101
|
Reagan AM, Onos KD, Heuer SE, Sasner M, Howell GR. Improving mouse models for the study of Alzheimer's disease. Curr Top Dev Biol 2022; 148:79-113. [PMID: 35461569 DOI: 10.1016/bs.ctdb.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease whose risk is influenced by genetic and environmental factors. Although a number of pathological hallmarks have been extensively studied over the last several decades, a complete picture of disease initiation and progression remains unclear. We now understand that numerous cell types and systems are involved in AD pathogenesis, and that this cellular profile may present differently for each individual, making the creation of relevant mouse models challenging. However, with increasingly diverse data made available by genome-wide association studies, we can identify and examine new genes and pathways involved in genetic risk for AD, many of which involve vascular health and inflammation. When developing mouse models, it is critical to assess (1) an aging timeline that represents onset and progression in humans, (2) genetic variants and context, (3) environmental factors present in human populations that result in both neuropathological and functional changes-themes that we address in this chapter.
Collapse
Affiliation(s)
| | | | - Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, United States; Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States.
| |
Collapse
|
102
|
Siewert-Rocks KM, Kim SS, Yao DW, Shi H, Price AL. Leveraging gene co-regulation to identify gene sets enriched for disease heritability. Am J Hum Genet 2022; 109:393-404. [PMID: 35108496 PMCID: PMC8948163 DOI: 10.1016/j.ajhg.2022.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Identifying gene sets that are associated to disease can provide valuable biological knowledge, but a fundamental challenge of gene set analyses of GWAS data is linking disease-associated SNPs to genes. Transcriptome-wide association studies (TWASs) detect associations between the genetically predicted expression of a gene and disease risk, thus implicating candidate disease genes. However, causal disease genes at TWAS-associated loci generally remain unknown due to gene co-regulation, which leads to correlations across genes in predicted expression. We developed a method, gene co-regulation score (GCSC) regression, to identify gene sets that are enriched for disease heritability explained by predicted expression. GCSC regresses TWAS chi-square statistics on gene co-regulation scores reflecting correlations in predicted gene expression; a gene set is enriched for heritability if genes with high co-regulation to the set have higher TWAS chi-square statistics than genes with low co-regulation to the set, beyond what is expected based on co-regulation to all genes. We verified via simulations that GCSC is well calibrated and well powered. We applied GCSC to gene expression data from GTEx (48 tissues) and GWAS summary statistics for 43 independent diseases and complex traits analyzing a broad set of biological pathways and specifically expressed gene sets. We identified many enriched sets, recapitulating known biology. For Alzheimer disease, we detected evidence of an immune basis, and specifically a role for antigen presentation, in analyses of both biological pathways and specifically expressed gene sets. Our results highlight the advantages of leveraging gene co-regulation within the TWAS framework to identify enriched gene sets.
Collapse
Affiliation(s)
- Katherine M Siewert-Rocks
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Samuel S Kim
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Douglas W Yao
- Program in Systems, Synthetic, and Quantitative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Huwenbo Shi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
103
|
Huuha AM, Norevik CS, Moreira JBN, Kobro-Flatmoen A, Scrimgeour N, Kivipelto M, Van Praag H, Ziaei M, Sando SB, Wisløff U, Tari AR. Can exercise training teach us how to treat Alzheimer's disease? Ageing Res Rev 2022; 75:101559. [PMID: 34999248 DOI: 10.1016/j.arr.2022.101559] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and there is currently no cure. Novel approaches to treat AD and curb the rapidly increasing worldwide prevalence and costs of dementia are needed. Physical inactivity is a significant modifiable risk factor for AD, estimated to contribute to 12.7% of AD cases worldwide. Exercise interventions in humans and animals have shown beneficial effects of exercise on brain plasticity and cognitive functions. In animal studies, exercise also improved AD pathology. The mechanisms underlying these effects of exercise seem to be associated mainly with exercise performance or cardiorespiratory fitness. In addition, exercise-induced molecules of peripheral origin seem to play an important role. Since exercise affects the whole body, there likely is no single therapeutic target that could mimic all the benefits of exercise. However, systemic strategies may be a viable means to convey broad therapeutic effects in AD patients. Here, we review the potential of physical activity and exercise training in AD prevention and treatment, shining light on recently discovered underlying mechanisms and concluding with a view on future development of exercise-free treatment strategies for AD.
Collapse
Affiliation(s)
- Aleksi M Huuha
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Cecilie S Norevik
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - José Bianco N Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; K.G. Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathan Scrimgeour
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miia Kivipelto
- Karolinska Institute, Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Stockholm, Sweden; Karolinska University Hospital, Theme Aging and Inflammation, Stockholm, Sweden
| | - Henriette Van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, United States
| | - Maryam Ziaei
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, and Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway; Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Atefe R Tari
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
104
|
Huang M, Xu L, Liu J, Huang P, Tan Y, Chen S. Cell–Cell Communication Alterations via Intercellular Signaling Pathways in Substantia Nigra of Parkinson’s Disease. Front Aging Neurosci 2022; 14:828457. [PMID: 35283752 PMCID: PMC8914319 DOI: 10.3389/fnagi.2022.828457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative movement disorder characterized with dopaminergic neuron (DaN) loss within the substantia nigra (SN). Despite bulk studies focusing on intracellular mechanisms of PD inside DaNs, few studies have explored the pathogeneses outside DaNs, or between DaNs and other cells. Here, we set out to probe the implication of intercellular communication involving DaNs in the pathogeneses of PD at a systemic level with bioinformatics methods. We harvested three online published single-cell/single-nucleus transcriptomic sequencing (sc/snRNA-seq) datasets of human SN (GSE126838, GSE140231, and GSE157783) from the Gene Expression Omnibus (GEO) database, and integrated them with one of the latest integration algorithms called Harmony. We then applied CellChat, the latest cell–cell communication analytic algorithm, to our integrated dataset. We first found that the overall communication quantity was decreased while the overall communication strength was enhanced in PD sample compared with control sample. We then focused on the intercellular communication where DaNs are involved, and found that the communications between DaNs and other cell types via certain signaling pathways were selectively altered in PD, including some growth factors, neurotrophic factors, chemokines, etc. pathways. Our bioinformatics analysis showed that the alteration in intercellular communications involving DaNs might be a previously underestimated aspect of PD pathogeneses with novel translational potential.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Xu
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yuyan Tan,
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
- Shengdi Chen,
| |
Collapse
|
105
|
Park SS, Park HS, Kim CJ, Baek SS, Park SY, Anderson CP, Kim MK, Park IR, Kim TW. Combined effects of Aerobic exercise and 40Hz light flicker exposure on early cognitive impairments in Alzheimer's disease of 3xTg mice. J Appl Physiol (1985) 2022; 132:1054-1068. [PMID: 35201933 DOI: 10.1152/japplphysiol.00751.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative brain disease and the primary cause of dementia. At an early stage, AD is generally characterized by short-term memory impairment, owing to dysfunctions of the cortex and hippocampus. We previously reported that a combination of exercise and 40 Hz light flickering can protect against AD-related neuroinflammation, gamma oscillations, reduction in Aβ, and cognitive decline. Therefore, we sought to extend our previous findings to the 5-month-old 3xTg-AD mouse model to examine whether the same favorable effects occur in earlier stages of cognitive dysfunction. We investigated the effects of 12 weeks of exercise combined with 40-Hz light flickering on cognitive function by analyzing neuroinflammation, mitochondrial function, and neuroplasticity in the hippocampus in a 3xTg-AD mouse model. 5-month-old 3xTg-AD mice performed 12 weeks of exercise with 40-Hz light flickering administered independently and in combination. Spatial learning and memory, long-term memory, hippocampal Aβ, tau, neuroinflammation, pro-inflammatory cytokine expression, mitochondrial function, and neuroplasticity, were analyzed. Aβ and tau proteins levels were significantly reduced in the early stage of AD, resulting in protection against cognitive decline by reducing neuroinflammation and pro-inflammatory cytokines. Furthermore, mitochondrial function improved, apoptosis was reduced, and synapse-related protein expression increased. Overall, exercise with 40-Hz light flickering was significantly more effective than exercise or 40-Hz light flickering alone, and the improvement was comparable to the levels in the non-transgenic aged-match control group. Our results indicate a synergistic effect of exercise and 40-Hz light flickering on pathological improvements in the hippocampus during early AD associated cognitive impairment.
Collapse
Affiliation(s)
- Sang-Seo Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Hye-Sang Park
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea
| | - Seung-Soo Baek
- Department of Exercise and Health Science, Sangmyung University, Seoul, Republic of Korea
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Cody Philip Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Nebraska, United States
| | - Myung-Ki Kim
- Division of Global Sport Studies, Korea University, Sejong, Republic of Korea
| | - Ik-Ryeul Park
- Department of Human Health care, Gyeongsang National University, Jinju, Republic of Korea
| | - Tae-Woon Kim
- Department of Human Health care, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
106
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
107
|
Austad SN, Ballinger S, Buford TW, Carter CS, Smith DL, Darley-Usmar V, Zhang J. Targeting whole body metabolism and mitochondrial bioenergetics in the drug development for Alzheimer's disease. Acta Pharm Sin B 2022; 12:511-531. [PMID: 35256932 PMCID: PMC8897048 DOI: 10.1016/j.apsb.2021.06.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is by far the most prominent risk factor for Alzheimer's disease (AD), and both aging and AD are associated with apparent metabolic alterations. As developing effective therapeutic interventions to treat AD is clearly in urgent need, the impact of modulating whole-body and intracellular metabolism in preclinical models and in human patients, on disease pathogenesis, have been explored. There is also an increasing awareness of differential risk and potential targeting strategies related to biological sex, microbiome, and circadian regulation. As a major part of intracellular metabolism, mitochondrial bioenergetics, mitochondrial quality-control mechanisms, and mitochondria-linked inflammatory responses have been considered for AD therapeutic interventions. This review summarizes and highlights these efforts.
Collapse
Key Words
- ACE2, angiotensin I converting enzyme (peptidyl-dipeptidase A) 2
- AD, Alzheimer's disease
- ADP, adenosine diphosphate
- ADRD, AD-related dementias
- Aβ, amyloid β
- CSF, cerebrospinal fluid
- Circadian regulation
- DAMPs
- DAMPs, damage-associated molecular patterns
- Diabetes
- ER, estrogen receptor
- ETC, electron transport chain
- FCCP, trifluoromethoxy carbonylcyanide phenylhydrazone
- FPR-1, formyl peptide receptor 1
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide-1
- HBP, hexoamine biosynthesis pathway
- HTRA, high temperature requirement A
- Hexokinase biosynthesis pathway
- I3A, indole-3-carboxaldehyde
- IRF-3, interferon regulatory factor 3
- LC3, microtubule associated protein light chain 3
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MAVS, mitochondrial anti-viral signaling
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- Mdivi-1, mitochondrial division inhibitor 1
- Microbiome
- Mitochondrial DNA
- Mitochondrial electron transport chain
- Mitochondrial quality control
- NLRP3, leucine-rich repeat (LRR)-containing protein (NLR)-like receptor family pyrin domain containing 3
- NOD, nucleotide-binding oligomerization domain
- NeuN, neuronal nuclear protein
- PET, fluorodeoxyglucose (FDG)-positron emission tomography
- PKA, protein kinase A
- POLβ, the base-excision repair enzyme DNA polymerase β
- ROS, reactive oxygen species
- Reactive species
- SAMP8, senescence-accelerated mice
- SCFAs, short-chain fatty acids
- SIRT3, NAD-dependent deacetylase sirtuin-3
- STING, stimulator of interferon genes
- STZ, streptozotocin
- SkQ1, plastoquinonyldecyltriphenylphosphonium
- T2D, type 2 diabetes
- TCA, Tricarboxylic acid
- TLR9, toll-like receptor 9
- TMAO, trimethylamine N-oxide
- TP, tricyclic pyrone
- TRF, time-restricted feeding
- cAMP, cyclic adenosine monophosphate
- cGAS, cyclic GMP/AMP synthase
- hAPP, human amyloid precursor protein
- hPREP, human presequence protease
- i.p., intraperitoneal
- mTOR, mechanistic target of rapamycin
- mtDNA, mitochondrial DNA
- αkG, alpha-ketoglutarate
Collapse
Affiliation(s)
- Steven N. Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas W. Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christy S. Carter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
108
|
Guha S, Paidi RK, Goswami S, Saha P, Biswas SC. ICAM-1 protects neurons against Amyloid-β and improves cognitive behaviors in 5xFAD mice by inhibiting NF-κB. Brain Behav Immun 2022; 100:194-210. [PMID: 34875346 DOI: 10.1016/j.bbi.2021.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
Alzheimer's disease (AD) is mainly characterized by amyloid beta (Aβ) plaque deposition and neurofibrillary tangle formation due to tau hyperphosphorylation. It has been shown that astrocytes respond to these pathologies very early and exert either beneficial or deleterious effects towards neurons. Here, we identified soluble intercellular adhesion molecule-1 (ICAM-1) which is rapidly increased in astrocyte conditioned medium derived from Aβ1-42 treated cultured astrocytes (Aβ1-42-ACM). Aβ1-42-ACM was found to be neuroprotective, however, Aβ1-42-ACM deprived of ICAM-1 was unable to protect neurons against Aβ1-42 mediated toxicity. Moreover, exogenous ICAM-1 renders protection to neurons from Aβ1-42 induced death. It blocks Aβ1-42-mediated PARP cleavage and increases the levels of anti-apoptotic proteins such as Bcl-2 and Bcl-xL, and decreases pro-apoptotic protein Bim. In an Aβ-infused rat model of AD and in 5xFAD mouse, intra-peritoneal administration of ICAM-1 revealed a reduction in Aβ load in hippocampal and cortical regions. Moreover, ICAM-1 treatment led to an increment in the expression of the Aβ-degrading enzyme, neprilysin in 5xFAD mice. Finally, we found that ICAM-1 can ameliorate cognitive deficits in Aβ-infused rat and 5xFAD mouse. Interestingly, ICAM-1 could block the NF-κB upregulation by Aβ and inhibition of NF-κB recovers cognitive impairments in 5xFAD mice. Thus, our study finds a neuroprotective role of ICAM-1 and suggests that it can be a major candidate in cytokine-mediated therapy of AD.
Collapse
Affiliation(s)
- Subhalakshmi Guha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India; Current address: Department of Neurological Sciences, RUMC, 1735 West Harrison St, Suite Cohn 336, Chicago, IL 60612, USA
| | - Soumita Goswami
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India; Current address: Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh 15213, USA
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
109
|
Ge K, Mu Y, Liu M, Bai Z, Liu Z, Geng D, Gao F. Gold Nanorods with Spatial Separation of CeO 2 Deposition for Plasmonic-Enhanced Antioxidant Stress and Photothermal Therapy of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3662-3674. [PMID: 35023712 DOI: 10.1021/acsami.1c17861] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Activities of catalase (CAT) and superoxide dismutase (SOD) of ceria nanoparticles (CeO2 NPs) provide the possibility for their application in nervous system oxidative stress diseases including Alzheimer's disease (AD). The addition of hot electrons produced by a plasma photothermal effect can expand the photocatalytic activity of CeO2 to the near-infrared region (NIR), significantly improving its redox performance. Therefore, we coated both ends of gold nanorods (Au NRs) with CeO2 NPs, and photocatalysis and photothermal therapy in the NIR are introduced into the treatment of AD. Meanwhile, the spatially separate structure enhances the catalytic performance and photothermal conversion efficiency. In addition, the photothermal effect significantly improves the permeability of the blood-brain barrier (BBB) and overcomes the shortcomings of traditional anti-AD drugs. To further improve the therapeutic efficiency, Aβ-targeted inhibitory peptides were modified on the middle surface of gold nanorods to synthesize KLVFF@Au-CeO2 (K-CAC) nanocomposites. We have verified their biocompatibility and therapeutic effectiveness at multiple levels in vitro and in vivo, which have a profound impact on the research and clinical transformation of nanotechnology in AD therapy.
Collapse
Affiliation(s)
- Kezhen Ge
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yingfeng Mu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Miaoyan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zetai Bai
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhao Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Deqin Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
110
|
Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Péran P, Arlicot N, Pariente J, Payoux P. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer's disease: an update. Eur J Neurosci 2022; 55:1322-1343. [PMID: 35083791 DOI: 10.1111/ejn.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a significant contributor to Alzheimer's disease (AD). Until now, PET imaging of the translocator protein (TSPO) has been widely used to depict the neuroimmune endophenotype of AD. The aim of this review was to provide an update to the results from 2018 and to advance the characterization of the biological basis of TSPO imaging in AD by re-examining TSPO function and expression and the methodological aspects of interest. Although the biological basis of the TSPO PET signal is obviously related to microglia and astrocytes in AD, the observed process remains uncertain and might not be directly related to neuroinflammation. Further studies are required to re-examine the cellular significance underlying a variation in the PET signal in AD and how it can be impacted by a disease-modifying treatment.
Collapse
Affiliation(s)
- Dominique Gouilly
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laure Saint-Aubert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Maria-Joao Ribeiro
- Department of Nuclear Medicine, CHU, Tours, France.,UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| | | | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Jérémie Pariente
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU, Toulouse, France.,Center of Clinical Investigations (CIC1436), CHU, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| |
Collapse
|
111
|
Gao Y, Liu J, Wang J, Liu Y, Zeng LH, Ge W, Ma C. Proteomic analysis of human hippocampal subfields provides new insights into the pathogenesis of Alzheimer's disease and the role of glial cells. Brain Pathol 2022; 32:e13047. [PMID: 35016256 PMCID: PMC9245939 DOI: 10.1111/bpa.13047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 01/23/2023] Open
Abstract
The hippocampus and entorhinal cortex (EC), the earliest affected areas, are considered relative to early memory loss in Alzheimer's disease (AD). The hippocampus is composed of heterogeneous subfields that are affected in a different order and varying degrees during AD pathogenesis. In this study, we conducted a comprehensive proteomic analysis of the hippocampal subfields and EC region in human postmortem specimens obtained from the Chinese human brain bank. Bioinformatics analysis identified region‐consistent differentially expressed proteins (DEPs) which associated with astrocytes, and region‐specific DEPs which associated with oligodendrocytes and the myelin sheath. Further analysis illuminated that the region‐consistent DEPs functioned as connection of region‐specific DEPs. Moreover, in region‐consistent DEPs, the expression level of S100A10, a marker of protective astrocytes, was increased in both aging and AD patients. Immunohistochemical analysis confirmed an increase in the number of S100A10‐positive astrocytes in all hippocampal subfields and the EC region of AD patients. Dual immunofluorescence results further showed that S100A10‐positive astrocytes contained apoptotic neuron debris in AD patients, suggesting that S100A10‐positive astrocytes may protect brain through phagocytosis of apoptotic neurons. In region‐specific DEPs, the proteome showed a specific reduction of oligodendrocytes and myelin markers in CA1, CA3, and EC regions of AD patients. Immunohistochemical analysis confirmed the loss of myelin in EC region. Above all, these results highlight the role of the glial cells in AD and provide new insights into the pathogenesis of AD and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanpan Gao
- School of Medicine, Zhejiang University City College, Hangzhou, China.,State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiayu Wang
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yifan Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling-Hui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,Hebei Key Laboratory of Chronic Kidney Diseases and Bone Metabolism, Affiliated Hospital of Hebei University, Baoding, China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
112
|
Majerníková N, den Dunnen WFA, Dolga AM. The Potential of Ferroptosis-Targeting Therapies for Alzheimer's Disease: From Mechanism to Transcriptomic Analysis. Front Aging Neurosci 2022; 13:745046. [PMID: 34987375 PMCID: PMC8721139 DOI: 10.3389/fnagi.2021.745046] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD), the most common form of dementia, currently affects 40–50 million people worldwide. Despite the extensive research into amyloid β (Aβ) deposition and tau protein hyperphosphorylation (p-tau), an effective treatment to stop or slow down the progression of neurodegeneration is missing. Emerging evidence suggests that ferroptosis, an iron-dependent and lipid peroxidation-driven type of programmed cell death, contributes to neurodegeneration in AD. Therefore, how to intervene against ferroptosis in the context of AD has become one of the questions addressed by studies aiming to develop novel therapeutic strategies. However, the underlying molecular mechanism of ferroptosis in AD, when ferroptosis occurs in the disease course, and which ferroptosis-related genes are differentially expressed in AD remains to be established. In this review, we summarize the current knowledge on cell mechanisms involved in ferroptosis, we discuss how these processes relate to AD, and we analyze which ferroptosis-related genes are differentially expressed in AD brain dependant on cell type, disease progression and gender. In addition, we point out the existing targets for therapeutic options to prevent ferroptosis in AD. Future studies should focus on developing new tools able to demonstrate where and when cells undergo ferroptosis in AD brain and build more translatable AD models for identifying anti-ferroptotic agents able to slow down neurodegeneration.
Collapse
Affiliation(s)
- Nad'a Majerníková
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, Netherlands.,Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Research Institute Brain and Cognition, Molecular Neuroscience and Aging Research (MOLAR), University Medical Centre Groningen, Groningen, Netherlands
| | - Amalia M Dolga
- Research School of Behavioural and Cognitive Neuroscience, University of Groningen, Groningen, Netherlands.,Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
113
|
Chavda V, Singh K, Patel V, Mishra M, Mishra AK. Neuronal Glial Crosstalk: Specific and Shared Mechanisms in Alzheimer’s Disease. Brain Sci 2022; 12:brainsci12010075. [PMID: 35053818 PMCID: PMC8773743 DOI: 10.3390/brainsci12010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The human brain maintains billions of neurons functional across the lifespan of the individual. The glial, supportive cells of the brain are indispensable to neuron elasticity. They undergo various states (active, reactive, macrophage, primed, resting) and carefully impose either quick repair or the cleaning of injured neurons to avoid damage extension. Identifying the failure of these interactions involving the relation of the input of glial cells to the inception and/or progression of chronic neurodegenerative diseases (ND) is crucial in identifying therapeutic options, given the well-built neuro-immune module of these diseases. In the present review, we scrutinize different interactions and important factors including direct cell–cell contact, intervention by the CD200 system, various receptors present on their surfaces, CXC3RI and TREM2, and chemokines and cytokines with special reference to Alzheimer’s disease (AD). The present review of the available literature will elucidate the contribution of microglia and astrocytes to the pathophysiology of AD, thus evidencing glial cells as obligatory transducers of pathology and superlative targets for interference.
Collapse
Affiliation(s)
- Vishal Chavda
- Division of Anesthesia, Dreamzz IVF Center and Women’s Care Hospital, Ahmedabad 382350, Gujarat, India;
| | - Kavita Singh
- Centre for Translational Research, Jiwaji University, Gwalior 474011, Madhya Pradesh, India;
| | - Vimal Patel
- Department of Pharmaceutics, Nirma University, Ahmedabad 382481, Gujarat, India;
| | - Meerambika Mishra
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.M.); (A.K.M.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (M.M.); (A.K.M.)
| |
Collapse
|
114
|
Harada R. [Imaging of neuropathology by PET tracers]. Nihon Yakurigaku Zasshi 2022; 157:453-457. [PMID: 36328560 DOI: 10.1254/fpj.22061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia in the world. Neurodegeneration, gliosis, and misfolded proteins such as amyloid plaques and tau tangles are neuropathological hallmarks in AD. In vivo imaging of these neuropathological lesions would be good biomarkers to understand pathophysiology as well as surrogate markers for clinical trials. We developed THK tau radiotracers including [18F]THK-5351 and tested them in humans. Validations studies identified monoamine oxidase-B (MAO-B) as the off-target binding substrate of [18F]THK-5351. Since the elevation of MAO-B, which is highly expressed in reactive astrocytes, were observed in various neurological conditions, MAO-B would be a promising target for imaging reactive astrogliosis. In fact, [18F]THK-5351 PET studies demonstrated that high tracer uptake in site susceptible regions to occur astrogliosis in various neurological disorders. However, the lack of binding selectivity affects the interpretation of PET images. Therefore, we performed lead optimization from [18F]THK-5351 generating a selective and reversible MAO-B PET tracer, [18F]SMBT-1. These translational and reverse translational studies, from the development of PET tracers to validation of PET images, led to the generation of new biomarkers. In this review, we will introduce the development of [18F]THK-5351, identification of off-target binding substrates, imaging-autopsy validations, new tracer development ([18F]SMBT-1), and finally recent clinical studies of [18F]SMBT-1.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine
| |
Collapse
|
115
|
Di Liberto G, Egervari K, Kreutzfeldt M, Schürch CM, Hewer E, Wagner I, Du Pasquier R, Merkler D. OUP accepted manuscript. Brain 2022; 145:2730-2741. [PMID: 35808999 PMCID: PMC9420019 DOI: 10.1093/brain/awac102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/14/2022] Open
Abstract
Glial cell activation is a hallmark of several neurodegenerative and neuroinflammatory diseases. During HIV infection, neuroinflammation is associated with cognitive impairment, even during sustained long-term suppressive antiretroviral therapy. However, the cellular subsets contributing to neuronal damage in the CNS during HIV infection remain unclear. Using post-mortem brain samples from eight HIV patients and eight non-neurological disease controls, we identify a subset of CNS phagocytes highly enriched in LGALS3, CTSB, GPNMB and HLA-DR, a signature identified in the context of ageing and neurodegeneration. In HIV patients, the presence of this phagocyte phenotype was associated with synaptic stripping, suggesting an involvement in the pathogenesis of HIV-associated neurocognitive disorder. Taken together, our findings elucidate some of the molecular signatures adopted by CNS phagocytes in HIV-positive patients and contribute to the understanding of how HIV might pave the way to other forms of cognitive decline in ageing HIV patient populations.
Collapse
Affiliation(s)
- Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kristof Egervari
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Renaud Du Pasquier
- Department of Clinical Neurosciences, Service of Neurology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Doron Merkler
- Correspondence to: Doron Merkler Centre Médical Universitaire (CMU) 1, rue Michel Servet 1211 Geneva, Switzerland E-mail:
| |
Collapse
|
116
|
Yeap J, Sathyaprakash C, Toombs J, Tulloch J, Scutariu C, Rose J, Burr K, Davies C, Colom-Cadena M, Chandran S, Large CH, Rowan MJM, Gunthorpe MJ, Spires-Jones TL. Reducing voltage-dependent potassium channel Kv3.4 levels ameliorates synapse loss in a mouse model of Alzheimer's disease. Brain Neurosci Adv 2022; 6:23982128221086464. [PMID: 35359460 PMCID: PMC8961358 DOI: 10.1177/23982128221086464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Synapse loss is associated with cognitive decline in Alzheimer's disease, and owing to their plastic nature, synapses are an ideal target for therapeutic intervention. Oligomeric amyloid beta around amyloid plaques is known to contribute to synapse loss in mouse models and is associated with synapse loss in human Alzheimer's disease brain tissue, but the mechanisms leading from Aβ to synapse loss remain unclear. Recent data suggest that the fast-activating and -inactivating voltage-gated potassium channel subtype 3.4 (Kv3.4) may play a role in Aβ-mediated neurotoxicity. Here, we tested whether this channel could also be involved in Aβ synaptotoxicity. Using adeno-associated virus and clustered regularly interspaced short palindromic repeats technology, we reduced Kv3.4 expression in neurons of the somatosensory cortex of APP/PS1 mice. These mice express human familial Alzheimer's disease-associated mutations in amyloid precursor protein and presenilin-1 and develop amyloid plaques and plaque-associated synapse loss similar to that observed in Alzheimer's disease brain. We observe that reducing Kv3.4 levels ameliorates dendritic spine loss and changes spine morphology compared to control virus. In support of translational relevance, Kv3.4 protein was observed in human Alzheimer's disease and control brain and is associated with synapses in human induced pluripotent stem cell-derived cortical neurons. We also noted morphological changes in induced pluripotent stem cell neurones challenged with human Alzheimer's disease-derived brain homogenate containing Aβ but, in this in vitro model, total mRNA levels of Kv3.4 were found to be reduced, perhaps as an early compensatory mechanism for Aβ-induced damage. Overall, our results suggest that approaches to reduce Kv3.4 expression and/or function in the Alzheimer's disease brain could be protective against Aβ-induced synaptic alterations.
Collapse
Affiliation(s)
- Jie Yeap
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Chaitra Sathyaprakash
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Jamie Toombs
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Jane Tulloch
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Cristina Scutariu
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Jamie Rose
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- UK Dementia Research Institute and Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Caitlin Davies
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Marti Colom-Cadena
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute and Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Charles H Large
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, UK
| | | | - Martin J Gunthorpe
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Stevenage, UK
| | - Tara L Spires-Jones
- UK Dementia Research Institute and Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
117
|
Xu Y, Yan H, Zhang X, Zhuo J, Han Y, Zhang H, Xie D, Lan X, Cai W, Wang X, Wang S, Li X. Roles of Altered Macrophages and Cytokines: Implications for Pathological Mechanisms of Postmenopausal Osteoporosis, Rheumatoid Arthritis, and Alzheimer's Disease. Front Endocrinol (Lausanne) 2022; 13:876269. [PMID: 35757427 PMCID: PMC9226340 DOI: 10.3389/fendo.2022.876269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is characterized by the uncoupling of bone resorption and bone formation induced by estrogen deficiency, which is a complex outcome related to estrogen and the immune system. The interaction between bone and immune cells is regarded as the context of PMOP. Macrophages act differently on bone cells, depending on their polarization profile and secreted paracrine factors, which may have implications for the development of PMOP. PMOP, rheumatoid arthritis (RA), and Alzheimer's disease (AD) might have pathophysiological links, and the similarity of their pathological mechanisms is partially visible in altered macrophages and cytokines in the immune system. This review focuses on exploring the pathological mechanisms of PMOP, RA, and AD through the roles of altered macrophages and cytokines secretion. First, the multiple effects on cytokines secretion by bone-bone marrow (BM) macrophages in the pathological mechanism of PMOP are reviewed. Then, based on the thought of "different tissue-same cell type-common pathological molecules-disease pathological links-drug targets" and the methodologies of "molecular network" in bioinformatics, highlight that multiple cytokines overlap in the pathological molecules associated with PMOP vs. RA and PMOP vs. AD, and propose that these overlaps may lead to a pathological synergy in PMOP, RA, and AD. It provides a novel strategy for understanding the pathogenesis of PMOP and potential drug targets for the treatment of PMOP.
Collapse
Affiliation(s)
- Yunteng Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Yan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Basic Discipline Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Junkuan Zhuo
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yidan Han
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haifeng Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dingbang Xie
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Lan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wanping Cai
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoning Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shanshan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Xihai Li,
| |
Collapse
|
118
|
McFarland KN, Chakrabarty P. Microglia in Alzheimer's Disease: a Key Player in the Transition Between Homeostasis and Pathogenesis. Neurotherapeutics 2022; 19:186-208. [PMID: 35286658 PMCID: PMC9130399 DOI: 10.1007/s13311-021-01179-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Immune activation accompanies the development of proteinopathy in the brains of Alzheimer's dementia patients. Evolving from the long-held viewpoint that immune activation triggers the pathological trajectory in Alzheimer's disease, there is accumulating evidence now that microglial activation is neither pro-amyloidogenic nor just a simple reactive process to the proteinopathy. Preclinical studies highlight an interesting aspect of immunity, i.e., spurring immune system activity may be beneficial under certain circumstances. Indeed, a dynamic evolving relationship between different activation states of the immune system and its neuronal neighbors is thought to regulate overall brain organ health in both healthy aging and progression of Alzheimer's dementia. A new premise evolving from genome, transcriptome, and proteome data is that there might be at least two major phases of immune activation that accompany the pathological trajectory in Alzheimer's disease. Though activation on a chronic scale will certainly lead to neurodegeneration, this emerging knowledge of a potential beneficial aspect of immune activation allows us to form holistic insights into when, where, and how much immune system activity would need to be tuned to impact the Alzheimer's neurodegenerative cascade. Even with the trove of recently emerging -omics data from patients and preclinical models, how microglial phenotypes are functionally related to the transition of a healthy aging brain towards progressive degenerative state remains unknown. A deeper understanding of the synergism between microglial functional states and brain organ health could help us discover newer interventions and therapies that enable us to address the current paucity of disease-modifying therapies in Alzheimer's disease.
Collapse
Affiliation(s)
- Karen N McFarland
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
119
|
Perez-Nievas BG, Johnson L, Beltran-Lobo P, Hughes MM, Gammallieri L, Tarsitano F, Myszczynska MA, Vazquez-Villasenor I, Jimenez-Sanchez M, Troakes C, Wharton SB, Ferraiuolo L, Noble W. Astrocytic C-X-C motif chemokine ligand-1 mediates β-amyloid-induced synaptotoxicity. J Neuroinflammation 2021; 18:306. [PMID: 34963475 PMCID: PMC8715604 DOI: 10.1186/s12974-021-02371-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pathological interactions between β-amyloid (Aβ) and tau drive synapse loss and cognitive decline in Alzheimer's disease (AD). Reactive astrocytes, displaying altered functions, are also a prominent feature of AD brain. This large and heterogeneous population of cells are increasingly recognised as contributing to early phases of disease. However, the contribution of astrocytes to Aβ-induced synaptotoxicity in AD is not well understood. METHODS We stimulated mouse and human astrocytes with conditioned medium containing concentrations and species of human Aβ that mimic those in human AD brain. Medium from stimulated astrocytes was collected and immunodepleted of Aβ before being added to naïve rodent or human neuron cultures. A cytokine, identified in unbiased screens of stimulated astrocyte media and in postmortem human AD brain lysates was also applied to neurons, including those pre-treated with a chemokine receptor antagonist. Tau mislocalisation, synaptic markers and dendritic spine numbers were measured in cultured neurons and organotypic brain slice cultures. RESULTS We found that conditioned medium from stimulated astrocytes induces exaggerated synaptotoxicity that is recapitulated following spiking of neuron culture medium with recombinant C-X-C motif chemokine ligand-1 (CXCL1), a chemokine upregulated in AD brain. Antagonism of neuronal C-X-C motif chemokine receptor 2 (CXCR2) prevented synaptotoxicity in response to CXCL1 and Aβ-stimulated astrocyte secretions. CONCLUSIONS Our data indicate that astrocytes exacerbate the synaptotoxic effects of Aβ via interactions of astrocytic CXCL1 and neuronal CXCR2 receptors, highlighting this chemokine-receptor pair as a novel target for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Beatriz G Perez-Nievas
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK.
| | - Louisa Johnson
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Paula Beltran-Lobo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Martina M Hughes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Luciana Gammallieri
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Francesca Tarsitano
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Monika A Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Irina Vazquez-Villasenor
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Maria Jimenez-Sanchez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK.
| |
Collapse
|
120
|
Kaur V, Sharma M, Sen T. DNA Origami-Templated Bimetallic Nanostar Assemblies for Ultra-Sensitive Detection of Dopamine. Front Chem 2021; 9:772267. [PMID: 35004609 PMCID: PMC8733555 DOI: 10.3389/fchem.2021.772267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
The abundance of hotspots tuned via precise arrangement of coupled plasmonic nanostructures highly boost the surface-enhanced Raman scattering (SERS) signal enhancements, expanding their potential applicability to a diverse range of applications. Herein, nanoscale assembly of Ag coated Au nanostars in dimer and trimer configurations with tunable nanogap was achieved using programmable DNA origami technique. The resulting assemblies were then utilized for SERS-based ultra-sensitive detection of an important neurotransmitter, dopamine. The trimer assemblies were able to detect dopamine with picomolar sensitivity, and the assembled dimer structures achieved SERS sensitivity as low as 1 fM with a limit of detection of 0.225 fM. Overall, such coupled nanoarchitectures with superior plasmon tunability are promising to explore new avenues in biomedical diagnostic applications.
Collapse
Affiliation(s)
| | | | - Tapasi Sen
- Institute of Nano Science and Technology, Mohali, India
| |
Collapse
|
121
|
Goshtasbi H, Pakchin PS, Movafeghi A, Barar J, Castejon AM, Omidian H, Omidi Y. Impacts of oxidants and antioxidants on the emergence and progression of Alzheimer's disease. Neurochem Int 2021; 153:105268. [PMID: 34954260 DOI: 10.1016/j.neuint.2021.105268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 01/06/2023]
Abstract
The brain shows a high sensitivity to oxidative stress (OS). Thus, the maintenance of homeostasis of the brain regarding the reduction-oxidation (redox) situation is crucial for the regular function of the central nervous systems (CNS). The imbalance between the reactive oxygen species (ROS) and the cellular mechanism might lead to the emergence of OS, causing profound cell death as well as tissue damages and initiating neurodegenerative disorders (NDDs). Characterized by the cytoplasmic growth of neurofibrillary tangles and extracellular β-amyloid plaques, Alzheimer's disease (AD) is a complex NDD that causes dementia in adult life with severe manifestations. Nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcription factor that regulates the functional expression of OS-related genes and the functionality of endogenous antioxidants. In the case of oxidative damage, NRF2 is transferred to the nucleus and attached to the antioxidant response element (ARE) that enhances the sequence to initiate transcription of the cell-protecting genes. This review articulates various mechanisms engaged with the generation of active and reactive species of endogenous and exogenous oxidants and focuses on the antioxidants as a body defense system regarding the NRF2-ARE signaling path in the CNS.
Collapse
Affiliation(s)
- Hamieh Goshtasbi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Movafeghi
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ana M Castejon
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States
| | - Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, 33328, United States.
| |
Collapse
|
122
|
Gonzalez-Rodriguez M, Villar-Conde S, Astillero-Lopez V, Villanueva-Anguita P, Ubeda-Banon I, Flores-Cuadrado A, Martinez-Marcos A, Saiz-Sanchez D. Neurodegeneration and Astrogliosis in the Human CA1 Hippocampal Subfield Are Related to hsp90ab1 and bag3 in Alzheimer's Disease. Int J Mol Sci 2021; 23:165. [PMID: 35008592 PMCID: PMC8745315 DOI: 10.3390/ijms23010165] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder, is characterized by executive dysfunction and memory impairment mediated by the accumulation of extracellular amyloid-β peptide (Aβ) and intracellular hyperphosphorylated tau protein. The hippocampus (HIPP) is essential for memory formation and is involved in early stages of disease. In fact, hippocampal atrophy is used as an early biomarker of neuronal injury and to evaluate disease progression. It is not yet well-understood whether changes in hippocampal volume are due to neuronal or glial loss. The aim of the study was to assess hippocampal atrophy and/or gliosis using unbiased stereological quantification and to obtain hippocampal proteomic profiles related to neurodegeneration and gliosis. Hippocampal volume measurement, stereological quantification of NeuN-, Iba-1- and GFAP-positive cells, and sequential window acquisition of all theoretical mass spectrometry (SWATH-MS) analysis were performed in AD and non-AD cases. Reduced hippocampal volume was identified using the Cavalieri probe, particularly in the CA1 region, where it correlated with neuronal loss and astrogliosis. A total of 102 downregulated and 47 upregulated proteins were identified in the SWATH-MS analysis after restrictive filtering based on an FC > 1.5 and p value < 0.01. The Hsp90 family of chaperones, particularly BAG3 and HSP90AB1, are closely related to astrocytes, indicating a possible role in degrading Aβ and tau through chaperone-mediated autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alino Martinez-Marcos
- CRIB, Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.G.-R.); (S.V.-C.); (V.A.-L.); (P.V.-A.); (I.U.-B.); (A.F.-C.)
| | - Daniel Saiz-Sanchez
- CRIB, Neuroplasticity and Neurodegeneration Laboratory, Ciudad Real Medical School, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (M.G.-R.); (S.V.-C.); (V.A.-L.); (P.V.-A.); (I.U.-B.); (A.F.-C.)
| |
Collapse
|
123
|
Chen Y, Tian R, Shang Y, Jiang Q, Ding B. Regulation of Biological Functions at the Cell Interface by DNA Nanostructures. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yongjian Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Run Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Sino-Danish College Sino-Danish Center for Education and Research University of Chinese Academy of Sciences 100049 Beijing China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
124
|
Long CM, Zheng QX, Zhou Y, Liu YT, Gong LP, Zeng YC, Liu S. N-linoleyltyrosine exerts neuroprotective effects in APP/PS1 transgenic mice via cannabinoid receptor-mediated autophagy. J Pharmacol Sci 2021; 147:315-324. [PMID: 34663513 DOI: 10.1016/j.jphs.2021.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Anandamide (AEA) analogs show fair effects in counteracting the deterioration of Alzheimer's disease (AD). Our previous studies demonstrated that AEA analog-N-linoleyltyrosine (NITyr) exerted significant activities. In our current research, the role and mechanisms of NITyr were assessed in APP/PS1 mice mimicking the AD model. NITyr improved motor coordination in the rotarod test (RRT) and ameliorated spatial memory in the Morris water maze (MWM) but did not increase spontaneous locomotor activity in the open field test (OFT). In addition, NITyr protected neurons against β-amyloid (Aβ) injury via hematoxylin-eosin (HE) and Nissl staining. Moreover, the related biochemical indexes showed that NITyr reduced the levels of Aβ40 and Aβ42 in the hippocampus but did not affect the expression of p-APP and β-secretase 1 (BACE1). Furthermore, the autophagy inhibitor 3-methyladenine (3 MA) attenuated the effect of NITyr on animal behaviors and neurons. Meanwhile, NITyr upregulated the expression levels of LC3-II and Beclin-1, which were weakened by AM630 (an antagonist of CB2 receptor and a weak partial agonist of CB1 receptors). AM630 also weakened the role of NITyr in animal behaviors. Thus, NITyr improved behavioral impairment and neural loss by inducing autophagy mainly mediated by the CB2 receptor, and weakly mediated by the CB1 receptor.
Collapse
Affiliation(s)
- Chun-Mei Long
- Department of Pharmacy, Study on the Structure-specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Qi-Xue Zheng
- Department of Pharmacy, Study on the Structure-specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yi Zhou
- Research and Development Center, Sichuan Yuanda Shuyang Pharmaceutical Co.,Ltd, Chengdu, Sichuan, 610214, People's Republic of China
| | - Yuan-Ting Liu
- Department of Pharmacy, Study on the Structure-specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Liu-Ping Gong
- Department of Pharmacy, Study on the Structure-specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ying-Chun Zeng
- Department of Pharmacy, Study on the Structure-specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
| | - Sha Liu
- Department of Pharmacy, Study on the Structure-specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
125
|
Lee SH, Rezzonico MG, Friedman BA, Huntley MH, Meilandt WJ, Pandey S, Chen YJJ, Easton A, Modrusan Z, Hansen DV, Sheng M, Bohlen CJ. TREM2-independent oligodendrocyte, astrocyte, and T cell responses to tau and amyloid pathology in mouse models of Alzheimer disease. Cell Rep 2021; 37:110158. [DOI: 10.1016/j.celrep.2021.110158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 09/11/2021] [Accepted: 12/01/2021] [Indexed: 01/04/2023] Open
|
126
|
Wang N, Wang H, Pan Q, Kang J, Liang Z, Zhang R. The Combination of β-Asarone and Icariin Inhibits Amyloid- β and Reverses Cognitive Deficits by Promoting Mitophagy in Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7158444. [PMID: 34887998 PMCID: PMC8651403 DOI: 10.1155/2021/7158444] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023]
Abstract
β-Asarone is the main constituent of Acorus tatarinowii Schott and exhibits important effects in diseases such as neurodegenerative and neurovascular diseases. Icariin (ICA) is a major active ingredient of Epimedium that has attracted increasing attention because of its unique pharmacological effects in degenerative disease. In this paper, we primarily explored the effects of the combination of β-asarone and ICA in clearing noxious proteins and reversing cognitive deficits. The accumulation of damaged mitochondria and mitophagy are hallmarks of aging and age-related neurodegeneration, including Alzheimer's disease (AD). Here, we provide evidence that autophagy/mitophagy is impaired in the hippocampus of APP/PS1 mice and in Aβ1-42-induced PC12 cell models. Enhanced mitophagic activity has been reported to promote Aβ and tau clearance in in vitro and in vivo models. Meanwhile, there is growing evidence that treatment of AD should be preceded by intervention before the formation of pathological products. The efficacy of the combination therapy was better than that of the individual therapies applied separately. Then, we found that the combination therapy also inhibited cell and mitochondrial damage by inducing autophagy/mitophagy. These findings suggest that impaired removal of defective mitochondria is a pivotal event in AD pathogenesis, and that combination treatment with mitophagy inducers represents a potential strategy for therapeutic intervention.
Collapse
Affiliation(s)
- Nanbu Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Haoyu Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qi Pan
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jian Kang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwen Liang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ronghua Zhang
- The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
127
|
The KEAP1-NRF2 System in Healthy Aging and Longevity. Antioxidants (Basel) 2021; 10:antiox10121929. [PMID: 34943032 PMCID: PMC8750203 DOI: 10.3390/antiox10121929] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Aging is inevitable, but the inherently and genetically programmed aging process is markedly influenced by environmental factors. All organisms are constantly exposed to various stresses, either exogenous or endogenous, throughout their lives, and the quality and quantity of the stresses generate diverse impacts on the organismal aging process. In the current oxygenic atmosphere on earth, oxidative stress caused by reactive oxygen species is one of the most common and critical environmental factors for life. The Kelch-like ECH-associated protein 1-NFE2-related factor 2 (KEAP1-NRF2) system is a critical defense mechanism of cells and organisms in response to redox perturbations. In the presence of oxidative and electrophilic insults, the thiol moieties of cysteine in KEAP1 are modified, and consequently NRF2 activates its target genes for detoxification and cytoprotection. A number of studies have clarified the contributions of the KEAP1-NRF2 system to the prevention and attenuation of physiological aging and aging-related diseases. Accumulating knowledge to control stress-induced damage may provide a clue for extending healthspan and treating aging-related diseases. In this review, we focus on the relationships between oxidative stress and aging-related alterations in the sensory, glandular, muscular, and central nervous systems and the roles of the KEAP1-NRF2 system in aging processes.
Collapse
|
128
|
Bubnys A, Tsai LH. Harnessing cerebral organoids for Alzheimer's disease research. Curr Opin Neurobiol 2021; 72:120-130. [PMID: 34818608 DOI: 10.1016/j.conb.2021.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting the aging population. Despite many studies, there remains an urgent need to identify the root causes of AD, together with potential treatments. Cerebral organoid technology has made it possible to model human neurophysiology and disease with increasing accuracy in patient-derived tissue cultures. Here, we review the most recent advances in modeling AD in organoids and other engineered three-dimensional cell culture systems. Early studies demonstrated that familial AD patient-derived organoids robustly develop disease pathology. Ongoing work has expanded this focus to investigate the genetic and environmental causes of late-onset sporadic AD and harness organoids for high-throughput drug screens. Future organoid models will need to incorporate additional cell types and tissues implicated in disease pathogenesis, including microglia and vasculature. We anticipate the continuation of this rapid progress in developing cerebral organoid technology toward facilitating our understanding of and informing treatment strategies for AD.
Collapse
|
129
|
Jamshidnejad-Tosaramandani T, Kashanian S, Babaei M, Al-Sabri MH, Schiöth HB. The Potential Effect of Insulin on AChE and Its Interactions with Rivastigmine In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14111136. [PMID: 34832918 PMCID: PMC8617642 DOI: 10.3390/ph14111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
There is no definite cure for Alzheimer’s disease (AD) due to its multifactorial origin. Drugs that inhibit acetylcholinesterase (AChE), such as rivastigmine, are promising symptomatic treatments for AD. Emerging evidence suggests that insulin therapy can hinder several aspects of AD pathology. Insulin has been shown to modify the activity of AChE, but it is still unknown how insulin and AChE interact. Combination therapy, which targets several features of the disease based on existing medications, can provide a worthy therapy option for AD management. However, to date, no studies have examined the potential interaction of insulin with AChE and/or rivastigmine in vitro. In the present study, we employed the Response Surface Methodology (RSM) as an in vitro assessment to investigate the effect of insulin on both AChE activity and rivastigmine inhibitory action using a common spectrophotometric assay for cholinesterase activity, Ellman’s method. Our results showed that insulin, even at high concentrations, has an insignificant effect on both the activity of AChE and rivastigmine’s inhibitory action. The variance of our data is near zero, which means that the dispersion is negligible. However, to improve our understanding of the possible interaction of insulin and rivastigmine, or its target AChE, more in silico modelling and in vivo studies are needed.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, BMC, Husargatan 3, Box 593, 751 24 Uppsala, Sweden; (M.H.A.-S.); (H.B.S.)
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Science, Kermanshah 6734667149, Iran
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah 6714414971, Iran
- Correspondence: ; Tel./Fax: +98-833-4274559
| | - Mahsa Babaei
- Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
| | - Mohamed H. Al-Sabri
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, BMC, Husargatan 3, Box 593, 751 24 Uppsala, Sweden; (M.H.A.-S.); (H.B.S.)
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, BMC, Husargatan 3, Box 593, 751 24 Uppsala, Sweden; (M.H.A.-S.); (H.B.S.)
- Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Trubetskay Str. 8, bldg 2, 119991 Moscow, Russia
| |
Collapse
|
130
|
Nowak A, Kojder K, Zielonka-Brzezicka J, Wróbel J, Bosiacki M, Fabiańska M, Wróbel M, Sołek-Pastuszka J, Klimowicz A. The Use of Ginkgo Biloba L. as a Neuroprotective Agent in the Alzheimer's Disease. Front Pharmacol 2021; 12:775034. [PMID: 34803717 PMCID: PMC8599153 DOI: 10.3389/fphar.2021.775034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease, a neurodegenerative disease, is one of the most common causes of dementia if elderly people worldwide. Alzheimer's disease leads to the alienation of individuals and their exclusion from social and professional life. It is characterized mainly by the degradation of memory and disorientation, which occurs as a result of the loss of neuronal structure and function in different brain areas. In recent years, more and more attention has been paid to use in the treatment of natural bioactive compounds that will be effective in neurodegenerative diseases, including Alzheimer's disease. G. biloba L. and its most frequently used standardized extract (EGb 761), have been used for many years in supportive therapy and in the prevention of cognitive disorders. The paper presents an overview of reports on the pathogenesis of Alzheimer's disease, as well as a summary of the properties of G. biloba extract and its effects on the possible pathogenesis of the disease. By exploring more about the pathogenesis of the disease and the benefits of G. biloba extract for patients with Alzheimer's disease, it will be possible to create an individualized therapeutic protocol to optimize the treatment.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Klaudyna Kojder
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Joanna Zielonka-Brzezicka
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Fabiańska
- Institute of Philosophy and Cognitive Science, University of Szczecin, Szczecin, Poland
| | - Mariola Wróbel
- Department of Landscape Architecture, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Joanna Sołek-Pastuszka
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| |
Collapse
|
131
|
Pal A, Rani I, Pawar A, Picozza M, Rongioletti M, Squitti R. Microglia and Astrocytes in Alzheimer's Disease in the Context of the Aberrant Copper Homeostasis Hypothesis. Biomolecules 2021; 11:1598. [PMID: 34827595 PMCID: PMC8615684 DOI: 10.3390/biom11111598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Evidence of copper's (Cu) involvement in Alzheimer's disease (AD) is available, but information on Cu involvement in microglia and astrocytes during the course of AD has yet to be structurally discussed. This review deals with this matter in an attempt to provide an updated discussion on the role of reactive glia challenged by excess labile Cu in a wide picture that embraces all the major processes identified as playing a role in toxicity induced by an imbalance of Cu in AD.
Collapse
Affiliation(s)
- Amit Pal
- Department of Biochemistry, AIIMS, Kalyani 741245, West Bengal, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala 133207, Haryana, India;
| | - Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India;
| | - Mario Picozza
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy;
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, 00186 Rome, Italy;
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| |
Collapse
|
132
|
Spires-Jones T. Toward a holistic model of Alzheimer's How Not to Study a Disease: The Story of Alzheimer's Karl Herrup MIT Press, 2021. 272 pp. Science 2021; 374:267. [PMID: 34648339 DOI: 10.1126/science.abl7597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tara Spires-Jones
- The reviewer is at the UK Dementia Research Institute and the Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, UK
| |
Collapse
|
133
|
Xin JY, Zhu XY, Huang X, Liu YH, Tan J, Xiang Y. Editorial: Immunological Mechanisms, Biomarkers and Immunotherapies of Alzheimer's Disease. Front Aging Neurosci 2021; 13:733282. [PMID: 34588975 PMCID: PMC8473822 DOI: 10.3389/fnagi.2021.733282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jia-Yan Xin
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Xiao-Yan Zhu
- Basic Medical Laboratory, General Hospital of Western Theater Command, Chengdu, China
| | - Xiao Huang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jun Tan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yang Xiang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
134
|
Hu Y, Zhang Y, Ren R, Dammer EB, Xie X, Chen S, Huang Q, Huang W, Zhang R, Chen H, Wang H, Wang G. microRNA-425 loss mediates amyloid plaque microenvironment heterogeneity and promotes neurodegenerative pathologies. Aging Cell 2021; 20:e13454. [PMID: 34510683 PMCID: PMC8520725 DOI: 10.1111/acel.13454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/19/2021] [Accepted: 08/05/2021] [Indexed: 01/09/2023] Open
Abstract
Different cellular and molecular changes underlie the pathogenesis of Alzheimer's disease (AD). Among these, neuron‐specific dysregulation is a necessary event for accumulation of classic pathologies including amyloid plaques. Here, we show that AD‐associated pathophysiology including neuronal cell death, inflammatory signaling, and endolysosomal dysfunction is spatially colocalized to amyloid plaques in regions with abnormal microRNA‐425 (miR‐425) levels and this change leads to focal brain microenvironment heterogeneity, that is, an amyloid plaque‐associated microenvironment (APAM). APAM consists of multiple specific neurodegenerative signature pathologies associated with senile plaques that contribute to the heterogeneity and complexity of AD. Remarkably, miR‐425, a neuronal‐specific regulator decreased in AD brain, maintains a normal spatial transcriptome within brain neurons. We tested the hypothesis that miR‐425 loss correlates with enhanced levels of mRNA targets downstream, supporting APAM and AD progression. A miR‐425‐deficient mouse model has enhanced APP amyloidogenic processing, neuroinflammation, neuron loss, and cognitive impairment. In the APP/PS1 mouse model, intervening with miR‐425 supplementation ameliorated APAM changes and memory deficits. This study reveals a novel mechanism of dysregulation of spatial transcriptomic changes in AD brain, identifying a probable neuronal‐specific microRNA regulator capable of staving off amyloid pathogenesis. Moreover, our findings provide new insights for developing AD treatment strategies with miRNA oligonucleotide(s).
Collapse
Affiliation(s)
- Yong‐Bo Hu
- Department of Neurology and Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
- Department of Neurology,Shanghai East Hospital School of Medicine,Tongji University Shanghai China
| | - Yong‐Fang Zhang
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ru‐Jing Ren
- Department of Neurology and Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Eric B. Dammer
- Department of Biochemistry and Center for Neurodegenerative Disease Emory University School of Medicine Atlanta Georgia USA
| | - Xin‐Yi Xie
- Department of Neurology and Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Shi‐Wu Chen
- Department of Neurology and Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiang Huang
- Department of Neurology and Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Wan‐Ying Huang
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Hong‐Zhuan Chen
- Institute of Interdisciplinary Science Shuguang Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Gang Wang
- Department of Neurology and Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
135
|
Arnaud K, Oliveira Moreira V, Vincent J, Dallerac G, Dubreuil C, Dupont E, Richter M, Müller UC, Rondi-Reig L, Prochiantz A, Di Nardo AA. Choroid plexus APP regulates adult brain proliferation and animal behavior. Life Sci Alliance 2021; 4:4/11/e202000703. [PMID: 34544751 PMCID: PMC8473726 DOI: 10.26508/lsa.202000703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
Adult mouse choroid plexus shows elevated APP expression. sAPPα secreted into the CSF modulates neurogenic niche proliferation, whereas choroid plexus expression of fAD APP mutants leads to reduced niche proliferation, deficits in hippocampus synaptic plasticity, and learning defects. Elevated amyloid precursor protein (APP) expression in the choroid plexus suggests an important role for extracellular APP metabolites such as sAPPα in cerebrospinal fluid. Despite widespread App brain expression, we hypothesized that specifically targeting choroid plexus expression could alter animal physiology. Through various genetic and viral approaches in the adult mouse, we show that choroid plexus APP levels significantly impact proliferation in both subventricular zone and hippocampus dentate gyrus neurogenic niches. Given the role of Aβ peptides in Alzheimer disease pathogenesis, we also tested whether favoring the production of Aβ in choroid plexus could negatively affect niche functions. After AAV5-mediated long-term expression of human mutated APP specifically in the choroid plexus of adult wild-type mice, we observe reduced niche proliferation, reduced hippocampus APP expression, behavioral defects in reversal learning, and deficits in hippocampal long-term potentiation. Our findings highlight the unique role played by the choroid plexus in regulating brain function and suggest that targeting APP in choroid plexus may provide a means to improve hippocampus function and alleviate disease-related burdens.
Collapse
Affiliation(s)
- Karen Arnaud
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Vanessa Oliveira Moreira
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Jean Vincent
- Neuroscience Paris Seine, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM, Labex BioPsy, ENP Foundation, Sorbonne University, Paris, France
| | - Glenn Dallerac
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Chantal Dubreuil
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Edmond Dupont
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Max Richter
- Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Heidelberg, Germany
| | - Ulrike C Müller
- Ruprecht-Karls University Heidelberg, Institute of Pharmacy and Molecular Biotechnology, Functional Genomics, Heidelberg, Germany
| | - Laure Rondi-Reig
- Neuroscience Paris Seine, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM, Labex BioPsy, ENP Foundation, Sorbonne University, Paris, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| | - Ariel A Di Nardo
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, Centre National de Recherche Scientifique (CNRS) UMR7241, INSERM U1050, Labex MemoLife, PSL Research University, Paris, France
| |
Collapse
|
136
|
Gao J, Wang L, Zhao C, Wu Y, Lu Z, Gu Y, Ba Z, Wang X, Wang J, Xu Y. Peony seed oil ameliorates neuroinflammation-mediated cognitive deficits by suppressing microglial activation through inhibition of NF-κB pathway in presenilin 1/2 conditional double knockout mice. J Leukoc Biol 2021; 110:1005-1022. [PMID: 34494312 DOI: 10.1002/jlb.3ma0821-639rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic neuroinflammation has been shown to exert adverse influences on the pathology of Alzheimer's disease (AD), associated with the release of abundant proinflammatory mediators by excessively activated microglia, causing synaptic dysfunction, neuronal degeneration, and memory deficits. Thus, the prevention of microglial activation-associated neuroinflammation is important target for deterring neurodegenerative disorders. Peony seed oil (PSO) is a new food resource, rich in α-linolenic acid, the precursor of long chain omega-3 polyunsaturated fatty acids, including docosahexaenoic acid and eicosapentaenoic acid, which exhibit anti-inflammatory properties by altering cell membrane phospholipid fatty acid compositions, disrupting lipid rafts, and inhibiting the activation of the proinflammatory transcription factor NF-κB. However, few studies have examined the anti-neuroinflammatory effects of PSO in AD, and the relevant molecular mechanisms remain unclear. Presenilin1/2 conditional double knockout (PS cDKO) mice display obvious AD-like phenotypes, such as neuroinflammatory responses, synaptic dysfunction, and cognitive deficits. Here, we assessed the potential neuroprotective effects of PSO against neuroinflammation-mediated cognitive deficits in PS cDKO using behavioral tests and molecular biologic analyses. Our study demonstrated that PSO suppressed microglial activation and neuroinflammation through the down-regulation of proinflammatory mediators, such as inducible NOS, COX-2, IL-1β, and TNF-α, in the prefrontal cortex and hippocampus of PS cDKO mice. Further, PSO significantly lessened memory impairment by reversing hyperphosphorylated tau and synaptic proteins deficits in PS cDKO mice. Importantly, PSO's therapeutic effects on cognitive deficits were due to inhibiting neuroinflammatory responses mediated by NF-κB signaling pathway. Taken together, PSO may represent an effective dietary supplementation to restrain the neurodegenerative processes of AD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China.,Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Lijun Wang
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyi Zhao
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongkang Wu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiyuan Lu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yining Gu
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Zongtao Ba
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Xingyu Wang
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Wang
- School of Rehabilitation Science, University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xu
- Department of Physiology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
137
|
Caligiore D, Silvetti M, D'Amelio M, Puglisi-Allegra S, Baldassarre G. Computational Modeling of Catecholamines Dysfunction in Alzheimer's Disease at Pre-Plaque Stage. J Alzheimers Dis 2021; 77:275-290. [PMID: 32741822 PMCID: PMC7592658 DOI: 10.3233/jad-200276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Alzheimer’s disease (AD) etiopathogenesis remains partially unexplained. The main conceptual framework used to study AD is the Amyloid Cascade Hypothesis, although the failure of recent clinical experimentation seems to reduce its potential in AD research. Objective: A possible explanation for the failure of clinical trials is that they are set too late in AD progression. Recent studies suggest that the ventral tegmental area (VTA) degeneration could be one of the first events occurring in AD progression (pre-plaque stage). Methods: Here we investigate this hypothesis through a computational model and computer simulations validated with behavioral and neural data from patients. Results: We show that VTA degeneration might lead to system-level adjustments of catecholamine release, triggering a sequence of events leading to relevant clinical and pathological signs of AD. These changes consist first in a midfrontal-driven compensatory hyperactivation of both VTA and locus coeruleus (norepinephrine) followed, with the progression of the VTA impairment, by a downregulation of catecholamine release. These processes could then trigger the neural degeneration at the cortical and hippocampal levels, due to the chronic loss of the neuroprotective role of norepinephrine. Conclusion: Our novel hypothesis might contribute to the formulation of a wider system-level view of AD which might help to devise early diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Daniele Caligiore
- Computational and Translational Neuroscience Laboratory (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Laboratory (CTNLab), Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| | - Marcello D'Amelio
- Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Gianluca Baldassarre
- Laboratory of Computational Embodied Neuroscience (LOCEN), Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy
| |
Collapse
|
138
|
Logsdon AF, Francis KL, Richardson NE, Hu SJ, Faber CL, Phan BA, Nguyen V, Setthavongsack N, Banks WA, Woltjer RL, Keene CD, Latimer CS, Schwartz MW, Scarlett JM, Alonge KM. Decoding perineuronal net glycan sulfation patterns in the Alzheimer's disease brain. Alzheimers Dement 2021; 18:942-954. [PMID: 34482642 DOI: 10.1002/alz.12451] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/01/2023]
Abstract
The extracellular matrix (ECM) of the brain comprises unique glycan "sulfation codes" that influence neurological function. Perineuronal nets (PNNs) are chondroitin sulfate-glycosaminoglycan (CS-GAG) containing matrices that enmesh neural networks involved in memory and cognition, and loss of PNN matrices is reported in patients with neurocognitive and neuropsychiatric disorders including Alzheimer's disease (AD). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we show that patients with a clinical diagnosis of AD-related dementia undergo a re-coding of their PNN-associated CS-GAGs that correlates to Braak stage progression, hyperphosphorylated tau (p-tau) accumulation, and cognitive impairment. As these CS-GAG sulfation changes are detectable prior to the regional onset of classical AD pathology, they may contribute to the initiation and/or progression of the underlying degenerative processes and implicate the brain matrix sulfation code as a key player in the development of AD clinicopathology.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kendra L Francis
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA.,Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Nicole E Richardson
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Shannon J Hu
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Chelsea L Faber
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Bao Anh Phan
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Vy Nguyen
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Naly Setthavongsack
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Randy L Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Michael W Schwartz
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| | - Jarrad M Scarlett
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA.,Department of Pediatric Gastroenterology and Hepatology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Kimberly M Alonge
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
139
|
Li X, Lin Y, Meng X, Qiu Y, Hu B. An L 0 Regularization Method for Imaging Genetics and Whole Genome Association Analysis on Alzheimer's Disease. IEEE J Biomed Health Inform 2021; 25:3677-3684. [PMID: 34181562 DOI: 10.1109/jbhi.2021.3093027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although the neuroimaging measures build a bridge between genetic variants and disease phenotypes, an assessment of single nucleotide variants changes in brain structure and their clinically influence on the progression of Alzheimer's disease remain largely preliminary. Note that each variant has very weak correlation signal to neuroimaging measures or Alzheimer's disease phenotypes. Therefore, traditional sparse regression-based image genetics approaches confront with unresolvable features, relative high regression error or inapplicability of high-dimensional data. Adopting an [Formula: see text] regularization method, we significantly elevate the regression accuracy of imaging genetics compared with group-sparse multitask regression method. With further analysis on the simulation results, we conclude that multiple regression tasks model may be unsuitable for image genetics. In addition, we carried out a whole genome association analysis between genetic variants (about 388 million loci) and phenotypes (cognition normal, mild cognitive impairment and Alzheimer's disease) with using the [Formula: see text] regularization method. After annotating the effect of all variants by Ensembl Variant Effect Predictor (VEP), our method locates 33 missense variants which can explain 40% phenotype variance. Then, we mapped each missense variant to the nearest gene and carried out pathway enrichment analysis. The Notch signaling pathway and Apoptosis pathway have been reported to be related to the formation of Alzheimer's disease.
Collapse
|
140
|
Eltanahy AM, Koluib YA, Gonzales A. Pericytes: Intrinsic Transportation Engineers of the CNS Microcirculation. Front Physiol 2021; 12:719701. [PMID: 34497540 PMCID: PMC8421025 DOI: 10.3389/fphys.2021.719701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pericytes in the brain are candidate regulators of microcirculatory blood flow because they are strategically positioned along the microvasculature, contain contractile proteins, respond rapidly to neuronal activation, and synchronize microvascular dynamics and neurovascular coupling within the capillary network. Analyses of mice with defects in pericyte generation demonstrate that pericytes are necessary for the formation of the blood-brain barrier, development of the glymphatic system, immune homeostasis, and white matter function. The development, identity, specialization, and progeny of different subtypes of pericytes, however, remain unclear. Pericytes perform brain-wide 'transportation engineering' functions in the capillary network, instructing, integrating, and coordinating signals within the cellular communicome in the neurovascular unit to efficiently distribute oxygen and nutrients ('goods and services') throughout the microvasculature ('transportation grid'). In this review, we identify emerging challenges in pericyte biology and shed light on potential pericyte-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed M. Eltanahy
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Yara A. Koluib
- Tanta University Hospitals, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Albert Gonzales
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
141
|
Xin Y, Zhang L, Hu J, Gao H, Zhang B. Correlation of early cognitive dysfunction with inflammatory factors and metabolic indicators in patients with Alzheimer's disease. Am J Transl Res 2021; 13:9208-9215. [PMID: 34540036 PMCID: PMC8430204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE The aim of this investigation was to clarify the correlation of early cognitive dysfunction (CD) with inflammatory factors and metabolic indicators in patients with Alzheimer's disease (AD). METHODS Eighty patients with AD who were referred to our hospital from May 2019 to May 2020 were selected as the research group (RG) and 71 non-AD patients served as the control group (CG). The two groups were compared regarding the changes in their mini-mental state examination (MMSE) scores and inflammatory factors as well as metabolic indicators. The correlation of MMSE with inflammatory factors and metabolic indicators was analyzed by Pearson correlation analysis. RESULTS The RG presented with lower MMSE scores than the CG. Interleukin (IL-6), C-reactive protein (CRP), IL-1β levels, low density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), fasting plasma glucose (FPG), and systolic blood pressure (SBP) were all higher in the RG as compared to the CG, while high density lipoprotein cholesterol (HDL-C), ApoE and ApoAI were lower (all P<0.05). The MMSE score was negatively associated with IL-6, CRP, IL-1β, LDL-C, TC, TG, FPG and SBP levels, and was positively correlated with HDL-C, ApoE and ApoAI levels. CONCLUSIONS Inflammatory factors and metabolic indicators are highly correlated with early CD in patients with AD, and thus may be excellent potential indicators for the future diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Ying Xin
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital Tianjin 300350, China
| | - Le Zhang
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital Tianjin 300350, China
| | - Jingyi Hu
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital Tianjin 300350, China
| | - Hezhen Gao
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital Tianjin 300350, China
| | - Biao Zhang
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Neurosurgery Institute, Tianjin Huanhu Hospital Tianjin 300350, China
| |
Collapse
|
142
|
Zarini-Gakiye E, Amini J, Sanadgol N, Vaezi G, Parivar K. Recent Updates in the Alzheimer's Disease Etiopathology and Possible Treatment Approaches: A Narrative Review of Current Clinical Trials. Curr Mol Pharmacol 2021; 13:273-294. [PMID: 32321414 DOI: 10.2174/1874467213666200422090135] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. OBJECTIVE Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. METHODS We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were "Alzheimer's disease" or "dementia" and "medicine" or "drug" or "treatment" and "clinical trials" and "interventions". Manuscripts that met the objective of this study were included for further evaluations. RESULTS Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. CONCLUSION The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.
Collapse
Affiliation(s)
- Elahe Zarini-Gakiye
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Amini
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran,Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
143
|
van de Mortel LA, Thomas RM, van Wingen GA. Grey Matter Loss at Different Stages of Cognitive Decline: A Role for the Thalamus in Developing Alzheimer's Disease. J Alzheimers Dis 2021; 83:705-720. [PMID: 34366336 PMCID: PMC8543264 DOI: 10.3233/jad-210173] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Alzheimer’s disease (AD) is characterized by cognitive impairment and large loss of grey matter volume and is the most prevalent form of dementia worldwide. Mild cognitive impairment (MCI) is the stage that precedes the AD dementia stage, but individuals with MCI do not always convert to the AD dementia stage, and it remains unclear why. Objective: We aimed to assess grey matter loss across the brain at different stages of the clinical continuum of AD to gain a better understanding of disease progression. Methods: In this large-cohort study (N = 1,386) using neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative, voxel-based morphometry analyses were performed between healthy controls, individuals with early and late and AD dementia stage. Results: Clear patterns of grey matter loss in mostly hippocampal and temporal regions were found across clinical stages, though not yet in early MCI. In contrast, thalamic volume loss seems one of the first signs of cognitive decline already during early MCI, whereas this volume loss does not further progress from late MCI to AD dementia stage. AD dementia stage converters already show grey matter loss in hippocampal and mid-temporal areas as well as the posterior thalamus (pulvinar) and angular gyrus at baseline. Conclusion: This study confirms the role of temporal brain regions in AD development and suggests additional involvement of the thalamus/pulvinar and angular gyrus that may be linked to visuospatial, attentional, and memory related problems in both early MCI and AD dementia stage conversion.
Collapse
Affiliation(s)
- Laurens Ansem van de Mortel
- Department of Psychiatry, Amsterdam UMC, Universityof Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rajat Mani Thomas
- Department of Psychiatry, Amsterdam UMC, Universityof Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Guido Alexander van Wingen
- Department of Psychiatry, Amsterdam UMC, Universityof Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | |
Collapse
|
144
|
McNamara NB, Miron VE. Replenishing our mind orchards: Enhancing myelin renewal to rescue cognition in Alzheimer's disease. Neuron 2021; 109:2204-2206. [PMID: 34293288 DOI: 10.1016/j.neuron.2021.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue of Neuron, Chen et al. (2021) reveal dynamic changes in myelin in an Alzheimer's disease (AD) mouse model. Enhancing myelination genetically or pharmacologically improves cognition in this model, supporting myelin as a therapeutic target for AD.
Collapse
Affiliation(s)
- Niamh B McNamara
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK; United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, UK; Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK; United Kingdom Dementia Research Institute at The University of Edinburgh, Edinburgh, UK; Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
145
|
Byron N, Semenova A, Sakata S. Mutual Interactions between Brain States and Alzheimer's Disease Pathology: A Focus on Gamma and Slow Oscillations. BIOLOGY 2021; 10:707. [PMID: 34439940 PMCID: PMC8389330 DOI: 10.3390/biology10080707] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
Brain state varies from moment to moment. While brain state can be defined by ongoing neuronal population activity, such as neuronal oscillations, this is tightly coupled with certain behavioural or vigilant states. In recent decades, abnormalities in brain state have been recognised as biomarkers of various brain diseases and disorders. Intriguingly, accumulating evidence also demonstrates mutual interactions between brain states and disease pathologies: while abnormalities in brain state arise during disease progression, manipulations of brain state can modify disease pathology, suggesting a therapeutic potential. In this review, by focusing on Alzheimer's disease (AD), the most common form of dementia, we provide an overview of how brain states change in AD patients and mouse models, and how controlling brain states can modify AD pathology. Specifically, we summarise the relationship between AD and changes in gamma and slow oscillations. As pathological changes in these oscillations correlate with AD pathology, manipulations of either gamma or slow oscillations can modify AD pathology in mouse models. We argue that neuromodulation approaches to target brain states are a promising non-pharmacological intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicole Byron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Anna Semenova
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
146
|
Virtual Connectomic Datasets in Alzheimer's Disease and Aging Using Whole-Brain Network Dynamics Modelling. eNeuro 2021; 8:ENEURO.0475-20.2021. [PMID: 34045210 PMCID: PMC8260273 DOI: 10.1523/eneuro.0475-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Large neuroimaging datasets, including information about structural connectivity (SC) and functional connectivity (FC), play an increasingly important role in clinical research, where they guide the design of algorithms for automated stratification, diagnosis or prediction. A major obstacle is, however, the problem of missing features [e.g., lack of concurrent DTI SC and resting-state functional magnetic resonance imaging (rsfMRI) FC measurements for many of the subjects]. We propose here to address the missing connectivity features problem by introducing strategies based on computational whole-brain network modeling. Using two datasets, the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and a healthy aging dataset, for proof-of-concept, we demonstrate the feasibility of virtual data completion (i.e., inferring “virtual FC” from empirical SC or “virtual SC” from empirical FC), by using self-consistent simulations of linear and nonlinear brain network models. Furthermore, by performing machine learning classification (to separate age classes or control from patient subjects), we show that algorithms trained on virtual connectomes achieve discrimination performance comparable to when trained on actual empirical data; similarly, algorithms trained on virtual connectomes can be used to successfully classify novel empirical connectomes. Completion algorithms can be combined and reiterated to generate realistic surrogate connectivity matrices in arbitrarily large number, opening the way to the generation of virtual connectomic datasets with network connectivity information comparable to the one of the original data.
Collapse
|
147
|
Puglisi-Allegra S, Ruggieri S, Fornai F. Translational evidence for lithium-induced brain plasticity and neuroprotection in the treatment of neuropsychiatric disorders. Transl Psychiatry 2021; 11:366. [PMID: 34226487 PMCID: PMC8257731 DOI: 10.1038/s41398-021-01492-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence indicates lithium (Li+) efficacy in neuropsychiatry, pointing to overlapping mechanisms that occur within distinct neuronal populations. In fact, the same pathway depending on which circuitry operates may fall in the psychiatric and/or neurological domains. Li+ restores both neurotransmission and brain structure unveiling that psychiatric and neurological disorders share common dysfunctional molecular and morphological mechanisms, which may involve distinct brain circuitries. Here an overview is provided concerning the therapeutic/neuroprotective effects of Li+ in different neuropsychiatric disorders to highlight common molecular mechanisms through which Li+ produces its mood-stabilizing effects and to what extent these overlap with plasticity in distinct brain circuitries. Li+ mood-stabilizing effects are evident in typical bipolar disorder (BD) characterized by a cyclic course of mania or hypomania followed by depressive episodes, while its efficacy is weaker in the opposite pattern. We focus here on neural adaptations that may underlie psychostimulant-induced psychotic development and to dissect, through the sensitization process, which features are shared in BD and other psychiatric disorders, including schizophrenia. The multiple functions of Li+ highlighted here prove its exceptional pharmacology, which may help to elucidate its mechanisms of action. These may serve as a guide toward a multi-drug strategy. We propose that the onset of sensitization in a specific BD subtype may predict the therapeutic efficacy of Li+. This model may help to infer in BD which molecular mechanisms are relevant to the therapeutic efficacy of Li+.
Collapse
Affiliation(s)
| | | | - Francesco Fornai
- IRCCS Neuromed, Via Atinense 18, 86077, Pozzilli (IS), Italy.
- Human Anatomy, Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa (PI), Italy.
| |
Collapse
|
148
|
Liu P, Zhang T, Chen Q, Li C, Chu Y, Guo Q, Zhang Y, Zhou W, Chen H, Zhou Z, Wang Y, Zhao Z, Luo Y, Li X, Song H, Su B, Li C, Sun T, Jiang C. Biomimetic Dendrimer-Peptide Conjugates for Early Multi-Target Therapy of Alzheimer's Disease by Inflammatory Microenvironment Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100746. [PMID: 33998706 DOI: 10.1002/adma.202100746] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Current therapeutic strategies for Alzheimer's disease (AD) treatments mainly focus on β-amyloid (Aβ) targeting. However, such therapeutic strategies have limited clinical outcomes due to the chronic and irreversible impairment of the nervous system in the late stage of AD. Recently, inflammatory responses, manifested in oxidative stress and glial cell activation, have been reported as hallmarks in the early stages of AD. Based on the crosstalk between inflammatory response and brain cells, a reactive oxygen species (ROS)-responsive dendrimer-peptide conjugate (APBP) is devised to target the AD microenvironment and inhibit inflammatory responses at an early stage. With the modification of the targeting peptide, this nanoconjugate can efficiently deliver peptides to the infected regions and restore the antioxidant ability of neurons by activating the nuclear factor (erythroid-derived 2)-like 2 signaling pathway. Moreover, this multi-target strategy exhibits a synergistic function of ROS scavenging, promoting Aβ phagocytosis, and normalizing the glial cell phenotype. As a result, the nanoconjugate can reduce ROS level, decrease Aβ burden, alleviate glial cell activation, and eventually enhance cognitive functions in APPswe/PSEN1dE9 model mice. These results indicate that APBP can be a promising candidate for the multi-target treatment of AD.
Collapse
Affiliation(s)
- Peixin Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Tongyu Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Wenxi Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Hongyi Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Yifan Luo
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Xuwen Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Haolin Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chufeng Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| |
Collapse
|
149
|
Kosyakovsky J. The neural economics of brain aging. Sci Rep 2021; 11:12167. [PMID: 34108560 PMCID: PMC8190309 DOI: 10.1038/s41598-021-91621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 11/22/2022] Open
Abstract
Despite remarkable advances, research into neurodegeneration and Alzheimer Disease (AD) has nonetheless been dominated by inconsistent and conflicting theory. Basic questions regarding how and why the brain changes over time remain unanswered. In this work, we lay novel foundations for a consistent, integrated view of the aging brain. We develop neural economics—the study of the brain’s infrastructure, brain capital. Using mathematical modeling, we create ABC (Aging Brain Capital), a simple linear simultaneous-equation model that unites aspects of neuroscience, economics, and thermodynamics to explain the rise and fall of brain capital, and thus function, over the human lifespan. Solving and simulating this model, we show that in each of us, the resource budget constraints of our finite brains cause brain capital to reach an upper limit. The thermodynamics of our working brains cause persistent pathologies to inevitably accumulate. With time, the brain becomes damaged causing brain capital to depreciate and decline. Using derivative models, we suggest that this endogenous aging process underpins the pathogenesis and spectrum of neurodegenerative disease. We develop amyloid–tau interaction theory, a paradigm that bridges the unnecessary conflict between amyloid- and tau-centered hypotheses of AD. Finally, we discuss profound implications for therapeutic strategy and development.
Collapse
Affiliation(s)
- Jacob Kosyakovsky
- University of Virginia School of Medicine, 200 Jeanette Lancaster Way, Charlottesville, VA, 22903, USA.
| |
Collapse
|
150
|
Chen JF, Liu K, Hu B, Li RR, Xin W, Chen H, Wang F, Chen L, Li RX, Ren SY, Xiao L, Chan JR, Mei F. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer's disease. Neuron 2021; 109:2292-2307.e5. [PMID: 34102111 DOI: 10.1016/j.neuron.2021.05.012] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Severe cognitive decline is a hallmark of Alzheimer's disease (AD). In addition to gray matter loss, significant white matter pathology has been identified in AD patients. Here, we characterized the dynamics of myelin generation and loss in the APP/PS1 mouse model of AD. Unexpectedly, we observed a dramatic increase in the rate of new myelin formation in APP/PS1 mice, reminiscent of the robust oligodendroglial response to demyelination. Despite this increase, overall levels of myelination are decreased in the cortex and hippocampus of APP/PS1 mice and postmortem AD tissue. Genetically or pharmacologically enhancing myelin renewal, by oligodendroglial deletion of the muscarinic M1 receptor or systemic administration of the pro-myelinating drug clemastine, improved the performance of APP/PS1 mice in memory-related tasks and increased hippocampal sharp wave ripples. Taken together, these results demonstrate the potential of enhancing myelination as a therapeutic strategy to alleviate AD-related cognitive impairment.
Collapse
Affiliation(s)
- Jing-Fei Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Kun Liu
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Rong-Rong Li
- Department of Physiology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Wendy Xin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Fei Wang
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Lin Chen
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Rui-Xue Li
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Shu-Yu Ren
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Lan Xiao
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
| | - Jonah R Chan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Feng Mei
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|