101
|
Zhang L, Shi X, Qiu H, Liu S, Yang T, Li X, Liu X. Protein modification by short-chain fatty acid metabolites in sepsis: a comprehensive review. Front Immunol 2023; 14:1171834. [PMID: 37869005 PMCID: PMC10587562 DOI: 10.3389/fimmu.2023.1171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Sepsis is a major life-threatening syndrome of organ dysfunction caused by a dysregulated host response due to infection. Dysregulated immunometabolism is fundamental to the onset of sepsis. Particularly, short-chain fatty acids (SCFAs) are gut microbes derived metabolites serving to drive the communication between gut microbes and the immune system, thereby exerting a profound influence on the pathophysiology of sepsis. Protein post-translational modifications (PTMs) have emerged as key players in shaping protein function, offering novel insights into the intricate connections between metabolism and phenotype regulation that characterize sepsis. Accumulating evidence from recent studies suggests that SCFAs can mediate various PTM-dependent mechanisms, modulating protein activity and influencing cellular signaling events in sepsis. This comprehensive review discusses the roles of SCFAs metabolism in sepsis associated inflammatory and immunosuppressive disorders while highlights recent advancements in SCFAs-mediated lysine acylation modifications, such as substrate supplement and enzyme regulation, which may provide new pharmacological targets for the treatment of sepsis.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xinhui Shi
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Sijia Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Ting Yang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
102
|
Zogorean R, Wirtz S. The yin and yang of B cells in a constant state of battle: intestinal inflammation and inflammatory bowel disease. Front Immunol 2023; 14:1260266. [PMID: 37849749 PMCID: PMC10577428 DOI: 10.3389/fimmu.2023.1260266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, defined by a clinical relapse-remitting course. Affecting people worldwide, the origin of IBD is still undefined, arising as a consequence of the interaction between genes, environment, and microbiota. Although the root cause is difficult to identify, data clearly indicate that dysbiosis and pathogenic microbial taxa are connected with the establishment and clinical course of IBD. The composition of the microbiota is shaped by plasma cell IgA secretion and binding, while cytokines such as IL10 or IFN-γ are important fine-tuners of the immune response in the gastrointestinal environment. B cells may also influence the course of inflammation by promoting either an anti-inflammatory or a pro-inflammatory milieu. Here, we discuss IgA-producing B regulatory cells as an anti-inflammatory factor in intestinal inflammation. Moreover, we specify the context of IgA and IgG as players that can potentially participate in mucosal inflammation. Finally, we discuss the role of B cells in mouse infection models where IL10, IgA, or IgG contribute to the outcome of the infection.
Collapse
Affiliation(s)
- Roxana Zogorean
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Bavaria, Germany
| |
Collapse
|
103
|
Wang A, Li Z, Sun Z, Zhang D, Ma X. Gut-derived short-chain fatty acids bridge cardiac and systemic metabolism and immunity in heart failure. J Nutr Biochem 2023; 120:109370. [PMID: 37245797 DOI: 10.1016/j.jnutbio.2023.109370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/30/2023]
Abstract
Heart failure (HF) represents a group of complex clinical syndromes with high morbidity and mortality and has a significant global health burden. Inflammation and metabolic disorders are closely related to the development of HF, which are complex and depend on the severity and type of HF and common metabolic comorbidities such as obesity and diabetes. An increasing body of evidence indicates the importance of short-chain fatty acids (SCFAs) in regulating cardiac function. In addition, SCFAs represent a unique class of metabolites and play a distinct role in shaping systemic immunity and metabolism. In this review, we reveal the role of SCFAs as a link between metabolism and immunity, which regulate cardiac and systemic immune and metabolic systems by acting as energy substrates, inhibiting the expression of histone deacetylase (HDAC) regulated genes and activating G protein-coupled receptors (GPCRs) signaling. Ultimately cardiac efficiency is improved, cardiac inflammation alleviated and cardiac function in failing hearts enhanced. In conclusion, SCFAs represent a new therapeutic approach for HF.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhendong Li
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Zhuo Sun
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
104
|
Liu J, Zhu W, Lessing DJ, Chu W. Synthetic microbial consortia for the treatment of Clostridioides difficile infection in mice model. Microb Biotechnol 2023; 16:1985-2006. [PMID: 37602713 PMCID: PMC10527189 DOI: 10.1111/1751-7915.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023] Open
Abstract
Clostridioides difficile infection (CDI) as of recent has become a great concern to the impact on human health due to its high hazardous risk and rate of recurrence. Live bacterial therapeutics is a promising method to treat or prevent CDI. Here, a synthetic microbial consortia (SMC) B10 was constructed using probiotic strains with antibacterial and anti-quorum sensing activities, and the therapeutic effect of SMC B10 against C. difficile infection was evaluated in vitro. Compared to the model group, the treatment of SMC B10 significantly increased the survival rate. The clinical signs of mice were significantly ameliorated, especially the cecum injury, while the secretion of pro-inflammatory associated cytokines such as IL-1α, IL-6, IL-17A and TNF-α was reduced, the expression of TLR4 was inhibited, which alleviated the inflammatory response, and the expression of the tight junction protein Claudin-1 was increased, ultimately promoting the recovery of host health. The treatment of B10 restored gut microbiota dysbiosis and led to a healthy intestinal microbiota structure, significantly improved alpha diversity, suppressing potentially harmful bacteria and restoring other core bacterial species. In conclusion, SMC B10 can effectively treat CDI through modulate gut microbiota and attenuate the inflammatory response.
Collapse
Affiliation(s)
- Jinqiu Liu
- Department of Pharmaceutical Microbiology, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Wei Zhu
- Department of Pharmaceutical Microbiology, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Duncan James Lessing
- Department of Pharmaceutical Microbiology, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
105
|
Xiang Z, Wu J, Li J, Zheng S, Wei X, Xu X. Gut Microbiota Modulation: A Viable Strategy to Address Medical Needs in Hepatocellular Carcinoma and Liver Transplantation. ENGINEERING 2023; 29:59-72. [DOI: 10.1016/j.eng.2022.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
106
|
Yadav SK, Ito K, Dhib-Jalbut S. Interaction of the Gut Microbiome and Immunity in Multiple Sclerosis: Impact of Diet and Immune Therapy. Int J Mol Sci 2023; 24:14756. [PMID: 37834203 PMCID: PMC10572709 DOI: 10.3390/ijms241914756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The bidirectional communication between the gut and central nervous system (CNS) through microbiota is known as the microbiota-gut-brain axis. The brain, through the enteric neural innervation and the vagus nerve, influences the gut physiological activities (motility, mucin, and peptide secretion), as well as the development of the mucosal immune system. Conversely, the gut can influence the CNS via intestinal microbiota, its metabolites, and gut-homing immune cells. Growing evidence suggests that gut immunity is critically involved in gut-brain communication during health and diseases, including multiple sclerosis (MS). The gut microbiota can influence the development and function of gut immunity, and conversely, the innate and adaptive mucosal immunity can influence microbiota composition. Gut and systemic immunity, along with gut microbiota, are perturbed in MS. Diet and disease-modifying therapies (DMTs) can affect the composition of the gut microbial community, leading to changes in gut and peripheral immunity, which ultimately affects MS. A high-fat diet is highly associated with gut dysbiosis-mediated inflammation and intestinal permeability, while a high-fiber diet/short-chain fatty acids (SCFAs) can promote the development of Foxp3 Tregs and improvement in intestinal barrier function, which subsequently suppress CNS autoimmunity in the animal model of MS (experimental autoimmune encephalomyelitis or EAE). This review will address the role of gut immunity and its modulation by diet and DMTs via gut microbiota during MS pathophysiology.
Collapse
Affiliation(s)
- Sudhir Kumar Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (S.K.Y.); (K.I.)
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (S.K.Y.); (K.I.)
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (S.K.Y.); (K.I.)
- Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| |
Collapse
|
107
|
Correnti S, Preianò M, Fregola A, Gamboni F, Stephenson D, Savino R, D'Alessandro A, Terracciano R. Seminal plasma untargeted metabolomic and lipidomic profiling for the identification of a novel panel of biomarkers and therapeutic targets related to male infertility. Front Pharmacol 2023; 14:1275832. [PMID: 37829298 PMCID: PMC10565040 DOI: 10.3389/fphar.2023.1275832] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Male infertility occurs approximately in about 50% of all infertility cases and represents a serious concern worldwide. Traditional semen analysis alone is insufficient to diagnose male infertility. Over the past two decades, advances in omics technologies have led to the widespread application of metabolomics profiling as a valuable diagnostic tool for various diseases and disorders. Seminal plasma represents a rich and easily accessible source of metabolites surrounding spermatozoa, a milieu that provides several indispensable nutrients to sustain sperm motility and fertilization. Changes of metabolic profiles in seminal plasma reflect male reproductive tract disorders. Here, we performed seminal plasma metabolomics and lipidomics profiling to identify a new pattern of biomarkers of male infertility. Seminal plasma samples from unfertile subjects (n = 31) and fertile controls (n = 19) were analyzed using an untargeted metabolomics/lipidomics integrated approach, based on Ultra-High-Pressure Liquid Chromatography-tandem Mass Spectrometry. Partial Least Squares-Discriminant Analysis showed a distinct separation between healthy fertile men and infertile subjects. Among the 15 selected candidate biomarkers based on Variable Importance in Projection scores, phosphatidylethanolamine (PE) (18:1; 18:1) resulted with the highest score. In total, 40 molecular species showed statistically significant variations between fertile and infertile men. Heat-map and volcano plot analysis indicated that acylcarnitines, phosphatidylserine (PS) (40:2) and lactate were decreased, while PE (18:1; 18:1), Phosphatidic acid (PA) (O-19:2; 18:1), Lysophosphatidylethanolamine (LPE) (O-16:1) and Phosphatidylcholine (PC) (O-16:2; 18:1)-CH3 were increased in the infertile group. The present study is the first one to analyze the metabolomics/lipidomics dysregulation in seminal plasma between fertile and infertile individuals regardless of sub-infertility condition. Association of several metabolites/lipids dysregulation with male infertility reinforced data of previous studies performed with different approaches. In particular, we confirmed significantly decreased levels of PS and carnitines in infertile patients as well as the positive correlation with sperm motility and morphology. If validated on a larger prospective cohort, the metabolite biomarkers of infertility in seminal plasma we identified in the present study might inform novel strategies for diagnosis and interventions to overcome male infertility.
Collapse
Affiliation(s)
- Serena Correnti
- Department of Health Sciences, Magna Græcia University, Catanzaro, Italy
| | | | | | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rocco Savino
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
108
|
Staudt S, Ziegler-Martin K, Visekruna A, Slingerland J, Shouval R, Hudecek M, van den Brink M, Luu M. Learning from the microbes: exploiting the microbiome to enforce T cell immunotherapy. Front Immunol 2023; 14:1269015. [PMID: 37799719 PMCID: PMC10548881 DOI: 10.3389/fimmu.2023.1269015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
The opportunities genetic engineering has created in the field of adoptive cellular therapy for cancer are accelerating the development of novel treatment strategies using chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. The great success in the context of hematologic malignancies has made especially CAR T cell therapy a promising approach capable of achieving long-lasting remission. However, the causalities involved in mediating resistance to treatment or relapse are still barely investigated. Research on T cell exhaustion and dysfunction has drawn attention to host-derived factors that define both the immune and tumor microenvironment (TME) crucially influencing efficacy and toxicity of cellular immunotherapy. The microbiome, as one of the most complex host factors, has become a central topic of investigations due to its ability to impact on health and disease. Recent findings support the hypothesis that commensal bacteria and particularly microbiota-derived metabolites educate and modulate host immunity and TME, thereby contributing to the response to cancer immunotherapy. Hence, the composition of microbial strains as well as their soluble messengers are considered to have predictive value regarding CAR T cell efficacy and toxicity. The diversity of mechanisms underlying both beneficial and detrimental effects of microbiota comprise various epigenetic, metabolic and signaling-related pathways that have the potential to be exploited for the improvement of CAR T cell function. In this review, we will discuss the recent findings in the field of microbiome-cancer interaction, especially with respect to new trajectories that commensal factors can offer to advance cellular immunotherapy.
Collapse
Affiliation(s)
- Sarah Staudt
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kai Ziegler-Martin
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - John Slingerland
- Department of Immunology, Sloan Kettering Institute, New York, NY, United States
| | - Roni Shouval
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Marcel van den Brink
- Department of Immunology, Sloan Kettering Institute, New York, NY, United States
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
109
|
Thomas AM, Fidelle M, Routy B, Kroemer G, Wargo JA, Segata N, Zitvogel L. Gut OncoMicrobiome Signatures (GOMS) as next-generation biomarkers for cancer immunotherapy. Nat Rev Clin Oncol 2023; 20:583-603. [PMID: 37365438 PMCID: PMC11258874 DOI: 10.1038/s41571-023-00785-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
Oncogenesis is associated with intestinal dysbiosis, and stool shotgun metagenomic sequencing in individuals with this condition might constitute a non-invasive approach for the early diagnosis of several cancer types. The prognostic relevance of antibiotic intake and gut microbiota composition urged investigators to develop tools for the detection of intestinal dysbiosis to enable patient stratification and microbiota-centred clinical interventions. Moreover, since the advent of immune-checkpoint inhibitors (ICIs) in oncology, the identification of biomarkers for predicting their efficacy before starting treatment has been an unmet medical need. Many previous studies addressing this question, including a meta-analysis described herein, have led to the description of Gut OncoMicrobiome Signatures (GOMS). In this Review, we discuss how patients with cancer across various subtypes share several GOMS with individuals with seemingly unrelated chronic inflammatory disorders who, in turn, tend to have GOMS different from those of healthy individuals. We discuss findings from the aforementioned meta-analysis of GOMS patterns associated with clinical benefit from or resistance to ICIs across different cancer types (in 808 patients), with a focus on metabolic and immunological surrogate markers of intestinal dysbiosis, and propose practical guidelines to incorporate GOMS in decision-making for prospective clinical trials in immuno-oncology.
Collapse
Affiliation(s)
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Pharmacology Department, Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Quebec, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Equipe labellisée - Ligue Nationale contre le cancer, Université de Paris, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Platform for Innovative Microbiome and Translational Research (PRIME-TR), MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France.
- Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
110
|
Huang C, Mei S, Zhang X, Tian X. Inflammatory Milieu Related to Dysbiotic Gut Microbiota Promotes Tumorigenesis of Hepatocellular Carcinoma. J Clin Gastroenterol 2023; 57:782-788. [PMID: 37406184 DOI: 10.1097/mcg.0000000000001883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is an invasive primary liver cancer caused by multiple pathogenic factors and is a significant global health concern. With few effective therapeutic options, HCC is a heterogeneous carcinoma that typically arises in an inflammatory environment. Recent studies have suggested that dysbiotic gut microbiota is involved in hepatocarcinogenesis via multiple mechanisms. In this review, we discuss the effects of gut microbiota, microbial components, and microbiota-derived metabolites on the promotion and progression of HCC by feeding a persistent inflammatory milieu. In addition, we discuss the potential therapeutic modalities for HCC targeting the inflammatory status induced by gut microbiota. A better understanding of the correlation between the inflammatory milieu and gut microbiota in HCC may be beneficial for developing new therapeutic strategies and managing the disease.
Collapse
Affiliation(s)
- Caizhi Huang
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine
- Department of Laboratory Medicine, Hunan Children's Hospital
| | - Si Mei
- Department of Physiology, Hunan University of Chinese Medicine
| | - Xue Zhang
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention & Treatment, Hunan University of Chinese Medicine
| | - Xuefei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention & Treatment, Hunan University of Chinese Medicine
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
111
|
Sánchez-Quintero MJ, Delgado J, Martín Chaves L, Medina-Vera D, Murri M, Becerra-Muñoz VM, Estévez M, Crespo-Leiro MG, Paz López G, González-Jiménez A, A. G. Ranea J, Queipo-Ortuño MI, Plaza-Andrades I, Rodríguez-Capitán J, Pavón-Morón FJ, Jiménez-Navarro MF. Multi-Omics Approach Reveals Prebiotic and Potential Antioxidant Effects of Essential Oils from the Mediterranean Diet on Cardiometabolic Disorder Using Humanized Gnotobiotic Mice. Antioxidants (Basel) 2023; 12:1643. [PMID: 37627638 PMCID: PMC10451832 DOI: 10.3390/antiox12081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oils sourced from herbs commonly used in the Mediterranean diet have demonstrated advantageous attributes as nutraceuticals and prebiotics within a model of severe cardiometabolic disorder. The primary objective of this study was to assess the influences exerted by essential oils derived from thyme (Thymus vulgaris) and oregano (Origanum vulgare) via a comprehensive multi-omics approach within a gnotobiotic murine model featuring colonic microbiota acquired from patients diagnosed with coronary artery disease (CAD) and type-2 diabetes mellitus (T2DM). Our findings demonstrated prebiotic and potential antioxidant effects elicited by these essential oils. We observed a substantial increase in the relative abundance of the Lactobacillus genus in the gut microbiota, accompanied by higher levels of short-chain fatty acids and a reduction in trimethylamine N-oxide levels and protein oxidation in the plasma. Moreover, functional enrichment analysis of the cardiac tissue proteome unveiled an over-representation of pathways related to mitochondrial function, oxidative stress, and cardiac contraction. These findings provide compelling evidence of the prebiotic and antioxidant actions of thyme- and oregano-derived essential oils, which extend to cardiac function. These results encourage further investigation into the promising utility of essential oils derived from herbs commonly used in the Mediterranean diet as potential nutraceutical interventions for mitigating chronic diseases linked to CAD and T2DM.
Collapse
Grants
- PI-0170-2018, PI-0131/2020, and PI-0245-2021 Consejería de Salud y Familias-Junta de Andalucía and European Regional Development Funds/European Social Fund
- UMA20-FEDERJA-074 Universidad de Málaga, Consejería de Economía, Conocimiento, Empresas y Universidad-Junta de Andalucía and ERDF/ESF
- ProyExcel_01009 Consejería de Transformación Económica, Industria, Conocimiento y Universidades-Junta de Andalucía and ERDF/ESF
- SEC/FEC-INV-BAS 23 Sociedad Española de Cardiología and Fundación Andaluza de Cardiología
- PT20/00101 Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación-Gobierno de España
- CB16/11/00360 CIBERCV-Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación-Gobierno de España and ERDF/ESF
- Q-2918001-E Cátedra de Terapias Avanzadas en Patología Cardiovascular, Universidad de Málaga
Collapse
Affiliation(s)
- María José Sánchez-Quintero
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Josué Delgado
- Higiene y Salud Alimentaria, Faculty of Veterinary, University of Extremadura, 10003 Cáceres, Spain;
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), University of Extremadura, 10003 Cáceres, Spain;
| | - Laura Martín Chaves
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Department of Dermatology and Medicine, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Dina Medina-Vera
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Dermatology and Medicine, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Clinical Management Unit of Mental Health, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Mora Murri
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Clinical Management Unit of Endocrinology and Nutrition, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for the Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Víctor M. Becerra-Muñoz
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Mario Estévez
- Instituto Universitario de Investigación de Carne y Productos Cárnicos (IPROCAR), University of Extremadura, 10003 Cáceres, Spain;
| | - María G. Crespo-Leiro
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Service of Cardiology, Complexo Hospitalario Universitario A Coruña (CHUAC), University of A Coruña, Instituto Investigación Biomédica A Coruña (INIBIC), 15006 A Coruña, Spain
| | - Guillermo Paz López
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
| | - Andrés González-Jiménez
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
| | - Juan A. G. Ranea
- Bioinformatics, Common Support Structures (ECAI), IBIMA Plataforma BIONAND, 29590 Málaga, Spain; (G.P.L.); (A.G.-J.); (J.A.G.R.)
- Department of Molecular Biology and Biochemistry, Faculty of Science, University of Málaga, 29010 Málaga, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Intercenter Clinical Management Unit of Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
- Department of Surgical Specialties, Biochemistry, and Immunology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Isaac Plaza-Andrades
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Intercenter Clinical Management Unit of Medical Oncology, Hospitales Universitarios Regional y Virgen de la Victoria y Centro de Investigaciones Médico Sanitarias (CIMES), 29010 Málaga, Spain
| | - Jorge Rodríguez-Capitán
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Francisco Javier Pavón-Morón
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Manuel F. Jiménez-Navarro
- Biomedical Research Institute of Malaga and Nanomedicine Platform (IBIMA Plataforma BIONAND), 29590 Málaga, Spain; (M.J.S.-Q.); (L.M.C.); (D.M.-V.); (M.M.); (V.M.B.-M.); (M.I.Q.-O.); (I.P.-A.); (M.F.J.-N.)
- Heart Area, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
- Biomedical Research Network Center for Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
112
|
Alonso S, Edelblum K. Metabolic regulation of γδ intraepithelial lymphocytes. DISCOVERY IMMUNOLOGY 2023; 2:kyad011. [PMID: 38179241 PMCID: PMC10766425 DOI: 10.1093/discim/kyad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Elucidating the relationship between cellular metabolism and T cell function has substantially advanced our understanding of how T cells are regulated in response to activation. The metabolic profiles of circulating or peripheral T cells have been well-described, yet less is known regarding how complex local microenvironments shape or modulate the bioenergetic profile of tissue-resident T lymphocytes. Intraepithelial lymphocytes expressing the γδ T cell receptor (γδ IEL) provide immunosurveillance of the intestinal epithelium to limit tissue injury and microbial invasion; however, their activation and effector responses occur independently of antigen recognition. In this review, we will summarize the current knowledge regarding γδ T cell and IEL metabolic profiles and how this informs our understanding of γδ IEL metabolism. We will also discuss the role of the gut microbiota in shaping the metabolic profile of these sentinel lymphocytes, and in turn, how these bioenergetics contribute to regulation of γδ IEL surveillance behavior and effector function. Improved understanding of the metabolic processes involved in γδ IEL homeostasis and function may yield novel strategies to amplify the protective functions of these cells in the context of intestinal health and disease.
Collapse
Affiliation(s)
- Sara Alonso
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen Edelblum
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
113
|
Bugbee E, Wang AA, Gommerman JL. Under the influence: environmental factors as modulators of neuroinflammation through the IL-10/IL-10R axis. Front Immunol 2023; 14:1188750. [PMID: 37600781 PMCID: PMC10435745 DOI: 10.3389/fimmu.2023.1188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The IL-10/IL-10 receptor (IL-10R) axis plays an important role in attenuating neuroinflammation in animal models of Multiple Sclerosis (MS) and increased IL-10 has been associated with a positive response to MS disease modifying therapy. Because environmental factors play an important role in MS susceptibility and disease course, identification of environmental factors that impact the IL-10/IL-10R axis has therapeutic potential. In this review, we provide historical and updated perspectives of how IL-10R signaling impacts neuroinflammation, discuss environmental factors and intestinal microbes with known impacts on the IL-10/IL-10R axis, and provide a hypothetical model for how B cells, via their production of IL-10, may be important in conveying environmental "information" to the inflamed central nervous system.
Collapse
|
114
|
Bui TVA, Hwangbo H, Lai Y, Hong SB, Choi YJ, Park HJ, Ban K. The Gut-Heart Axis: Updated Review for The Roles of Microbiome in Cardiovascular Health. Korean Circ J 2023; 53:499-518. [PMID: 37525495 PMCID: PMC10435824 DOI: 10.4070/kcj.2023.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 08/02/2023] Open
Abstract
Cardiovascular diseases (CVDs), including coronary artery disease, stroke, heart failure, and hypertension, are the global leading causes of death, accounting for more than 30% of deaths worldwide. Although the risk factors of CVDs have been well understood and various treatment and preventive measures have been established, the mortality rate and the financial burden of CVDs are expected to grow exponentially over time due to the changes in lifestyles and increasing life expectancies of the present generation. Recent advancements in metagenomics and metabolomics analysis have identified gut microbiome and its associated metabolites as potential risk factors for CVDs, suggesting the possibility of developing more effective novel therapeutic strategies against CVD. In addition, increasing evidence has demonstrated the alterations in the ratio of Firmicutes to Bacteroidetes and the imbalance of microbial-dependent metabolites, including short-chain fatty acids and trimethylamine N-oxide, play a crucial role in the pathogenesis of CVD. However, the exact mechanism of action remains undefined to this day. In this review, we focus on the compositional changes in the gut microbiome and its related metabolites in various CVDs. Moreover, the potential treatment and preventive strategies targeting the gut microbiome and its metabolites are discussed.
Collapse
Affiliation(s)
- Thi Van Anh Bui
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Hyesoo Hwangbo
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Yimin Lai
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Kiwon Ban
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
115
|
Wu Q, Zhang Y, Wang C, Hou Y, He W, Wang L, Xiong J, Ren Z, Wang H, Sui B, Zhou D, Zhou M, Fu ZF, Zhao L. Short-Chain Fatty Acids Alleviate Vancomycin-Caused Humoral Immunity Attenuation in Rabies-Vaccinated Mice by Promoting the Generation of Plasma Cells via Akt-mTOR Pathway. J Virol 2023; 97:e0065623. [PMID: 37338411 PMCID: PMC10373539 DOI: 10.1128/jvi.00656-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Mounting evidence suggests that gut microbial composition and its metabolites, including short-chain fatty acids (SCFAs), have beneficial effects in regulating host immunogenicity to vaccines. However, it remains unknown whether and how SCFAs improve the immunogenicity of the rabies vaccine. In this study, we investigated the effect of SCFAs on the immune response to rabies vaccine in vancomycin (Vanco)-treated mice and found that oral gavage with butyrate-producing bacteria (C. butyricum) and butyrate supplementation elevated RABV-specific IgM, IgG, and virus-neutralizing antibodies (VNAs) in Vanco-treated mice. Supplementation with butyrate expanded antigen-specific CD4+ T cells and IFN-γ-secreting cells, augmented germinal center (GC) B cell recruitment, promoted plasma cells (PCs) and RABV-specific antibody-secreting cells (ASCs) generation in Vanco-treated mice. Mechanistically, butyrate enhanced mitochondrial function and activated the Akt-mTOR pathway in primary B cells isolated from Vanco-treated mice, ultimately promoting B lymphocyte-induced maturation protein-1 (Blimp-1) expression and CD138+ PCs generation. These results highlight the important role of butyrate in alleviating Vanco-caused humoral immunity attenuation in rabies-vaccinated mice and maintaining host immune homeostasis. IMPORTANCE The gut microbiome plays many crucial roles in the maintenance of immune homeostasis. Alteration of the gut microbiome and metabolites has been shown to impact vaccine efficacy. SCFAs can act as an energy source for B-cells, thereby promoting both mucosal and systemic immunity in the host by inhibiting HDACs and activation of GPR receptors. This study investigates the impact of orally administered butyrate, an SCFA, on the immunogenicity of rabies vaccines in Vanco-treated mice. The results showed that butyrate ameliorated humoral immunity by facilitating the generation of plasma cells via the Akt-mTOR in Vanco-treated mice. These findings unveil the impact of SCFAs on the immune response of the rabies vaccine and confirm the crucial role of butyrate in regulating immunogenicity to rabies vaccines in antibiotic-treated mice. This study provides a fresh insight into the relationship of microbial metabolites and rabies vaccination.
Collapse
Affiliation(s)
- Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yachun Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yarong Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Wenna He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jingyi Xiong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zeheng Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Baokun Sui
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Wuhan, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, China
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
116
|
Bittner S, Pape K, Klotz L, Zipp F. Implications of immunometabolism for smouldering MS pathology and therapy. Nat Rev Neurol 2023:10.1038/s41582-023-00839-6. [PMID: 37430070 DOI: 10.1038/s41582-023-00839-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/12/2023]
Abstract
Clinical symptom worsening in patients with multiple sclerosis (MS) is driven by inflammation compartmentalized within the CNS, which results in chronic neuronal damage owing to insufficient repair mechanisms. The term 'smouldering inflammation' summarizes the biological aspects underlying this chronic, non-relapsing and immune-mediated mechanism of disease progression. Smouldering inflammation is likely to be shaped and sustained by local factors in the CNS that account for the persistence of this inflammatory response and explain why current treatments for MS do not sufficiently target this process. Local factors that affect the metabolic properties of glial cells and neurons include cytokines, pH value, lactate levels and nutrient availability. This Review summarizes current knowledge of the local inflammatory microenvironment in smouldering inflammation and how it interacts with the metabolism of tissue-resident immune cells, thereby promoting inflammatory niches within the CNS. The discussion highlights environmental and lifestyle factors that are increasingly recognized as capable of altering immune cell metabolism and potentially responsible for smouldering pathology in the CNS. Currently approved MS therapies that target metabolic pathways are also discussed, along with their potential for preventing the processes that contribute to smouldering inflammation and thereby to progressive neurodegenerative damage in MS.
Collapse
Affiliation(s)
- Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Katrin Pape
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
117
|
McBride DA, Dorn NC, Yao M, Johnson WT, Wang W, Bottini N, Shah NJ. Short-chain fatty acid-mediated epigenetic modulation of inflammatory T cells in vitro. Drug Deliv Transl Res 2023; 13:1912-1924. [PMID: 36566262 PMCID: PMC10695156 DOI: 10.1007/s13346-022-01284-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2022] [Indexed: 12/25/2022]
Abstract
Short-chain fatty acids (SCFAs) are major metabolic products of indigestible polysaccharides in the gut and mediate the function of immune cells to facilitate homeostasis. The immunomodulatory effect of SCFAs has been attributed, at least in part, to the epigenetic modulation of immune cells through the inhibition the nucleus-resident enzyme histone deacetylase (HDAC). Among the downstream effects, SCFAs enhance regulatory T cells (Treg) over inflammatory T helper (Th) cells, including Th17 cells, which can be pathogenic. Here, we characterize the potential of two common SCFAs-butyrate and pentanoate-in modulating differentiation of T cells in vitro. We show that butyrate but not pentanoate exerts a concentration-dependent effect on Treg and Th17 differentiation. Increasing the concentration of butyrate suppresses the Th17-associated RORγtt and IL-17 and increases the expression of Treg-associated FoxP3. To effectively deliver butyrate, encapsulation of butyrate in a liposomal carrier, termed BLIPs, reduced cytotoxicity while maintaining the immunomodulatory effect on T cells. Consistent with these results, butyrate and BLIPs inhibit HDAC and promote a unique chromatin landscape in T cells under conditions that otherwise promote conversion into a pro-inflammatory phenotype. Motif enrichment analysis revealed that butyrate and BLIP-mediated suppression of Th17-associated chromatin accessibility corresponded with a marked decrease in bZIP family transcription factor binding sites. These results support the utility and further evaluation of BLIPs as an immunomodulatory agent for autoimmune disorders that are characterized by chronic inflammation and pathogenic inflammatory T cells.
Collapse
Affiliation(s)
- David A McBride
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicholas C Dorn
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mina Yao
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Wade T Johnson
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nunzio Bottini
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nisarg J Shah
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Chemical Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
118
|
Li X, An S, Luo Z, Zhou P, Wang L, Feng R. Polysaccharides from the hard shells of Juglans regia L. modulate intestinal function and gut microbiota in vivo. Food Chem 2023; 412:135592. [PMID: 36736188 DOI: 10.1016/j.foodchem.2023.135592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 12/25/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
This study aimed to investigate the modulatory effects of polysaccharides from the hard shells ofJuglans regiaL. (JRP) on intestinal function and gut microbiota of mice. The results showed that JRP could increase the colonic length and colonic index, and ameliorate the histological characteristics of colon. JRP had a positive effect on immunity of mice by improving immune organ indexes. Owing to enhancement of intestinal peristalsis and increase of colonic fecal moisture by JRP, the defecation time was significantly reduced. After gastrointestinal digestion and absorption, JRP was metabolized by intestinal microorganisms to produce short chain fatty acids, thereby lowering the pH of intestine. Through microbial community analysis, the composition of gut microbiota was modulated by JRPvia increasing theabundances of beneficial bacteriaand decreasing the richness of harmful bacteria. This study suggests that JRP can be served as an excellent prebiotic to promote intestinal health.
Collapse
Affiliation(s)
- Xiaoyu Li
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Siying An
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Zhen Luo
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Peng Zhou
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Lu Wang
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China.
| | - Ru Feng
- Nano-biotechnology Key Laboratory of Hebei Province, Skate Key Laboratory of Metastable Materials Science and Technology, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| |
Collapse
|
119
|
Mandato C, Colucci A, Lanzillo R, Staiano A, Scarpato E, Schiavo L, Operto FF, Serra MR, Di Monaco C, Napoli JS, Massa G, Vajro P. Multiple Sclerosis-Related Dietary and Nutritional Issues: An Updated Scoping Review with a Focus on Pediatrics. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1022. [PMID: 37371254 PMCID: PMC10297186 DOI: 10.3390/children10061022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
PURPOSE Lifestyle/dietetic habits play an important role in the development and progression of multiple sclerosis (MS) disease. Here, we examine the basic pathomechanisms underlying intestinal and brain barrier modifications in MS and consider diets and dietary supplementations proposed over time to complement pharmacological therapies for improving disease outcome both in adults and in children. METHODS Scoping literature search about evidence-based findings in MS-related gut-brain axis (GBA) pathophysiology and nutritional issues at all ages. FINDINGS Data show that (1) no universal best diet exists, (2) healthy/balanced diets are, however, necessary to safeguard the adequate intake of all essential nutrients, (3) diets with high intakes of fruits, vegetables, whole grains, and lean proteins that limit processed foods, sugar, and saturated fat appear beneficial for their antioxidant and anti-inflammatory properties and their ability to shape a gut microbiota that respects the gut and brain barriers, (4) obesity may trigger MS onset and/or its less favorable course, especially in pediatric-onset MS. Vitamin D and polyunsaturated fatty acids are the most studied supplements for reducing MS-associated inflammation. CONCLUSIONS Pending results from other and/or newer approaches targeting the GBA (e.g., pre- and probiotics, engineered probiotics, fecal-microbiota transplantation), accurate counseling in choosing adequate diet and maintaining physical activity remains recommended for MS prevention and management both in adults and children.
Collapse
Affiliation(s)
- Claudia Mandato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Angelo Colucci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Elena Scarpato
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Luigi Schiavo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Nutrition Section, University of Salerno, 84081 Baronissi, Salerno, Italy
| | - Francesca Felicia Operto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatric Psychiatry Section, University of Salerno, 84081 Baronissi, Salerno, Italy
| | - Maria Rosaria Serra
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Cristina Di Monaco
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neuroscience, Reproductive Science and Odontostomatology, University of Naples Federico II, 80138 Naples, Naples, Italy
| | - Julia Sara Napoli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Grazia Massa
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Pediatrics Section, University of Salerno, 84081 Baronissi, Salerno, Italy (P.V.)
| |
Collapse
|
120
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
121
|
Laragione T, Harris C, Azizgolshani N, Beeton C, Bongers G, Gulko PS. Magnesium increases numbers of Foxp3+ Treg cells and reduces arthritis severity and joint damage in an IL-10-dependent manner mediated by the intestinal microbiome. EBioMedicine 2023; 92:104603. [PMID: 37201335 PMCID: PMC10203746 DOI: 10.1016/j.ebiom.2023.104603] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a common autoimmune disease with emerging environmental and microbiome risk factors. The western diet is typically deficient in magnesium (Mg), and there is some evidence suggesting that Mg may have anti-inflammatory properties. But the actual role of Mg supplementation in arthritis or in T cell subsets has not been explored. METHODS We investigated the role of a high Mg diet in two different mouse models of RA induced with the KRN serum, and collagen-induced arthritis. We also characterized the phenotypes of splenocytes, gene expression, and an extensive intestinal microbiome analyses including fecal material transplantation (FMT). FINDINGS The high Mg diet group was significantly protected with reduced arthritis severity and joint damage, and reduced expression of IL-1β, IL-6, and TNFα. The high Mg group also had increased numbers of Foxp3+ Treg cells and IL-10-producing T cells. The high Mg protective effect disappeared in IL-10 knockout mice. FMT from the high Mg diet mice recreated the phenotypes seen in the diet-treated mice, with reduced arthritis severity, increased Foxp3+ Treg, and increased IL-10-producing T cells. Intestinal microbiome analyses using 16S rDNA sequencing revealed diet-specific changes, including reduced levels of RA-associated Prevotella in the high Mg group, while increasing levels of Bacteroides and other bacteria associated with increased production of short-chain fatty acids. Metagenomic analyses implicated additional pathways including L-tryptophan biosynthesis and arginine deiminase. INTERPRETATION We describe a new role for Mg in suppressing arthritis, in expanding Foxp3+ T reg cells and in the production of IL-10, and show that these effects are mediated by the intestinal microbiome. Our discoveries suggest a novel strategy for modifying the intestinal microbiome to treat RA and other autoimmune and inflammatory diseases. FUNDING None.
Collapse
Affiliation(s)
- Teresina Laragione
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Carolyn Harris
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Nasim Azizgolshani
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Gerold Bongers
- Microbiome Translational Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Percio S Gulko
- Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States.
| |
Collapse
|
122
|
Wang M, Huang Y, Xin M, Li T, Wang X, Fang Y, Liang S, Cai T, Xu X, Dong L, Wang C, Xu Z, Song X, Li J, Zheng Y, Sun W, Li L. The impact of microbially modified metabolites associated with obesity and bariatric surgery on antitumor immunity. Front Immunol 2023; 14:1156471. [PMID: 37266441 PMCID: PMC10230250 DOI: 10.3389/fimmu.2023.1156471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Obesity is strongly associated with the occurrence and development of many types of cancers. Patients with obesity and cancer present with features of a disordered gut microbiota and metabolism, which may inhibit the physiological immune response to tumors and possibly damage immune cells in the tumor microenvironment. In recent years, bariatric surgery has become increasingly common and is recognized as an effective strategy for long-term weight loss; furthermore, bariatric surgery can induce favorable changes in the gut microbiota. Some studies have found that microbial metabolites, such as short-chain fatty acids (SCFAs), inosine bile acids and spermidine, play an important role in anticancer immunity. In this review, we describe the changes in microbial metabolites initiated by bariatric surgery and discuss the effects of these metabolites on anticancer immunity. This review attempts to clarify the relationship between alterations in microbial metabolites due to bariatric surgery and the effectiveness of cancer treatment. Furthermore, this review seeks to provide strategies for the development of microbial metabolites mimicking the benefits of bariatric surgery with the aim of improving therapeutic outcomes in cancer patients who have not received bariatric surgery.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhong Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueke Wang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- The Second Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yini Fang
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
123
|
Zhu L, Li G, Liang Z, Qi T, Deng K, Yu J, Peng Y, Zheng J, Song Y, Chang X. Microbiota-assisted iron uptake promotes immune tolerance in the intestine. Nat Commun 2023; 14:2790. [PMID: 37188703 PMCID: PMC10185671 DOI: 10.1038/s41467-023-38444-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Iron deficiencies are the most common nonenteric syndromes observed in patients with inflammatory bowel disease, but little is known about their impacts on immune tolerance. Here we show that homeostasis of regulatory T cells in the intestine was dependent on high cellular iron levels, which were fostered by pentanoate, a short-chain fatty acid produced by intestinal microbiota. Iron deficiencies in Treg caused by the depletion of Transferrin receptor 1, a major iron transporter, result in the abrogation of Treg in the intestine and lethal autoimmune disease. Transferrin receptor 1 is required for differentiation of c-Maf+ Treg, major constituents of intestinal Treg. Mechanistically, iron enhances the translation of HIF-2α mRNA, and HIF-2α in turn induces c-Maf expression. Importantly, microbiota-produced pentanoate promotes iron uptake and Treg differentiation in the intestine. This subsequently restores immune tolerance and ameliorated iron deficiencies in mice with colitis. Our results thus reveal an association between nutrient uptake and immune tolerance in the intestine.
Collapse
Affiliation(s)
- Lizhen Zhu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Geng Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhixin Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tuan Qi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Kui Deng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiancheng Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yue Peng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jusheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yan Song
- School of Medicine, University of California San Diego, La Jolla, CA, US
| | - Xing Chang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
124
|
Bender C, Stoll D, Huch M, Weinert C, Dötsch A, Dräger H, Keller J, Kulling S, Bunzel M. Time-dependent fermentation of different structural units of commercial pectins with intestinal bacteria. Carbohydr Polym 2023; 308:120642. [PMID: 36813335 DOI: 10.1016/j.carbpol.2023.120642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Many of the proposed health-related properties of pectins are based on their fermentability in the large intestine, but detailed structure-related studies on pectin fermentation have not been reported so far. Here, pectin fermentation kinetics were studied with a focus on structurally different pectic polymers. Therefore, six commercial pectins from citrus, apple, and sugar beet were chemically characterized and fermented in in vitro fermentation assays with human fecal samples over different periods of time (0 h, 4 h, 24 h, 48 h). Structure elucidation of intermediate cleavage products showed differences in fermentation speed and/or fermentation rate among the pectins, but the order in which specific structural pectic elements were fermented was comparable across all pectins. Neutral side chains of rhamnogalacturonan type I were fermented first (between 0 and 4 h), followed by homogalacturonan units (between 0 and 24 h) and, at last, the rhamnogalacturonan type I backbone (between 4 and 48 h). This indicates that fermentation of different pectic structural units might take place in different sections of the colon, potentially affecting their nutritional properties. For the formation of different short-chain fatty acids, mainly acetate, propionate, and butyrate, and the influence on microbiota, there was no time-dependent correlation regarding the pectic subunits. However, an increase of members of the bacterial genera Faecalibacterium, Lachnoclostridium, and Lachnospira was observed for all pectins.
Collapse
Affiliation(s)
- Caroline Bender
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Dominic Stoll
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Melanie Huch
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Christoph Weinert
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Andreas Dötsch
- Federal Research Institute of Nutrition and Food, Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Karlsruhe, Germany
| | - Hannah Dräger
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Judith Keller
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sabine Kulling
- Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
125
|
Yang R, Huang BY, Wang YN, Meng Q, Guo Y, Wang S, Yin XY, Feng H, Gong M, Wang S, Niu CY, Shi Y, Shi HS. Excision of mesenteric lymph nodes alters gut microbiota and impairs social dominance in adult mice. Brain Behav 2023:e3053. [PMID: 37157948 DOI: 10.1002/brb3.3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
INTRODUCTION Mesenteric lymph nodes (MLNs) are central in immune anatomy. MLNs are associated with the composition of gut microbiota, affecting the central system and immune system. Gut microbiota was found to differ among individuals of different social hierarchies. Nowadays, excision of MLNs is more frequently involved in gastrointestinal surgery; however, the potential side effects of excision of MLNs on social dominance are still unknown. METHODS MLNs were removed from male mice (7-8 weeks old). Four weeks after MLN removal, social dominance test was performed to investigate social dominance; hippocampal and serum interleukin (IL)-1β, IL-10, and tumor necrosis factor-alpha (TNF-α) were investigated; and histopathology was used to evaluate local inflammation of the ileum. The composition of the gut microbiota was then examined to understand the possible mechanism, and finally intraperitoneal injection of IL-10 was used to validate the effect of IL-10 on social dominance. RESULTS There was a decrease in social dominance in the operation group compared to the control group, as well as a decrease in serum and hippocampal IL-10 levels, but no difference in serum and hippocampal IL-1β and TNF-α levels, and no local inflammation of the ileum after MLN removal. 16S rRNA sequencing analysis showed that the relative abundance of the class Clostridia was decreased in the operation group. This decrease was positively associated with serum IL-10 levels. Furthermore, intraperitoneal injection of IL-10 in a subset of mice increased social dominance. CONCLUSIONS Our findings suggested that MLNs contributed to maintaining social dominance, which might be associated with reduced IL-10 and the imbalance of specific flora in gut microbiota.
Collapse
Affiliation(s)
- Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Bo-Ya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ning Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Qian Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Guo
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xue-Yong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Chun-Yu Niu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Hai-Shui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
126
|
Liu XF, Shao JH, Liao YT, Wang LN, Jia Y, Dong PJ, Liu ZZ, He DD, Li C, Zhang X. Regulation of short-chain fatty acids in the immune system. Front Immunol 2023; 14:1186892. [PMID: 37215145 PMCID: PMC10196242 DOI: 10.3389/fimmu.2023.1186892] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
A growing body of research suggests that short-chain fatty acids (SCFAs), metabolites produced by intestinal symbiotic bacteria that ferment dietary fibers (DFs), play a crucial role in the health status of symbiotes. SCFAs act on a variety of cell types to regulate important biological processes, including host metabolism, intestinal function, and immune function. SCFAs also affect the function and fate of immune cells. This finding provides a new concept in immune metabolism and a better understanding of the regulatory role of SCFAs in the immune system, which impacts the prevention and treatment of disease. The mechanism by which SCFAs induce or regulate the immune response is becoming increasingly clear. This review summarizes the different mechanisms through which SCFAs act in cells. According to the latest research, the regulatory role of SCFAs in the innate immune system, including in NLRP3 inflammasomes, receptors of TLR family members, neutrophils, macrophages, natural killer cells, eosinophils, basophils and innate lymphocyte subsets, is emphasized. The regulatory role of SCFAs in the adaptive immune system, including in T-cell subsets, B cells, and plasma cells, is also highlighted. In addition, we discuss the role that SCFAs play in regulating allergic airway inflammation, colitis, and osteoporosis by influencing the immune system. These findings provide evidence for determining treatment options based on metabolic regulation.
Collapse
Affiliation(s)
- Xiao-feng Liu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Jia-hao Shao
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Yi-Tao Liao
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Li-Ning Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuan Jia
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Peng-jun Dong
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Zhi-zhong Liu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Dan-dan He
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Chao Li
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| | - Xian Zhang
- Department of Spine, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China
| |
Collapse
|
127
|
Chen C, Liu C, Zhang K, Xue W. The role of gut microbiota and its metabolites short-chain fatty acids in food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
128
|
Sun CY, Yang N, Zheng ZL, Liu D, Xu QL. T helper 17 (Th17) cell responses to the gut microbiota in human diseases. Biomed Pharmacother 2023; 161:114483. [PMID: 36906976 DOI: 10.1016/j.biopha.2023.114483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The gut microbiota colonizing the gastrointestinal tract, is an indispensable "invisible organ" that affects multiple aspects of human health. The gut microbial community has been assumed to be an important stimulus to the immune homeostasis and development, and increasing data support the role of the gut microbiota-immunity axis in autoimmune diseases. Host's immune system requires recognition tools to communicate with the gut microbial evolutionary partners. Among these microbial perceptions, T cells enable the widest spectrum of gut microbial recognition resolution. Specific gut microbiota direct the induction and differentiation of Th17 cells in intestine. However, the detailed links between the gut microbiota and Th17 cells have not been well established. In this review, we describe the generation and characterization of Th17 cells. Notably, we discuss the induction and differentiation of Th17 cells by the gut microbiota and their metabolites, as well as recent advances in our understanding of interactions between Th17 cells and the gut microbiota in human diseases. In addition, we provide the emerging evidences in support of interventions targeting the gut microbes/Th17 cells in human diseases.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Na Yang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | | | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Qi-Lin Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China.
| |
Collapse
|
129
|
Hoffman K, Brownell Z, Doyle WJ, Ochoa-Repáraz J. The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. J Autoimmun 2023; 137:102957. [PMID: 36435700 PMCID: PMC10203067 DOI: 10.1016/j.jaut.2022.102957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
The gut-associated lymphoid tissue is a primary activation site for immune responses to infection and immunomodulation. Experimental evidence using animal disease models suggests that specific gut microbes significantly regulate inflammation and immunoregulatory pathways. Furthermore, recent clinical findings indicate that gut microbes' composition, collectively named gut microbiota, is altered under disease state. This review focuses on the functional mechanisms by which gut microbes promote immunomodulatory responses that could be relevant in balancing inflammation associated with autoimmunity in the central nervous system. We also propose therapeutic interventions that target the composition of the gut microbiota as immunomodulatory mechanisms to control neuroinflammation.
Collapse
Affiliation(s)
- Kristina Hoffman
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Zackariah Brownell
- Department of Biological Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - William J Doyle
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
130
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
131
|
Tan X, Zhang R, Lan M, Wen C, Wang H, Guo J, Zhao X, Xu H, Deng P, Pi H, Yu Z, Yue R, Hu H. Integration of transcriptomics, metabolomics, and lipidomics reveals the mechanisms of doxorubicin-induced inflammatory responses and myocardial dysfunction in mice. Biomed Pharmacother 2023; 162:114733. [PMID: 37087977 DOI: 10.1016/j.biopha.2023.114733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline antineoplastic agent that has limited clinical utility due to its dose-dependent cardiotoxicity. Although the exact mechanism remains unknown, inflammatory responses have been implicated in DOX-induced cardiotoxicity (DIC). In this study, we analyzed the transcriptomic, metabolomic as well as lipidomic changes in the DOX-treated mice to explore the underlying mechanisms of DIC. We found that continuous intraperitoneal DOX injections (3 mg/kg/d) for a period of five days significantly induced cardiac dysfunction and cardiac injury in male C57BL/6 J mice (8 weeks old). This corresponded to a significant increase in the myocardial levels of IL-4, IL-6, IL-10, IL-17 and IL-12p70. Furthermore, inflammation-related genes such as Ptgs2, Il1b, Cxcl5, Cxcl1, Cxcl2, Mmp3, Ccl2, Ccl12, Nfkbia, Fos, Mapk11 and Tnf were differentially expressed in the DOX-treated group, and enriched in the IL-17 and TNF signaling pathways. Besides, amino acids, peptides, imidazoles, toluenes, hybrid peptides, fatty acids and lipids such as Hex1Cer, Cer, SM, PG and ACCa were significantly associated with the expression pattern of inflammation-related genes. In conclusion, the integration of transcriptomic, metabolomic and lipidomic data identified potential new targets and biomarkers of DIC.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Rongyi Zhang
- Department of Cardiology, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong China; Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Meide Lan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Cong Wen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hao Wang
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Junsong Guo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xuemei Zhao
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hui Xu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
132
|
Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol 2023; 20:341-350. [PMID: 36854801 PMCID: PMC10066346 DOI: 10.1038/s41423-023-00987-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Immune tolerance deletes or suppresses autoreactive lymphocytes and is established at multiple levels during the development, activation and effector phases of T and B cells. These mechanisms are cell-intrinsically programmed and critical in preventing autoimmune diseases. We have witnessed the existence of another type of immune tolerance mechanism that is shaped by lifestyle choices, such as diet, microbiome and microbial metabolites. Short-chain fatty acids (SCFAs) are the most abundant microbial metabolites in the colonic lumen and are mainly produced by the microbial fermentation of prebiotics, such as dietary fiber. This review focuses on the preventive and immunomodulatory effects of SCFAs on autoimmunity. The tissue- and disease-specific effects of dietary fiber, SCFAs and SCFA-producing microbes on major types of autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and lupus, are discussed. Additionally, their key regulatory mechanisms for lymphocyte development, tissue barrier function, host metabolism, immunity, autoantibody production, and inflammatory effector and regulatory lymphocytes are discussed. The shared and differential effects of SCFAs on different types and stages of autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
133
|
Hoffman K, Doyle WJ, Schumacher SM, Ochoa-Repáraz J. Gut microbiome-modulated dietary strategies in EAE and multiple sclerosis. Front Nutr 2023; 10:1146748. [PMID: 37063324 PMCID: PMC10090556 DOI: 10.3389/fnut.2023.1146748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Over the last few decades, the incidence of multiple sclerosis has increased as society's dietary habits have switched from a whole foods approach to a high fat, high salt, low dietary fiber, and processed food diet, termed the "Western diet." Environmental factors, such as diet, could play a role in the pathogenesis of multiple sclerosis due to gut microbiota alterations, gut barrier leakage, and subsequent intestinal inflammation that could lead to exacerbated neuroinflammation. This mini-review explores the gut microbiome alterations of various dietary strategies that improve upon the "Western diet" as promising alternatives and targets to current multiple sclerosis treatments. We also provide evidence that gut microbiome modulation through diet can improve or exacerbate clinical symptoms of multiple sclerosis, highlighting the importance of including gut microbiome analyses in future studies of diet and disease.
Collapse
Affiliation(s)
| | | | | | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| |
Collapse
|
134
|
DiPalma MP, Blattman JN. The impact of microbiome dysbiosis on T cell function within the tumor microenvironment (TME). Front Cell Dev Biol 2023; 11:1141215. [PMID: 37009485 PMCID: PMC10063789 DOI: 10.3389/fcell.2023.1141215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Insights into the effect of the microbiome’s composition on immune cell function have recently been discerned and further characterized. Microbiome dysbiosis can result in functional alterations across immune cells, including those required for innate and adaptive immune responses to malignancies and immunotherapy treatment. Dysbiosis can yield changes in or elimination of metabolite secretions, such as short-chain fatty acids (SCFAs), from certain bacterial species that are believed to impact proper immune cell function. Such alterations within the tumor microenvironment (TME) can significantly affect T cell function and survival necessary for eliminating cancerous cells. Understanding these effects is essential to improve the immune system’s ability to fight malignancies and the subsequent efficacy of immunotherapies that rely on T cells. In this review, we assess typical T cell response to malignancies, classify the known impact of the microbiome and particular metabolites on T cells, discuss how dysbiosis can affect their function in the TME then further describe the impact of the microbiome on T cell-based immunotherapy treatment, with an emphasis on recent developments in the field. Understanding the impact of dysbiosis on T cell function within the TME can carry substantial implications for the design of immunotherapy treatments and further our understanding of factors that could impact how the immune system combats malignancies.
Collapse
Affiliation(s)
- Michelle P. DiPalma
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ, United States
| | - Joseph N. Blattman
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Institute, Center for Immunotherapy, Vaccines and Virotherapy (CIVV), Arizona State University, Tempe, AZ, United States
- *Correspondence: Joseph N. Blattman,
| |
Collapse
|
135
|
Costello SM, Cheney AM, Waldum A, Tripet B, Cotrina-Vidal M, Kaufmann H, Norcliffe-Kaufmann L, Lefcort F, Copié V. A Comprehensive NMR Analysis of Serum and Fecal Metabolites in Familial Dysautonomia Patients Reveals Significant Metabolic Perturbations. Metabolites 2023; 13:metabo13030433. [PMID: 36984872 PMCID: PMC10057143 DOI: 10.3390/metabo13030433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Central metabolism has a profound impact on the clinical phenotypes and penetrance of neurological diseases such as Alzheimer’s (AD) and Parkinson’s (PD) diseases, Amyotrophic Lateral Sclerosis (ALS) and Autism Spectrum Disorder (ASD). In contrast to the multifactorial origin of these neurological diseases, neurodevelopmental impairment and neurodegeneration in Familial Dysautonomia (FD) results from a single point mutation in the ELP1 gene. FD patients represent a well-defined population who can help us better understand the cellular networks underlying neurodegeneration, and how disease traits are affected by metabolic dysfunction, which in turn may contribute to dysregulation of the gut–brain axis of FD. Here, 1H NMR spectroscopy was employed to characterize the serum and fecal metabolomes of FD patients, and to assess similarities and differences in the polar metabolite profiles between FD patients and healthy relative controls. Findings from this work revealed noteworthy metabolic alterations reflected in energy (ATP) production, mitochondrial function, amino acid and nucleotide catabolism, neurosignaling molecules, and gut-microbial metabolism. These results provide further evidence for a close interconnection between metabolism, neurodegeneration, and gut microbiome dysbiosis in FD, and create an opportunity to explore whether metabolic interventions targeting the gut–brain–metabolism axis of FD could be used to redress or slow down the progressive neurodegeneration observed in FD patients.
Collapse
Affiliation(s)
- Stephanann M. Costello
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Alexandra M. Cheney
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Annie Waldum
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brian Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Maria Cotrina-Vidal
- Department of Neurology, New York University School of Medicine, New York, NY 10017, USA
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, NY 10017, USA
| | | | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
- Correspondence: ; Tel.: +1-406-994-7244
| |
Collapse
|
136
|
Jeffery N, Granger N. New insights into the treatment of meningoencephalomyelitis of unknown origin since 2009: A review of 671 cases. Front Vet Sci 2023; 10:1114798. [PMID: 37008358 PMCID: PMC10050685 DOI: 10.3389/fvets.2023.1114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023] Open
Abstract
“Meningoencephalomyelitis of unknown origin” (MUO)—a collective term for a group of clinically-indistinguishable (but pathologically distinct) autoimmune diseases of the CNS—has become increasingly commonly recognized throughout the world. In the 1960s−1980s the focus was primarily on the pathological description of these conditions and, largely anecdotally, their response to glucocorticoids. The subsequent availability of magnetic resonance imaging for companion animals led to a focus on imaging characteristics and response of MUO to various immunosuppressive medications. Previous reviews have not found clear evidence of superiority of any specific treatment regimen. Here, we review outcomes in a further 671 dogs treated with various combinations of glucocorticoids and immunosuppressive drugs and reported since 2009, aiming to determine whether recommendations can be drawn from the material published during more recent decades. We observe that: (i) there is more complete information on outcome of MUO-affected dogs solely receiving glucocorticoids and these reports provide evidence to undermine the dogma that MUO inevitably requires treatment with glucocorticoids plus an immunosuppressive drug; (ii) there is far more information on the pharmacokinetics of cytarabine delivered by a variety of routes, revealing that previous dosing and duration of administration in dogs with MUO may not have been optimal; and, (iii) there is a large number of cases that could be available for entry into multi-institutional randomized controlled trials. Finally, we suggest new research avenues that might aid future clinical trials in MUO through improved understanding of etiological triggers and individual patterns of immune response, such as the impact of the gut microbiome, the potential of CSF flow cytometry, and the establishment of robust clinical scores for evaluation of treatment success.
Collapse
Affiliation(s)
- Nick Jeffery
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Nick Jeffery
| | - Nicolas Granger
- Bristol Vet Specialists, CVS Referrals & Bristol Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
137
|
The differences between the water- and alkaline-soluble Poria cocos polysaccharide: A review. Int J Biol Macromol 2023; 235:123925. [PMID: 36871682 DOI: 10.1016/j.ijbiomac.2023.123925] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Poria cocos (PC) refers to a fungal species which is also known as "Fuling" in China. For >2000 years, PC has demonstrated its therapeutic values as a kind of traditional medicine. It is believed that the various biological benefits created by PCs highly rely on the Poria cocos polysaccharide (PCP). This review recapitulates the recent progress made in PCP in four aspects: i) the methods of extraction, separation, and purification, ii) structural characterization and identification, iii) the related bioactivities and mechanism of action, and iv) structure-activity relationships. Through discussion about the objective as mentioned above, it can be found out that PCP is categorized into water-soluble polysaccharide (WPCP) and alkaline-soluble polysaccharide (APCP), which are totally different in structure and bioactivity. The structures of WPCP are multiplicity whose backbone can be (1,6)-α-galactan and (1,3)-β-mannoglucan etc. to perform various bioactivities including anti-tumor effect, anti-depressant effect, anti-Alzheimer effect, anti-atherosclerosis effect, hepatoprotection etc. The structures of APCP are much more single with backbone of (1,3)-β-D-glucan and the studies of activity concentrate on anti-tumor effect, anti-inflammatory effect and immunomodulation. Besides, the future opportunities of WPCP are primary structure identification. For APCP, scholars can focus on the conformation of polysaccharide and its relationship with activity.
Collapse
|
138
|
Luu M, Schütz B, Lauth M, Visekruna A. The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers (Basel) 2023; 15:cancers15051588. [PMID: 36900377 PMCID: PMC10001145 DOI: 10.3390/cancers15051588] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Prevention of the effectiveness of anti-tumor immune responses is one of the canonical cancer hallmarks. The competition for crucial nutrients within the tumor microenvironment (TME) between cancer cells and immune cells creates a complex interplay characterized by metabolic deprivation. Extensive efforts have recently been made to understand better the dynamic interactions between cancer cells and surrounding immune cells. Paradoxically, both cancer cells and activated T cells are metabolically dependent on glycolysis, even in the presence of oxygen, a metabolic process known as the Warburg effect. The intestinal microbial community delivers various types of small molecules that can potentially augment the functional capabilities of the host immune system. Currently, several studies are trying to explore the complex functional relationship between the metabolites secreted by the human microbiome and anti-tumor immunity. Recently, it has been shown that a diverse array of commensal bacteria synthetizes bioactive molecules that enhance the efficacy of cancer immunotherapy, including immune checkpoint inhibitor (ICI) treatment and adoptive cell therapy with chimeric antigen receptor (CAR) T cells. In this review, we highlight the importance of commensal bacteria, particularly of the gut microbiota-derived metabolites that are capable of shaping metabolic, transcriptional and epigenetic processes within the TME in a therapeutically meaningful way.
Collapse
Affiliation(s)
- Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Center for Tumor and Immune Biology (ZTI), Philipps-University Marburg, 35043 Marburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, 35043 Marburg, Germany
- Correspondence:
| |
Collapse
|
139
|
Ney LM, Wipplinger M, Grossmann M, Engert N, Wegner VD, Mosig AS. Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol 2023; 13:230014. [PMID: 36977462 PMCID: PMC10049789 DOI: 10.1098/rsob.230014] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The human intestinal microbiome substantially affects human health and resistance to infections in its dynamic composition and varying release of microbial-derived metabolites. Short-chain fatty acids (SCFA) produced by commensal bacteria through fermentation of indigestible fibres are considered key regulators in orchestrating the host immune response to microbial colonization by regulating phagocytosis, chemokine and central signalling pathways of cell growth and apoptosis, thereby shaping the composition and functionality of the intestinal epithelial barrier. Although research of the last decades provided valuable insight into the pleiotropic functions of SCFAs and their capability to maintain human health, mechanistic details on how SCFAs act across different cell types and other organs are not fully understood. In this review, we provide an overview of the various functions of SCFAs in regulating cellular metabolism, emphasizing the orchestration of the immune response along the gut-brain, the gut-lung and the gut-liver axes. We discuss their potential pharmacological use in inflammatory diseases and infections and highlight new options of relevant human three-dimensional organ models to investigate and validate their biological functions in more detail.
Collapse
Affiliation(s)
- Lisa-Marie Ney
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Maximilian Wipplinger
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Martha Grossmann
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Nicole Engert
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Valentin D Wegner
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, Kastanienallee 1, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
140
|
Uribe-Herranz M, Beghi S, Ruella M, Parvathaneni K, Salaris S, Kostopoulos N, George SS, Pierini S, Krimitza E, Costabile F, Ghilardi G, Amelsberg KV, Lee YG, Pajarillo R, Markmann C, McGettigan-Croce B, Agarwal D, Frey N, Lacey SF, Scholler J, Gabunia K, Wu G, Chong E, Porter DL, June CH, Schuster SJ, Bhoj V, Facciabene A. Modulation of the gut microbiota engages antigen cross-presentation to enhance antitumor effects of CAR T cell immunotherapy. Mol Ther 2023; 31:686-700. [PMID: 36641624 PMCID: PMC10014349 DOI: 10.1016/j.ymthe.2023.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Several studies have shown the influence of commensal microbes on T cell function, specifically in the setting of checkpoint immunotherapy for cancer. In this study, we investigated how vancomycin-induced gut microbiota dysbiosis affects chimeric antigen receptor (CAR) T immunotherapy using multiple preclinical models as well as clinical correlates. In two murine tumor models, hematopoietic CD19+-A20 lymphoma and CD19+-B16 melanoma, mice receiving vancomycin in combination with CD19-directed CAR T cell (CART-19) therapy displayed increased tumor control and tumor-associated antigens (TAAs) cross-presentation compared with CART-19 alone. Fecal microbiota transplant from human healthy donors to pre-conditioned mice recapitulated the results obtained in naive gut microbiota mice. Last, B cell acute lymphoblastic leukemia patients treated with CART-19 and exposed to oral vancomycin showed higher CART-19 peak expansion compared with unexposed patients. These results substantiate the role of the gut microbiota on CAR T cell therapy and suggest that modulation of the gut microbiota using vancomycin may improve outcomes after CAR T cell therapy across tumor types.
Collapse
Affiliation(s)
- Mireia Uribe-Herranz
- Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Immunology Department, Hospital Clínic of Barcelona, Barcelona 08036, Spain
| | - Silvia Beghi
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kalpana Parvathaneni
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Silvano Salaris
- Unit of Biostatistics, Epidemiology and Public Health, University of Padova, Padova, Italy
| | - Nektarios Kostopoulos
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Subin S George
- Bioinformatics Core, Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stefano Pierini
- Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; The Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elisavet Krimitza
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesca Costabile
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kimberly V Amelsberg
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caroline Markmann
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bevin McGettigan-Croce
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divyansh Agarwal
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Noelle Frey
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Scholler
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Khatuna Gabunia
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Gary Wu
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elise Chong
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - David L Porter
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen J Schuster
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vijay Bhoj
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea Facciabene
- Center for Cellular Immunotherapies, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA; Division of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; The Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
141
|
Xiao C, Zhang L, Zhang B, Kong L, Pan X, GOOSSENS T, Song Z. Dietary sodium butyrate improves female broiler breeder performance and offspring immune function by enhancing maternal intestinal barrier and microbiota. Poult Sci 2023; 102:102658. [PMID: 37075488 PMCID: PMC10127124 DOI: 10.1016/j.psj.2023.102658] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
This study aimed to investigate the effects of dietary sodium butyrate (SB) supplementation on the reproductive performance of female broiler breeders under intensive rearing conditions and to analyze antioxidant capacity, immune function, and intestinal barrier function of the female breeders and their offspring. A total of 96,000 40-wk-old Ross308 female broiler breeders were divided into the control (CON) and SB groups, each with 6 replicates of 8,000 birds. Each house with similar production performance characteristics was considered a replicate. The experiment lasted for 20 wk, whereupon sampling took place. Results showed that SB improved the egg production performance, egg quality of broiler breeders, and hatchability (P < 0.05). Maternal supplementation with SB substantially increased serum immunoglobulin A levels in broiler breeders and offspring (both P = 0.04) and offspring immunoglobulin G (P < 0.001). The levels of interleukin-1β (P < 0.001) and interleukin-4 (P = 0.03) in the offspring were downregulated, while the total superoxide dismutase in the offspring and the eggs increased (P < 0.05). The serum biochemical components in breeders and offspring were altered by SB, as evidenced by the reduction in triglycerides, total cholesterol, and high- and low-density lipoproteins (P < 0.05). The intestinal morphology of broiler breeders and offspring also improved by the SB with the decreasing the jejunal crypt depth (P = 0.04) and increasing villus height in offspring (P = 0.03). Maternal jejunal and ileal intestinal barrier-related genes were also shown to be significantly affected by SB. Furthermore, SB altered the microbial diversity in maternal cecal contents, thus increasing the abundance of Lachnospiraceae (P = 0.004) and Ruminococcaceae (P = 0.03). Dietary SB enhanced the reproductive performance and egg quality of broiler breeders and improved the antioxidant capacity and immune function of broiler breeders and offspring, with the benefits potentially arising from the regulation of the maternal intestinal barrier and gut microbiota by SB.
Collapse
|
142
|
Fang Z, Chen M, Qian J, Wang C, Zhang J. The Bridge Between Ischemic Stroke and Gut Microbes: Short-Chain Fatty Acids. Cell Mol Neurobiol 2023; 43:543-559. [PMID: 35347532 PMCID: PMC11415173 DOI: 10.1007/s10571-022-01209-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/03/2022]
Abstract
Short-chain fatty acids (SCFAs) are monocarboxylates produced by the gut microbiota (GM) and result from the interaction between diet and GM. An increasing number of studies about the microbiota-gut-brain axis (MGBA) indicated that SCFAs may be a crucial mediator in the MGBA, but their roles have not been fully clarified. In addition, there are few studies directly exploring the role of SCFAs as a potential regulator of microbial targeted interventions in ischemic stroke, especially for clinical studies. This review summarizes the recent studies concerning the relationship between ischemic stroke and GM and outlines the role of SCFAs as a bridge between them. The potential mechanisms by which SCFAs affect ischemic stroke are described. Finally, the beneficial effects of SFCAs-mediated therapeutic measures such as diet, dietary supplements (e.g., probiotics and prebiotics), fecal microbiota transplantation, and drugs on ischemic brain injury are also discussed.
Collapse
Affiliation(s)
- Zongwei Fang
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China
| | - Mingrong Chen
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China
| | - Jiafen Qian
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China
| | - Chunhua Wang
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Medical University Union Hospital, #29 Xinquan Road, Fuzhou, China.
| |
Collapse
|
143
|
Papotto PH, Yilmaz B, Pimenta G, Mensurado S, Cunha C, Fiala GJ, Gomes da Costa D, Gonçalves-Sousa N, Chan BHK, Blankenhaus B, Domingues RG, Carvalho T, Hepworth MR, Macpherson AJ, Allen JE, Silva-Santos B. Maternal γδ T cells shape offspring pulmonary type 2 immunity in a microbiota-dependent manner. Cell Rep 2023; 42:112074. [PMID: 36787741 PMCID: PMC7615642 DOI: 10.1016/j.celrep.2023.112074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Immune development is profoundly influenced by vertically transferred cues. However, little is known about how maternal innate-like lymphocytes regulate offspring immunity. Here, we show that mice born from γδ T cell-deficient (TCRδ-/-) dams display an increase in first-breath-induced inflammation, with a pulmonary milieu selectively enriched in type 2 cytokines and type 2-polarized immune cells, when compared with the progeny of γδ T cell-sufficient dams. Upon helminth infection, mice born from TCRδ-/- dams sustain an increased type 2 inflammatory response. This is independent of the genotype of the pups. Instead, the offspring of TCRδ-/- dams harbors a distinct intestinal microbiota, acquired during birth and fostering, and decreased levels of intestinal short-chain fatty acids (SCFAs), such as pentanoate and hexanoate. Importantly, exogenous SCFA supplementation inhibits type 2 innate lymphoid cell function and suppresses first-breath- and infection-induced inflammation. Taken together, our findings unravel a maternal γδ T cell-microbiota-SCFA axis regulating neonatal lung immunity.
Collapse
Affiliation(s)
- Pedro H Papotto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Bahtiyar Yilmaz
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland; Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gonçalo Pimenta
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sofia Mensurado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Cunha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Gina J Fiala
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Gomes da Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Natacha Gonçalves-Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Brian H K Chan
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Birte Blankenhaus
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita G Domingues
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Matthew R Hepworth
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Andrew J Macpherson
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland; Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
144
|
Fock E, Parnova R. Mechanisms of Blood-Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells 2023; 12:cells12040657. [PMID: 36831324 PMCID: PMC9954192 DOI: 10.3390/cells12040657] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Impairment of the blood-brain barrier (BBB) integrity is implicated in the numerous neurological disorders associated with neuroinflammation, neurodegeneration and aging. It is now evident that short-chain fatty acids (SCFAs), mainly acetate, butyrate and propionate, produced by anaerobic bacterial fermentation of the dietary fiber in the intestine, have a key role in the communication between the gastrointestinal tract and nervous system and are critically important for the preservation of the BBB integrity under different pathological conditions. The effect of SCFAs on the improvement of the compromised BBB is mainly based on the decrease in paracellular permeability via restoration of junctional complex proteins affecting their transcription, intercellular localization or proteolytic degradation. This review is focused on the revealed and putative underlying mechanisms of the direct and indirect effects of SCFAs on the improvement of the barrier function of brain endothelial cells. We consider G-protein-coupled receptor-mediated effects of SCFAs, SCFAs-stimulated acetylation of histone and non-histone proteins via inhibition of histone deacetylases, and crosstalk of these signaling pathways with transcriptional factors NF-κB and Nrf2 as mainstream mechanisms of SCFA's effect on the preservation of the BBB integrity.
Collapse
Affiliation(s)
| | - Rimma Parnova
- Correspondence: ; Tel.: +7-812-552-79-01; Fax: +7-812-552-30-12
| |
Collapse
|
145
|
Stec A, Sikora M, Maciejewska M, Paralusz-Stec K, Michalska M, Sikorska E, Rudnicka L. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. Int J Mol Sci 2023; 24:ijms24043494. [PMID: 36834904 PMCID: PMC9961773 DOI: 10.3390/ijms24043494] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Dysbiosis has been identified in many dermatological conditions (e.g., psoriasis, atopic dermatitis, systemic lupus erythematosus). One of the ways by which the microbiota affect homeostasis is through microbiota-derived molecules (metabolites). There are three main groups of metabolites: short-chain fatty acids (SCFAs), tryptophan metabolites, and amine derivatives including trimethylamine N-oxide (TMAO). Each group has its own uptake and specific receptors through which these metabolites can exert their systemic function. This review provides up-to-date knowledge about the impact that these groups of gut microbiota metabolites may have in dermatological conditions. Special attention is paid to the effect of microbial metabolites on the immune system, including changes in the profile of the immune cells and cytokine disbalance, which are characteristic of several dermatological diseases, especially psoriasis and atopic dermatitis. Targeting the production of microbiota metabolites may serve as a novel therapeutic approach in several immune-mediated dermatological diseases.
Collapse
Affiliation(s)
- Albert Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
- Correspondence:
| | - Magdalena Maciejewska
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Karolina Paralusz-Stec
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| | - Milena Michalska
- Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Sikorska
- Department of Experimental and Clinical Physiology Center for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Koszykowa 82A, 02-008 Warsaw, Poland
| |
Collapse
|
146
|
Xiao X, Hu X, Yao J, Cao W, Zou Z, Wang L, Qin H, Zhong D, Li Y, Xue P, Jin R, Li Y, Shi Y, Li J. The role of short-chain fatty acids in inflammatory skin diseases. Front Microbiol 2023; 13:1083432. [PMID: 36817115 PMCID: PMC9932284 DOI: 10.3389/fmicb.2022.1083432] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites of gut microbes that can modulate the host inflammatory response, and contribute to health and homeostasis. Since the introduction of the gut-skin axis concept, the link between SCFAs and inflammatory skin diseases has attracted considerable attention. In this review, we have summarized the literature on the role of SCFAs in skin inflammation, and the correlation between SCFAs and inflammatory skin diseases, especially atopic dermatitis, urticaria, and psoriasis. Studies show that SCFAs are signaling factors in the gut-skin axis and can alleviate skin inflammation. The information presented in this review provides new insights into the molecular mechanisms driving gut-skin axis regulation, along with possible pathways that can be targeted for the treatment and prevention of inflammatory skin diseases.
Collapse
Affiliation(s)
- Xianjun Xiao
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoshen Hu
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junpeng Yao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Cao
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zihao Zou
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lu Wang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haiyan Qin
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dongling Zhong
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuxi Li
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Peiwen Xue
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rongjiang Jin
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Li
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yunzhou Shi
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Yunzhou Shi,
| | - Juan Li
- College of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Juan Li,
| |
Collapse
|
147
|
Chen AS, Liu DH, Hou HN, Yao JN, Xiao SC, Ma XR, Li PZ, Cao Q, Liu XK, Zhou ZQ, Wang P. Dietary pattern interfered with the impacts of pesticide exposure by regulating the bioavailability and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159936. [PMID: 36336046 DOI: 10.1016/j.scitotenv.2022.159936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 05/15/2023]
Abstract
Dietary intake is an essential way for pesticides to enter the human body. The effects of dietary pattern on the risks of pesticides and what diet can reduce the damage are largely unknown. Here, it is found that Mediterranean diet and Vegetarian diet could alleviate insulin resistance and obesity induced by chlorpyrifos, while Western diet could aggravate that. Gut microbiota and chlorpyrifos bioavailability mediated by the diets were involved in these effects. Both the dietary pattern and chlorpyrifos could change the composition of gut microbiota. Chlorpyrifos caused gut dysbacteriosis which was an important reason for the induced metabolic syndrome. Mediterranean diet and Vegetarian diet could maintain gut microbiota homeostasis and increase intestinal bacteria producing short-chain fatty acids, repair the gut microbiota and intestinal barrier damaged by chlorpyrifos. High dietary fat intake increased the bioavailability of chlorpyrifos, which aggravated the gut dysbacteriosis and destruction of intestinal integrity. Thus, the amount of endotoxin entering the blood increased and caused low-grade inflammation, which was also an important pathway of metabolic syndrome. The results suggested that although it was almost impossible to avoid the exposure to pesticides in modern life, healthy diets could regulate beneficial gut microbiota and alleviate the risk of pesticide exposure.
Collapse
Affiliation(s)
- Ai Song Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Dong Hui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Hao Nan Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Jia Ning Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Shou Chun Xiao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xiao Ran Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pei Ze Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Qian Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xue Ke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Zhi Qiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
148
|
Michaels M, Madsen KL. Immunometabolism and microbial metabolites at the gut barrier: Lessons for therapeutic intervention in inflammatory bowel disease. Mucosal Immunol 2023; 16:72-85. [PMID: 36642380 DOI: 10.1016/j.mucimm.2022.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023]
Abstract
The concept of immunometabolism has emerged recently whereby the repolarizing of inflammatory immune cells toward anti-inflammatory profiles by manipulating cellular metabolism represents a new potential therapeutic approach to controlling inflammation. Metabolic pathways in immune cells are tightly regulated to maintain immune homeostasis and appropriate functional specificity. Because effector and regulatory immune cell populations have different metabolic requirements, this allows for cellular selectivity when regulating immune responses based on metabolic pathways. Gut microbes have a major role in modulating immune cell metabolic profiles and functional responses through extensive interactions involving metabolic products and crosstalk between gut microbes, intestinal epithelial cells, and mucosal immune cells. Developing strategies to target metabolic pathways in mucosal immune cells through the modulation of gut microbial metabolism has the potential for new therapeutic approaches for human autoimmune and inflammatory diseases, such as inflammatory bowel disease. This review will give an overview of the relationship between metabolic reprogramming and immune responses, how microbial metabolites influence these interactions, and how these pathways could be harnessed in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Margret Michaels
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada
| | - Karen L Madsen
- University of Alberta, Department of Medicine, Edmonton, Alberta, Canada; IMPACTT: Integrated Microbiome Platforms for Advancing Causation Testing & Translation, Edmonton, Alberta, Canada.
| |
Collapse
|
149
|
Dietary fiber and SCFAs in the regulation of mucosal immunity. J Allergy Clin Immunol 2023; 151:361-370. [PMID: 36543697 DOI: 10.1016/j.jaci.2022.11.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022]
Abstract
Gut bacterial metabolites such as short-chain fatty acids (SCFAs) have important effects on immune cells and the gut. SCFAs derive from the fermentation of dietary fiber by gut commensal bacteria. Insufficient fiber intake thus compromises SCFA production and, as a consequence, the host's physiology (particularly immune functions). We propose that many Western diseases, including those associated with impaired mucosal responses such as food allergy and asthma, may be affected by insufficient fiber intake and reduced SCFA levels in the gut and blood. Insufficient fiber intake is 1 alternative, or contributor, on top of the "hygiene hypothesis" to the rise of Western lifestyle diseases, and the 2 ideas need to be reconciled. The mechanisms by which SCFAs influence immunity and gut homeostasis are varied; they include stimulation of G protein-coupled receptors (GPCRs), such as GPR43 or GPR41; inhibition of histone deacetylases (and hence, gene transcription changes); and induction of intracellular metabolic changes. SCFAs modulate at many different levels to alter mucosal homeostasis, including changes to gut epithelial integrity, increases in regulatory T-cell numbers and function, and decreased expression of numerous inflammatory cytokines. There is scope for preventing and/or treating diseases by using diets that alter SCFA levels.
Collapse
|
150
|
Chen S, Li J, Ren S, Gao Y, Zhou Y, Xuan R. Expression and clinical significance of short-chain fatty acids in pregnancy complications. Front Cell Infect Microbiol 2023; 12:1071029. [PMID: 36710961 PMCID: PMC9876977 DOI: 10.3389/fcimb.2022.1071029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/29/2022] [Indexed: 01/15/2023] Open
Abstract
Objective To investigate the expression of short-chain fatty acids (SCFAs)-metabolites of intestinal flora-in gestational complications of gestational diabetes mellitus (GDM), preeclampsia (PE), and intrahepatic cholestasis of pregnancy (ICP), and its clinical significance. Methods Targeted metabonomics was used to detect SCFAs in the serum of 28 GDM pregnant women, 28 PE pregnant women, 29 ICP pregnant women, and 27 healthy pregnant women (NP); their expression changes were observed; the correlation between SCFAs and clinical characteristics was studied; and their potential as biomarkers for clinical diagnosis was evaluated. Results There were significant differences in the SCFA metabolic spectrum between the GDM, PE, ICP, and NP groups. Quantitative analysis showed that the content of isobutyric acid in the three pregnancy complications groups (the GDM, PE, and ICP groups) was significantly higher than that in the NP group (p < 0.05), and other SCFAs also showed significant differences in the three pregnancy complications groups compared with the NP group (p < 0.05). Receiver operating characteristic (ROC) curve analysis of the generalized linear model showed that multiple SCFAs were highly sensitive and specific as diagnostic markers in the pregnancy complications groups, where isobutyric acid was highly predictive in GDM (area under the ROC curve (AUC) = 0.764) and PE (AUC = 1), and caproic acid was highly predictive in ICP (AUC = 0.968), with potential clinical application. Conclusion The metabolic products of intestinal flora, SCFAs, during pregnancy are closely related to pregnancy complications (GDM, PE, and ICP), and SCFAs can be used as potential markers of pregnancy complications.
Collapse
Affiliation(s)
- Siqian Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Jialin Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Shuaijun Ren
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Yajie Gao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Yuping Zhou
- Department of Gastroenterology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,*Correspondence: Yuping Zhou, ; Rongrong Xuan,
| | - Rongrong Xuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,*Correspondence: Yuping Zhou, ; Rongrong Xuan,
| |
Collapse
|