101
|
Cirillo N, Prime SS. Desmosomal interactome in keratinocytes: a systems biology approach leading to an understanding of the pathogenesis of skin disease. Cell Mol Life Sci 2009; 66:3517-33. [PMID: 19756386 PMCID: PMC11115514 DOI: 10.1007/s00018-009-0139-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/02/2009] [Accepted: 08/18/2009] [Indexed: 12/30/2022]
Abstract
We provide the first description of the desmosome network in keratinocytes using a systems level approach. The desmo-adhesome consists of 59 proteins connected by 128 direct interactions and forms different functional subnets. Whilst the structure appears to be extremely robust against random perturbations, network fragmentation analysis suggests that the desmo-adhesome is susceptible to targeted attacks. To confirm this prediction, we applied this model to the autoimmune disease Pemphigus Vulgaris (PV), a paradigm of external perturbation of the desmosome. Our analysis showed that the adaptor protein plakophilin (Pkp) 3 was in the highest percentile group for both connectivity rate and gene expression changes in experimental PV. This observation led us to speculate that Pkp3 was crucial in desmosomal remodelling, and therefore we designed the experiments to verify this hypothesis. Our data demonstrate that, whilst Pkp3 is important in conferring adhesive strength to keratinocytes, it also acts as a central molecule mediating cell-cell detachment induced by PV IgG.
Collapse
Affiliation(s)
- Nicola Cirillo
- Department of Oral and Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS12LY, UK.
| | | |
Collapse
|
102
|
Bisceglie MBD, Lucchese A, Crincoli V. Pemphigus: The promises of peptide immunotherapy. Immunopharmacol Immunotoxicol 2009; 31:509-15. [DOI: 10.3109/08923970902814145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
103
|
Suter MM, Schulze K, Bergman W, Welle M, Roosje P, Müller EJ. The keratinocyte in epidermal renewal and defence. Vet Dermatol 2009; 20:515-32. [DOI: 10.1111/j.1365-3164.2009.00819.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
104
|
Yokouchi M, Saleh MA, Kuroda K, Hachiya T, Stanley JR, Amagai M, Ishii K. Pathogenic epitopes of autoantibodies in pemphigus reside in the amino-terminal adhesive region of desmogleins which are unmasked by proteolytic processing of prosequence. J Invest Dermatol 2009; 129:2156-66. [PMID: 19340014 PMCID: PMC2813511 DOI: 10.1038/jid.2009.61] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pemphigus targets desmogleins (Dsgs), which are thought to be synthesized as inactive precursor proteins with prosequences that are cleaved by substilisin-like proprotein convertases, such as furin, to yield mature adhesive molecules. We hypothesized that some pemphigus pathogenic antibodies (Abs), which presumably interfere with adhesion, only bind the mature form. A pathogenic and three non-pathogenic anti-Dsg1 monoclonal Abs (mAbs) isolated from a pemphigus foliaceus (PF) patient, were used for immunoprecipitation and ELISA of recombinant precursor and mature Dsg1. The pathogenic Ab binds mature Dsg1, whereas non-pathogenic Abs bind either only the precursor or both the precursor and mature Dsg1. Competition ELISA showed that the majority of PF sera target the same or nearby epitopes defined by the pathogenic anti-Dsg1 mAb that blocked >20% binding of 29 out of 40 PF sera. Furthermore, the immunoreactivity of 45 PF sera against the mature Dsg1 was 3.2 fold stronger than that against the precursor Dsg1 by ELISA. Similar results were observed in anti-Dsg3 Abs in 47 pemphigus vulgaris sera, suggesting that most pemphigus sera target epitopes that are unmasked by proteolytic processing. These findings support the idea that at least some pathogenic pemphigus autoantibodies induce the loss of cell adhesion by directly binding the trans-interaction site of Dsgs.
Collapse
Affiliation(s)
- Mariko Yokouchi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Marwah Adly Saleh
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Kuroda
- Medical and Biological Laboratories Co. Ltd, Nagoya, Japan
| | | | - John R. Stanley
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Ishii
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
105
|
|
106
|
Abstract
In this new century of pemphigus research, the search for novel treatments is switching from a monospecific approach, focused on immunosuppression, to a polyspecific approach that includes drugs acting on novel pathophysiologic pathways. Current research argues that acantholysis in pemphigus occurs as an active process resulting from intracellular signaling triggered as a result of IgG binding to the keratinocyte membrane antigens in a receptor-ligand fashion. Recent progress regarding the pathophysiology of pemphigus acantholysis led to, or was accompanied by, breakthrough discoveries of safer treatments. Both the identification of cell-surface receptors to acetylcholine among the nondesmoglein (Dsg) targets for pemphigus antibodies, and the elucidation of the cholinergic control of keratinocyte cell adhesion provide an explanation for the therapeutic efficacy of cholinomimetics in patients with pemphigus. In patients' skin, Fas-L, TNFalpha, and, probably, IL-1alpha act as autocrine/paracrine co-factors for anti-keratinocyte IgG. Thus, it appears that an array of interconnected signaling cascades is responsible for acantholysis and cell death in pemphigus. Future studies should define the signaling pathways mediating acantholysis that occur in individual pemphigus patients and identify the membrane proteins (receptors) triggering signaling along a specific pathway upon their ligation by autoantibodies. It will be important to determine which pathway 1) leads directly to a loss of cell-cell adhesion (primary pathway), 2) which is being activated due to cell shrinkage/detachment (secondary pathway), 3) which contributes to utilization of altered proteins and organelles (scavenging pathway), and 4) which represents the cell defense (protective pathway). To dissect out the signaling pathways originating from binding of pemphigus IgG to non-Dsg targets on the keratinocyte plasma membrane experiments should be performed in cultures of murine keratinocytes grown from the Dsg3-/- mice or human keratinocytes with the knocked-down expression of the Dsg1 and/or Dsg3 gene by the RNA interference.
Collapse
Affiliation(s)
- Sergei A Grando
- Department of Dermatology, University of California-Davis, Sacramento, CA 95816, USA.
| |
Collapse
|
107
|
Getsios S, Simpson CL, Kojima SI, Harmon R, Sheu LJ, Dusek RL, Cornwell M, Green KJ. Desmoglein 1-dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. ACTA ACUST UNITED AC 2009; 185:1243-58. [PMID: 19546243 PMCID: PMC2712955 DOI: 10.1083/jcb.200809044] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dsg1 (desmoglein 1) is a member of the cadherin family of Ca2+-dependent cell adhesion molecules that is first expressed in the epidermis as keratinocytes transit out of the basal layer and becomes concentrated in the uppermost cell layers of this stratified epithelium. In this study, we show that Dsg1 is not only required for maintaining epidermal tissue integrity in the superficial layers but also supports keratinocyte differentiation and suprabasal morphogenesis. Dsg1 lacking N-terminal ectodomain residues required for adhesion remained capable of promoting keratinocyte differentiation. Moreover, this capability did not depend on cytodomain interactions with the armadillo protein plakoglobin or coexpression of its companion suprabasal cadherin, Dsc1 (desmocollin 1). Instead, Dsg1 was required for suppression of epidermal growth factor receptor–Erk1/2 (extracellular signal-regulated kinase 1/2) signaling, thereby facilitating keratinocyte progression through a terminal differentiation program. In addition to serving as a rigid anchor between adjacent cells, this study implicates desmosomal cadherins as key components of a signaling axis governing epithelial morphogenesis.
Collapse
Affiliation(s)
- Spiro Getsios
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Schmidt E, Waschke J. Apoptosis in pemphigus. Autoimmun Rev 2009; 8:533-7. [PMID: 19189866 DOI: 10.1016/j.autrev.2009.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Accepted: 01/17/2009] [Indexed: 10/21/2022]
|
109
|
Mao X, Choi EJ, Payne AS. Disruption of desmosome assembly by monovalent human pemphigus vulgaris monoclonal antibodies. J Invest Dermatol 2009; 129:908-18. [PMID: 19037235 PMCID: PMC2743719 DOI: 10.1038/jid.2008.339] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intercellular interactions of the desmosomal cadherins, desmoglein and desmocollin, are required for epidermal cell adhesion. Pemphigus vulgaris (PV) is a potentially fatal autoimmune blistering disease characterized by autoantibodies against desmoglein (Dsg) 3. During calcium-induced desmosome assembly, treatment of primary human keratinocytes with pathogenic monovalent anti-Dsg3 mAbs produced from a PV patient causes a decrease of Dsg3 and desmoplakin but not desmocollin (Dsc) 3 in the Triton-insoluble fraction of cell lysates within 2 hours. Immunofluorescence and antibody ELISA studies suggest that pathogenic mAbs cause internalization of cell-surface Dsg3 but not Dsc3 through early endosomes. Electron microscopy demonstrated a lack of well-formed desmosomes in keratinocytes treated with pathogenic compared to nonpathogenic mAbs. In contrast, pathogenic mAbs caused late depletion of Dsg3 from preformed desmosomes at 24 hours, with effects on multiple desmosomal proteins including Dsc3 and plakoglobin. Together, these studies indicate that pathogenic PV mAbs specifically cause internalization of newly synthesized Dsg3 during desmosome assembly, correlating with their pathogenic activity. Monovalent human PV anti-Dsg mAbs reproduce the effects of polyclonal PV IgG on Dsg3 and will facilitate future studies to further dissect the cellular mechanisms for the loss of cell adhesion in pemphigus.
Collapse
Affiliation(s)
- Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
110
|
Heupel WM, Müller T, Efthymiadis A, Schmidt E, Drenckhahn D, Waschke J. Peptides Targeting the Desmoglein 3 Adhesive Interface Prevent Autoantibody-induced Acantholysis in Pemphigus. J Biol Chem 2009; 284:8589-95. [PMID: 19164289 DOI: 10.1074/jbc.m808813200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pemphigus vulgaris (PV) autoantibodies directly inhibit desmoglein (Dsg) 3-mediated transinteraction. Because cellular signaling also seems to be required for PV pathogenesis, it is important to characterize the role of direct inhibition in pemphigus acantholysis to allow establishment of new therapeutic approaches. Therefore, we modeled the Dsg1 and Dsg3 sequences into resolved cadherin structures and predicted peptides targeting the adhesive interface of both Dsg3 and Dsg1. In atomic force microscopy single molecule experiments, the self-designed cyclic single peptide specifically blocked homophilic Dsg3 and Dsg1 transinteraction, whereas a tandem peptide (TP) consisting of two combined single peptides did not. TP did not directly block binding of pemphigus IgG to their target Dsg antigens but prevented PV-IgG-induced inhibition of Dsg3 transinteraction in cell-free (atomic force microscopy) and cell-based (laser tweezer) experiments, indicating stabilization of Dsg3 bonds. Similarly, PV-IgG-mediated acantholysis and disruption of Dsg3 localization in HaCaT keratinocytes was partially blocked by TP. This is the first evidence that direct inhibition of Dsg3 binding is important for PV pathogenesis and that peptidomimetics stabilizing Dsg transinteraction may provide a novel approach for PV treatment.
Collapse
Affiliation(s)
- Wolfgang-Moritz Heupel
- Department of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, D-97070 Würzburg
| | | | | | | | | | | |
Collapse
|
111
|
Heupel WM, Engerer P, Schmidt E, Waschke J. Pemphigus vulgaris IgG cause loss of desmoglein-mediated adhesion and keratinocyte dissociation independent of epidermal growth factor receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:475-85. [PMID: 19147829 DOI: 10.2353/ajpath.2009.080392] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autoantibody-induced cellular signaling mechanisms contribute to the pathogenesis of autoimmune blistering skin disease pemphigus vulgaris (PV). Recently, it was proposed that epidermal growth factor receptor (EGFR) might be involved in PV signaling pathways. In this study, we investigated the role of EGFR by comparing the effects of epidermal growth factor (EGF) and PV-IgG on the immortalized human keratinocyte cell line HaCaT, and primary normal human keratinocytes. In contrast to EGF treatment, PV-IgG neither caused the canonical activation of EGFR via phosphorylation at tyrosine (Y)1173 followed by internalization of EGFR nor the phosphorylation of the EGFR at the c-Src-dependent site Y845. Nevertheless, both PV-IgG and EGF led to cell dissociation and cytokeratin retraction in keratinocyte monolayers. Moreover, the effects of EGF were blocked by inhibition of EGFR and c-Src whereas the effects of PV-IgG were independent of both signaling pathways. Similarly, laser tweezer experiments revealed that impaired bead binding of epidermal cadherins desmoglein (Dsg) 3 and Dsg 1 in response to PV-IgG was not affected by inhibition of either EGFR or c-Src. In contrast, EGF treatment did not interfere with Dsg bead binding. Taken together, our study indicates that the loss of Dsg-mediated adhesion and keratinocyte dissociation in pemphigus is independent of EGFR. Moreover, the mechanisms by which both EGF and PV-IgG lead to keratinocyte dissociation and cytokeratin retraction appear to be different.
Collapse
|
112
|
Li N, Zhao M, Wang J, Liu Z, Diaz LA. Involvement of the apoptotic mechanism in pemphigus foliaceus autoimmune injury of the skin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:711-7. [PMID: 19109205 PMCID: PMC2716799 DOI: 10.4049/jimmunol.182.1.711] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pemphigus foliaceus (PF) is an organ-specific autoimmune skin disease characterized by subcorneal epidermal cell detachment (acantholysis) and pathogenic autoantibodies against desmoglein 1. The mechanism responsible for pemphigus autoantibody-induced epidermal injury is not fully understood. In this study, we used the IgG passive transfer mouse model of PF to investigate the relevance of the apoptotic mechanism in pemphigus pathogenesis. TUNEL-positive epidermal cells and increased oligonucleosomes in the epidermal cytosolic fractions were detected in the diseased mice. Time course study reveals that TUNEL-positive epidermal cells appear before intraepidermal blisters. Moreover, the proapoptotic factor Bax was up-regulated at the earlier time points (2 and 4 h), whereas the antiapoptotic factor Bcl-x(L) was down-regulated at the later time points (6, 8, and 20 h) post-PF IgG injection by Western blot analysis. The active forms of caspase-3 and -6 were detected at the later time period (6, 8, and 20 h). Administration of Ac-DEVD-cmk, a peptide-based caspase-3/7 inhibitor, protected mice from developing intraepidermal blisters and clinical disease induced by PF IgG. The same protective effect was also observed using a broad-spectrum caspase inhibitor, Bok-D-fmk. Collectively, these findings show that biochemical events of apoptosis are provoked in the epidermis of mice injected with PF autoantibodies. Caspase activation may contribute to acantholytic blister formation in PF.
Collapse
Affiliation(s)
- Ning Li
- Department of Dermatology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
113
|
Pacheco-Pinedo EC, Budak MT, Zeiger U, Jørgensen LH, Bogdanovich S, Schrøder HD, Rubinstein NA, Khurana TS. Transcriptional and functional differences in stem cell populations isolated from extraocular and limb muscles. Physiol Genomics 2008; 37:35-42. [PMID: 19116248 DOI: 10.1152/physiolgenomics.00051.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The extraocular muscles (EOMs) are a distinct muscle group that displays an array of unique contractile, structural, and regenerative properties. They also have differential sensitivity to certain diseases and are enigmatically spared in Duchenne muscular dystrophy (DMD). The EOMs are so distinct from other skeletal muscles that the term "allotype" has been coined to highlight EOM group-specific properties. We hypothesized that increased and distinct stem cells may underlie the continual myogenesis noted in EOM. The side population (SP) stem cells were isolated and studied. EOMs had 15x higher SP cell content compared with limb muscles. Expression profiling revealed 348 transcripts that define the EOM-SP transcriptome. Over 92% of transcripts were SP specific, because they were absent in previous whole muscle microarray studies. Cultured EOM-SP cells revealed superior in vitro proliferative capacity. Finally, assays of the committed progenitors or satellite cells performed on myofibers isolated from EOM and limb muscles independently validated the increased proliferative capacity of these muscles. We suggest a model in which unique EOM stem cells contribute to the continual myogenesis noted in EOM and consistent with a role for their sparing in DMD. We believe the greater numbers of stem cells, their unique transcriptome, the greater proliferative capacity of EOM stem cells, and the greater number of satellite cells also offer clues for novel cell-based therapeutic strategies.
Collapse
Affiliation(s)
- Eugenia C Pacheco-Pinedo
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6085, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Culton DA, Qian Y, Li N, Rubenstein D, Aoki V, Filhio GH, Rivitti EA, Diaz LA. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype: a paradigm of human autoimmunity. J Autoimmun 2008; 31:311-24. [PMID: 18838249 PMCID: PMC2704386 DOI: 10.1016/j.jaut.2008.08.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/08/2008] [Accepted: 08/10/2008] [Indexed: 11/22/2022]
Abstract
Pemphigus encompasses a group of organ specific, antibody mediated autoimmune diseases of the skin characterized by keratinocyte detachment that leads to the development of blisters and erosions, which can become life-threatening. The pathogenic autoantibodies recognize desmogleins, which are members of the desmosomal cadherin family of cell adhesion molecules. Desmoglein 3 is targeted in pemphigus vulgaris while desmoglein 1 is targeted in pemphigus foliaceus and its endemic form, Fogo Selvagem. This review will briefly define the salient features of pemphigus and the proposed steps in pathogenesis. We will then summarize the most recent advances in three important areas of investigation: (i) epidemiologic, genetic, and immunologic features of Fogo Selvagem, (ii) molecular mechanisms of injury to the epidermis, and (iii) novel therapeutic strategies targeting specific steps in disease pathogenesis. The advances in each of these three seemingly separate areas contribute to the overall understanding of the pemphigus disease model. These recent advancements also underscore the dynamic interplay between the treatment of patients in a clinical setting and basic science research and have led to an integrative understanding of disease pathogenesis and treatment, allowing pemphigus to serve as a paradigm of human autoimmunity.
Collapse
Affiliation(s)
- Donna A. Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ye Qian
- Department of Dermatology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - David Rubenstein
- Department of Dermatology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Valeria Aoki
- Departamento de Dermatologia, Universidade de Sao Paulo, Brazil
| | - Gunter Hans Filhio
- Departamento de Dermatologia, Universidade Federal de Mato Grosso do Sul, Brazil
| | | | - Luis A. Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, NC 27599, USA
| |
Collapse
|
115
|
Heupel WM, Zillikens D, Drenckhahn D, Waschke J. Pemphigus Vulgaris IgG Directly Inhibit Desmoglein 3-Mediated Transinteraction. THE JOURNAL OF IMMUNOLOGY 2008; 181:1825-34. [DOI: 10.4049/jimmunol.181.3.1825] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
116
|
Abstract
Desmosomes are patch-like intercellular adhering junctions ("maculae adherentes"), which, in concert with the related adherens junctions, provide the mechanical strength to intercellular adhesion. Therefore, it is not surprising that desmosomes are abundant in tissues subjected to significant mechanical stress such as stratified epithelia and myocardium. Desmosomal adhesion is based on the Ca(2+)-dependent, homo- and heterophilic transinteraction of cadherin-type adhesion molecules. Desmosomal cadherins are anchored to the intermediate filament cytoskeleton by adaptor proteins of the armadillo and plakin families. Desmosomes are dynamic structures subjected to regulation and are therefore targets of signalling pathways, which control their molecular composition and adhesive properties. Moreover, evidence is emerging that desmosomal components themselves take part in outside-in signalling under physiologic and pathologic conditions. Disturbed desmosomal adhesion contributes to the pathogenesis of a number of diseases such as pemphigus, which is caused by autoantibodies against desmosomal cadherins. Beside pemphigus, desmosome-associated diseases are caused by other mechanisms such as genetic defects or bacterial toxins. Because most of these diseases affect the skin, desmosomes are interesting not only for cell biologists who are inspired by their complex structure and molecular composition, but also for clinical physicians who are confronted with patients suffering from severe blistering skin diseases such as pemphigus. To develop disease-specific therapeutic approaches, more insights into the molecular composition and regulation of desmosomes are required.
Collapse
Affiliation(s)
- Jens Waschke
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, 97070, Würzburg, Germany.
| |
Collapse
|
117
|
Cirillo N, Lanza M, De Rosa A, Femiano F, Gombos F, Lanza A. At least three phosphorylation events induced by pemphigus vulgaris sera are pathogenically involved in keratinocyte acantholysis. Int J Immunopathol Pharmacol 2008; 21:189-95. [PMID: 18336745 DOI: 10.1177/039463200802100121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intercellular adhesion among keratinocytes is guaranteed by desmosomes. Disruption of desmosomal integrity leads to cell-cell detachment or acantholysis, as it classically occurs in pemphigus vulgaris (PV), an autoimmune blistering disease of skin and mucous membranes. While purified PV IgG seems to trigger intracellular signaling that crucially involves p38 MAPK, keratinocyte acantholysis induced by whole PV serum may recruit a number of additional signals. In this study, the Pro-Q Diamond Phosphoprotein Assay was used to investigate the overall changes in protein phosphorylation levels in an in vitro model of PV. We showed that keratinocytes exposed to whole PV sera underwent at least three early and transient phosphorylation events. Two bands with apparent molecular masses of 35 and 45 kDa were found to be phosphorylated within 1 min after incubation with PV sera. A third band of about 80 kDa reached the peak of phosphorylation level after 3 hours. Morphologic evidence of cell shrinkage and acantholysis were late events and did not correlate temporally with kinase activation, suggesting that cytoskeleton reorganization is a downstream phenomenon. Interestingly, pharmacological abrogation of PV-specific protein phosphorylation was able to inhibit the cell-cell detachment, rounding up, and redistribution of Dsg3 in keratinocytes. Thus, at least three phosphorylation events are pathogenically involved in pemphigus acantholysis.
Collapse
Affiliation(s)
- N Cirillo
- Regional Center on Craniofacial Malformations-MRI, II University of Naples, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
118
|
Acehan D, Petzold C, Gumper I, Sabatini DD, Müller EJ, Cowin P, Stokes DL. Plakoglobin is required for effective intermediate filament anchorage to desmosomes. J Invest Dermatol 2008; 128:2665-2675. [PMID: 18496566 DOI: 10.1038/jid.2008.141] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Desmosomes are adhesive junctions that provide mechanical coupling between cells. Plakoglobin (PG) is a major component of the intracellular plaque that serves to connect transmembrane elements to the cytoskeleton. We have used electron tomography and immunolabeling to investigate the consequences of PG knockout on the molecular architecture of the intracellular plaque in cultured keratinocytes. Although knockout keratinocytes form substantial numbers of desmosome-like junctions and have a relatively normal intercellular distribution of desmosomal cadherins, their cytoplasmic plaques are sparse and anchoring of intermediate filaments is defective. In the knockout, beta-catenin appears to substitute for PG in the clustering of cadherins, but is unable to recruit normal levels of plakophilin-1 and desmoplakin to the plaque. By comparing tomograms of wild type and knockout desmosomes, we have assigned particular densities to desmoplakin and described their interaction with intermediate filaments. Desmoplakin molecules are more extended in wild type than knockout desmosomes, as if intermediate filament connections produced tension within the plaque. On the basis of our observations, we propose a particular assembly sequence, beginning with cadherin clustering within the plasma membrane, followed by recruitment of plakophilin and desmoplakin to the plaque, and ending with anchoring of intermediate filaments, which represents the key to adhesive strength.
Collapse
Affiliation(s)
- Devrim Acehan
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Christopher Petzold
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
| | - Iwona Gumper
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - David D Sabatini
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Eliane J Müller
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Pamela Cowin
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA; Department Dermatology, New York University School of Medicine, New York, New York, USA
| | - David L Stokes
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York, USA; Department of Cell Biology, New York University School of Medicine, New York, New York, USA; New York Structural Biology Center, New York, New York, USA.
| |
Collapse
|
119
|
Delva E, Jennings JM, Calkins CC, Kottke MD, Faundez V, Kowalczyk AP. Pemphigus vulgaris IgG-induced desmoglein-3 endocytosis and desmosomal disassembly are mediated by a clathrin- and dynamin-independent mechanism. J Biol Chem 2008; 283:18303-13. [PMID: 18434319 DOI: 10.1074/jbc.m710046200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pemphigus vulgaris (PV) is a life-threatening autoimmune disease characterized by oral mucosal erosions and epidermal blistering. The autoantibodies generated target the desmosomal cadherin desmoglein-3 (Dsg3). Previous studies demonstrate that upon PV IgG binding, Dsg3 is internalized and enters an endo-lysosomal pathway where it is degraded. To define the endocytic machinery involved in PV IgG-induced Dsg3 internalization, human keratinocytes were incubated with PV IgG, and various tools were used to perturb distinct endocytic pathways. The PV IgG.Dsg3 complex failed to colocalize with clathrin, and inhibitors of clathrin- and dynamin-dependent pathways had little or no effect on Dsg3 internalization. In contrast, cholesterol binding agents such as filipin and nystatin and the tyrosine kinase inhibitor genistein dramatically inhibited Dsg3 internalization. Furthermore, the Dsg3 cytoplasmic tail specified sensitivity to these inhibitors. Moreover, inhibition of Dsg3 endocytosis with genistein prevented disruption of desmosomes and loss of adhesion in the presence of PV IgG. Altogether, these results suggest that PV IgG-induced Dsg3 internalization is mediated through a clathrin- and dynamin-independent pathway and that Dsg3 endocytosis is tightly coupled to the pathogenic activity of PV IgG.
Collapse
Affiliation(s)
- Emmanuella Delva
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Department of Cell Biology, Emory University, Atlanta, GA 30332, USA
| | | | | | | | | | | |
Collapse
|
120
|
Lanza A, Cirillo N, Rossiello R, Rienzo M, Cutillo L, Casamassimi A, de Nigris F, Schiano C, Rossiello L, Femiano F, Gombos F, Napoli C. Evidence of key role of Cdk2 overexpression in pemphigus vulgaris. J Biol Chem 2008; 283:8736-45. [PMID: 18199752 DOI: 10.1074/jbc.m702186200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of pemphigus vulgaris (PV) is still poorly understood. Autoantibodies present in PV patients can promote detrimental effects by triggering altered transduction of signals, which results in a final acantholysis. To investigate mechanisms involved in PV, cultured keratinocytes were treated with PV serum. PV sera were able to promote the cell cycle progression, inducing the accumulation of cyclin-dependent kinase 2 (Cdk2). Microarray analysis on keratinocytes detected that PV serum induced important changes in genes coding for one and the same proteins with known biological functions involved in PV disease (560 differentially expressed genes were identified). Then, we used two different approaches to investigate the role of Cdk2. First, small interfering RNA depletion of Cdk2 prevented cell-cell detachment induced by PV sera. Second, pharmacological inhibition of Cdk2 activity through roscovitine prevented blister formation and acantholysis in the mouse model of the disease. In vivo PV serum was found to alter multiple different pathways by microarray analysis (1463 differentially expressed genes were identified). Major changes in gene expression induced by roscovitine were studied through comparison of effects of PV serum alone and in association with roscovitine. The most significantly enriched pathways were cell communication, gap junction, focal adhesion, adherens junction, and tight junction. Our data indicate that major Cdk2-dependent multiple gene regulatory events are present in PV. This alteration may influence the evolution of PV and its therapy.
Collapse
Affiliation(s)
- Alessandro Lanza
- Regional Center on Craniofacial Malformations, Clinical Odontostomatology, and Human Pathology, 1st School of Medicine and Surgery, II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J Invest Dermatol 2008; 128:501-16. [PMID: 18268536 DOI: 10.1038/sj.jid.5701248] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The process of epidermal renewal persists throughout the entire life of an organism. It begins when a keratinocyte progenitor leaves the stem cell compartment, undergoes a limited number of mitotic divisions, exits the cell cycle, and commits to terminal differentiation. At the end of this phase, the postmitotic keratinocytes detach from the basement membrane to build up the overlaying stratified epithelium. Although highly coordinated, this sequence of events is endowed with a remarkable versatility, which enables the quiescent keratinocyte to reintegrate into the cell cycle and become migratory when necessary, for example after wounding. It is this versatility that represents the Achilles heel of epithelial cells allowing for the development of severe pathologies. Over the past decade, compelling evidence has been provided that epithelial cancer cells achieve uncontrolled proliferation following hijacking of a "survival program" with PI3K/Akt and a "proliferation program" with growth factor receptor signaling at its core. Recent insights into adhesion receptor signaling now propose that integrins, but also cadherins, can centrally control these programs. It is suggested that the two types of adhesion receptors act as sensors to transmit extracellular stimuli in an outside-in mode, to inversely modulate epidermal growth factor receptor signaling and ensure cell survival. Hence, cell-matrix and cell-cell adhesion receptors likely play a more powerful and wide-ranging role than initially anticipated. This Perspective article discusses the relevance of this emerging field for epidermal growth and differentiation, which can be of importance for severe pathologies such as tumorigenesis and invasive metastasis, as well as psoriasis and Pemphigus vulgaris.
Collapse
|
122
|
Abstract
MYC in human epidermal stem cells can stimulate differentiation rather than uncontrolled proliferation. This discovery was, understandably, greeted with scepticism by researchers. However, subsequent studies have confirmed that MYC can stimulate epidermal stem cells to differentiate and have shed light on the underlying mechanisms. Two concepts that are relevant to cancer have emerged: first, MYC regulates similar genes in different cell types, but the biological consequences are context-dependent; and second, MYC activation is not a simple 'on/off' switch - the cellular response depends on the strength and duration of MYC activity, which in turn is affected by the many cofactors and regulatory pathways with which MYC interacts.
Collapse
Affiliation(s)
- Fiona M Watt
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK.
| | | | | |
Collapse
|
123
|
Kitajima Y, Aoyama Y. A perspective of pemphigus from bedside and laboratory-bench. Clin Rev Allergy Immunol 2008; 33:57-66. [PMID: 18094947 DOI: 10.1007/s12016-007-0036-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pemphigus represents a distinct organ-specific acquired autoimmune disease characterized by intra-epidermal blistering, which is induced by autoantibodies against desmosomal cadherins, desmoglein 1 (Dsg1), and Dsg3. Pemphigus is currently divided into three distinct varieties, i.e., pemphigus vulgaris (PV), pemphigus foliaceus (PF) and other variants of pemphigus (mostly associated with inflammation), depending on clinical features, the level of separation in the epidermis, and immunologic characteristics of auto-antigens. Blistering pathomechanisms differ for each of the types of pemphigus. Pemphigus, which results from autoantibodies against desmogleins and possibly to other proteins, binds to the cell surface antigens. This binding may cause steric hindrance to homophilic adhesion of desmogleins, and may, in turn, lead to internalization of desmogleins and inhibition of desmogleins' integration into desmosomes, resulting in the formation of Dsg3-depleted desmosomes in PV or Dsg1-depleted desmosomes in PF. Furthermore, PV-IgG activates an "outside-in" signaling pathway to induce disassembly of desmosomal components from the inside of the cells by phosphorylation of proteins, including Dsg3. On the other hand, Pemphigus-IgG-augmented signaling pathways may be linked to the secretion of cytokines such as in case of pemphigus herpetiformis and chemokines that initiate or activate inflammation. In this article, the classification of pemphigus and the characteristic pathomechanisms for acantholysis will be reviewed, with particular emphasis on the molecular and biochemical cell biology of these diseases.
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Dermatology, Gifu University School of Medicine, Gifu City, Japan.
| | | |
Collapse
|
124
|
Cirillo N, Dell’ Ermo A, Gombos F, Lanza A. The specific proteolysis hypothesis of pemphigus: Does the song remain the same? Med Hypotheses 2008; 70:333-7. [DOI: 10.1016/j.mehy.2006.12.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
|
125
|
Holthöfer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. ACTA ACUST UNITED AC 2007; 264:65-163. [PMID: 17964922 DOI: 10.1016/s0074-7696(07)64003-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Desmosomes are prominent adhesion sites that are tightly associated with the cytoplasmic intermediate filament cytoskeleton providing mechanical stability in epithelia and also in several nonepithelial tissues such as cardiac muscle and meninges. They are unique in terms of ultrastructural appearance and molecular composition with cell type-specific variations. The dynamic assembly properties of desmosomes are important prerequisites for the acquisition and maintenance of tissue homeostasis. Disturbance of this equilibrium therefore not only compromises mechanical resilience but also affects many other tissue functions as becomes evident in various experimental scenarios and multiple diseases.
Collapse
Affiliation(s)
- Bastian Holthöfer
- Department of Anatomy and Cell Biology, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
126
|
Nava P, Laukoetter MG, Hopkins AM, Laur O, Gerner-Smidt K, Green KJ, Parkos CA, Nusrat A. Desmoglein-2: a novel regulator of apoptosis in the intestinal epithelium. Mol Biol Cell 2007; 18:4565-78. [PMID: 17804817 PMCID: PMC2043542 DOI: 10.1091/mbc.e07-05-0426] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/19/2007] [Accepted: 08/27/2007] [Indexed: 11/11/2022] Open
Abstract
Intestinal epithelial intercellular junctions regulate barrier properties, and they have been linked to epithelial differentiation and programmed cell death (apoptosis). However, mechanisms regulating these processes are poorly defined. Desmosomes are critical elements of intercellular junctions; they are punctate structures made up of transmembrane desmosomal cadherins termed desmoglein-2 (Dsg2) and desmocollin-2 (Dsc2) that affiliate with the underlying intermediate filaments via linker proteins to provide mechanical strength to epithelia. In the present study, we generated an antibody, AH12.2, that recognizes Dsg2. We show that Dsg2 but not another desmosomal cadherin, Dsc2, is cleaved by cysteine proteases during the onset of intestinal epithelial cell (IEC) apoptosis. Small interfering RNA-mediated down-regulation of Dsg2 protected epithelial cells from apoptosis. Moreover, we report that a C-terminal fragment of Dsg2 regulates apoptosis and Dsg2 protein levels. Our studies highlight a novel mechanism by which Dsg2 regulates IEC apoptosis driven by cysteine proteases during physiological differentiation and inflammation.
Collapse
Affiliation(s)
- Porfirio Nava
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Mike G. Laukoetter
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
- Department of General Surgery, University of Muenster, D-48149 Muenster, Germany
| | - Ann M. Hopkins
- UCD School of Medicine and Medical Science, University College, Dublin 4, Ireland; and
| | - Oskar Laur
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Kirsten Gerner-Smidt
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Kathleen J. Green
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Charles A. Parkos
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Asma Nusrat
- *Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| |
Collapse
|
127
|
Abstract
Desmosomes are highly specialized anchoring junctions that link intermediate filaments to sites of intercellular adhesion, thus facilitating the formation of a supracellular scaffolding that distributes mechanical forces throughout a tissue. These junctions are thus particularly important for maintaining the integrity of tissues that endure physical stress, such as the epidermis and myocardium. The importance of the classic mechanical functions of desmosomal constituents is underscored by pathologies reported in animal models and an ever-expanding list of human mutations that target both desmosomal cadherins and their associated cytoskeletal anchoring proteins. However, the notion that desmosomes are static structures that exist simply to glue cells together belies their susceptibility to remodeling in response to environmental cues and their important tissue-specific roles in cell behavior and signaling. Here, we review the molecular blueprint of the desmosome and models for assembling its protein components to form an adhesive interface and the desmosomal plaque. We also discuss emerging evidence of supra-adhesive roles for desmosomal proteins in regulating tissue morphogenesis and homeostasis. Finally, we highlight the dynamic nature of these adhesive organelles, examining mechanisms in health and disease for modulating adhesive strength and stability of desmosomes.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
128
|
Cirillo N, Lanza M, Rossiello L, Gombos F, Lanza A. Defining the involvement of proteinases in pemphigus vulgaris: evidence of matrix metalloproteinase-9 overexpression in experimental models of disease. J Cell Physiol 2007; 212:36-41. [PMID: 17311292 DOI: 10.1002/jcp.20997] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pemphigus vulgaris (PV) acantholysis represents a complex phenomenon wherein a number of factors cooperates. PV serum is known to modulate important cellular events, including kinase activity, transcriptional regulation, and proteinase expression. Indeed, transduction of signals to the cell triggered by PV serum may induce proteinase up-regulation potentially responsible for disruption of epidermal adhesion and, ultimately, blister formation. Here, we sought to investigate this hypothesis by using both in vivo and in vitro models of PV. Microarray analysis on mouse skin tissues suggested that the equilibrium between extracellular proteinases and their inhibitors moved towards enhanced proteolytic activity in PV neonatal mouse model, at least on the transcriptional level. Conversely, genes codifying cell adhesion proteins were dramatically down-regulated. The effects of PV serum on the protein level were then studied in vitro both in keratinocyte monolayers and skin organ cultures focusing on matrix metalloproteinase (MMP) 9 expression and activity. By means of Western blotting, zymography, and living cell immunofluorescence studies, we showed that MMP-9 was early overexpressed in keratinocytes exposed to PV serum, and subsequently secreted in the culture medium. However, we failed to demonstrate extracellular activation of MMP-9, since it was found in its 92 kDa inactive form in serum-free culture supernatants. Taken together, our data demonstrated that proteinase expression, particularly of MMP-9, is modulated by PV serum and associated with PV acantholysis.
Collapse
Affiliation(s)
- Nicola Cirillo
- Regional Center on Craniofacial Malformations-MRI, 1st School of Medicine and Surgery, II University of Naples, Naples, Italy.
| | | | | | | | | |
Collapse
|
129
|
Spindler V, Drenckhahn D, Zillikens D, Waschke J. Pemphigus IgG causes skin splitting in the presence of both desmoglein 1 and desmoglein 3. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:906-16. [PMID: 17640963 PMCID: PMC1959479 DOI: 10.2353/ajpath.2007.070028] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
According to the desmoglein (Dsg) compensation concept, different epidermal cleavage planes observed in pemphigus vulgaris and pemphigus foliaceus have been proposed to be caused by different autoantibody profiles against the desmosomal proteins Dsg 1 and Dsg 3. According to this model, Dsg 1 autoantibodies would only lead to epidermal splitting in those epidermal layers in which no Dsg 3 is present to compensate for the functional loss of Dsg 1. We provide evidence that both pemphigus foliaceus-IgG containing Dsg 1- but not Dsg 3-specific antibodies and pemphigus vulgaris-IgG with antibodies to Dsg 1 and Dsg 3 were equally effective in causing epidermal splitting in human skin and keratinocyte dissociation in vitro. These effects were present where keratinocytes expressed both Dsg 1 and Dsg 3, demonstrating that Dsg 3 does not compensate for Dsg 1 inactivation. Rather, the cleavage plane in intact human skin caused by pemphigus autoantibodies was similar to the plane of keratinocyte dissociation in response to toxin B-mediated inactivation of Rho GTPases. Because we recently demonstrated that pemphigus-IgG causes epidermal splitting by inhibition of Rho A, we propose that Rho GTPase inactivation contributes to the mechanisms accounting for the cleavage plane in pemphigus skin splitting.
Collapse
Affiliation(s)
- Volker Spindler
- University of Würzburg, Institute of Anatomy and Cell Biology, Würzburg, Germany
| | | | | | | |
Collapse
|
130
|
Wan H, South AP, Hart IR. Increased keratinocyte proliferation initiated through downregulation of desmoplakin by RNA interference. Exp Cell Res 2007; 313:2336-44. [PMID: 17475244 DOI: 10.1016/j.yexcr.2007.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/19/2006] [Accepted: 01/14/2007] [Indexed: 12/12/2022]
Abstract
The intercellular adhesive junction desmosomes are essential for the maintenance of tissue structure and integrity in skin. Desmoplakin (Dp) is a major obligate plaque protein which plays a fundamental role in anchoring intermediate filaments to desmosomal cadherins. Evidence from hereditary human disease caused by mutations in the gene encoding Dp, e.g. Dp haploinsufficiency, suggests that alterations in Dp expression result not only in the disruption of tissue structure and integrity but also could evoke changes in keratinocyte proliferation. We have used transient RNA interference (RNAi) to downregulate Dp specifically in HaCaT keratinocytes. We showed that this Dp downregulation also caused reduced expression of several other desmosomal proteins. Increased cell proliferation and enhanced G(1)-to-S-phase entry in the cell cycle, as monitored by colonial cellular density and BrdU incorporation, were seen in Dp RNAi-treated cells. These proliferative changes were associated with elevated phospho-ERK1/2 and phospho-Akt levels. Furthermore, this increase in phospho-ERK/1/2 and phospho-Akt levels was sustained in Dp RNAi-treated cells at confluence whereas in control cells there was a significant reduction in phosphorylation of ERK1/2. This study indicates that Dp may participate in the regulation of keratinocyte cell proliferation by, in part at least, regulating cell cycle progression.
Collapse
Affiliation(s)
- Hong Wan
- Centre for Tumour Biology, Institute of Cancer and CR-UK Clinical Centre, Barts and The London, Queen Mary's School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London, UK.
| | | | | |
Collapse
|
131
|
Sharma P, Mao X, Payne AS. Beyond steric hindrance: the role of adhesion signaling pathways in the pathogenesis of pemphigus. J Dermatol Sci 2007; 48:1-14. [PMID: 17574391 DOI: 10.1016/j.jdermsci.2007.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/02/2007] [Accepted: 05/08/2007] [Indexed: 12/21/2022]
Abstract
Epidermal cell adhesion depends on the intercellular interactions of transmembrane cadherin glycoproteins, which form the basis of adherens junctions and desmosomes. Pemphigus is a blistering disease of the skin and mucous membranes characterized by autoantibodies against the cell surface desmosomal cadherins, desmoglein (Dsg) 3 and Dsg1. An unanswered question in pemphigus pathophysiology is the mechanism of acantholysis, or loss of keratinocyte cell adhesion. One longstanding theory for pemphigus pathogenesis is the concept of steric hindrance, in which pathogenic pemphigus autoantibodies cause loss of intercellular adhesion by directly interfering with desmosomal cadherin trans-interactions. However, several recent studies have demonstrated that modulation of p38MAPK, Rho family GTPase, c-myc, protein kinase C, and phospholipase C signaling pathways prevents keratinocyte dissociation induced by pemphigus autoantibodies. As it is unlikely that desmosomal signaling would occur only in response to pemphigus autoantibodies, these studies suggest that numerous different signaling molecules may play a role in desmosomal homeostasis. Many of these same signaling pathways regulate classical cadherins in adherens junctions. Given the recent discovery of bidirectional crosstalk between adherens junctions and desmosomes, it would be valuable to understand how signaling pathways implicated in pemphigus pathogenesis may be involved in more general mechanisms of desmosome and adherens junction regulation. In this review, we will summarize the evidence supporting a role for steric hindrance and signaling mechanisms in the pathogenesis of pemphigus acantholysis and discuss potential analogues in the classical cadherin literature.
Collapse
Affiliation(s)
- Preety Sharma
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
132
|
Williamson L, Hunziker T, Suter MM, Müller EJ. Nuclear c-Myc: A Molecular Marker for Early Stage Pemphigus Vulgaris. J Invest Dermatol 2007; 127:1549-55. [PMID: 17315040 DOI: 10.1038/sj.jid.5700735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
133
|
de Bruin A, Caldelari R, Williamson L, Suter MM, Hunziker T, Wyder M, Müller EJ. Plakoglobin-dependent disruption of the desmosomal plaque in pemphigus vulgaris. Exp Dermatol 2007; 16:468-75. [PMID: 17518986 DOI: 10.1111/j.1600-0625.2007.00557.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We recently reported that the pathogenesis of pemphigus vulgaris (PV), an autoimmune blistering skin disorder, is driven by the accumulation of c-Myc secondary to abrogation of plakoglobin (PG)-mediated transcriptional c-Myc suppression. PG knock-out mouse keratinocytes express high levels of c-Myc and resemble PVIgG-treated wild-type keratinocytes in most respects. However, they fail to accumulate nuclear c-Myc and loose intercellular adhesion in response to PVIgG-treatment like wild-type keratinocytes. This suggested that PG is also required for propagation of the PVIgG-induced events between augmented c-Myc expression and acantholysis. Here, we addressed this possibility by comparing PVIgG-induced changes in the desmosomal organization between wild-type and PG knock-out keratinocytes. We found that either bivalent PVIgG or monovalent PV-Fab (known to trigger blister formation in vivo) disrupt the linear organization of all major desmosomal components along cell borders in wild-type keratinocytes, simultaneously with a reduction in intercellular adhesive strength. In contrast, PV-Fab failed to affect PG knock-out keratinocytes while PVIgG cross-linked their desmosomal cadherins without significantly affecting desmoplakin. These results identify PG as a principle effector of the PVIgG-induced signals downstream of c-Myc that disrupt the desmosomal plaque at the plasma membrane.
Collapse
Affiliation(s)
- Alain de Bruin
- Institute of Animal Pathology and DermFocus Vetsuisse Faculty, Berne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
134
|
Yamamoto Y, Aoyama Y, Shu E, Tsunoda K, Amagai M, Kitajima Y. No activation of urokinase plasminogen activator by anti-desmoglein 3 monoclonal IgG antibodies in cultured human keratinocytes. J Dermatol Sci 2007; 47:119-25. [PMID: 17532189 DOI: 10.1016/j.jdermsci.2007.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 04/04/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Although pemphigus vulgaris (PV)-IgG has been shown to activate urokinase plasminogen activator (uPA) in cultured keratinocytes, activation of uPA is thought to have no primary role in PV-acantholysis, because PV-IgG is still pathogenic in uPA- and tissue-PA-knockout mice. OBJECTIVE To determine if PV-IgG-induced uPA activation is due to specific antibody against Dsg3, we examined whether or not pathogenic monoclonal anti-Dsg3 antibody can activate uPA, because PV-IgG is thought to contain antibodies against unknown antigens besides Dsg3. METHODS We stimulated cultured normal human and DJM-1 keratinocytes with monoclonal anti-Dsg3 IgG1 antibodies (pathogenic AK23, AK19 and nonpathogenic AK18, AK20), negative control monoclonal mouse IgG1 and positive control PV-IgG. Cells were treated with IgGs over a time course of 24h, and uPA-protein content and activity in the culture medium were determined by enzyme-linked immunosorbent assay (ELISA) and chromogenic assay, respectively. RESULTS The uPA-protein content in samples treated with or without pathogenic, nonpathogenic, control monoclonal mouse IgG1s and PV-IgGs increased continuously up to 24h, with no differences between samples, suggesting a spontaneous secretion. In contrast, uPA activity in the culture medium of cells treated with PV-IgG increased dramatically, whereas that of cells treated with all AK-IgGs and control monoclonal mouse IgG1 did not increase at all. CONCLUSION These results suggest that PV-IgG-dependent uPA activation is not related to anti-Dsg3 antibody activity, which is an essential factor in PV-IgG acantholysis, and that it may be due to other antigens than Dsg3 or unknown factors contained in PV-IgG fraction.
Collapse
Affiliation(s)
- Yukari Yamamoto
- Department of Dermatology, Gifu University School of Medicine, Yanagido 1-1, Gifu City 501-1194, Japan
| | | | | | | | | | | |
Collapse
|
135
|
Wan H, Yuan M, Simpson C, Allen K, Gavins FNE, Ikram MS, Basu S, Baksh N, O'Toole EA, Hart IR. Stem/progenitor cell-like properties of desmoglein 3dim cells in primary and immortalized keratinocyte lines. Stem Cells 2007; 25:1286-97. [PMID: 17255524 DOI: 10.1634/stemcells.2006-0304] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We showed previously that primary keratinocytes selected for low desmoglein 3 (Dsg3) expression levels exhibited increased colony-forming efficiency and heightened proliferative potential relative to cells with higher Dsg3 expression levels, characteristics consistent with a more "stem/progenitor cell-like" phenotype. Here, we have confirmed that Dsg3(dim) cells derived from cultured primary human adult keratinocytes have comparability with alpha(6)(bri)/CD71(dim) stem cells in terms of colony-forming efficiency. Moreover, these Dsg3(dim) cells exhibit increased reconstituting ability in in vitro organotypic culture on de-epidermalized dermis (DED); they are small, actively cycling cells, and they express elevated levels of various p63 isoforms. In parallel, using the two immortalized keratinocyte cell lines HaCaT and NTERT, we obtained essentially similar though occasionally different findings. Thus, reduced colony-forming efficiency by Dsg3(bri) cells consistently was observed in both cell lines even though the cell cycle profile and levels of p63 isoforms in the bri and dim populations differed between these two cell lines. Dsg3(dim) cells from both immortalized lines produced thicker and better ordered hierarchical structural organization of reconstituted epidermis relative to Dsg3(bri) and sorted control cells. Dsg3(dim) HaCaT cells also show sebocyte-like differentiation in the basal compartment of skin reconstituted after a 4-week organotypic culture. No differences in percentages of side population cells (also a putative marker of stem cells) were detected between Dsg3(dim) and Dsg3(bri) populations. Taken together our data indicate that Dsg3(dim) populations from primary human adult keratinocytes and long-term established keratinocyte lines possess certain stem/progenitor cell-like properties, although the side population characteristic is not one of these features. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Hong Wan
- Tumour Biology Laboratory, Institute of Cancer and CR-UK Clinical Centre, Queen Mary's School of Medicine and Dentistry, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Chernyavsky AI, Arredondo J, Kitajima Y, Sato-Nagai M, Grando SA. Desmoglein Versus Non-desmoglein Signaling in Pemphigus Acantholysis. J Biol Chem 2007; 282:13804-12. [PMID: 17344213 DOI: 10.1074/jbc.m611365200] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although it is accepted that pemphigus antibody binding to keratinocytes (KCs) evokes an array of intracellular biochemical events resulting in cell detachment and death, the triggering events remain obscure. It has been postulated that the binding of pemphigus vulgaris IgG (PVIgG) to KCs induces "desmosomal" signaling. Because in contrast to integrins and classical cadherins, desmoglein (Dsg) molecules are not known to elicit intracellular signaling, and because PV patients also produce non-Dsg autoantibodies, we investigated the roles of both Dsg and non-desmoglein PV antigens. The time course studies of KCs treated with PVIgG demonstrated that the activity of Src peaked at 30 min, EGF receptor kinase (EGFRK) at 60 min, and p38 MAPK at 240 min. The Src inhibitor PP2 decreased EGFRK and p38 activities by approximately 45 and 30%, respectively, indicating that in addition to Src, PVIgG evokes other triggering events. The shrinkage of KCs (cell volume reduction) became significant at 120 min, keratin aggregation at 240 min, and an increase of TUNEL positivity at 360 min. Pretreatment of KCs with PP2 blocked PVIgG-dependent cell shrinkage and keratin aggregation by approximately 50% and TUNEL positivity by approximately 25%. The p38 MAPK inhibitor PD169316 inhibited these effects by approximately 15, 20, and 70%, respectively. Transfection of KCs with small interfering RNAs that silenced expression of Dsg1 and/or Dsg3 proteins, blocked approximately 50% of p38 MAPK activity but did not significantly alter the PVIgG-dependent rise in Src and EGFRK activities. These results indicate that activation of p38 MAPK is a late signaling step associated with collapse of the cytoskeleton and disassembly of desmosomes caused by upstream events involving Src and EGFRK. Therefore, the early acantholytic events are triggered by non-Dsg antibodies.
Collapse
Affiliation(s)
- Alex I Chernyavsky
- Department of Dermatology, University of California, Davis, California 95816, USA
| | | | | | | | | |
Collapse
|
137
|
Müller EJ, Hunziker T, Suter MM. Keratin intermediate filament retraction is linked to plakoglobin-dependent signaling in pemphigus vulgaris. J Am Acad Dermatol 2007; 56:890-1; author reply 891-2. [PMID: 17437895 DOI: 10.1016/j.jaad.2006.10.989] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 09/18/2006] [Accepted: 10/03/2006] [Indexed: 11/16/2022]
|
138
|
Cirillo N, Femiano F, Dell'Ermo A, Arnese P, Gombos F, Lanza A. A novel method to investigate pemphigus-induced keratinocyte dysmorphisms through living cell immunofluorescence microscopy. Virchows Arch 2007; 450:683-90. [PMID: 17450380 DOI: 10.1007/s00428-007-0410-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 02/15/2007] [Accepted: 03/21/2007] [Indexed: 11/25/2022]
Abstract
Pemphigus vulgaris (PV) blistering occurs as a result of the disruption of intercellular contacts among keratinocytes, or acantholysis. The hallmark of PV acantholysis in vitro is considered to be the retraction of keratin intermediate filaments (KIF) onto the nucleus, which parallels with loss of cell-cell adhesion and rounding up of keratinocytes. However, the fine morphological changes of keratinocytes as well as the fate of cell adhesion structures cannot be appreciated on immunofluorescence by the simple cytokeratin staining. In this paper, we show that acantholytic dysmorphisms are sharply investigated by using PV IgG as a primary antibody on metabolically quiescent living cells. Indeed, PV IgG recognise a wide spectrum of molecules and enabled us to monitor the main changes occurring in acantholytic keratinocytes, including cell shrinkage with the appearance of prickle-like processes, detachment of keratinocytes from one another and collapse of cytoskeleton-bound proteins along nuclear periphery. This method has wider applications as it could be useful for staining cell periphery of keratinocytes and changes in cell shape. Furthermore, images displayed clear and sharp contours because living cell microscopy allows to avoid antigen distortion due to cell manipulation, which usually precedes the immunolabelling.
Collapse
Affiliation(s)
- Nicola Cirillo
- Regional Center on Craniofacial Malformations-MRI, First School of Medicine and Surgery, II University of Naples, 80138 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
139
|
Kolly C, Zakher A, Strauss C, Suter MM, Müller EJ. Keratinocyte transcriptional regulation of the human c-Myc promoter occurs via a novel Lef/Tcf binding element distinct from neoplastic cells. FEBS Lett 2007; 581:1969-76. [PMID: 17466981 DOI: 10.1016/j.febslet.2007.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/07/2007] [Accepted: 04/10/2007] [Indexed: 11/24/2022]
Abstract
The proto-oncogene c-Myc is involved in early neoplastic transformations. Two consensus Lef/Tcf binding elements (TBE) were found to be prerequisite for transcriptional transactivation by the armadillo proteins beta-catenin and plakoglobin (PG) together with Tcf4 in human neoplastic cells. In epidermal keratinocytes, c-Myc was reported to be repressed by Lef-1 and PG. Using reporter gene assays, here we demonstrate that deletion of the two consensus TBE fails to abrogate transcriptional regulation by Lef-1/PG in wildtype and beta-catenin-/- keratinocytes, while it reduces transcription in pre-neoplastic PG-/- keratinocytes. We identified a TBE sequence variant downstream of the major transcriptional initiation site that binds Lef-1 in vitro and in vivo, and its mutation compromised transcriptional regulation by Lef-1/PG. Collectively, this study demonstrates that the two consensus TBE's reported in neoplastic cells are dispensable for c-Myc regulation in normal keratinocytes, which instead use a novel TBE sequence variant. This unprecedented finding may have important implications for armadillo target genes involved in carcinogenesis.
Collapse
Affiliation(s)
- Carine Kolly
- Molecular Dermatology, Institute of Animal Pathology, Vetsuisse Faculty, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
140
|
Brennan D, Hu Y, Joubeh S, Choi YW, Whitaker-Menezes D, O'Brien T, Uitto J, Rodeck U, Mahoney MG. Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J Cell Sci 2007; 120:758-71. [PMID: 17284515 DOI: 10.1242/jcs.03392] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Desmoglein 2 (Dsg2), a component of the desmosomal cell-cell adhesion structure, has been linked to invasion and metastasis in squamous cell carcinomas. However, it is unknown whether – and if so how – Dsg2 contributes to the malignant phenotype of keratinocytes. In this study, we addressed the consequences of Dsg2 overexpression under control of the involucrin promoter (Inv-Dsg2) in the epidermis of transgenic mice. These mice exhibited epidermal hyperkeratosis with slightly disrupted early and late differentiation markers, but intact epidermal barrier function. However, Inv-Dsg2 transgene expression was associated with extensive epidermal hyperplasia and increased keratinocyte proliferation in basal and suprabasal epidermal strata. Cultured Inv-Dsg2 keratinocytes showed enhanced cell survival in the anchorage-independent state that was critically dependent on EGF receptor activation and NF-κB activity. Consistent with the hyperproliferative and apoptosis-resistant phenotype of Inv-Dsg2 transgenic keratinocytes, we observed enhanced activation of multiple growth and survival pathways, including PI 3-kinase/AKT, MEK-MAPK, STAT3 and NF-κB, in the transgenic skin in situ. Finally, Inv-Dsg2 transgenic mice developed intraepidermal skin lesions resembling precancerous papillomas and were more susceptible to chemically induced carcinogenesis. In summary, overexpression of Dsg2 in epidermal keratinocytes deregulates multiple signaling pathways associated with increased growth rate, anchorage-independent cell survival, and the development of skin tumors in vivo.
Collapse
Affiliation(s)
- Donna Brennan
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Cirillo N, Gombos F, Ruocco V, Lanza A. Searching for experimental models of Pemphigus vulgaris. Arch Dermatol Res 2007; 299:9-12. [PMID: 17377799 DOI: 10.1007/s00403-007-0733-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2006] [Accepted: 12/19/2006] [Indexed: 11/27/2022]
Abstract
The current knowledge on Pemphigus vulgaris (PV) pathophysiology suggests that blister formation relies on both PV IgG and non-IgG serum factors activity. PV autoimmunity seems to develop against both desmoglein 1/3 and acetylcholine receptors leading to transduction of signals to the cell mediated by phosphorilation events. Serum factors other than IgG also participate to PV acantholysis through apoptotic or cytokine-mediated mechanisms. Apart from the role played by each actor within the acantholysis, however, the current scenario arises important methodological issues. For example, the use of PV IgG or monoclonal anti-Dsg3 antibodies to experimentally reproduce the disease appears inadequate, as it does not take into account the role of non-IgG factors. On the basis of the above observations and those from our laboratories, here we propose that using whole sera from PV patients with active disease represents the most faithful manner to mimic the disease.
Collapse
Affiliation(s)
- Nicola Cirillo
- Regional Center on Craniofacial Malformations-MRI, First School of Medicine and Surgery, Second University of Naples, 80138 Naples, Italy.
| | | | | | | |
Collapse
|
142
|
Williamson L, Suter MM, Olivry T, Wyder M, Müller EJ. Upregulation of c-Myc may contribute to the pathogenesis of canine pemphigus vulgaris. Vet Dermatol 2007; 18:12-7. [PMID: 17222234 DOI: 10.1111/j.1365-3164.2007.00561.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The pathomechanism in human pemphigus vulgaris (PV) has recently been described to rely on generalized c-Myc upregulation in skin and oral mucosa followed by hyperproliferation. Here we assessed whether dogs suffering from PV present the same pathological changes as described for human patients with PV. Using immunofluorescence analysis on patients' biopsy samples, we observed marked nuclear c-Myc accumulation in all layers of the epidermis and oral mucosa in all (3/3) dogs analysed. In addition, c-Myc upregulation was accompanied by an increased number of proliferating Ki67-positive cells. These molecular changes were further paralleled by deregulated expression of wound healing and terminal differentiation markers as observed in human PV. Together these findings suggest a common pathomechanism for both species which is of particular relevance in the light of the recently discussed novel therapeutic strategies aiming at targeting PV antibody-induced signalling cascades.
Collapse
Affiliation(s)
- Lina Williamson
- Molecular Dermatology, Institute Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
143
|
Abstract
Desmosomes are cell adhesion structures (junctions) that are particularly abundant in cells derived from the ectodermal lineages. These junctions are required to maintain the integrity of organs subjected to mechanical stress, in particular the skin and the heart. This conclusion is partially based on tissue fragility phenotypes observed in mice with null mutations in certain desmosomal genes. Furthermore, patients have been identified that develop severe skin disorders, and even fatal heart diseases, due to impaired desmosome function. Nevertheless, desmosomes are more than cellular glue. New evidence suggests that these junctions can transmit signals from the extracellular environment to the nucleus, for example by controling the cytoplasmic pool of transcriptional co-factors that belong to the armadillo family of desmosomal proteins (i.e. plakoglobin, plakophilins). Understanding the signaling properties of desmosomes will provide new insights into developmental processes such as skin and skin appendage development. Furthermore, there is evidence to suggest that abnormal signaling through these junctions contributes to the symptoms of certain skin and heart diseases.
Collapse
Affiliation(s)
- Ansgar Schmidt
- Institute of Pathology, Philipps University of Marburg School of Medicine, Marburg, Germany
| | | |
Collapse
|
144
|
Dusek RL, Godsel LM, Green KJ. Discriminating roles of desmosomal cadherins: Beyond desmosomal adhesion. J Dermatol Sci 2007; 45:7-21. [PMID: 17141479 DOI: 10.1016/j.jdermsci.2006.10.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Accepted: 10/20/2006] [Indexed: 02/05/2023]
Abstract
The desmosomal cadherins, which include desmogleins and desmocollins, are Ca(2+)-dependent adhesion molecules that cooperate to make up the adhesive core of intercellular junctions known as desmosomes. The roles of desmosomal cadherins in epidermal integrity and as targets in human cutaneous disease have been well established. However, the molecular basis of these disorders is still poorly understood, due in part to a lack of fundamental knowledge about the organization of the adhesive interface and molecular machinery that dictates the proper presentation of desmogleins and desmocollins on the cell surface. Further, the diversity of the desmosomal cadherin family, and their individualized expression patterns within complex tissues, suggests that these adhesion molecules may have differentiation-specific functions that transcend their roles in intercellular adhesion. Here we will review the most recent data from our own group and others that are beginning to unveil the diverse properties and functions of this complex family of adhesion molecules.
Collapse
Affiliation(s)
- Rachel L Dusek
- Department of Pathology, The R.H. Lurie Cancer Center, Northwestern Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
145
|
Dusek RL, Godsel LM, Chen F, Strohecker AM, Getsios S, Harmon R, Müller EJ, Caldelari R, Cryns VL, Green KJ. Plakoglobin deficiency protects keratinocytes from apoptosis. J Invest Dermatol 2006; 127:792-801. [PMID: 17110936 DOI: 10.1038/sj.jid.5700615] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The armadillo family protein plakoglobin (Pg) is a well-characterized component of anchoring junctions, where it functions to mediate cell-cell adhesion and maintain epithelial tissue integrity. Although its closest homolog beta-catenin acts in the Wnt signaling pathway to dictate cell fate and promote proliferation and survival, the role of Pg in these processes is not well understood. Here, we investigate how Pg affects the survival of mouse keratinocytes by challenging both Pg-null cells and their heterozygote counterparts with apoptotic stimuli. Our results indicate that Pg deletion protects keratinocytes from apoptosis, with null cells exhibiting delayed mitochondrial cytochrome c release and activation of caspase-3. Pg-null keratinocytes also exhibit increased messenger RNA and protein levels of the anti-apoptotic molecule Bcl-X(L) compared to heterozygote controls. Importantly, reintroduction of Pg into the null cells shifts their phenotype towards that of the Pg+/- keratinocytes, providing further evidence that Pg plays a direct role in regulating cell survival. Taken together, our results suggest that in addition to its adhesive role in epithelia, Pg may also function in contrast to the pro-survival tendencies of beta-catenin, to potentiate death in cells damaged by apoptotic stimuli, perhaps limiting the potential for the propagation of mutations and cellular transformation.
Collapse
Affiliation(s)
- Rachel L Dusek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Kitajima Y, Aoyama Y. Viewpoint 3. Exp Dermatol 2006. [DOI: 10.1111/j.1600-0625.2006.00499_7.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
147
|
Mahoney MG, Müller EJ. Viewpoint 7. Exp Dermatol 2006. [DOI: 10.1111/j.1600-0625.2006.00499_11.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
148
|
Paus R, Amagai M, Ahmed AR, Kitajima Y, Bystryn JC, Milner Y, Gniadecki R, Hertl M, Pincelli C, Fridkis-Hareli M, Aoyama Y, Frušić-Zlotkin M, Müller E, David M, Mimouni D, Vind-Kezunovic D, Michel B, Mahoney M, Grando S. Are desmoglein autoantibodies essential for the immunopathogenesis of pemphigus vulgaris, or just ‘witnesses of disease'? Exp Dermatol 2006. [DOI: 10.1111/j.1600-0625.2006.00499.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|