101
|
Kiran U, Abdin MZ. Computational predictions of common transcription factor binding sites on the genes of proline metabolism in plants. Bioinformation 2012; 8:886-90. [PMID: 23144545 PMCID: PMC3490059 DOI: 10.6026/97320630008886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/03/2012] [Indexed: 01/09/2023] Open
Abstract
Proline, an imino acid, has been well documented to be associated with the stress response induced by abiotic factors such as drought, cold and salinity in plants and biotic factors such as bacterial and fungal attacks. However, the regulatory mechanisms controlling proline metabolism, intercellular and intracellular transport and connections of proline to other metabolic pathways are poorly understood. F-MATCH analysis combined with composite module analysis (CMA) revealed that the binding sites matching matrices for O2 and OCSBF-1 were overrepresented in the promoters of differentially expressed proline metabolism genes. The presence of MYBAS1 consensus binding sites occurring in combination with O2 and OCSBF1 in the promoters of genes of proline biosynthesis pathway and SBF1 and GT1 consensus binding sites occurring in combination with O2 and OCSBF1 in the promoters of proline catabolic pathway genes suggest their involvement in modulation of proline metabolism and its accumulation in plants.
Collapse
Affiliation(s)
- Usha Kiran
- Faculty of Interdisciplinary Research Studies, Jamia Hamdard, New Delhi-110062, India
| | - Malik Zainul Abdin
- Department of Biotechnology, Faculty of Science, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
102
|
Berendzen KW, Böhmer M, Wallmeroth N, Peter S, Vesić M, Zhou Y, Tiesler FKE, Schleifenbaum F, Harter K. Screening for in planta protein-protein interactions combining bimolecular fluorescence complementation with flow cytometry. PLANT METHODS 2012; 8:25. [PMID: 22789293 PMCID: PMC3458939 DOI: 10.1186/1746-4811-8-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/26/2012] [Indexed: 05/20/2023]
Abstract
Understanding protein and gene function requires identifying interaction partners using biochemical, molecular or genetic tools. In plants, searching for novel protein-protein interactions is limited to protein purification assays, heterologous in vivo systems such as the yeast-two-hybrid or mutant screens. Ideally one would be able to search for novel protein partners in living plant cells. We demonstrate that it is possible to screen for novel protein-protein interactions from a random library in protoplasted Arabidopsis plant cells and recover some of the interacting partners. Our screen is based on capturing the bi-molecular complementation of mYFP between an YN-bait fusion partner and a completely random prey YC-cDNA library with FACS. The candidate interactions were confirmed using in planta BiFC assays and in planta FRET-FLIM assays. From this work, we show that the well characterized protein Calcium Dependent Protein Kinase 3 (CPK3) interacts with APX3, HMGB5, ORP2A and a ricin B-related lectin domain containing protein At2g39050. This is one of the first randomin planta screens to be successfully employed.
Collapse
Affiliation(s)
- Kenneth Wayne Berendzen
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | - Maik Böhmer
- University of California, San Diego, Division of Biological Sciences, Cell and Developmental Biology Section & Ctr for Mol. Genetics 0116, 9500 Gilman Drive #0116, La Jolla, CA, 92093-0116, USA
| | - Niklas Wallmeroth
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | - Sébastien Peter
- Universität Tübingen, ZMBP, Biophysical Chemistry, Auf der Morgenstelle 18, D-72076, Tübingen, Germany
| | - Marko Vesić
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | - Ying Zhou
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| | | | - Frank Schleifenbaum
- Universität Tübingen, ZMBP, Biophysical Chemistry, Auf der Morgenstelle 18, D-72076, Tübingen, Germany
| | - Klaus Harter
- Universität Tübingen, ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076, Tübingen, Germany
| |
Collapse
|
103
|
Liu C, Wu Y, Wang X. bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. PLANTA 2012; 235:1157-69. [PMID: 22189955 DOI: 10.1007/s00425-011-1564-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/28/2011] [Indexed: 05/20/2023]
Abstract
OsbZIP52/RISBZ5 is a member of the basic leucine zipper (bZIP) transcription factor (TF) family in rice (Oryza sativa) isolated from rice (Zhonghua11) panicles. Expression of the OsbZIP52 gene was strongly induced by low temperature (4°C) but not by drought, PEG, salt, or ABA. The subcellular localization of OsbZIP52-GFP in onion (Allium cepa) epidermis cells revealed that OsbZIP52 is a nuclear localized protein. A transactivation assay in yeast demonstrated that OsbZIP52 functions as a transcriptional activator and can specifically bind to the G-box promoter motif. In a yeast two-hybrid (Y-2-H) experiment, OsbZIP52 was able to form homodimeric complexes. Rice plants overexpressing OsbZIP52 showed significantly increased sensitivity to cold and drought stress. Real-time PCR analysis revealed that some abiotic stress-related genes, such as OsLEA3, OsTPP1, Rab25, gp1 precursor, β-gal, LOC_Os05g11910 and LOC_Os05g39250, were down-regulated in OsbZIP52 overexpression lines. These results suggest that OsbZIP52/RISBZ5 could function as a negative regulator in cold and drought stress environments.
Collapse
Affiliation(s)
- Citao Liu
- Key Laboratory of Cell Proliferation and Regulation of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | |
Collapse
|
104
|
Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3523-43. [PMID: 22467407 DOI: 10.1093/jxb/ers100] [Citation(s) in RCA: 785] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant responses to different stresses are highly complex and involve changes at the transcriptome, cellular, and physiological levels. Recent evidence shows that plants respond to multiple stresses differently from how they do to individual stresses, activating a specific programme of gene expression relating to the exact environmental conditions encountered. Rather than being additive, the presence of an abiotic stress can have the effect of reducing or enhancing susceptibility to a biotic pest or pathogen, and vice versa. This interaction between biotic and abiotic stresses is orchestrated by hormone signalling pathways that may induce or antagonize one another, in particular that of abscisic acid. Specificity in multiple stress responses is further controlled by a range of molecular mechanisms that act together in a complex regulatory network. Transcription factors, kinase cascades, and reactive oxygen species are key components of this cross-talk, as are heat shock factors and small RNAs. This review aims to characterize the interaction between biotic and abiotic stress responses at a molecular level, focusing on regulatory mechanisms important to both pathways. Identifying master regulators that connect both biotic and abiotic stress response pathways is fundamental in providing opportunities for developing broad-spectrum stress-tolerant crop plants.
Collapse
Affiliation(s)
- Nicky J Atkinson
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | | |
Collapse
|
105
|
A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress. Molecules 2012; 17:5803-15. [PMID: 22592086 PMCID: PMC6268620 DOI: 10.3390/molecules17055803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 11/17/2022] Open
Abstract
Expression analysis of crop plants has improved our knowledge about the veiled underlying mechanisms for salt tolerance. In order to observe the time course effects of salinity stress on gene expression for enzymes regulating proline metabolism, we comparatively analyzed the expression of specific genes for proline metabolism in root and shoot tissues of salt-tolerant (cv. Dunkled) and salt-sensitive (cv. Cyclone) canola (Brassica napus L.) cultivars through reverse-transcriptase polymerase chain reaction (RT-PCR); following the NaCl treatment for various durations. Both lines showed an increase in Δ1-pyrroline-5-carboxylate synthase1 (P5CS1) gene expression after induction of salt stress with enhanced expression in the root tissue of the tolerant line, while maximum expression was noted in the shoot tissues of the sensitive line. We observed a much reduced proline dehydrogenase (PDH) expression in both the root and shoot tissues of both canola lines, with more marked reduction of PDH expression in the shoot tissues than that in the root ones. To confirm the increase in P5CS1 gene expression, total proline content was also measured in the root and shoot tissues of both the canola lines. The root tissues of canola sensitive line showed a gradually increasing proline concentration pattern with regular increase in salinity treatment, while an increase in proline concentration in the tolerant line was noted at 24 h post salinity treatment after a sudden decrease at 6 h and 12 h of salt treatment. A gradually increasing concentration of free proline content was found in shoot tissues of the tolerant canola line though a remarkable increase in proline concentration was noted in the sensitive canola line at 24 h post salinity treatment, indicating the initiation of proline biosynthesis process in that tissue of sensitive canola.
Collapse
|
106
|
Sun X, Li Y, Cai H, Bai X, Ji W, Ding X, Zhu Y. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses. JOURNAL OF PLANT RESEARCH 2012; 125:429-38. [PMID: 21938515 DOI: 10.1007/s10265-011-0448-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 08/04/2011] [Indexed: 05/26/2023]
Abstract
According to the AtGenExpress transcriptome data sets, AtbZIP1 is an Arabidopsis gene induced by several abiotic stresses, such as salt, cold and drought. Here, we isolated AtbZIP1, and used semi-quantitative reverse transcription-PCR to verify that AtbZIP1 expression was indeed significantly induced by salt, osmotic, and cold stresses in Arabidopsis. AtbZIP1 knockout mutants showed a reduced tolerance to salt and osmotic stresses, coinciding with a suppression of the expression of several stress-responsive genes, such as COR15A, RD17 and RD29A. Consistently, the restoration of AtbZIP1 in the knockout lines restored the plants ability to tolerate salt and osmotic stresses. Furthermore, overexpressing AtbZIP1 in the wild type Arabidopsis resulted in an enhanced tolerance to salt and drought stresses. Sequence analysis shows that AtbZIP1 belongs to the S subfamily of basic leucine zipper transcription factors (TFs). The transient expression of green fluorescent protein-AtbZIP1 in tobacco leaf cells showed that AtbZIP1 localizes in nuclei. A transactivation assay further suggested that AtbZIP1 functions as a transcriptional activator in yeast and the two protein motifs (aa 13-38 and 92-118) are indispensable for transactivation activity. These results indicate that the TF AtbZIP1 is a positive regulator of plant tolerance to salt, osmotic, and drought stresses.
Collapse
Affiliation(s)
- Xiaoli Sun
- Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030, China.
| | | | | | | | | | | | | |
Collapse
|
107
|
Rueda-Romero P, Barrero-Sicilia C, Gómez-Cadenas A, Carbonero P, Oñate-Sánchez L. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1937-49. [PMID: 22155632 PMCID: PMC3295388 DOI: 10.1093/jxb/err388] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Seed dormancy prevents seeds from germinating under environmental conditions unfavourable for plant growth and development and constitutes an evolutionary advantage. Dry storage, also known as after-ripening, gradually decreases seed dormancy by mechanisms not well understood. An Arabidopsis thaliana DOF transcription factor gene (DOF6) affecting seed germination has been characterized. The transcript levels of this gene accumulate in dry seeds and decay gradually during after-ripening and also upon seed imbibition. While constitutive over-expression of DOF6 produced aberrant growth and sterility in the plant, its over-expression induced upon seed imbibition triggered delayed germination, abscisic acid (ABA)-hypersensitive phenotypes and increased expression of the ABA biosynthetic gene ABA1 and ABA-related stress genes. Wild-type germination and gene expression were gradually restored during seed after-ripening, despite of DOF6-induced over-expression. DOF6 was found to interact in a yeast two-hybrid system and in planta with TCP14, a previously described positive regulator of seed germination. The expression of ABA1 and ABA-related stress genes was also enhanced in tcp14 knock-out mutants. Taken together, these results indicate that DOF6 negatively affects seed germination and opposes TCP14 function in the regulation of a specific set of ABA-related genes.
Collapse
Affiliation(s)
- Paloma Rueda-Romero
- Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | |
Collapse
|
108
|
Krügel U, He HX, Gier K, Reins J, Chincinska I, Grimm B, Schulze WX, Kühn C. The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase. MOLECULAR PLANT 2012; 5:43-62. [PMID: 21746698 DOI: 10.1093/mp/ssr048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A. We therefore aimed to identify SUT1-interacting proteins that might be involved in dimerization, endocytosis, or targeting of SUT1 to raft-like microdomains. Therefore, we identified potato membrane proteins, which are associated with the detergent-resistant membrane (DRM) fraction. Among the proteins identified, we clearly confirmed StSUT1 as part of DRM in potato source leaves. We used the yeast two-hybrid split ubiquitin system (SUS) to systematically screen for interaction between the sucrose transporter StSUT1 and other membrane-associated or soluble proteins in vivo. The SUS screen was followed by immunoprecipitation using affinity-purified StSUT1-specific peptide antibodies and mass spectrometric analysis of co-precipitated proteins. A large overlap was observed between the StSUT1-interacting proteins identified in the co-immunoprecipitation and the detergent-resistant membrane fraction. One of the SUT1-interacting proteins, a protein disulfide isomerase (PDI), interacts also with other sucrose transporter proteins. A potential role of the PDI as escort protein is discussed.
Collapse
Affiliation(s)
- Undine Krügel
- Institute of Biology, Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Matiolli CC, Tomaz JP, Duarte GT, Prado FM, Del Bem LEV, Silveira AB, Gauer L, Corrêa LGG, Drumond RD, Viana AJC, Di Mascio P, Meyer C, Vincentz M. The Arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose signals. PLANT PHYSIOLOGY 2011; 157:692-705. [PMID: 21844310 PMCID: PMC3192551 DOI: 10.1104/pp.111.181743] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/13/2011] [Indexed: 05/18/2023]
Abstract
Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5'-untranslated region::β-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed.
Collapse
|
110
|
Delatte TL, Sedijani P, Kondou Y, Matsui M, de Jong GJ, Somsen GW, Wiese-Klinkenberg A, Primavesi LF, Paul MJ, Schluepmann H. Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway. PLANT PHYSIOLOGY 2011; 157:160-74. [PMID: 21753116 PMCID: PMC3165867 DOI: 10.1104/pp.111.180422] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 07/13/2011] [Indexed: 05/17/2023]
Abstract
The strong regulation of plant carbon allocation and growth by trehalose metabolism is important for our understanding of the mechanisms that determine growth and yield, with obvious applications in crop improvement. To gain further insight on the growth arrest by trehalose feeding, we first established that starch-deficient seedlings of the plastidic phosphoglucomutase1 mutant were similarly affected as the wild type on trehalose. Starch accumulation in the source cotyledons, therefore, did not cause starvation and consequent growth arrest in the growing zones. We then screened the FOX collection of Arabidopsis (Arabidopsis thaliana) expressing full-length cDNAs for seedling resistance to 100 mm trehalose. Three independent transgenic lines were identified with dominant segregation of the trehalose resistance trait that overexpress the bZIP11 (for basic region/leucine zipper motif) transcription factor. The resistance of these lines to trehalose could not be explained simply through enhanced trehalase activity or through inhibition of bZIP11 translation. Instead, trehalose-6-phosphate (T6P) accumulation was much increased in bZIP11-overexpressing lines, suggesting that these lines may be insensitive to the effects of T6P. T6P is known to inhibit the central stress-integrating kinase SnRK1 (KIN10) activity. We confirmed that this holds true in extracts from seedlings grown on trehalose, then showed that two independent transgenic lines overexpressing KIN10 were insensitive to trehalose. Moreover, the expression of marker genes known to be jointly controlled by SnRK1 activity and bZIP11 was consistent with low SnRK1 or bZIP11 activity in seedlings on trehalose. These results reveal an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway involving T6P, SnRK1, and bZIP11.
Collapse
|
111
|
Ma J, Hanssen M, Lundgren K, Hernández L, Delatte T, Ehlert A, Liu CM, Schluepmann H, Dröge-Laser W, Moritz T, Smeekens S, Hanson J. The sucrose-regulated Arabidopsis transcription factor bZIP11 reprograms metabolism and regulates trehalose metabolism. THE NEW PHYTOLOGIST 2011; 191:733-745. [PMID: 21534971 DOI: 10.1111/j.1469-8137.2011.03735.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
• The Arabidopsis basic region-leucine zipper transcription factor 11 (bZIP11) is known to be repressed by sucrose through a translational inhibition mechanism that requires the conserved sucrose control peptide encoded by the mRNA leader. The function of bZIP11 has been investigated in over-expression studies, and bZIP11 has been found to inhibit plant growth. The addition of sugar does not rescue the growth inhibition phenotype. Here, the function of the bZIP11 transcription factor was investigated. • The mechanism by which bZIP11 regulates growth was studied using large-scale and dedicated metabolic analysis, biochemical assays and molecular studies. • bZIP11 induction results in a reprogramming of metabolism and activation of genes involved in the metabolism of trehalose and other minor carbohydrates such as myo-inositol and raffinose. bZIP11 induction leads to reduced contents of the prominent growth regulatory molecule trehalose 6-phosphate (T6P). • The metabolic changes detected mimic in part those observed in carbon-starved plants. It is proposed that bZIP11 is a powerful regulator of carbohydrate metabolism that functions in a growth regulatory network that includes T6P and the sucrose non-fermenting-1 related protein kinase 1 (SnRK1).
Collapse
Affiliation(s)
- Jingkun Ma
- Centre for Signal Transduction and Metabolomics, Institute of Botany, The Chinese Academy of Sciences, Naxincun 20, Beijing 100093, China
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Micha Hanssen
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Krister Lundgren
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Lázaro Hernández
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Centre for Genetic Engineering and Biotechnology (CIGB), PO Box 6162, CP 10600, Havana, Cuba
| | - Thierry Delatte
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Department of Biomedical Analysis, Utrecht University, 3584 CA Utrecht, the Netherlands
| | - Andrea Ehlert
- Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Pharmazeutische Biologie, Molekularbiologie und Biotechnologie der Pflanze, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Chun-Ming Liu
- Centre for Signal Transduction and Metabolomics, Institute of Botany, The Chinese Academy of Sciences, Naxincun 20, Beijing 100093, China
| | - Henriette Schluepmann
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Wolfgang Dröge-Laser
- Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Pharmazeutische Biologie, Molekularbiologie und Biotechnologie der Pflanze, Julius-von-Sachs Platz 2, 97082 Würzburg, Germany
| | - Thomas Moritz
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Sjef Smeekens
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Centre for BioSystems Genomics, POB 98, 6700 AB Wageningen, the Netherlands
| | - Johannes Hanson
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Centre for BioSystems Genomics, POB 98, 6700 AB Wageningen, the Netherlands
- Umeå Plant Science Center, Department of Physiological Botany, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
112
|
Stein H, Honig A, Miller G, Erster O, Eilenberg H, Csonka LN, Szabados L, Koncz C, Zilberstein A. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:140-50. [PMID: 21683879 DOI: 10.1016/j.plantsci.2011.04.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/22/2011] [Accepted: 04/22/2011] [Indexed: 05/08/2023]
Abstract
Proline-rich proteins (PRP) are cell wall and plasma membrane-anchored factors involved in cell wall maintenance and its stress-induced fortification. Here we compare the synthesis of P5C as the proline (Pro) precursor in the cytosol and chloroplast by an introduced alien system and evaluate correlation between PRP synthesis and free Pro accumulation in plants. We developed a Pro over-producing system by generating transgenic tobacco plants overexpressing E. coli P5C biosynthetic enzymes; Pro-indifferent gamma-glutamyl kinase 74 (GK74) and gamma-glutamylphosphate reductase (GPR), as well as antisensing proline dehydrogenase (ProDH) transcription. GK74 and GPR enzymes were targeted either to the cytosol or plastids. Molecular analyses indicated that the two bacterial enzymes are efficiently expressed in plant cells, correctly targeted to the cytosol or chloroplasts, and processed to active enzymatic complexes in the two compartments. Maximal Pro increase is obtained when GK74 and GPR are active in chloroplasts, and ProDH mRNA level is reduced by anti-sense silencing, resulting in more than 50-fold higher Pro content compared to that of wild type tobacco plants. The Pro over-producing system efficiently works in tobacco and Arabidopsis. The elevation of Pro levels promotes accumulation of ectopically expressed Cell Wall Linker Protein (AtCWLP), a membrane protein with an external Pro-rich domain. These results suggest that the Pro-generating system can support endogenous or alien PRP production in plants.
Collapse
Affiliation(s)
- Hanan Stein
- Department of Plant Sciences, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Cecchini NM, Monteoliva MI, Alvarez ME. Proline dehydrogenase is a positive regulator of cell death in different kingdoms. PLANT SIGNALING & BEHAVIOR 2011; 6:1195-7. [PMID: 21757996 PMCID: PMC3260720 DOI: 10.4161/psb.6.8.15791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proline dehydrogenase (ProDH) catalyzes the flavin-dependent oxidation of Pro into Δ1-pyrroline-5-carboxylate (P5C). This is the first of the two enzymatic reactions that convert proline (Pro) into glutamic acid (Glu). The P5C thus produced is non-enzymatically transformed into glutamate semialdehyde (GSA), which acts as a substrate of P5C dehydrogenase (P5CDH) to generate Glu. Activation of ProDH can generate different effects depending on the behaviour of other enzymes of this metabolism. Under different conditions it can generate toxic levels of P5C, alter the cellular redox homeostasis and even produce reactive oxygen species (ROS). Recent studies indicate that in Arabidopsis, the enzyme potentiates the oxidative burst and cell death associated to the Hypersensitive Responses (HR). Interestingly, activation of ProDH can also produce harmful effects in other organisms, suggesting that the enzyme may play a conserved role in the control of cell death.
Collapse
Affiliation(s)
- Nicolás M Cecchini
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
114
|
Ufaz S, Shukla V, Soloveichik Y, Golan Y, Breuer F, Koncz Z, Galili G, Koncz C, Zilberstein A. Transcriptional control of aspartate kinase expression during darkness and sugar depletion in Arabidopsis: involvement of bZIP transcription factors. PLANTA 2011; 233:1025-40. [PMID: 21279647 DOI: 10.1007/s00425-011-1360-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/10/2011] [Indexed: 05/06/2023]
Abstract
Initial steps of aspartate-derived biosynthesis pathway (Asp pathway) producing Lys, Thr, Met and Ile are catalyzed by bifunctional (AK/HSD) and monofunctional (AK-lys) aspartate kinase (AK) enzymes. Here, we show that transcription of all AK genes is negatively regulated under darkness and low sugar conditions. By using yeast one-hybrid assays and complementary chromatin immunoprecipitation analyses in Arabidopsis cells, the bZIP transcription factors ABI5 and DPBF4 were identified, capable of interacting with the G-box-containing enhancer of AK/HSD1 promoter. Elevated transcript levels of DPBF4 and ABI5 under darkness and low sugar conditions coincide with the repression of AK gene expression. Overexpression of ABI5, but not DPBF4, further increases this AK transcription suppression. Concomitantly, it also increases the expression of asparagines synthetase 1 (ASN1) that shifts aspartate utilization towards asparagine formation. However, in abi5 or dpbf4 mutant and abi5, dpbf4 double mutant the repression of AK expression is maintained, indicating a functional redundancy with other bZIP-TFs. A dominant-negative version of DPBF4 fused to the SRDX repressor domain of SUPERMAN could counteract the repression and stimulate AK expression under low sugar and darkness in planta. This effect was verified by showing that DPBF4-SRDX fails to recognize the AK/HSD1 enhancer sequence in yeast one-hybrid assays, but increases heterodimmer formation with DPBF4 and ABI5, as estimated by yeast two-hybrid assays. Hence it is likely that heterodimerization with DPBF4-SRDX inhibits the binding of redundantly functioning bZIP-TFs to the promoters of AK genes and thereby releases the repressing effect. These data highlight a novel transcription control of the chloroplast aspartate pathway that operates under energy limiting conditions.
Collapse
Affiliation(s)
- Shai Ufaz
- Department of Plant Sciences, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Cecchini NM, Monteoliva MI, Alvarez ME. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1947-59. [PMID: 21311034 PMCID: PMC3091113 DOI: 10.1104/pp.110.167163] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/03/2011] [Indexed: 05/19/2023]
Abstract
L-proline (Pro) catabolism is activated in plants recovering from abiotic stresses associated with water deprivation. In this catabolic pathway, Pro is converted to glutamate by two reactions catalyzed by proline dehydrogenase (ProDH) and Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH), with Δ(1)-pyrroline-5-carboxylate (P5C) as the intermediate. Alternatively, under certain conditions, the P5C derived from Pro is converted back to Pro by P5C reductase, thus stimulating the Pro-P5C cycle, which may generate reactive oxygen species (ROS) as a consequence of the ProDH activity. We previously observed that Pro biosynthesis is altered in Arabidopsis (Arabidopsis thaliana) tissues that induce the hypersensitive response (HR) in response to Pseudomonas syringae. In this work, we characterized the Pro catabolic pathway and ProDH activity in this model. Induction of ProDH expression was found to be dependent on salicylic acid, and an increase in ProDH activity was detected in cells destined to die. To evaluate the role of ProDH in the HR, ProDH-silenced plants were generated. These plants displayed reduced ROS and cell death levels as well as enhanced susceptibility in response to avirulent pathogens. Interestingly, the early activation of ProDH was accompanied by an increase in P5C reductase but not in P5CDH transcripts, with few changes occurring in the Pro and P5C levels. Therefore, our results suggest that in wild-type plants, ProDH is a defense component contributing to HR and disease resistance, which apparently potentiates the accumulation of ROS. The participation of the Pro-P5C cycle in the latter response is discussed.
Collapse
|
116
|
Vaahtera L, Brosché M. More than the sum of its parts--how to achieve a specific transcriptional response to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:421-30. [PMID: 21421388 DOI: 10.1016/j.plantsci.2010.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 11/17/2010] [Accepted: 11/19/2010] [Indexed: 05/08/2023]
Abstract
A rapid and appropriate response to stress is key to survival. A major part of plant adaptation to abiotic stresses is regulated at the level of gene expression. The regulatory steps involved in accurate expression of stress related genes need to be tailored to the specific stress for optimal plant performance. Accumulating evidence suggests that there are several processes contributing to signalling specificity: post-translational activation and selective nuclear import of transcription factors, regulation of DNA accessibility by chromatin modifying and remodelling enzymes, and cooperation between two or more response elements in a stress-responsive promoter. These mechanisms should not be viewed as independent events, instead the nuclear DNA is in a complex landscape where many proteins interact, compete, and regulate each other. Hence future studies should consider an integrated view of gene regulation composed of numerous chromatin associated proteins in addition to transcription factors. Although most studies have focused on a single regulatory mechanism, it is more likely the combined actions of several mechanisms that provide a stress specific output. In this review recent progress in abiotic stress signalling is discussed with emphasis on possible mechanisms for generating specific responses.
Collapse
Affiliation(s)
- Lauri Vaahtera
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65, Viikinkaari 1, FI-00014 Helsinki, Finland
| | | |
Collapse
|
117
|
Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:212-31. [PMID: 21205183 DOI: 10.1111/j.1744-7909.2010.01017.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Plant bZIP transcription factors play crucial roles in multiple biological processes. However, little is known about the sorghum bZIP gene family although the sorghum genome has been completely sequenced. In this study, we have carried out a genome-wide identification and characterization of this gene family in sorghum. Our data show that the genome encodes at least 92 bZIP transcription factors. These bZIP genes have been expanded mainly by segmental duplication. Such an expansion mechanism has also been observed in rice, arabidopsis and many other plant organisms, suggesting a common expansion mode of this gene family in plants. Further investigation shows that most of the bZIP members have been present in the most recent common ancestor of sorghum and rice and the major expansion would occur before the sorghum-rice split era. Although these bZIP genes have been duplicated with a long history, they exhibited limited functional divergence as shown by nonsynonymous substitutions (Ka)/synonymous substitutions (Ks) analyses. Their retention was mainly due to the high percentages of expression divergence. Our data also showed that this gene family might play a role in multiple developmental stages and tissues and might be regarded as important regulators of various abiotic stresses and sugar signaling.
Collapse
Affiliation(s)
- Jizhou Wang
- Institute of Botany and Temasek Life Sciences Laboratory Joint Research & Development Laboratory, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|
118
|
Wehner N, Weiste C, Dröge-Laser W. Molecular screening tools to study Arabidopsis transcription factors. FRONTIERS IN PLANT SCIENCE 2011; 2:68. [PMID: 22645547 PMCID: PMC3355788 DOI: 10.3389/fpls.2011.00068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/08/2011] [Indexed: 05/08/2023]
Abstract
In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs), which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF open reading frame (ORF) collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publically available GATEWAY(®)-compatible ORF collections. (1) The Arabidopsis thalianaTF ORF over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2) A high-throughput microtiter plate based protoplast transactivation (PTA) system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta.
Collapse
Affiliation(s)
- Nora Wehner
- Julius-von-Sachs-Institute, University of WürzburgWürzburg, Germany
| | - Christoph Weiste
- Julius-von-Sachs-Institute, University of WürzburgWürzburg, Germany
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institute, University of WürzburgWürzburg, Germany
- *Correspondence: Wolfgang Dröge-Laser, Julius-von-Sachs-Institute, University of Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany. e-mail:
| |
Collapse
|
119
|
Dietrich K, Weltmeier F, Ehlert A, Weiste C, Stahl M, Harter K, Dröge-Laser W. Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress. THE PLANT CELL 2011; 23:381-95. [PMID: 21278122 PMCID: PMC3051235 DOI: 10.1105/tpc.110.075390] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 12/21/2010] [Accepted: 01/12/2011] [Indexed: 05/18/2023]
Abstract
Control of energy homeostasis is crucial for plant survival, particularly under biotic or abiotic stress conditions. Energy deprivation induces dramatic reprogramming of transcription, facilitating metabolic adjustment. An in-depth knowledge of the corresponding regulatory networks would provide opportunities for the development of biotechnological strategies. Low energy stress activates the Arabidopsis thaliana group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 by transcriptional and posttranscriptional mechanisms. Gain-of-function approaches define these bZIPs as crucial transcriptional regulators in Pro, Asn, and branched-chain amino acid metabolism. Whereas chromatin immunoprecipitation analyses confirm the direct binding of bZIP1 and bZIP53 to promoters of key metabolic genes, such as ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE, the G-box, C-box, or ACT motifs (ACTCAT) have been defined as regulatory cis-elements in the starvation response. bZIP1 and bZIP53 were shown to specifically heterodimerize with group C bZIPs. Although single loss-of-function mutants did not affect starvation-induced transcription, quadruple mutants of group S1 and C bZIPs displayed a significant impairment. We therefore propose that bZIP1 and bZIP53 transduce low energy signals by heterodimerization with members of the partially redundant C/S1 bZIP factor network to reprogram primary metabolism in the starvation response.
Collapse
Affiliation(s)
- Katrin Dietrich
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany
- Albrecht-von-Haller Institut, Universität Göttingen, D-37073 Gottingen, Germany
| | - Fridtjof Weltmeier
- Albrecht-von-Haller Institut, Universität Göttingen, D-37073 Gottingen, Germany
| | - Andrea Ehlert
- Albrecht-von-Haller Institut, Universität Göttingen, D-37073 Gottingen, Germany
| | - Christoph Weiste
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany
- Albrecht-von-Haller Institut, Universität Göttingen, D-37073 Gottingen, Germany
| | - Mark Stahl
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, 72076 Tuebingen, Germany
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, 72076 Tuebingen, Germany
| | - Wolfgang Dröge-Laser
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Wuerzburg, Germany
- Albrecht-von-Haller Institut, Universität Göttingen, D-37073 Gottingen, Germany
- Address correspondence to
| |
Collapse
|
120
|
Sharma S, Verslues PE. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. PLANT, CELL & ENVIRONMENT 2010; 33:1838-51. [PMID: 20545884 DOI: 10.1111/j.1365-3040.2010.02188.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proline accumulation in response to abiotic stress is controlled partially by transcriptional regulation of key enzymes including Δ¹-pyrroline-carboxylate synthetase1 (P5CS1), proline dehydrogenase (ProDH), ornithine amino transferase (OAT) and Δ¹-pyrroline-carboxylate dehydrogenase (P5CDH). For these genes, the role of abscisic acid (ABA), role of feedback regulation by high proline and the mechanisms of gene regulation upon stress release remain unclear. An ABA-deficient (aba2-1) mutant, mutants deficient in proline accumulation (p5cs1), as well as double mutants deficient in both, were used to determine the importance of these factors in transcriptional regulation of proline metabolism. Upregulation of P5CS1 by low water potential was less dependent on ABA than that of stress-marker genes used for comparison. ProDH downregulation by low water potential and upregulation by stress release was not impaired in aba2-1, p5cs1 or p5cs1/aba2-1 compared with wild type despite differing ABA and proline levels in these mutants. Thus, ProDH is a model for characterization of novel regulatory mechanisms associated with low water potential and stress recovery. Both OAT and P5CDH were upregulated during low water potential. This contrasts with previous salt stress experiments and raises questions about the flux of metabolites through proline metabolism under low water potential when high levels of proline accumulate.
Collapse
Affiliation(s)
- Sandeep Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
121
|
Cui X, Wang T, Chen HS, Busov V, Wei H. TF-finder: a software package for identifying transcription factors involved in biological processes using microarray data and existing knowledge base. BMC Bioinformatics 2010; 11:425. [PMID: 20704747 PMCID: PMC2930629 DOI: 10.1186/1471-2105-11-425] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 08/12/2010] [Indexed: 01/22/2023] Open
Abstract
Background Identification of transcription factors (TFs) involved in a biological process is the first step towards a better understanding of the underlying regulatory mechanisms. However, due to the involvement of a large number of genes and complicated interactions in a gene regulatory network (GRN), identification of the TFs involved in a biology process remains to be very challenging. In reality, the recognition of TFs for a given a biological process can be further complicated by the fact that most eukaryotic genomes encode thousands of TFs, which are organized in gene families of various sizes and in many cases with poor sequence conservation except for small conserved domains. This poses a significant challenge for identification of the exact TFs involved or ranking the importance of a set of TFs to a process of interest. Therefore, new methods for recognizing novel TFs are desperately needed. Although a plethora of methods have been developed to infer regulatory genes using microarray data, it is still rare to find the methods that use existing knowledge base in particular the validated genes known to be involved in a process to bait/guide discovery of novel TFs. Such methods can replace the sometimes-arbitrary process of selection of candidate genes for experimental validation and significantly advance our knowledge and understanding of the regulation of a process. Results We developed an automated software package called TF-finder for recognizing TFs involved in a biological process using microarray data and existing knowledge base. TF-finder contains two components, adaptive sparse canonical correlation analysis (ASCCA) and enrichment test, for TF recognition. ASCCA uses positive target genes to bait TFS from gene expression data while enrichment test examines the presence of positive TFs in the outcomes from ASCCA. Using microarray data from salt and water stress experiments, we showed TF-finder is very efficient in recognizing many important TFs involved in salt and drought tolerance as evidenced by the rediscovery of those TFs that have been experimentally validated. The efficiency of TF-finder in recognizing novel TFs was further confirmed by a thorough comparison with a method called Intersection of Coexpression (ICE). Conclusions TF-finder can be successfully used to infer novel TFs involved a biological process of interest using publicly available gene expression data and known positive genes from existing knowledge bases. The package for TF-finder includes an R script for ASCCA, a Perl controller, and several Perl scripts for parsing intermediate outputs. The package is available upon request (hairong@mtu.edu). The R code for standalone ASCCA is also available.
Collapse
Affiliation(s)
- Xiaoqi Cui
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | | | | | | |
Collapse
|
122
|
Iven T, Strathmann A, Böttner S, Zwafink T, Heinekamp T, Guivarc'h A, Roitsch T, Dröge-Laser W. Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:155-66. [PMID: 20409000 DOI: 10.1111/j.1365-313x.2010.04230.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Expression of BZI-1 Delta N, a dominant-negative form of the tobacco (Nicotiana tabacum) basic leucine zipper (bZIP) transcription factor BZI-1 leads to severe defects in pollen development which coincides with reduced transcript abundance of the stamen specific invertase gene NIN88 and decreased extracellular invertase enzymatic activity. This finding suggests a function of BZI-1 in regulating carbohydrate supply of the developing pollen. BZI-1 heterodimerises with the bZIP factors BZI-2, BZI-3 and BZI-4 in vitro and in planta. Whereas BZI-1 exhibits only weak activation properties, BZI-1/BZI-2 heterodimers strongly activate transcription. Consistently, approaches leading to reduced levels of functional BZI-1 or BZI-2 both significantly interfere with pollen development, auxin responsiveness and carbohydrate partitioning. In situ hybridisation studies for BZI-1 and BZI-2 confirmed temporal and spatial overlapping expression patterns in tapetum and pollen supporting functional cooperation of these factors during pollen development. Plants over-expressing BZI-4 produce significantly reduced amounts of intact pollen and are also impaired in NIN88 transcription and enzymatic activity. BZI-4 homodimer efficiently binds to a G-box located in the NIN88 promoter but exhibits almost no transcriptional activation capacity. As BZI-4 does not actively repress transcription, we propose that its homodimer blocks G-box mediated transcription. In summary, these data support a regulatory model in which BZI-4 homodimers and BZI-1/BZI-2 heterodimers perform opposing functions as negative or positive transcriptional regulators during pollen development.
Collapse
Affiliation(s)
- Tim Iven
- Julius-von-Sachs-Institut, Pharmazeutische Biologie, Julius-Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Lehmann S, Funck D, Szabados L, Rentsch D. Proline metabolism and transport in plant development. Amino Acids 2010; 39:949-62. [DOI: 10.1007/s00726-010-0525-3] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/10/2010] [Indexed: 01/21/2023]
|
124
|
Kang SG, Price J, Lin PC, Hong JC, Jang JC. The arabidopsis bZIP1 transcription factor is involved in sugar signaling, protein networking, and DNA binding. MOLECULAR PLANT 2010; 3:361-73. [PMID: 20080816 DOI: 10.1093/mp/ssp115] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Sugar signaling is a mechanism that plants use to integrate various internal and external cues to achieve nutrient homeostasis, mediate developmental programs, and articulate stress responses. Many bZIP transcription factors are known to be involved in nutrient and/or stress signaling. An Arabidopsis S1-group bZIP gene, AtbZIP1, was identified as a sugar-sensitive gene in a previous gene expression profiling study (Plant Cell. 16, 2128-2150). In this report, we show that the expression of AtbZIP1 is repressed by sugars in a fast, sensitive, and reversible way. The sugar repression of AtbZIP1 is affected by a conserved sugar signaling component, hexokinase. Besides being a sugar-regulated gene, AtbZIP1 can mediate sugar signaling and affect gene expression, plant growth, and development. When carbon nutrients are limited, gain or loss of function of AtbZIP1 causes changes in the rates of early seedling establishment. Results of phenotypic analyses indicate that AtbZIP1 acts as a negative regulator of early seedling growth. Using gain- and loss-of-function plants in a microarray analysis, two sets of putative AtbZIP1-regulated genes have been identified. Among them, sugar-responsive genes are highly over-represented, implicating a role of AtbZIP1 in sugar-mediated gene expression. Using yeast two-hybrid (Y-2-H) screens and bimolecular fluorescence complementation (BiFC) analyses, we are able to recapitulate extensive C/S1 AtbZIP protein interacting network in living cells. Finally, we show that AtbZIP1 can bind ACGT-based motifs in vitro and that the binding characteristics appear to be affected by the heterodimerization between AtbZIP1 and the C-group AtbZIPs, including AtbZIP10 and AtbZIP63.
Collapse
Affiliation(s)
- Shin Gene Kang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
125
|
Baena-González E. Energy signaling in the regulation of gene expression during stress. MOLECULAR PLANT 2010; 3:300-13. [PMID: 20080814 DOI: 10.1093/mp/ssp113] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Maintenance of homeostasis is pivotal to all forms of life. In the case of plants, homeostasis is constantly threatened by the inability to escape environmental fluctuations, and therefore sensitive mechanisms must have evolved to allow rapid perception of environmental cues and concomitant modification of growth and developmental patterns for adaptation and survival. Re-establishment of homeostasis in response to environmental perturbations requires reprogramming of metabolism and gene expression to shunt energy sources from growth-related biosynthetic processes to defense, acclimation, and, ultimately, adaptation. Failure to mount an initial 'emergency' response may result in nutrient deprivation and irreversible senescence and cell death. Early signaling events largely determine the capacity of plants to orchestrate a successful adaptive response. Early events, on the other hand, are likely to be shared by different conditions through the generation of similar signals and before more specific responses are elaborated. Recent studies lend credence to this hypothesis, underpinning the importance of a shared energy signal in the transcriptional response to various types of stress. Energy deficiency is associated with most environmental perturbations due to their direct or indirect deleterious impact on photosynthesis and/or respiration. Several systems are known to have evolved for monitoring the available resources and triggering metabolic, growth, and developmental decisions accordingly. In doing so, energy-sensing systems regulate gene expression at multiple levels to allow flexibility in the diversity and the kinetics of the stress response.
Collapse
Affiliation(s)
- Elena Baena-González
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
126
|
Joshi V, Joung JG, Fei Z, Jander G. Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 2010; 39:933-47. [DOI: 10.1007/s00726-010-0505-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/25/2010] [Indexed: 11/27/2022]
|
127
|
Szabados L, Savouré A. Proline: a multifunctional amino acid. TRENDS IN PLANT SCIENCE 2010; 15:89-97. [PMID: 20036181 DOI: 10.1016/j.tplants.2009.11.009] [Citation(s) in RCA: 1800] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/17/2009] [Accepted: 11/24/2009] [Indexed: 05/18/2023]
Abstract
Proline accumulates in many plant species in response to environmental stress. Although much is now known about proline metabolism, some aspects of its biological functions are still unclear. Here, we discuss the compartmentalization of proline biosynthesis, accumulation and degradation in the cytosol, chloroplast and mitochondria. We also describe the role of proline in cellular homeostasis, including redox balance and energy status. Proline can act as a signaling molecule to modulate mitochondrial functions, influence cell proliferation or cell death and trigger specific gene expression, which can be essential for plant recovery from stress. Although the regulation and function of proline accumulation are not yet completely understood, the engineering of proline metabolism could lead to new opportunities to improve plant tolerance of environmental stresses.
Collapse
Affiliation(s)
- László Szabados
- Institute of Plant Biology, Biological Research Center, Temesvári krt. 62., H-6726 Szeged, Hungary.
| | | |
Collapse
|
128
|
Verslues PE, Sharma S. Proline metabolism and its implications for plant-environment interaction. THE ARABIDOPSIS BOOK 2010; 8:e0140. [PMID: 22303265 PMCID: PMC3244962 DOI: 10.1199/tab.0140] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proline has long been known to accumulate in plants experiencing water limitation and this has driven studies of proline as a beneficial solute allowing plants to increase cellular osmolarity during water limitation. Proline metabolism also has roles in redox buffering and energy transfer and is involved in plant pathogen interaction and programmed cell death. Some of these unique roles of proline depend on the properties of proline itself, whereas others depend on the "proline cycle" of coordinated proline synthesis in the chloroplast and cytoplasm with proline catabolism in the mitochondria. The regulatory mechanisms controlling proline metabolism, intercellular and intracellular transport and connections of proline to other metabolic pathways are all important to the in vivo functions of proline metabolism. Connections of proline metabolism to the oxidative pentose phosphate pathway and glutamate-glutamine metabolism are of particular interest. The N-acetyl glutamate pathway can also produce ornithine and, potentially, proline but its role and activity are unclear. Use of model systems such as Arabidopsis thaliana to better understand both these long studied and newly emerging functions of proline can help in the design of next-generation experiments testing whether proline metabolism is a promising metabolic engineering target for improving stress resistance of economically important plants.
Collapse
Affiliation(s)
- Paul E. Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Sec. 2 Academia Rd, Nankang Dist., Taipei, 11529, Taiwan
- Address correspondence to
| | - Sandeep Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Sec. 2 Academia Rd, Nankang Dist., Taipei, 11529, Taiwan
| |
Collapse
|
129
|
Jun JH, Ha CM, Fletcher JC. BLADE-ON-PETIOLE1 coordinates organ determinacy and axial polarity in arabidopsis by directly activating ASYMMETRIC LEAVES2. THE PLANT CELL 2010; 22:62-76. [PMID: 20118228 PMCID: PMC2828709 DOI: 10.1105/tpc.109.070763] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 12/14/2009] [Accepted: 01/12/2010] [Indexed: 05/20/2023]
Abstract
Continuous organ formation is a hallmark of plant development that requires organ-specific gene activity to establish determinacy and axial patterning, yet the molecular mechanisms that coordinate these events remain poorly understood. Here, we show that the organ-specific BTB-POZ domain proteins BLADE-ON-PETIOLE1 (BOP1) and BOP2 function as transcriptional activators during Arabidopsis thaliana leaf formation. We identify as a direct target of BOP1 induction the ASYMMETRIC LEAVES2 (AS2) gene, which promotes leaf cell fate specification and adaxial polarity. We find that BOP1 associates with the AS2 promoter and that BOP1 and BOP2 are required for AS2 activation specifically in the proximal, adaxial region of the leaf, demonstrating a role for the BOP proteins as proximal-distal as well as adaxial-abaxial patterning determinants. Furthermore, repression of BOP1 and BOP2 expression by the indeterminacy-promoting KNOX gene SHOOTMERISTEMLESS is critical to establish a functional embryonic shoot apical meristem. Our data indicate that direct activation of AS2 transcription by BOP1 and BOP2 is vital for generating the conditions for KNOX repression at the leaf base and may represent a conserved mechanism for coordinating leaf morphogenesis with patterning along the adaxial-abaxial and the proximal-distal axes.
Collapse
Affiliation(s)
- Ji Hyung Jun
- Plant Gene Expression Center, U.S. Department of Agriculture/University of California at Berkeley, Albany, California 94710
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - Chan Man Ha
- Plant Gene Expression Center, U.S. Department of Agriculture/University of California at Berkeley, Albany, California 94710
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
| | - Jennifer C. Fletcher
- Plant Gene Expression Center, U.S. Department of Agriculture/University of California at Berkeley, Albany, California 94710
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720
- Address correspondence to
| |
Collapse
|
130
|
VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc Natl Acad Sci U S A 2009; 106:18414-9. [PMID: 19820165 DOI: 10.1073/pnas.0905599106] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The plant pathogen Agrobacterium tumefaciens transforms plant cells by delivering its T-DNA into the plant cell nucleus where it integrates into the plant genome and causes tumor formation. A key role of VirE2-interacting protein 1 (VIP1) in the nuclear import of T-DNA during Agrobacterium-mediated plant transformation has been unravelled and VIP1 was shown to undergo nuclear localization upon phosphorylation by the mitogen-activated protein kinase MPK3. Here, we provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif. VREs are overrepresented in promoters responding to activation of the MPK3 pathway such as Trxh8 and MYB44. Accordingly, plants overexpressing VIP1 accumulate high levels of Trxh8 and MYB44 transcripts, whereas stress-induced expression of these genes is impaired in mpk3 mutants. Trxh8 and MYB44 promoters are activated by VIP1 in a VRE-dependent manner. VIP1 strongly enhances expression from a synthetic promoter harboring multiple VRE copies and directly interacts with VREs in vitro and in vivo. Chromatin immunoprecipitation assays of the MYB44 promoter confirm that VIP1 binding to VREs is enhanced under conditions of MPK3 pathway stimulation. These results provide molecular insight into the cellular mechanism of target gene regulation by the MPK3 pathway.
Collapse
|
131
|
Hanson J, Smeekens S. Sugar perception and signaling--an update. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:562-7. [PMID: 19716759 DOI: 10.1016/j.pbi.2009.07.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 06/23/2009] [Accepted: 07/28/2009] [Indexed: 05/23/2023]
Abstract
Sugars act as potent signaling molecules in plants. Several sugar sensors, including the highly studied glucose sensor HEXOKINASE1 (HXK1), have been identified or proposed. Many additional sensors likely exist, as plants respond to other sugars and sugar metabolites, such as sucrose and trehalose 6-phosphate. Sugar sensing and signaling is a highly complex process resulting in many changes in physiology and development and is integrated with other signaling pathways in plants such as those for inorganic nutrients, hormones, and different stress factors. Importantly, KIN10 and KIN11 protein kinases are central in coordinating several of the responses to sugars and stress. bZIP transcription factors were found to mediate effects of sugar signaling on gene expression and metabolite content.
Collapse
Affiliation(s)
- Johannes Hanson
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | |
Collapse
|
132
|
Ashraf N, Ghai D, Barman P, Basu S, Gangisetty N, Mandal MK, Chakraborty N, Datta A, Chakraborty S. Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. BMC Genomics 2009; 10:415. [PMID: 19732460 PMCID: PMC2755012 DOI: 10.1186/1471-2164-10-415] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 09/05/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The ultimate phenome of any organism is modulated by regulated transcription of many genes. Characterization of genetic makeup is thus crucial for understanding the molecular basis of phenotypic diversity, evolution and response to intra- and extra-cellular stimuli. Chickpea is the world's third most important food legume grown in over 40 countries representing all the continents. Despite its importance in plant evolution, role in human nutrition and stress adaptation, very little ESTs and differential transcriptome data is available, let alone genotype-specific gene signatures. Present study focuses on Fusarium wilt responsive gene expression in chickpea. RESULTS We report 6272 gene sequences of immune-response pathway that would provide genotype-dependent spatial information on the presence and relative abundance of each gene. The sequence assembly led to the identification of a CaUnigene set of 2013 transcripts comprising of 973 contigs and 1040 singletons, two-third of which represent new chickpea genes hitherto undiscovered. We identified 209 gene families and 262 genotype-specific SNPs. Further, several novel transcription regulators were identified indicating their possible role in immune response. The transcriptomic analysis revealed 649 non-cannonical genes besides many unexpected candidates with known biochemical functions, which have never been associated with pathostress-responsive transcriptome. CONCLUSION Our study establishes a comprehensive catalogue of the immune-responsive root transcriptome with insight into their identity and function. The development, detailed analysis of CaEST datasets and global gene expression by microarray provide new insight into the commonality and diversity of organ-specific immune-responsive transcript signatures and their regulated expression shaping the species specificity at genotype level. This is the first report on differential transcriptome of an unsequenced genome during vascular wilt.
Collapse
Affiliation(s)
- Nasheeman Ashraf
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Deepali Ghai
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Pranjan Barman
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Swaraj Basu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Nagaraju Gangisetty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mihir K Mandal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
133
|
Hummel M, Rahmani F, Smeekens S, Hanson J. Sucrose-mediated translational control. ANNALS OF BOTANY 2009; 104:1-7. [PMID: 19376782 PMCID: PMC2706714 DOI: 10.1093/aob/mcp086] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/18/2008] [Accepted: 03/05/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND Environmental factors greatly impact plant gene expression and concentrations of cellular metabolites such as sugars and amino acids. The changed metabolite concentrations affect the expression of many genes both transcriptionally and post-transcriptionally. RECENT PROGRESS Sucrose acts as a signalling molecule in the control of translation of the S1 class basic leucine zipper transcription factor (bZIP) genes. In these genes the main bZIP open reading frames (ORFs) are preceded by upstream open reading frames (uORFs). The presence of uORFs generally inhibits translation of the following ORF but can also be instrumental in specific translational control. bZIP11, a member of the S1 class bZIP genes, harbours four uORFs of which uORF2 is required for translational control in response to sucrose concentrations. This uORF encodes the Sucrose Control peptide (SC-peptide), which is evolutionarily conserved among all S1 class bZIP genes in different plant species. Arabidopsis thaliana bZIP11 and related bZIP genes seem to be important regulators of metabolism. These proteins are targets of the Snf1-related protein kinase 1 (SnRK1) KIN10 and KIN11, which are responsive to energy deprivation as well as to various stresses. In response to energy deprivation, ribosomal biogenesis is repressed to preserve cellular function and maintenance. Other key regulators of ribosomal biogenesis such as the protein kinase Target of Rapamycin (TOR) are tightly regulated in response to stress. CONCLUSIONS Plants use translational control of gene expression to optimize growth and development in response to stress as well as to energy deprivation. This Botanical Briefing discusses the role of sucrose signalling in the translational control of bZIP11 and the regulation of ribosomal biogenesis in response to metabolic changes and stress conditions.
Collapse
Affiliation(s)
- Maureen Hummel
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Fatima Rahmani
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sjef Smeekens
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Centre for BioSystems Genomics, POB 98, 6700 AB, Wageningen, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- Centre for BioSystems Genomics, POB 98, 6700 AB, Wageningen, The Netherlands
- For correspondence. Email
| |
Collapse
|
134
|
Böttner S, Iven T, Carsjens CS, Dröge-Laser W. Nuclear accumulation of the ankyrin repeat protein ANK1 enhances the auxin-mediated transcription accomplished by the bZIP transcription factors BZI-1 and BZI-2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:914-26. [PMID: 19220790 DOI: 10.1111/j.1365-313x.2009.03829.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The tobacco (Nicotiana tabacum) basic leucine zipper (bZIP) transcription factor BZI-1 has been implicated in auxin-mediated gene regulation. Yeast two-hybrid analysis has led to the identification of two BZI-1 protein interaction partners: the heterodimerizing bZIP factor BZI-2 and an ankyrin repeat domain protein, ANK1. Analysis in transgenic plants confirms that low levels of functional BZI-1, BZI-2 and ANK1 result in reduced auxin responses. This finding indicates that the three proteins act in the same functional context. The in vivo interaction of ANK1 and BZI-1 has been confirmed by protoplast two-hybrid analysis, as well as by bimolecular fluorescence complementation (BiFC) studies. Whereas YFP-BZI-1 has been found to be localized in the nucleus, YFP-ANK1 resides in the cytosol. Nevertheless, the inhibition of nuclear export with the inhibitor leptomycin B (LMB) and the co-expression with BZI-1, as well as treatment with auxin, results in the accumulation of YFP-ANK1 in the nucleus. Whereas BZI-1 is a weak activator, BZI-1/BZI-2 heterodimers efficiently support transcription. Importantly, conditions that lead to the accumulation of ANK1 in the nucleus, such as the expression of an ANK1 protein fused to a nuclear localization sequence (NLS) or auxin treatment, lead to a significant enhancement of BZI-1/BZI-2-mediated transcription. We therefore propose a mechanism in which the nuclear accumulation of ANK1 enhances BZI-1/BZI-2-mediated transcription in an auxin-dependent manner, presumably facilitated by protein-protein interaction. In summary, this study defines novel components in auxin-dependent signalling and transcriptional control.
Collapse
Affiliation(s)
- Stefan Böttner
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | | | | | | |
Collapse
|
135
|
Alonso R, Oñate-Sánchez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K, Vicente-Carbajosa J, Dröge-Laser W. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. THE PLANT CELL 2009; 21:1747-61. [PMID: 19531597 PMCID: PMC2714925 DOI: 10.1105/tpc.108.062968] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 05/06/2009] [Accepted: 05/26/2009] [Indexed: 05/18/2023]
Abstract
Transcription of Arabidopsis thaliana seed maturation (MAT) genes is controlled by members of several transcription factor families, such as basic leucine zippers (bZIPs), B3s, MYBs, and DOFs. In this work, we identify Arabidopsis bZIP53 as a novel transcriptional regulator of MAT genes. bZIP53 expression in developing seeds precedes and overlaps that of its target genes. Gain- and loss-of-function approaches indicate a correlation between the amount of bZIP53 protein and MAT gene expression. Specific in vivo and in vitro binding of bZIP53 protein to a G-box element in the albumin 2S2 promoter is demonstrated. Importantly, heterodimerization with bZIP10 or bZIP25, previously described bZIP regulators of MAT gene expression, significantly enhances DNA binding activity and produces a synergistic increase in target gene activation. Full-level target gene activation is strongly correlated with the ratio of the correspondent bZIP heterodimerization partners. Whereas bZIP53 does not interact with ABI3, a crucial transcriptional regulator in Arabidopsis seeds, ternary complex formation between the bZIP heterodimers and ABI3 increases the expression of MAT genes in planta. We therefore propose that heterodimers containing bZIP53 participate in enhanceosome formation to produce a dramatic increase in MAT gene transcription.
Collapse
Affiliation(s)
- Rosario Alonso
- Centro de Biotecnología y Genómica de Plantas Universidad Politécnica de Madrid, Escuela Técnica Superior Ingenieros Agrónomos, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Roschzttardtz H, Fuentes I, Vásquez M, Corvalán C, León G, Gómez I, Araya A, Holuigue L, Vicente-Carbajosa J, Jordana X. A nuclear gene encoding the iron-sulfur subunit of mitochondrial complex II is regulated by B3 domain transcription factors during seed development in Arabidopsis. PLANT PHYSIOLOGY 2009; 150:84-95. [PMID: 19261733 PMCID: PMC2675723 DOI: 10.1104/pp.109.136531] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/17/2009] [Indexed: 05/20/2023]
Abstract
Mitochondrial complex II (succinate dehydrogenase) is part of the tricarboxylic acid cycle and the respiratory chain. Three nuclear genes encode its essential iron-sulfur subunit in Arabidopsis (Arabidopsis thaliana). One of them, SUCCINATE DEHYDROGENASE2-3 (SDH2-3), is specifically expressed in the embryo during seed maturation, suggesting that SDH2-3 may have a role as the complex II iron-sulfur subunit during embryo maturation and/or germination. Here, we present data demonstrating that three abscisic acid-responsive elements and one RY-like enhancer element, present in the SDH2-3 promoter, are involved in embryo-specific SDH2-3 transcriptional regulation. Furthermore, we show that ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON2, three key B3 domain transcription factors involved in gene expression during seed maturation, control SDH2-3 expression. Whereas ABI3 and FUS3 interact with the RY element in the SDH2-3 promoter, the abscisic acid-responsive elements are shown to be a target for bZIP53, a member of the basic leucine zipper (bZIP) family of transcription factors. We show that group S1 bZIP53 protein binds the promoter as a heterodimer with group C bZIP10 or bZIP25. To the best of our knowledge, the SDH2-3 promoter is the first embryo-specific promoter characterized for a mitochondrial respiratory complex protein. Characterization of succinate dehydrogenase activity in embryos from two homozygous sdh2-3 mutant lines permits us to conclude that SDH2-3 is the major iron-sulfur subunit of mature embryo complex II. Finally, the absence of SDH2-3 in mutant seeds slows down their germination, pointing to a role of SDH2-3-containing complex II at an early step of germination.
Collapse
Affiliation(s)
- Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Yang O, Popova OV, Süthoff U, Lüking I, Dietz KJ, Golldack D. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 2009; 436:45-55. [PMID: 19248824 DOI: 10.1016/j.gene.2009.02.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 02/06/2009] [Accepted: 02/11/2009] [Indexed: 11/26/2022]
Abstract
Soil salinity severely affects plant growth and agricultural productivity. AtbZIP24 encodes a bZIP transcription factor that is induced by salt stress in Arabidopsis thaliana but suppressed in the salt-tolerant relative Lobularia maritima. Transcriptional repression of AtbZIP24 using RNA interference improved salt tolerance in A. thaliana. Under non-stress growth conditions, transgenic A. thaliana lines with decreased AtbZIP24 expression activated the expression of stress-inducible genes involved in cytoplasmic ion homeostasis and osmotic adjustment: the Na(+) transporter AtHKT1, the Na(+)/H(+) antiporter AtSOS1, the aquaporin AtPIP2.1, and a glutamine synthetase. In addition, candidate target genes of AtbZIP24 with functions in plant growth and development were identified such as an argonaute (AGO1)-related protein and cyclophilin AtCYP19. The salt tolerance in transgenic plants correlated with reduced Na(+) accumulation in leaves. In vivo interaction of AtbZIP24 as a homodimer was shown using fluorescence energy transfer (FRET) with cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) as fused FRET pairs. Translational fusion of AtbZIP24 with GFP showed subcellular localization of the protein in nucleus and cytoplasm in plants grown under control conditions whereas in response to salt stress AtbZIP24 was preferentially targeted to the nucleus. It is concluded that AtbZIP24 is an important regulator of salt stress response in plants. The modification of transcriptional control by regulatory transcription factors provides a useful strategy for improving salt tolerance in plants.
Collapse
Affiliation(s)
- Oksoon Yang
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
138
|
Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods Mol Biol 2009; 479:189-202. [PMID: 19083187 DOI: 10.1007/978-1-59745-289-2_12] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dynamic networks of protein-protein interactions regulate numerous cellular processes and determine the ability of cells to respond appropriately to environmental stimuli. However, the study of protein complex formation in living plant cells has remained experimentally difficult and time-consuming and requires sophisticated technical equipment. In this report, we describe a bimolecular fluorescence complementation (BiFC) technique for visualization of protein-protein interactions in plant cells. This approach is based on the formation of a fluorescent complex by two non-fluorescent fragments of the yellow fluorescent protein (YFP) brought together by the association of interacting proteins fused to these fragments. We present the BiFC vectors currently available for the transient and stable transformation of plant cells and provide a detailed protocol for the successful use of BiFC in plants.
Collapse
|
139
|
Weltmeier F, Rahmani F, Ehlert A, Dietrich K, Schütze K, Wang X, Chaban C, Hanson J, Teige M, Harter K, Vicente-Carbajosa J, Smeekens S, Dröge-Laser W. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development. PLANT MOLECULAR BIOLOGY 2009; 69:107-19. [PMID: 18841482 PMCID: PMC2709229 DOI: 10.1007/s11103-008-9410-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 09/22/2008] [Indexed: 05/18/2023]
Abstract
Members of the Arabidopsis group C/S1 basic leucine zipper (bZIP) transcription factor (TF) network are proposed to implement transcriptional reprogramming of plant growth in response to energy deprivation and environmental stresses. The four group C and five group S1 members form specific heterodimers and are, therefore, considered to cooperate functionally. For example, the interplay of C/S1 bZIP TFs in regulating seed maturation genes was analyzed by expression studies and target gene regulation in both protoplasts and transgenic plants. The abundance of the heterodimerization partners significantly affects target gene transcription. Therefore, a detailed analysis of the developmental and stress related expression patterns was performed by comparing promoter: GUS and transcription data. The idea that the C/S1 network plays a role in the allocation of nutrients is supported by the defined and partially overlapping expression patterns in sink leaves, seeds and anthers. Accordingly, metabolic signals strongly affect bZIP expression on the transcriptional and/or post-transcriptional level. Sucrose induced repression of translation (SIRT) was demonstrated for all group S1 bZIPs. In particular, transcription of group S1 genes strongly responds to various abiotic stresses, such as salt (AtbZIP1) or cold (AtbZIP44). In summary, heterodimerization and expression data provide a basic framework to further determine the functional impact of the C/S1 network in regulating the plant energy balance and nutrient allocation.
Collapse
Affiliation(s)
- Fridtjof Weltmeier
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | - Fatima Rahmani
- Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, CH 3584 The Netherlands
| | - Andrea Ehlert
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | - Katrin Dietrich
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | - Katia Schütze
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | - Xuan Wang
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| | - Christina Chaban
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | - Johannes Hanson
- Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, CH 3584 The Netherlands
| | - Markus Teige
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9/5, A-1030 Vienna, Austria
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | - Jesus Vicente-Carbajosa
- Centro de Biotecnología y Genómica de plantas. Departamento Biotecnología, ETSI Agrónomos, Universidad Politécnica de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| | - Sjef Smeekens
- Molecular Plant Physiology, Utrecht University, Padualaan 8, Utrecht, CH 3584 The Netherlands
| | - Wolfgang Dröge-Laser
- Albrecht-von-Haller-Institut, Universität Göttingen, Untere Karspüle 2, D-37073 Göttingen, Germany
| |
Collapse
|
140
|
Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids 2008; 35:753-9. [PMID: 18379856 DOI: 10.1007/s00726-008-0061-6] [Citation(s) in RCA: 774] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 03/08/2008] [Indexed: 10/22/2022]
Abstract
Proline (Pro) accumulation is a common physiological response in many plants in response to a wide range of biotic and abiotic stresses. Controversy has surrounded the possible role(s) of proline accumulation. In this review, knowledge on the regulation of Pro metabolism during development and stress, results of genetic manipulation of Pro metabolism and current debate on Pro toxicity in plants are presented.
Collapse
Affiliation(s)
- Nathalie Verbruggen
- Laboratoire de Physiologie et de Génétique moléculaire des Plantes, Université Libre de Bruxelles, Campus Plaine-CP242, Bd du Triomphe, 1050, Brussels, Belgium.
| | | |
Collapse
|
141
|
Corrêa LGG, Riaño-Pachón DM, Schrago CG, dos Santos RV, Mueller-Roeber B, Vincentz M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 2008; 3:e2944. [PMID: 18698409 PMCID: PMC2492810 DOI: 10.1371/journal.pone.0002944] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 07/22/2008] [Indexed: 01/07/2023] Open
Abstract
Background Transcription factors of the basic leucine zipper (bZIP) family control important processes in all eukaryotes. In plants, bZIPs are regulators of many central developmental and physiological processes including photomorphogenesis, leaf and seed formation, energy homeostasis, and abiotic and biotic stress responses. Here we performed a comprehensive phylogenetic analysis of bZIP genes from algae, mosses, ferns, gymnosperms and angiosperms. Methodology/Principal Findings We identified 13 groups of bZIP homologues in angiosperms, three more than known before, that represent 34 Possible Groups of Orthologues (PoGOs). The 34 PoGOs may correspond to the complete set of ancestral angiosperm bZIP genes that participated in the diversification of flowering plants. Homologous genes dedicated to seed-related processes and ABA-mediated stress responses originated in the common ancestor of seed plants, and three groups of homologues emerged in the angiosperm lineage, of which one group plays a role in optimizing the use of energy. Conclusions/Significance Our data suggest that the ancestor of green plants possessed four bZIP genes functionally involved in oxidative stress and unfolded protein responses that are bZIP-mediated processes in all eukaryotes, but also in light-dependent regulations. The four founder genes amplified and diverged significantly, generating traits that benefited the colonization of new environments.
Collapse
Affiliation(s)
- Luiz Gustavo Guedes Corrêa
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Department of Molecular Biology, University of Potsdam, Potsdam-Golm, Germany
- Cooperative Research Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Diego Mauricio Riaño-Pachón
- Department of Molecular Biology, University of Potsdam, Potsdam-Golm, Germany
- GabiPD Team, Bioinformatics Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Carlos Guerra Schrago
- Laboratório de Biodiversidade Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato Vicentini dos Santos
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, University of Potsdam, Potsdam-Golm, Germany
- Cooperative Research Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Michel Vincentz
- Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- * E-mail:
| |
Collapse
|
142
|
Hou X, Hu WW, Shen L, Lee LYC, Tao Z, Han JH, Yu H. Global identification of DELLA target genes during Arabidopsis flower development. PLANT PHYSIOLOGY 2008; 147:1126-42. [PMID: 18502975 PMCID: PMC2442519 DOI: 10.1104/pp.108.121301] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/20/2008] [Indexed: 05/19/2023]
Abstract
Gibberellin (GA) plays important roles in regulating many aspects of plant development. GA derepresses its signaling pathway by promoting the degradation of DELLA proteins, a family of nuclear growth repressors. Although the floral organ identity is established in flowers of the GA-deficient mutant ga1-3, the growth of all floral organs is severely retarded. In particular, abortive anther development in ga1-3 results in male sterility. Genetic analysis has revealed that various combinations of null mutants of DELLA proteins could gradually rescue floral organ defects in ga1-3 and that RGA is the most important DELLA protein involved in floral organ development. To elucidate the early molecular events controlled by RGA during flower development, we performed whole-genome microarray analysis to identify genes in response to the steroid-inducible activation of RGA in ga1-3 rgl2 rga 35S:RGA-GR. Although DELLA proteins were suggested as transcriptional repressors, similar numbers of genes were down-regulated or up-regulated by RGA during floral organ development. More than one-third of RGA down-regulated genes were specifically or predominantly expressed in stamens. A significant number of RGA-regulated genes are involved in phytohormone signaling or stress response. Further expression analysis through activation of RGA by steroid induction combined with cycloheximide identified eight genes as immediate targets of RGA. In situ hybridization and transgenic studies further showed that the expression pattern and function of several selected genes were consistent with the predictions from microarray analysis. These results suggest that DELLA regulation of floral organ development is modulated by multiple phytohormones and stress signaling pathways.
Collapse
Affiliation(s)
- Xingliang Hou
- Department of Biological Sciences, Faculty of Sciences , National University of Singapore, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
143
|
Hou X, Hu WW, Shen L, Lee LYC, Tao Z, Han JH, Yu H. Global identification of DELLA target genes during Arabidopsis flower development. PLANT PHYSIOLOGY 2008. [PMID: 18502975 DOI: 10.1104/pp.108.121301:pp.108.121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Gibberellin (GA) plays important roles in regulating many aspects of plant development. GA derepresses its signaling pathway by promoting the degradation of DELLA proteins, a family of nuclear growth repressors. Although the floral organ identity is established in flowers of the GA-deficient mutant ga1-3, the growth of all floral organs is severely retarded. In particular, abortive anther development in ga1-3 results in male sterility. Genetic analysis has revealed that various combinations of null mutants of DELLA proteins could gradually rescue floral organ defects in ga1-3 and that RGA is the most important DELLA protein involved in floral organ development. To elucidate the early molecular events controlled by RGA during flower development, we performed whole-genome microarray analysis to identify genes in response to the steroid-inducible activation of RGA in ga1-3 rgl2 rga 35S:RGA-GR. Although DELLA proteins were suggested as transcriptional repressors, similar numbers of genes were down-regulated or up-regulated by RGA during floral organ development. More than one-third of RGA down-regulated genes were specifically or predominantly expressed in stamens. A significant number of RGA-regulated genes are involved in phytohormone signaling or stress response. Further expression analysis through activation of RGA by steroid induction combined with cycloheximide identified eight genes as immediate targets of RGA. In situ hybridization and transgenic studies further showed that the expression pattern and function of several selected genes were consistent with the predictions from microarray analysis. These results suggest that DELLA regulation of floral organ development is modulated by multiple phytohormones and stress signaling pathways.
Collapse
Affiliation(s)
- Xingliang Hou
- Department of Biological Sciences, Faculty of Sciences , National University of Singapore, Singapore 117543
| | | | | | | | | | | | | |
Collapse
|
144
|
Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. PLANTA 2008; 228:225-40. [PMID: 18365246 DOI: 10.1007/s00425-008-0731-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 03/12/2008] [Indexed: 05/03/2023]
Abstract
From soybean plant, 131 bZIP genes were identified and named as GmbZIPs. The GmbZIPs can be classified into ten groups and more than one third of these GmbZIPs are responsive to at least one of the four treatments including ABA, salt, drought and cold stresses. Previous studies have shown that group A bZIP proteins are involved in ABA and stress signaling. We now chose four non-group A genes to study their features. The four proteins GmbZIP44, GmbZIP46, GmbZIP62 and GmbZIP78 belong to the group S, I, C and G, respectively, and can bind to GLM (GTGAGTCAT), ABRE (CCACGTGG) and PB-like (TGAAAA) elements with differential affinity in both the yeast one-hybrid assay and in vitro gel-shift analysis. GmbZIP46 can form homodimer or heterodimer with GmbZIP62 or GmMYB76. Transgenic Arabidopsis plants overexpressing the GmbZIP44, GmbZIP62 or GmbZIP78 showed reduced ABA sensitivity. However, all the transgenic plants were more tolerant to salt and freezing stresses when compared with the Col plants. The GmbZIP44, GmbZIP62 and GmbZIP78 may function in ABA signaling through upregulation of ABI1 and ABI2 and play roles in stress tolerance through regulation of various stress-responsive genes. These results indicate that GmbZIP44, GmbZIP62 and GmbZIP78 are negative regulators of ABA signaling and function in salt and freezing tolerance.
Collapse
Affiliation(s)
- Yong Liao
- Plant Gene Research Center, National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Khoury CM, Yang Z, Li XY, Vignali M, Fields S, Greenwood MT. A TSC22-like motif defines a novel antiapoptotic protein family. FEMS Yeast Res 2008; 8:540-63. [PMID: 18355271 PMCID: PMC2593406 DOI: 10.1111/j.1567-1364.2008.00367.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/15/2008] [Accepted: 01/22/2008] [Indexed: 11/28/2022] Open
Abstract
The apoptotic programme is evolutionarily conserved between yeast and metazoan organisms. We have previously identified a number of mammalian cDNAs capable of suppressing the deleterious effects of Bax expression in yeast. We herein report that one such suppressor, named Tsc22((86)), represents the C-terminal 86 amino acids of the previously characterized leucine zipper (LZ) motif-containing transcriptional regulator Tsc22. Employing a genome-wide two-hybrid screen, functional genomics, and deletion mutagenesis approaches, we conclude that Tsc22((86))-mediated antiapoptosis is independent of the LZ motif and is likely independent of effects on gene transcription. Rather, a 16-residue sequence within the conserved 56-residue TSC22 domain is necessary for antiapoptosis. The presence of a similar sequence was used to predict an antiapoptotic role for two yeast proteins, Sno1p and Fyv10p. Overexpression and knock-out experiments were used to validate this prediction. These findings demonstrate the potential of studying heterologous proteins in yeast to uncover novel biological insights into the regulation of apoptosis.
Collapse
Affiliation(s)
- Chamel M Khoury
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
146
|
Mata J, Wilbrey A, Bähler J. Transcriptional regulatory network for sexual differentiation in fission yeast. Genome Biol 2008; 8:R217. [PMID: 17927811 PMCID: PMC2246291 DOI: 10.1186/gb-2007-8-10-r217] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/11/2007] [Accepted: 10/10/2007] [Indexed: 11/25/2022] Open
Abstract
Microarray analysis of the transcriptome of fission yeast after genetic perturbation of 6 genes known to have a role in sexual differentiation reveals insights into the regulatory principles controlling the gene expression program driving this process. Background Changes in gene expression are hallmarks of cellular differentiation. Sexual differentiation in fission yeast (Schizosaccharomyces pombe) provides a model system for gene expression programs accompanying and driving cellular specialization. The expression of hundreds of genes is modulated in successive waves during meiosis and sporulation in S. pombe, and several known transcription factors are critical for these processes. Results We used DNA microarrays to investigate meiotic gene regulation by examining transcriptomes after genetic perturbations (gene deletion and/or overexpression) of rep1, mei4, atf21 and atf31, which encode known transcription factors controlling sexual differentiation. This analysis reveals target genes at a genome-wide scale and uncovers combinatorial control by Atf21p and Atf31p. We also studied two transcription factors not previously implicated in sexual differentiation whose meiotic induction depended on Mei4p: Rsv2p induces stress-related genes during spore formation, while Rsv1p represses glucose-metabolism genes. Our data further reveal negative feedback interactions: both Rep1p and Mei4p not only activate specific gene expression waves (early and middle genes, respectively) but are also required for repression of genes induced in the previous waves (Ste11p-dependent and early genes, respectively). Conclusion These data give insight into regulatory principles controlling the extensive gene expression program driving sexual differentiation and highlight sophisticated interactions and combinatorial control among transcription factors. Besides triggering simultaneous expression of gene waves, transcription factors also repress genes in the previous wave and induce other factors that in turn regulate a subsequent wave. These dependencies ensure an ordered and timely succession of transcriptional waves during cellular differentiation.
Collapse
Affiliation(s)
- Juan Mata
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1HH, UK.
| | | | | |
Collapse
|
147
|
Schütze K, Harter K, Chaban C. Post-translational regulation of plant bZIP factors. TRENDS IN PLANT SCIENCE 2008; 13:247-55. [PMID: 18424222 DOI: 10.1016/j.tplants.2008.03.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 02/14/2008] [Accepted: 03/21/2008] [Indexed: 05/07/2023]
Abstract
The post-translational regulation of transcription factors plays an important role in the control of gene expression in eukaryotes. The mechanisms of regulation include not only factor modifications but also regulated protein-protein interaction, protein degradation and intracellular partitioning. In plants, the basic-region leucine zipper (bZIP) transcription factors contribute to many transcriptional response pathways. Despite this, little is known about their post-translational regulation. Recent findings suggest that plant bZIP factors are under the control of various partially signal-induced and reversible post-translational mechanisms that are crucial for the control of their function. However, the fact that, to date, only a few plant bZIPs have been analyzed with respect to post-translational regulation indicates that we have just identified the tip of an iceberg.
Collapse
Affiliation(s)
- Katia Schütze
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 1, Tübingen, Germany
| | | | | |
Collapse
|
148
|
Hanson J, Hanssen M, Wiese A, Hendriks MMWB, Smeekens S. The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:935-49. [PMID: 18088315 DOI: 10.1111/j.1365-313x.2007.03385.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Translation of the transcription factor bZIP11 is repressed by sucrose in a process that involves a highly conserved peptide encoded by the 5' leaders of bZIP11 and other plant basic region leucine zipper (bZip) genes. It is likely that a specific signaling pathway operating at physiological sucrose concentrations controls metabolism via a feedback mechanism. In this paper bZIP11 target processes are identified using transiently increased nuclear bZIP11 levels and genome-wide expression analysis. bZIP11 affects the expression of hundreds of genes with proposed functions in biochemical pathways and signal transduction. The expression levels of approximately 80% of the genes tested are not affected by bZIP11 promoter-mediated overexpression of bZIP11. This suggests that <20% of the identified genes appear to be physiologically relevant targets of bZIP11. ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2 are among the rapidly activated bZIP11 targets, whose induction is independent of protein translation. Transient expression experiments in Arabidopsis protoplasts show that the bZIP11-dependent activation of the ASPARAGINE SYNTHETASE1 gene is dependent on a G-box element present in the promoter. Increased bZIP11 expression leads to decreased proline and increased phenylalanine levels. A model is proposed in which sugar signals control amino acid levels via the bZIP11 transcription factor.
Collapse
Affiliation(s)
- Johannes Hanson
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
149
|
Chevalier F, Perazza D, Laporte F, Le Hénanff G, Hornitschek P, Bonneville JM, Herzog M, Vachon G. GeBP and GeBP-like proteins are noncanonical leucine-zipper transcription factors that regulate cytokinin response in Arabidopsis. PLANT PHYSIOLOGY 2008; 146:1142-54. [PMID: 18162594 PMCID: PMC2259040 DOI: 10.1104/pp.107.110270] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 12/23/2007] [Indexed: 05/20/2023]
Abstract
Understanding the role of transcription factors (TFs) is essential in reconstructing developmental regulatory networks. The plant-specific GeBP TF family of Arabidopsis thaliana (Arabidopsis) comprises 21 members, all of unknown function. A subset of four members, the founding member GeBP and GeBP-like proteins (GPL) 1, 2, and 3, shares a conserved C-terminal domain. Here we report that GeBP/GPL genes represent a newly defined class of leucine-zipper (Leu-zipper) TFs and that they play a redundant role in cytokinin hormone pathway regulation. Specifically, we demonstrate using yeast, in vitro, and split-yellow fluorescent protein in planta assays that GeBP/GPL proteins form homo- and heterodimers through a noncanonical Leu-zipper motif located in the C-terminal domain. A triple loss-of-function mutant of the three most closely related genes gebp gpl1 gpl2 shows a reduced sensitivity to exogenous cytokinins in a subset of cytokinin responses such as senescence and growth, whereas root inhibition is not affected. We find that transcript levels of type-A cytokinin response genes, which are involved in the negative feedback regulation of cytokinin signaling, are higher in the triple mutant. Using a GPL version that acts as a constitutive transcriptional activator, we show that the regulation of Arabidopsis response regulators (ARRs) is mediated by at least one additional, as yet unknown, repressor acting genetically downstream in the GeBP/GPL pathway. Our results indicate that GeBP/GPL genes encode a new class of unconventional Leu-zipper TF proteins and suggest that their role in the cytokinin pathway is to antagonize the negative feedback regulation on ARR genes to trigger the cytokinin response.
Collapse
Affiliation(s)
- Florian Chevalier
- Laboratoire Plastes et Différenciation Cellulaire, CNRS, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Study and selection of in vivo protein interactions by coupling bimolecular fluorescence complementation and flow cytometry. Nat Protoc 2008; 3:22-33. [PMID: 18193018 DOI: 10.1038/nprot.2007.496] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present a high-throughput approach to study weak protein-protein interactions by coupling bimolecular fluorescent complementation (BiFC) to flow cytometry (FC). In BiFC, the interaction partners (bait and prey) are fused to two rationally designed fragments of a fluorescent protein, which recovers its function upon the binding of the interacting proteins. For weak protein-protein interactions, the detected fluorescence is proportional to the interaction strength, thereby allowing in vivo discrimination between closely related binders with different affinity for the bait protein. FC provides a method for high-speed multiparametric data acquisition and analysis; the assay is simple, thousands of cells can be analyzed in seconds and, if required, selected using fluorescence-activated cell sorting (FACS). The combination of both methods (BiFC-FC) provides a technically straightforward, fast and highly sensitive method to validate weak protein interactions and to screen and identify optimal ligands in biologically synthesized libraries. Once plasmids encoding the protein fusions have been obtained, the evaluation of a specific interaction, the generation of a library and selection of active partners using BiFC-FC can be accomplished in 5 weeks.
Collapse
|