101
|
Anten NPR, Chen BJW. Detect thy family: Mechanisms, ecology and agricultural aspects of kin recognition in plants. PLANT, CELL & ENVIRONMENT 2021; 44:1059-1071. [PMID: 33522615 PMCID: PMC8048686 DOI: 10.1111/pce.14011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 05/21/2023]
Abstract
The phenomenon that organisms can distinguish genetically related individuals from strangers (i.e., kin recognition) and exhibit more cooperative behaviours towards their relatives (i.e., positive kin discrimination) has been documented in a wide variety of organisms. However, its occurrence in plants has been considered only recently. Despite the concerns about some methodologies used to document kin recognition, there is sufficient evidence to state that it exists in plants. Effects of kin recognition go well beyond reducing resource competition between related plants and involve interactions with symbionts (e.g., mycorrhizal networks). Kin recognition thus likely has important implications for evolution of plant traits, diversity of plant populations, ecological networks and community structures. Moreover, as kin selection may result in less competitive traits and thus greater population performance, it holds potential promise for crop breeding. Exploration of these evo-ecological and agricultural implications requires adequate control and measurements of relatedness, sufficient replication at genotypic level and comprehensive measurements of performance/fitness effects of kin discrimination. The primary questions that need to be answered are: when, where and by how much positive kin discrimination improves population performance.
Collapse
Affiliation(s)
- Niels P. R. Anten
- Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| | - Bin J. W. Chen
- College of Biology and the EnvironmentNanjing Forestry UniversityNanjingChina
| |
Collapse
|
102
|
Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng Y. Linking Plant Secondary Metabolites and Plant Microbiomes: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:621276. [PMID: 33737943 PMCID: PMC7961088 DOI: 10.3389/fpls.2021.621276] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/08/2021] [Indexed: 05/09/2023]
Abstract
Plant secondary metabolites (PSMs) play many roles including defense against pathogens, pests, and herbivores; response to environmental stresses, and mediating organismal interactions. Similarly, plant microbiomes participate in many of the above-mentioned processes directly or indirectly by regulating plant metabolism. Studies have shown that plants can influence their microbiome by secreting various metabolites and, in turn, the microbiome may also impact the metabolome of the host plant. However, not much is known about the communications between the interacting partners to impact their phenotypic changes. In this article, we review the patterns and potential underlying mechanisms of interactions between PSMs and plant microbiomes. We describe the recent developments in analytical approaches and methods in this field. The applications of these new methods and approaches have increased our understanding of the relationships between PSMs and plant microbiomes. Though the current studies have primarily focused on model organisms, the methods and results obtained so far should help future studies of agriculturally important plants and facilitate the development of methods to manipulate PSMs-microbiome interactions with predictive outcomes for sustainable crop productions.
Collapse
Affiliation(s)
- Zhiqiang Pang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Tuhong Wang
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Chunsheng Gao
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Litao Guo
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
103
|
Hickman DT, Rasmussen A, Ritz K, Birkett MA, Neve P. Review: Allelochemicals as multi-kingdom plant defence compounds: towards an integrated approach. PEST MANAGEMENT SCIENCE 2021; 77:1121-1131. [PMID: 32902160 PMCID: PMC7891363 DOI: 10.1002/ps.6076] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 05/05/2023]
Abstract
The capability of synthetic pesticides to manage weeds, insect pests and pathogens in crops has diminished due to evolved resistance. Sustainable management is thus becoming more challenging. Novel solutions are needed and, given the ubiquity of biologically active secondary metabolites in nature, such compounds require further exploration as leads for novel crop protection chemistry. Despite improving understanding of allelochemicals, particularly in terms of their potential for use in weed control, their interactions with multiple biotic kingdoms have to date largely been examined in individual compounds and not as a recurrent phenomenon. Here, multi-kingdom effects in allelochemicals are introduced by defining effects on various organisms, before exploring current understanding of the inducibility and possible ecological roles of these compounds with regard to the evolutionary arms race and dose-response relationships. Allelochemicals with functional benefits in multiple aspects of plant defence are described. Gathering these isolated areas of science under the unified umbrella of multi-kingdom allelopathy encourages the development of naturally-derived chemistries conferring defence to multiple discrete biotic stresses simultaneously, maximizing benefits in weed, insect and pathogen control, while potentially circumventing resistance. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Darwin T Hickman
- Rothamsted Research, HarpendenHertfordshireUK
- University of Nottingham, Sutton BoningtonLeicestershireUK
| | | | - Karl Ritz
- University of Nottingham, Sutton BoningtonLeicestershireUK
| | | | - Paul Neve
- Rothamsted Research, HarpendenHertfordshireUK
| |
Collapse
|
104
|
Aharon S, Fadida-Myers A, Nashef K, Ben-David R, Lati RN, Peleg Z. Genetic improvement of wheat early vigor promote weed-competitiveness under Mediterranean climate. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110785. [PMID: 33487360 DOI: 10.1016/j.plantsci.2020.110785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 05/08/2023]
Abstract
Chemical weed-control is the most effective practice for wheat, however, rapid evolution of herbicide-resistant weeds threat food-security and calls for integration of non-chemical practices. We hypothesis that integration of alternative GA-responsive dwarfing genes into elite wheat cultivars can promote early vigor and weed-competitiveness under Mediterranean climate. We develop near-isogenic lines of bread wheat cultivars with GAR dwarfing genes and evaluate them for early vigor and weed-competitiveness under various environmental and management conditions to identify promising NIL for weed-competitiveness and grain yield. While all seven NILs responded to external gibberellic acid application, they exhibited differences in early vigor. Greenhouse and field evaluations highlighted NIL OC1 (Rht8andRht12) as a promising line, with significant advantage in canopy early vigor over its parental. To facilitate accurate and continuous early vigor data collection, we applied non-destructive image-based phenotyping approaches which offers non-expensive and end-user friendly solution for selection. NIL OC1 was tested under different weed density level, infestation waves, and temperatures and highlight the complex genotypic × environmental × management interactions. Our findings demonstrate the potential of genetic modification of dwarfing genes as promising approach to improve weed-competitiveness, and serve as basis for future breeding efforts to support sustainable wheat production under semi-arid Mediterranean climate.
Collapse
Affiliation(s)
- Shlomi Aharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Aviya Fadida-Myers
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; Institute of Plant Sciences, Agricultural Research Organization (ARO)-Volcani Center, Rishon LeZion, 7528809, Israel
| | - Kamal Nashef
- Institute of Plant Sciences, Agricultural Research Organization (ARO)-Volcani Center, Rishon LeZion, 7528809, Israel
| | - Roi Ben-David
- Institute of Plant Sciences, Agricultural Research Organization (ARO)-Volcani Center, Rishon LeZion, 7528809, Israel
| | - Ran N Lati
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Newe Ya'ar Research Center, Ramat Yishay 30095, Israel.
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
105
|
Mertens D, Boege K, Kessler A, Koricheva J, Thaler JS, Whiteman NK, Poelman EH. Predictability of Biotic Stress Structures Plant Defence Evolution. Trends Ecol Evol 2021; 36:444-456. [PMID: 33468354 DOI: 10.1016/j.tree.2020.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
To achieve ecological and reproductive success, plants need to mitigate a multitude of stressors. The stressors encountered by plants are highly dynamic but typically vary predictably due to seasonality or correlations among stressors. As plants face physiological and ecological constraints in responses to stress, it can be beneficial for plants to evolve the ability to incorporate predictable patterns of stress in their life histories. Here, we discuss how plants predict adverse conditions, which plant strategies integrate predictability of biotic stress, and how such strategies can evolve. We propose that plants commonly optimise responses to correlated sequences or combinations of herbivores and pathogens, and that the predictability of these patterns is a key factor governing plant strategies in dynamic environments.
Collapse
Affiliation(s)
- Daan Mertens
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Karina Boege
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - André Kessler
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | - Noah K Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
106
|
Shen W, Zeng C, Zhang H, Zhu K, He H, Zhu W, He H, Li G, Liu J. Integrative Physiological, Transcriptional, and Metabolic Analyses Provide Insights Into Response Mechanisms of Prunus persica to Autotoxicity Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:794881. [PMID: 34975982 PMCID: PMC8714634 DOI: 10.3389/fpls.2021.794881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 05/10/2023]
Abstract
Autotoxicity is known as a critical factor in replanting problem that reduces land utilization and creates economic losses. Benzoic acid (BA) is identified as a major autotoxin in peach replant problem, and causes stunted seedling growth or even death. However, the physiological and molecular mechanisms of peach response to BA stress remain elusive. Here, we comprehensively studied the morphophysiological, transcriptional, and metabolic responses of peach plants to BA toxicity. Results showed that BA stress inhibited peach seedlings growth, decreased chlorophyll contents and fluorescence levels, as well as disturbed mineral metabolism. The contents of hydrogen peroxide, superoxide anion, and malondialdehyde, as well as the total antioxidant capacity, were significantly increased under BA stress. A total of 6,319 differentially expressed genes (DEGs) were identified after BA stress, of which the DEGs related to photosynthesis, redox, and ion metabolism were greatly changed; meanwhile, numerous stress-responsive genes (HSPs, GSTs, GR, and ABC transporters) and transcription factors (MYB, AP2/ERF, NAC, bHLH, and WRKY) were noticeably altered under BA stress. BA induced metabolic reprogramming, and 74 differentially accumulated metabolites, including amino acids and derivatives, fatty acids, organic acids, sugars, and sugar alcohols, were identified in BA-stressed roots. Furthermore, an integrated analysis of genes and metabolites indicated that most of the co-mapped KEGG pathways were enriched in amino acid and carbohydrate metabolism, which implied a disturbed carbon and nitrogen metabolism after BA stress. The findings would be insightful in elucidating the mechanisms of plant response to autotoxicity stress, and help guide crops in alleviating replant problem.
Collapse
Affiliation(s)
- Wanqi Shen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chunfa Zeng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - He Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hao He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, China
| | - Wei Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hanzi He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Guohuai Li, , orcid.org/0000-0003-1170-9157
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Junwei Liu, , orcid.org/0000-0002-8842-2253
| |
Collapse
|
107
|
Moreno JC, Mi J, Alagoz Y, Al‐Babili S. Plant apocarotenoids: from retrograde signaling to interspecific communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:351-375. [PMID: 33258195 PMCID: PMC7898548 DOI: 10.1111/tpj.15102] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 05/08/2023]
Abstract
Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non-photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants' rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, β-cyclocitral, β-cyclogeranic acid, β-ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant-plant and plant-herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis-carotene-derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication.
Collapse
Affiliation(s)
- Juan C. Moreno
- Max Planck Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1Potsdam14476Germany
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| | - Yagiz Alagoz
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Salim Al‐Babili
- Division of Biological and Environmental Sciences and EngineeringCenter for Desert Agriculturethe BioActives LabKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
108
|
Macías FA, Durán AG, Molinillo JMG. Allelopathy: The Chemical Language of Plants. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2020; 112:1-84. [PMID: 33306172 DOI: 10.1007/978-3-030-52966-6_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In Nature, the oldest method of communication between living systems is the chemical language. Plants, due to their lack of mobility, have developed the most sophisticated way of chemical communication. Despite that many examples involve this chemical communication process-allelopathy, there is still a lack of information about specific allelochemicals released into the environment, their purpose, as well as in-depth studies on the chemistry underground. These findings are critical to gain a better understanding of the role of these compounds and open up a wide range of possibilities and applications, especially in agriculture and phytomedicine. The most relevant aspects regarding the chemical language of plants, namely kind of allelochemicals, have been investigated, as well as their releasing mechanisms and their purpose will be described in this chapter.
Collapse
Affiliation(s)
- Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain.
| | - Alexandra G Durán
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain
| | - José M G Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain
| |
Collapse
|
109
|
Uchimiya M. Proton-Coupled Electron Transfers of Defense Phytochemicals in Sorghum ( Sorghum bicolor (L.) Moench). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12978-12983. [PMID: 32043892 DOI: 10.1021/acs.jafc.9b07816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) produces a range of defense phytochemicals containing a quinone core structure: sorgoleone allelochemical, flavonoid phytoalexins, and a broad spectrum of polyphenols. Those phytochemicals react with the components of cellular and agroecosystems to form stable semiquinone radicals engaging in different proton-coupled electron transfer reactions. This unique redox reactivity of plant phenolics could be used to develop bioactive food ingredients and green pesticides. To achieve those application goals, chemical phenotyping methods sensitive to quinone-semiquinone-dihydroxybenzene redox cycles (e.g., electrochemical conversion with fluorescence detection) are in demand. Chemometrics-based fingerprinting tools could facilitate on-farm screening of target traits for breeding innovations.
Collapse
Affiliation(s)
- Minori Uchimiya
- USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| |
Collapse
|
110
|
Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS One 2020; 15:e0240886. [PMID: 33064769 PMCID: PMC7567356 DOI: 10.1371/journal.pone.0240886] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.
Collapse
Affiliation(s)
- Simon Pons
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sylvie Fournier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christian Chervin
- Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP, INRA, Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- * E-mail: (VPP); (NFDF)
| | - Virginie Puech Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- * E-mail: (VPP); (NFDF)
| |
Collapse
|
111
|
Chen BJW, During HJ, Vermeulen PJ, Kroon H, Poorter H, Anten NPR. The analysis of plant root responses to nutrient concentration, soil volume and neighbour presence: Different statistical approaches reflect different underlying basic questions. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bin J. W. Chen
- College of Biology and the Environment Nanjing Forestry University Nanjing China
| | - Heinjo J. During
- Section of Ecology and Biodiversity Institute of Environmental Biology Utrecht University Utrecht The Netherlands
| | - Peter J. Vermeulen
- Centre for Crop Systems Analysis Wageningen University Wageningen The Netherlands
| | - Hans Kroon
- Department of Experimental Plant Ecology Institute for Water and Wetland Research Radboud University Nijmegen The Netherlands
| | - Hendrik Poorter
- IBG‐2 Plant Sciences Forschungszentrum Jülich GmbH Jülich Germany
- Department of Biological Sciences Macquarie University North Ryde NSW Australia
| | - Niels P. R. Anten
- Centre for Crop Systems Analysis Wageningen University Wageningen The Netherlands
| |
Collapse
|
112
|
Hazrati H, Fomsgaard IS, Kudsk P. Root-Exuded Benzoxazinoids: Uptake and Translocation in Neighboring Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10609-10617. [PMID: 32877180 DOI: 10.1021/acs.jafc.0c04245] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plants have evolved advanced chemical defense mechanisms, including root exudation, which enable them to respond to changes occurring in their surroundings rapidly. Yet, it remains unresolved how root exudation affects belowground plant-plant interactions. The objective of this study was to elucidate the fate of benzoxazinoids (BXs) exuded from the roots of rye (Secale cereale L.) plants grown with hairy vetch (Vicia villosa). A rapid method that allows nondestructive and reproducible chemical profiling of the root exudates was developed. Targeted chemical analysis with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was performed to investigate the changes in the composition and concentration of BXs in the rye plant, and its root exudate in response to cocultivation with hairy vetch. Furthermore, hairy vetch plants were screened for the possible uptake of BXs from the rhizosphere and their translocation to the shoot. Rye significantly increased the production and root exudation of BXs, in particular 2-β-d-glucopyranosyloxy-4-hydroxy-1,4-benzoxazin-3-one (DIBOA-glc) and 2-β-d-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-glc), in response to cocultivation with hairy vetch. DIBOA-glc and DIMBOA-glc were absorbed by the roots of the cocultivated hairy vetch plants and translocated to the shoots. These findings will strongly improve our understanding of the exudation of BXs from the rye plant and their role in interaction with other plant species.
Collapse
Affiliation(s)
- Hossein Hazrati
- Department of Agroecology, Aarhus University, 4200 Aarhus, Denmark
| | - Inge S Fomsgaard
- Department of Agroecology, Aarhus University, 4200 Aarhus, Denmark
| | - Per Kudsk
- Department of Agroecology, Aarhus University, 4200 Aarhus, Denmark
| |
Collapse
|
113
|
Cognition in some surprising places. Biochem Biophys Res Commun 2020; 564:150-157. [PMID: 32950231 DOI: 10.1016/j.bbrc.2020.08.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
The most widely accepted view in the biopsychological sciences is that the cognitive functions that are diagnostic of mental operations, sentience or, more commonly, consciousness emerged fairly late in evolution, most likely in the Cambrian period. Our position dovetails with James's below - subjectivity, feeling, consciousness has a much longer evolutionary history, one that goes back to the first appearance of life. The Cellular Basis of Consciousness (CBC) model is founded on the presumption that sentience and life are coterminous; that all organisms, based on inherent cellular activities via processes that take place in excitable membranes of their cells, are sentient, have subjective experiences and feelings. These, in turn, guide the context-relevant behaviors essential for their survival in often hostile environments in constant flux. The CBC framework is reductionistic, mechanistic, and calls for bottom-up research programs into the evolutionary origin of biological consciousness.
Collapse
|
114
|
Karlsson Green K, Stenberg JA, Lankinen Å. Making sense of Integrated Pest Management (IPM) in the light of evolution. Evol Appl 2020; 13:1791-1805. [PMID: 32908586 PMCID: PMC7463341 DOI: 10.1111/eva.13067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
Integrated Pest Management (IPM) is a holistic approach to combat pests (including herbivores, pathogens, and weeds) using a combination of preventive and curative actions, and only applying synthetic pesticides when there is an urgent need. Just as the recent recognition that an evolutionary perspective is useful in medicine to understand and predict interactions between hosts, diseases, and medical treatments, we argue that it is crucial to integrate an evolutionary framework in IPM to develop efficient and reliable crop protection strategies that do not lead to resistance development in herbivores, pathogens, and weeds. Such a framework would not only delay resistance evolution in pests, but also optimize each element of the management and increase the synergies between them. Here, we outline key areas within IPM that would especially benefit from a thorough evolutionary understanding. In addition, we discuss the difficulties and advantages of enhancing communication among research communities rooted in different biological disciplines and between researchers and society. Furthermore, we present suggestions that could advance implementation of evolutionary principles in IPM and thus contribute to the development of sustainable agriculture that is resilient to current and emerging pests.
Collapse
Affiliation(s)
- Kristina Karlsson Green
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Johan A. Stenberg
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Åsa Lankinen
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
115
|
Zhang B, Weston LA, Li M, Zhu X, Weston PA, Feng F, Zhang B, Zhang L, Gu L, Zhang Z. Rehmannia glutinosa Replant Issues: Root Exudate-Rhizobiome Interactions Clearly Influence Replant Success. Front Microbiol 2020; 11:1413. [PMID: 32714307 PMCID: PMC7344158 DOI: 10.3389/fmicb.2020.01413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Production of medicinal tubers of Rehmannia glutinosa is severely hindered by replanting issues. However, a mechanistic understanding of the plant-soil factors associated with replant problems is currently limited. Thus, we aimed to identify the R. glutinosa root exudates, evaluate their potential phytotoxicity and profile the interactions between the plant and its associated rhizobiome. Stereomicroscopy and liquid chromatography coupled to a quadrupole/time of flight mass spectrometer were used to monitor and identify secreted metabolites, respectively. Seedling bioassays were used to evaluate the phytotoxicity of R. glutinosa root exudates. Two complimentary experiments were performed to investigate allelochemical fate in rhizosphere soil and profile the associated microbiota. Root specific microbes were further isolated from R. glutinosa rhizosphere. Impacts of isolated strains were evaluated by co-cultivation on plate and on seedlings in tissue culture, with a focus on their pathogenicity. Interactions between key R. glutinosa root exudates and isolated rhizobiomes were investigated to understand the potential for plant-soil feedbacks. Quantification and phytotoxic analysis of metabolites released from R. glutinosa indicated catalpol was the most abundant and bioactive metabolite in root exudates. Subsequent microbial profiling in soil containing accumulated and ecologically significant levels of catalpol identified several taxa (e.g., Agromyces, Lysobacter, Pseudomonas, Fusarium) that were specifically shifted. Isolation of R. glutinosa rhizobiomes obtained several root specific strains. A significant antagonistic effect between strain Rh7 (Pseudomonas aeruginosa) and two pathogenic strains Rf1 (Fusarium oxysporum) and Rf2 (Fusarium solani) was observed. Notably, the growth of strain Rh7 and catalpol concentration showed a hormesis-like effect. Field investigation further indicated catalpol was increasingly accumulated in the rhizosphere of replanted R. glutinosa, suggesting that interactions of biocontrol agents and pathogens are likely regulated by the presence of bioactive root exudates and in turn impact the rhizo-ecological process. In summary, this research successfully monitored the release of R. glutinosa root exudates, identified several abundant bioactive R. glutinosa secreted metabolites, profiled associated root specific microbes, and investigated the plant-soil feedbacks potentially regulated by catalpol and associated rhizobiomes. Our findings provide new perspectives toward an enhanced understanding R. glutinosa replant problems.
Collapse
Affiliation(s)
- Bao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Mingjie Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaocheng Zhu
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Paul A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Fajie Feng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Liuji Zhang
- Henan Province Chinese Medicine Research Institute, Zhengzhou, China
| | - Li Gu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongyi Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
116
|
Uddin MN, Asaeda T, Shampa SH, Robinson RW. Allelopathy and its coevolutionary implications between native and non-native neighbors of invasive Cynara cardunculus L. Ecol Evol 2020; 10:7463-7475. [PMID: 32760541 PMCID: PMC7391558 DOI: 10.1002/ece3.6472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 01/10/2023] Open
Abstract
Invasive plants apply new selection pressures on neighbor plant species by different means including allelopathy. Recent evidence shows allelopathy functions as remarkably influential mediator for invaders to be successful in their invaded range. However, few studies have determined whether native and non-native species co-occurring with invaders have evolved tolerance to allelopathy. In this study, we conducted germination and growth experiments to evaluate whether co-occurring native Juncus pallidus and non-native Lolium rigidum species may evolve tolerance to the allelochemicals induced by Cyanara cardunculus in Australian agricultural fields. The test species were germinated and grown in pots filled with collected invaded and uninvaded rhizosphere soil of C. cardunculus with and without activated carbon (AC). Additionally, a separate experiment was done to differentiate the direct effects of AC on the test species. The soil properties showed invaded rhizosphere soils had higher total phenolic and lower pH compared with uninvaded soils. We found significant reduction of germination percentage and seedling growth in terms of above- and belowground biomass, and maximum plant height and root length of native in the invaded rhizosphere soil of C. cardunculus, but little effect on non-native grass species. Even soil manipulated with AC showed no significant differences in the measured parameters of non-native except aboveground biomass. Taken together, the results indicate allelochemicals induced by C. cardunculus exert more suppressive effects on native than non-native linking the coevolved tolerance of those.
Collapse
Affiliation(s)
- Md. Nazim Uddin
- Institute for Sustainable Industries and Liveable CitiesCollege of Engineering and ScienceVictoria UniversityMelbourneVic.Australia
- Department of Environmental ScienceSaitama UniversitySaitamaJapan
| | - Takashi Asaeda
- Department of Environmental ScienceSaitama UniversitySaitamaJapan
- Institute for Studies of the Global EnvironmentSophia UniversityChiyodaTokyoJapan
| | - Shahana H. Shampa
- Institute for Sustainable Industries and Liveable CitiesCollege of Engineering and ScienceVictoria UniversityMelbourneVic.Australia
| | - Randall W. Robinson
- Institute for Sustainable Industries and Liveable CitiesCollege of Engineering and ScienceVictoria UniversityMelbourneVic.Australia
| |
Collapse
|
117
|
Yamawo A, Mukai H. Outcome of interspecific competition depends on genotype of conspecific neighbours. Oecologia 2020; 193:415-423. [DOI: 10.1007/s00442-020-04694-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
|
118
|
Ehlers BK, Berg MP, Staudt M, Holmstrup M, Glasius M, Ellers J, Tomiolo S, Madsen RB, Slotsbo S, Penuelas J. Plant Secondary Compounds in Soil and Their Role in Belowground Species Interactions. Trends Ecol Evol 2020; 35:716-730. [PMID: 32414604 DOI: 10.1016/j.tree.2020.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/24/2022]
Abstract
Knowledge of the effect of plant secondary compounds (PSCs) on belowground interactions in the more diffuse community of species living outside the rhizosphere is sparse compared with what we know about how PSCs affect aboveground interactions. We illustrate here that PSCs from foliar tissue, root exudates, and leaf litter effectively influence such belowground plant-plant, plant-microorganism, and plant-soil invertebrate interactions. Climatic factors can induce PSC production and select for different plant chemical types. Therefore, climate change can alter both quantitative and qualitative PSC production, and how these compounds move in the soil. This can change the soil chemical environment, with cascading effects on both the ecology and evolution of belowground species interactions and, ultimately, soil functioning.
Collapse
Affiliation(s)
- Bodil K Ehlers
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Matty P Berg
- Community and Conservation Ecology Group, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands; Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Michael Staudt
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, EPHE, IRD, 1919 Route de Mende, 34293 Montpellier, France
| | - Martin Holmstrup
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Marianne Glasius
- Department of Chemistry and Interdisciplinary Nanoscience Center, Langelandsgade 140, 8000 Århus, Denmark
| | - Jacintha Ellers
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Sara Tomiolo
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Plant Ecology Group, Institute for Evolution and Ecology, Tübingen University, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - René B Madsen
- Department of Chemistry and Interdisciplinary Nanoscience Center, Langelandsgade 140, 8000 Århus, Denmark
| | - Stine Slotsbo
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain.
| |
Collapse
|
119
|
Chen Y, Bonkowski M, Shen Y, Griffiths BS, Jiang Y, Wang X, Sun B. Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants. MICROBIOME 2020; 8:4. [PMID: 31954405 PMCID: PMC6969408 DOI: 10.1186/s40168-019-0775-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/09/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Stress-induced hormones are essential for plants to modulate their microbiota and dynamically adjust to the environment. Despite the emphasis of the role of the phytohormone ethylene in the plant physiological response to heterospecific neighbour detection, less is known about how this activated signal mediates focal plant rhizosphere microbiota to enhance plant fitness. Here, using 3 years of peanut (Arachis hypogaea L.), a legume, and cyanide-containing cassava (Manihot esculenta Crantz) intercropping and peanut monocropping field, pot and hydroponic experiments in addition to exogenous ethylene application and soil incubation experiments, we found that ethylene, a cyanide-derived signal, is associated with the chemical identification of neighbouring cassava and the microbial re-assemblage in the peanut rhizosphere. RESULTS Ethylene production in peanut roots can be triggered by cyanide production of neighbouring cassava plants. This gaseous signal alters the microbial composition and re-assembles the microbial co-occurrence network of peanut by shifting the abundance of an actinobacterial species, Catenulispora sp., which becomes a keystone in the intercropped peanut rhizosphere. The re-assembled rhizosphere microbiota provide more available nutrients to peanut roots and support seed production. CONCLUSIONS Our findings suggest that root ethylene acts as a signal with a dual role. It plays a role in perceiving biochemical cues from interspecific neighbours, and also has a regulatory function in mediating the rhizosphere microbial assembly, thereby enhancing focal plant fitness by improving seed production. This discovery provides a promising direction to develop novel intercropping strategies for targeted manipulations of the rhizosphere microbiome through phytohormone signals. Video abstract.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71 East Beijing Road, Nanjing, 210008 China
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Yi Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, No.50 Zhonglin Street, Nanjing, 210014 China
| | - Bryan S. Griffiths
- SRUC, Crop and Soil System Research Group, West Mains Road, Edinburgh, EH93JG UK
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71 East Beijing Road, Nanjing, 210008 China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71 East Beijing Road, Nanjing, 210008 China
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No.71 East Beijing Road, Nanjing, 210008 China
| |
Collapse
|
120
|
Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS One 2020. [PMID: 33064769 DOI: 10.1101/2020.06.11.146126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.
Collapse
Affiliation(s)
- Simon Pons
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sylvie Fournier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christian Chervin
- Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP, INRA, Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Virginie Puech Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| |
Collapse
|
121
|
α-Ionone, an Apocarotenoid, Induces Plant Resistance to Western Flower Thrips, Frankliniella occidentalis, Independently of Jasmonic Acid. Molecules 2019; 25:molecules25010017. [PMID: 31861560 PMCID: PMC6982998 DOI: 10.3390/molecules25010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 11/17/2022] Open
Abstract
Apocarotenoids, such as β-cyclocitral, α-ionone, β-ionone, and loliolide, are derived from carotenes via chemical or enzymatic processes. Recent studies revealed that β-cyclocitral and loliolide play an important role in various aspects of plant physiology, such as stress responses, plant growth, and herbivore resistance. However, information on the physiological role of α-ionone is limited. We herein investigated the effects of α-ionone on plant protection against herbivore attacks. The pretreatment of whole tomato (Solanum lycopersicum) plants with α-ionone vapor decreased the survival rate of western flower thrips (Frankliniella occidentalis) without exhibiting insecticidal activity. Exogenous α-ionone enhanced the expression of defense-related genes, such as basic β-1,3-glucanase and basic chitinase genes, in tomato leaves, but not that of jasmonic acid (JA)- or loliolide-responsive genes. The pretreatment with α-ionone markedly decreased egg deposition by western flower thrips in the JA-insensitive Arabidopsis (Arabidopsis thaliana) mutant coi1-1. We also found that common cutworm (Spodoptera litura) larvae fed on α-ionone-treated tomato plants exhibited a reduction in weight. These results suggest that α-ionone induces plant resistance to western flower thrips through a different mode of action from that of JA and loliolide.
Collapse
|
122
|
Filgueiras CC, Martins AD, Pereira RV, Willett DS. The Ecology of Salicylic Acid Signaling: Primary, Secondary and Tertiary Effects with Applications in Agriculture. Int J Mol Sci 2019; 20:E5851. [PMID: 31766518 PMCID: PMC6928651 DOI: 10.3390/ijms20235851] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
The salicylic acid pathway is one of the primary plant defense pathways, is ubiquitous in vascular plants, and plays a role in rapid adaptions to dynamic abiotic and biotic stress. Its prominence and ubiquity make it uniquely suited for understanding how biochemistry within plants can mediate ecological consequences. Induction of the salicylic acid pathway has primary effects on the plant in which it is induced resulting in genetic, metabolomic, and physiologic changes as the plant adapts to challenges. These primary effects can in turn have secondary consequences for herbivores and pathogens attacking the plant. These secondary effects can both directly influence plant attackers and mediate indirect interactions between herbivores and pathogens. Additionally, stimulation of salicylic acid related defenses can affect natural enemies, predators and parasitoids, which can recruit to plant signals with consequences for herbivore populations and plant herbivory aboveground and belowground. These primary, secondary, and tertiary ecological consequences of salicylic acid signaling hold great promise for application in agricultural systems in developing sustainable high-yielding management practices that adapt to changing abiotic and biotic environments.
Collapse
|
123
|
Zuo S, Wang H, Gan LD, Shao M. Allelopathy appraisal of worm metabolites in the synergistic effect between Limnodrilus hoffmeisteri and Potamogeton malaianus on algal suppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109482. [PMID: 31398780 DOI: 10.1016/j.ecoenv.2019.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
In Chinese Lake Taihu, the algal quantity was significantly larger in summer than late spring (p < 0.01). In summer, compared with the dredged area including neither zoobenthos nor submerged macrophytes, the algal biomass and density were significantly lower in the area filled with the submerged macrophytes. Interestingly, the minimum algal bloom was observed in the combined area containing submerged macrophytes and zoobenthos, which was due to the synergistic interaction between the zoobenthos and the macrophytes. The metabolite extracts from the numerically dominant zoobenthos Limnodrilus hoffmeisteri had significant algal inhibitory effects of Microcystis aeruginosa, and displayed stimulatory effects on seed germination, seedling growth, and peroxidase activity of the prevalent submerged macrophyte Potamogeton malaianus. 27 active compounds in the worm metabolites were identified by gas chromatography-mass spectrometry (GC-MS). Among these compounds three chemicals arachidonic acid, eicosapentaenoic acid, and linoleic acid with concentrations of 13.92 ± 1.11, 10.57 ± 2.52, 2.75 ± 0.73 mg/kg dry weight, respectively, were confirmed as the typical allelochemicals with algal inhibition potential. In short, the metabolites allelopathy of L. hoffmeisteri can form and assist the synergistic effect between L. hoffmeisteri and P. malaianus on algal suppression. Thus, it is feasible to simultaneously restore submerged macrophytes and zoobenthos community in the disturbed eutrophic lakes for removing harmful algae.
Collapse
Affiliation(s)
- Shengpeng Zuo
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241003, PR China.
| | - Huimei Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241003, PR China
| | - Lin Duanduan Gan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241003, PR China
| | - Minghao Shao
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241003, PR China
| |
Collapse
|
124
|
Kong CH, Xuan TD, Khanh TD, Tran HD, Trung NT. Allelochemicals and Signaling Chemicals in Plants. Molecules 2019; 24:molecules24152737. [PMID: 31357670 PMCID: PMC6695906 DOI: 10.3390/molecules24152737] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Plants abound with active ingredients. Among these natural constituents, allelochemicals and signaling chemicals that are released into the environments play important roles in regulating the interactions between plants and other organisms. Allelochemicals participate in the defense of plants against microbial attack, herbivore predation, and/or competition with other plants, most notably in allelopathy, which affects the establishment of competing plants. Allelochemicals could be leads for new pesticide discovery efforts. Signaling chemicals are involved in plant neighbor detection or pest identification, and they induce the production and release of plant defensive metabolites. Through the signaling chemicals, plants can either detect or identify competitors, herbivores, or pathogens, and respond by increasing defensive metabolites levels, providing an advantage for their own growth. The plant-organism interactions that are mediated by allelochemicals and signaling chemicals take place both aboveground and belowground. In the case of aboveground interactions, mediated air-borne chemicals are well established. Belowground interactions, particularly in the context of soil-borne chemicals driving signaling interactions, are largely unknown, due to the complexity of plant-soil interactions. The lack of effective and reliable methods of identification and clarification their mode of actions is one of the greatest challenges with soil-borne allelochemicals and signaling chemicals. Recent developments in methodological strategies aim at the quality, quantity, and spatiotemporal dynamics of soil-borne chemicals. This review outlines recent research regarding plant-derived allelochemicals and signaling chemicals, as well as their roles in agricultural pest management. The effort represents a mechanistically exhaustive view of plant-organism interactions that are mediated by allelochemicals and signaling chemicals and provides more realistic insights into potential implications and applications in sustainable agriculture.
Collapse
Affiliation(s)
- Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Tran Dang Xuan
- Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Vietnam
- Center for Expert, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
| | - Hoang-Dung Tran
- Faculty of Biotechnology, Nguyen Tat Thanh University, Ho Chi Minh 72820, Vietnam
| | - Nguyen Thanh Trung
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
125
|
Huang W, Gfeller V, Erb M. Root volatiles in plant-plant interactions II: Root volatiles alter root chemistry and plant-herbivore interactions of neighbouring plants. PLANT, CELL & ENVIRONMENT 2019; 42:1964-1973. [PMID: 30754075 PMCID: PMC6849603 DOI: 10.1111/pce.13534] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 05/23/2023]
Abstract
Volatile organic compounds (VOCs) emitted by plant roots can influence the germination and growth of neighbouring plants. However, little is known about the effects of root VOCs on plant-herbivore interactions of neighbouring plants. The spotted knapweed (Centaurea stoebe) constitutively releases high amounts of sesquiterpenes into the rhizosphere. Here, we examine the impact of C. stoebe root VOCs on the primary and secondary metabolites of sympatric Taraxacum officinale plants and the resulting plant-mediated effects on a generalist root herbivore, the white grub Melolontha melolontha. We show that exposure of T. officinale to C.stoebe root VOCs does not affect the accumulation of defensive secondary metabolites but modulates carbohydrate and total protein levels in T. officinale roots. Furthermore, VOC exposure increases M. melolontha growth on T. officinale plants. Exposure of T. officinale to a major C. stoebe root VOC, the sesquiterpene (E)-β-caryophyllene, partially mimics the effect of the full root VOC blend on M. melolontha growth. Thus, releasing root VOCs can modify plant-herbivore interactions of neighbouring plants. The release of VOCs to increase the susceptibility of other plants may be a form of plant offense.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Plant and Watershed Ecology, Wuhan Botanical GardenChinese Academy of SciencesWuhanChina
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | | | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
126
|
Dai J, Qiu W, Wang N, Wang T, Nakanishi H, Zuo Y. From Leguminosae/Gramineae Intercropping Systems to See Benefits of Intercropping on Iron Nutrition. FRONTIERS IN PLANT SCIENCE 2019; 10:605. [PMID: 31139203 PMCID: PMC6527889 DOI: 10.3389/fpls.2019.00605] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/25/2019] [Indexed: 05/26/2023]
Abstract
To achieve sustainable development with a growing population while sustaining natural resources, a sustainable intensification of agriculture is necessary. Intercropping is useful for low-input/resource-limited agricultural systems. Iron (Fe) deficiency is a worldwide agricultural problem owing to the low solubility and bioavailability of Fe in alkaline and calcareous soils. Here, we summarize the effects of intercropping systems on Fe nutrition. Several cases showed that intercropping with graminaceous plants could be used to correct Fe nutrition of Leguminosae such as peanut and soybean or fruits such as Psidium guajava L., Citrus, grape and pear in calcareous soils. Intercropping systems have strong positive effects on the physicochemical and biochemical characteristics of soil and the microbial community due to interspecific differences and interactions in the rhizosphere. Rhizosphere interactions can increase the bioavailability of Fe with the help of phytosiderophores. Enriched microorganisms may also facilitate the Fe nutrition of crops. A peanut/maize intercropping system could help us understand the dynamics in rhizosphere and molecular mechanism. However, the role of microbiome in regulating Fe acquisition of root and the mechanisms underlying these phenomena in other intercropping system except peanut/maize need further work, which will help better utilize intercropping to increase the efficiency of Fe foraging.
Collapse
Affiliation(s)
- Jing Dai
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wei Qiu
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| | - Nanqi Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| | - Tianqi Wang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| | - Hiromi Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuanmei Zuo
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Lab of Plant-Soil Interaction, MOE, China Agricultural University, Beijing, China
| |
Collapse
|
127
|
Zhang Q, Zheng XY, Lin SX, Gu CZ, Li L, Li JY, Fang CX, He HB. Transcriptome analysis reveals that barnyard grass exudates increase the allelopathic potential of allelopathic and non-allelopathic rice (Oryza sativa) accessions. RICE (NEW YORK, N.Y.) 2019; 12:30. [PMID: 31062105 PMCID: PMC6502933 DOI: 10.1186/s12284-019-0290-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/14/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Allelopathy in rice (Oryza sativa) is a chemically induced response that is elevated by the exogenous application of chemical compounds and barnyard grass root exudates. An in-depth understanding of the response mechanisms of rice to chemical induction is necessary for the identification of target genes for increasing the allelopathic potential of rice. However, no previous studies have evaluated the transcriptomic changes associated with allelopathy in rice in response to barnyard grass exudates treatment. Thus, the aim of the present study was to reveal differentially expressed genes (DEGs) in allelopathic and non-allelopathic rice seedlings treated with barnyard grass exudates to identify target allelopathy genes. RESULTS The inhibitory effect of the culture solutions on the allelopathic rice accession PI312777 (PI) and the non-allelopathic rice accession Lemont (LE) significantly increased (P < 0.05) after treatment with barnyard grass root exudates. The RNA sequencing results revealed that 14,891 genes in PI(+B) vs. LE(+B), 12,505 genes in PI(+B) vs. PI(-B), and 5857 genes in LE(+B) vs. LE(-B) were differentially expressed following root exudates treatment. These DEGs were classified into three categories and 32 functional groups, i.e., 12 groups in the biological process category, 12 groups in the cellular component category, and eight groups in the molecular function category. There were 5857 and 2846 upregulated genes and 135 and 50 upregulated Gene Ontology terms (P < 0.05) in the biological process category in PI(+B) vs. PI(-B) and LE(+B) vs. LE(-B), respectively. These results indicated that the allelopathic accession PI is more sensitive than the non-allelopathic accession LE to exogenous root exudates treatment. Genes related to rice allelochemical-related biosynthesis pathways, particularly the shikimic acid and acetic acid pathways, were significantly differentially expressed in both rice accessions. These findings suggested that phenolic acids, fatty acids, and flavonoids, which constitute the downstream metabolites of the shikimic acid and acetic acid pathways, are significantly expressed in response to root exudates of barnyard grass. CONCLUSIONS The allelopathic potential of both rice accessions could be significantly enhanced by barnyard grass root exudates application. Furthermore, genes related to the biosynthesis pathways of reported rice allelochemicals were significantly differentially expressed in both accessions. Phenylalanine ammonia lyase was determined to be a potential target for the regulation of chemical induction.
Collapse
Affiliation(s)
- Qi Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Cangshan District Shangxiadian Road No. 15, Fuzhou, 350002, China
| | - Xin-Yu Zheng
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Cangshan District Shangxiadian Road No. 15, Fuzhou, 350002, China
| | - Shun-Xian Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Cangshan District Shangxiadian Road No. 15, Fuzhou, 350002, China
| | - Cheng-Zhen Gu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Cangshan District Shangxiadian Road No. 15, Fuzhou, 350002, China
| | - Li Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Cangshan District Shangxiadian Road No. 15, Fuzhou, 350002, China
| | - Jia-Yu Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Cangshan District Shangxiadian Road No. 15, Fuzhou, 350002, China
| | - Chang-Xun Fang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Cangshan District Shangxiadian Road No. 15, Fuzhou, 350002, China.
| | - Hai-Bin He
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Cangshan District Shangxiadian Road No. 15, Fuzhou, 350002, China.
| |
Collapse
|
128
|
Chen BJW, Hajiboland R, Bahrami-Rad S, Moradtalab N, Anten NPR. Presence of Belowground Neighbors Activates Defense Pathways at the Expense of Growth in Tobacco Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:751. [PMID: 31263473 PMCID: PMC6584819 DOI: 10.3389/fpls.2019.00751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/22/2019] [Indexed: 05/20/2023]
Abstract
Plants can detect the presence of their neighbors belowground, often responding with changes in root growth for resource competition. Recent evidence also implies that perception of neighbors may also elicit defense responses, however, the associated metabolic activities are unclear. We investigated primary and defense-related secondary metabolisms and hormone expressions in tobaccos (Nicotiana rustica) grown either with own roots or roots of another conspecifics in hydroponic condition. The results showed that non-self root interaction significantly reduced photosynthetic activity and assimilate production, leading to a reduction of growth. Non-self interaction also modified plant phenylpropanoids metabolism, yielding higher lignin content (i.e., structural resistance) at whole plant level and higher phenolics accumulation (i.e., chemical defense) in roots. All these metabolic responses were associated with enhanced expressions of phytohormones, particularly jasmonic acid, salicylic acid and cytokinin in roots and abscisic acid in leaves, at the early stage of non-self interaction. Since the presence of neighbors often increase the probability of attacks from, e.g., pathogens and pests, this defense activation may act as an adaptation of plants to these possible upcoming attacks.
Collapse
Affiliation(s)
- Bin J. W. Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Roghieh Hajiboland
- Department of Plant Science, University of Tabriz, Tabriz, Iran
- *Correspondence: Roghieh Hajiboland,
| | | | - Narges Moradtalab
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Niels P. R. Anten
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, Netherlands
| |
Collapse
|