of Radiooncology – OncoRay Dresden Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ) Heidelberg Germany
- German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
149
|
Abstract
PURPOSE OF REVIEW Prostate cancer (PCa) is diagnosed in one out of every nine men and is the second leading cause of cancer death among men. Although therapies targeting the androgen receptor (AR) are highly effective, development of resistance is universal and remains a major therapeutic challenge. Nonetheless, signaling via AR is frequently maintained despite standard androgen-signaling inhibition. We review the current understanding of mechanisms of resistance as well as therapeutic approaches to improving treatment of PCa via targeting of the AR. RECENT FINDINGS Resistance to AR-targeting therapies may be mediated by several mechanisms, including amplification, mutation, and alternative splicing of AR; intratumoral androgen synthesis; activation of alternative signaling pathways; and in a minority of cases, emergence of AR-independent phenotypes. Recent trials demonstrate that intensification of androgen blockade in metastatic castration-sensitive PCa can significantly improve survival. Similar strategies are being explored in earlier disease states. In addition, several other cellular signaling pathways have been identified as mechanisms of resistance, offering opportunities for cotargeted therapy. Finally, immune-based approaches are in development to complement AR-targeted therapies. SUMMARY Targeting the AR remains a critical focus in the treatment of PCa.
Collapse
Affiliation(s)
- David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
150
|
Wang KF, Chen YD, Mo LQ, Zhang Z, Liu YJ, Chen JX, Sui XB, Xie T, Wu SX. Integrated traditional Chinese and Western medicine in hepatocellular carcinoma treatment. Shijie Huaren Xiaohua Zazhi 2019; 27:459-466. [DOI: 10.11569/wcjd.v27.i7.459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As the branches of oncology become more and more detailed, its deficiencies gradually appear in clinical work in recent years. With the development of modern medicine, individualized treatment of hepatocellular carcinoma (HCC) has already been more emphasized in clinical work. This article reviews the diagnosis and treatment of HCC, which can be regarded as an organic systemic disease, based on a concept of integrated medicine. It is suggested that simply eliminating cancer lesions does not mean curing HCC. In clinical practice, it is necessary to use integrative thoughts such as basic study combined with clinical practice, medicine with pharmacy, traditional Chinese medicine with Western medicine, local with whole, etc, so as to find new integrative methods for diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Kai-Feng Wang
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| | - Yi-Dan Chen
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| | - Li-Qin Mo
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| | - Zhen Zhang
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| | - Ya-Juan Liu
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| | - Jiang-Xiang Chen
- Institute of Integrative Medicine, Hangzhou Normal University, Hangzhou 310002, Zhejiang Province, China
| | - Xin-Bing Sui
- Institute of Integrative Medicine, Hangzhou Normal University, Hangzhou 310002, Zhejiang Province, China
| | - Tian Xie
- Institute of Integrative Medicine, Hangzhou Normal University, Hangzhou 310002, Zhejiang Province, China
| | - Shi-Xiu Wu
- Department of Abdominal Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, Zhejiang Province, China
| |
Collapse
|