101
|
Wang Y, Lu X, Li Y, Chen H, Chen T, Su N, Huang F, Zhou J, Zhang B, Yan F, Wang J. Clinical Course and Outcomes of 344 Intensive Care Patients with COVID-19. Am J Respir Crit Care Med 2020; 201:1430-1434. [PMID: 32267160 PMCID: PMC7258632 DOI: 10.1164/rccm.202003-0736le] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yang Wang
- The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | - Xiaofan Lu
- China Pharmaceutical UniversityNanjing, China
| | - Yongsheng Li
- Huazhong University of Science and TechnologyWuhan, China
| | - Hui Chen
- The First Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Taige Chen
- Nanjing University Medical SchoolNanjing, Chinaand
| | - Nan Su
- The First Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Fang Huang
- The First Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Jing Zhou
- The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Bing Zhang
- The Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing, China
| | | | - Jun Wang
- The First Affiliated Hospital of Soochow UniversitySuzhou, China
| |
Collapse
|
102
|
Alatoom A, Sapudom J, Soni P, Mohamed WKE, Garcia-Sabaté A, Teo J. Artificial Biosystem for Modulation of Interactions between Antigen-Presenting Cells and T Cells. ACTA ACUST UNITED AC 2020; 4:e2000039. [PMID: 32453495 DOI: 10.1002/adbi.202000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Indexed: 12/12/2022]
Abstract
T cell activation is triggered by signal molecules on the surface of antigen-presenting cells (APC) and subsequent exertion of cellular forces. Deciphering the biomechanical and biochemical signals in this complex process is of interest and will contribute to an improvement in immunotherapy strategies. To address underlying questions, coculture and biomimetic models are established. Mature dendritic cells (mDC) are first treated with cytochalasin B (CytoB), a cytoskeletal disruption agent known to lower apparent cellular stiffness and reduction in T cell proliferation is observed. It is attempted to mimic mDC and T cell interactions using polyacrylamide (PA) gels with defined stiffness corresponding to mDC (0.2-25 kPa). Different ratios of anti-CD3 (aCD3) and anti-CD28 (aCD28) antibodies are immobilized onto PA gels. The results show T cell proliferation is triggered by both aCD3 and aCD28 in a stiffness-dependent manner. Cells cultured on aCD3 immobilized on gels has significantly enhanced proliferation and IL-2 secretion, compared to aCD28. Furthermore, ZAP70 phosphorylation is enhanced in stiffer substrate a in a aCD3-dependent manner. The biosystem provides an approach to study the reduction of T cell proliferation observed on CytoB-treated mDC. Overall, the biosystem allows distinguishing the impact of biophysical and biochemical signals of APC and T cell interactions in vitro.
Collapse
Affiliation(s)
- Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Priya Soni
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Walaa Kamal E Mohamed
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.,Department of Mechanical Engineering, Tandon School of Engineering New York University, USA.,Department of Biomedical Engineering, Tandon School of Engineering New York University, USA
| |
Collapse
|
103
|
Omar Faruk SM, Hazra I, Mondal S, Datta A, Moitra S, Das PK, Mishra R, Chaudhuri S. T11TS immunotherapy potentiates the repressed calcineurin-NFAT signalling pathway of T cells in Cryptococcus neoformans infected rats: a cue towards T-cell activation for antifungal immunity. J Appl Microbiol 2020; 129:753-767. [PMID: 32145053 DOI: 10.1111/jam.14631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/16/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022]
Abstract
AIMS To examine the modulation of the interacting partners of the calcineurin (CaN)-NFAT pathway in T cells during Cryptococcus neoformans fungal infection and post-T11TS immunotherapy. METHODS AND RESULTS Wistar rats were infected with C. neoformans and followed by immunotherapy with immune-potentiator T11TS. T cells were analysed by flow cytometry, immunoblotting and nuclear translocation study. The signalling proteins LCK, FYN, LAT, PLCγ1 and CaN in T cells were regulated by C. neoformans infection resulting in reduced nuclear translocation of NFAT and IL-2 expression. Following T11TS immunotherapy, the expressions of the above-mentioned proteins were boosted and thus resulting in the clearance of C. neoformans from lung and spleen. CONCLUSIONS The precise mechanism of suppression of the T-cell function by C. neoformans is still unknown. Previously, we have shown that T11TS positively regulates the function of T cells to abrogate glioma and other immunosuppressive conditions. T11TS immunotherapy increased the expression of the above signalling partners of the CaN-NFAT pathway in T cells and improved nuclear retention of NFAT. As a result, an increased IL-2 expression leads to activation and proliferation of T cells. SIGNIFICANCE AND IMPACT OF THE STUDY Our results demonstrate the role of T11TS in restoring the CaN-NFAT signalling pathway in T cells. It identifies T11TS as an immunotherapeutic agent with potential clinical outcomes to counteract C. neoformans infection.
Collapse
Affiliation(s)
- S M Omar Faruk
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India.,Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - I Hazra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - S Mondal
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - A Datta
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - S Moitra
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - P K Das
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| | - R Mishra
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - S Chaudhuri
- Department of Laboratory Medicine, School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
104
|
Obeidy P, Ju LA, Oehlers SH, Zulkhernain NS, Lee Q, Galeano Niño JL, Kwan RY, Tikoo S, Cavanagh LL, Mrass P, Cook AJ, Jackson SP, Biro M, Roediger B, Sixt M, Weninger W. Partial loss of actin nucleator actin-related protein 2/3 activity triggers blebbing in primary T lymphocytes. Immunol Cell Biol 2019; 98:93-113. [PMID: 31698518 PMCID: PMC7028084 DOI: 10.1111/imcb.12304] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
T lymphocytes utilize amoeboid migration to navigate effectively within complex microenvironments. The precise rearrangement of the actin cytoskeleton required for cellular forward propulsion is mediated by actin regulators, including the actin‐related protein 2/3 (Arp2/3) complex, a macromolecular machine that nucleates branched actin filaments at the leading edge. The consequences of modulating Arp2/3 activity on the biophysical properties of the actomyosin cortex and downstream T cell function are incompletely understood. We report that even a moderate decrease of Arp3 levels in T cells profoundly affects actin cortex integrity. Reduction in total F‐actin content leads to reduced cortical tension and disrupted lamellipodia formation. Instead, in Arp3‐knockdown cells, the motility mode is dominated by blebbing migration characterized by transient, balloon‐like protrusions at the leading edge. Although this migration mode seems to be compatible with interstitial migration in three‐dimensional environments, diminished locomotion kinetics and impaired cytotoxicity interfere with optimal T cell function. These findings define the importance of finely tuned, Arp2/3‐dependent mechanophysical membrane integrity in cytotoxic effector T lymphocyte activities.
Collapse
Affiliation(s)
- Peyman Obeidy
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Lining A Ju
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.,Heart Research Institute and Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefan H Oehlers
- Tuberculosis Research Program, The Centenary Institute, The University of Sydney, Camperdown, NSW, 2050, Australia.,Discipline of Infectious Diseases & Immunology, Marie Bashir Institute, The University of Sydney, Sydney, NSW, 2006, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nursafwana S Zulkhernain
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Quintin Lee
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Jorge L Galeano Niño
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Kensington, NSW, 2033, Australia
| | - Rain Yq Kwan
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Shweta Tikoo
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lois L Cavanagh
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Paulus Mrass
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Adam Jl Cook
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shaun P Jackson
- Heart Research Institute and Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Maté Biro
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, the ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Kensington, NSW, 2033, Australia
| | - Ben Roediger
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Michael Sixt
- Institute of Science and Technology, Klosterneuburg, 3400, Austria
| | - Wolfgang Weninger
- Immune Imaging Program, The Centenary Institute, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2050, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia.,Discipline of Dermatology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia.,Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
105
|
Guo S, Zhou W, Wu J, Liu X, Meng Z, Tian J, Liu S, Ni M, Zhang J, Jia S, Li Y, Zhang X. Network pharmacology-based study on the mechanism of “Jiu Wei Zhu Huang San” in respiratory tract infections treatment. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
106
|
Deng C, Tan H, Zhou H, Wang M, Lü Y, Xu J, Zhang H, Han L, Ai Y. Four Cysteine Residues Contribute to Homodimerization of Chicken Interleukin-2. Int J Mol Sci 2019; 20:ijms20225744. [PMID: 31731766 PMCID: PMC6888268 DOI: 10.3390/ijms20225744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022] Open
Abstract
Interleukin-2 (IL-2) is a pleiotropic cytokine regulating the immune and nervous systems. Mammalian and bird IL-2s have different protein sequences, but perform similar functions. In the current study, two bands were detected by immunoblotting using an antibody against freshly purified chicken IL-2 (chIL-2). The molecular weight of the larger band was approximately twice as much of the chIL-2 monomer, although a chIL-2 complex or homodimer has never been reported. To explain this intriguing result, several dissociation reagents were used to examine the intermolecular forces between components of the proposed chIL-2 complex. It was found that intermolecular disulphide bond promotes homodimerization of chIL-2. Subsequently, mutation of Cys residues of chIL-2 revealed that mutation of all four Cys residues disrupted homodimerization, but a single, dual, or triple Cys mutation failed to disrupt homodimerization, suggesting that all four Cys residues on chIL-2 contribute to this dimerization. Functional analysis showed that both monomeric and dimeric chIL-2 consisting of either wild type or mutant chIL-2 were able to stimulate the expansion of CD4+ T cell in vivo or in vitro, and effectively bind to chIL-2 receptor. Overall, this study revealed that the recombinant chIL-2 purified from either Escherichia coli (E. coli) or Spodoptera frugiperda (Sf9) cells could homodimerize in vitro, with all four Cys residues on each chIL-2 protein contributing to this homodimerization, and dimerization and Cys mutation not impacting chIL-2 induced stimulation of chicken CD4+ T cells.
Collapse
Affiliation(s)
- Chen Deng
- College of Animal Science, Jilin University, 5333 XiAn Road, Changchun, Jilin 130062, China (H.T.); (H.Z.); (M.W.); (Y.L.); (J.X.)
| | - Hailiang Tan
- College of Animal Science, Jilin University, 5333 XiAn Road, Changchun, Jilin 130062, China (H.T.); (H.Z.); (M.W.); (Y.L.); (J.X.)
| | - Hongda Zhou
- College of Animal Science, Jilin University, 5333 XiAn Road, Changchun, Jilin 130062, China (H.T.); (H.Z.); (M.W.); (Y.L.); (J.X.)
| | - Mengyun Wang
- College of Animal Science, Jilin University, 5333 XiAn Road, Changchun, Jilin 130062, China (H.T.); (H.Z.); (M.W.); (Y.L.); (J.X.)
| | - Yan Lü
- College of Animal Science, Jilin University, 5333 XiAn Road, Changchun, Jilin 130062, China (H.T.); (H.Z.); (M.W.); (Y.L.); (J.X.)
| | - Jiacui Xu
- College of Animal Science, Jilin University, 5333 XiAn Road, Changchun, Jilin 130062, China (H.T.); (H.Z.); (M.W.); (Y.L.); (J.X.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, 5333 XiAn Road, Changchun, Jilin 130062, China
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States Department of Agriculture, 4279 East Mount Hope Road, East Lansing, MI 48823, USA;
| | - Limei Han
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang, Liaoning 110866, China
- Correspondence: (L.H.); (Y.A.); Tel.: +86-13909880363 (L.H.); +86-13804314800 (Y.A.)
| | - Yongxing Ai
- College of Animal Science, Jilin University, 5333 XiAn Road, Changchun, Jilin 130062, China (H.T.); (H.Z.); (M.W.); (Y.L.); (J.X.)
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, 5333 XiAn Road, Changchun, Jilin 130062, China
- Correspondence: (L.H.); (Y.A.); Tel.: +86-13909880363 (L.H.); +86-13804314800 (Y.A.)
| |
Collapse
|
107
|
Miyazaki M, Yuba E, Hayashi H, Harada A, Kono K. Development of pH-Responsive Hyaluronic Acid-Based Antigen Carriers for Induction of Antigen-Specific Cellular Immune Responses. ACS Biomater Sci Eng 2019; 5:5790-5797. [PMID: 33405671 DOI: 10.1021/acsbiomaterials.9b01278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maiko Miyazaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Hayashi
- Sciencelin, 1-1-35, Nishiawaji, Higashiyodogawa-ku, Osaka, Osaka 533-0031, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
108
|
Eomesodermin Increases Survival and IL-2 Responsiveness of Tumor-specific CD8+ T Cells in an Adoptive Transfer Model of Cancer Immunotherapy. J Immunother 2019; 41:53-63. [PMID: 29271784 DOI: 10.1097/cji.0000000000000206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor-specific CD8 T cells often fail to elicit effective antitumor immune responses due to an inability to expand into a substantial effector population and persist long-term in vivo. Using an adoptive transfer model of cancer immunotherapy, we demonstrate that constitutive eomesodermin (Eomes) expression in tumor-specific CD8 T cells improves tumor rejection and survival. The increase in tumor rejection was associated with an increased number and persistence of CD8 T cells in lymphoid tissues during acute tumor rejection, tumor regrowth, and in mice that remained tumor-free. Constitutive Eomes expression increased expression of CD25, and this was associated with enhanced interleukin-2 responsiveness and tumor-specific CD8 T-cell proliferation. Moreover, constitutive Eomes expression improved cell survival. Taken together, our data suggest that constitutive Eomes expression enhances CD8 T-cell proliferation and survival, in part through the enhancement of interleukin-2 responsiveness through CD25 induction.
Collapse
|
109
|
Fouhse JM, Yang K, More-Bayona J, Gao Y, Goruk S, Plastow G, Field CJ, Barreda DR, Willing BP. Neonatal Exposure to Amoxicillin Alters Long-Term Immune Response Despite Transient Effects on Gut-Microbiota in Piglets. Front Immunol 2019; 10:2059. [PMID: 31552023 PMCID: PMC6737505 DOI: 10.3389/fimmu.2019.02059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/15/2019] [Indexed: 01/03/2023] Open
Abstract
Antibiotic exposure during neonatal development may result in transient or persistent alterations of key microbes that are vital for normal development of local and systemic immunity, potentially impairing immune competence later in life. To further elucidate the relationship between antibiotic exposure and immune development, newborn pigs were exposed to a therapeutic pediatric dose (30 mg/kg/day) of amoxicillin (AB) or placebo (PL) from post-natal day (PND) 0–14. Subsequently, immune cell phenotype, microbial composition, and immune response to an intraperitoneal (IP) challenge with Salmonella enterica serovar Typhimurium were evaluated. AB exposure caused significant changes in fecal microbial composition on PND 3 (P = 0.025). This stemmed from a 2-fold increase in Enterobacteriaceae with live cecal coliforms on PND 7 indicating at 10-fold increase (P = 0.036). Alterations in microbial composition were transient, and successional patterns were normalizing by PND 14 (P = 0.693). Differences in PBMC (peripheral blood mononuclear cell) immune cell subtypes were detected, with the percentage of CD3+CD4+ T cells among the broader T cell population (CD3+CD4+/CD3+) being significantly higher (P = 0.031) in AB pigs and the numbers of CD4+CD45RA+ (naïve) T cells per liter of blood were lower on PND 21 in AB pigs (P = 0.036). Meanwhile, PBMCs from AB pigs produced significantly more IFNγ upon stimulation with a T-cell mitogen on PND 21 and 49 (P = 0.021). When AB pigs were challenged with heat-killed Salmonella (IP) on PND 49, IFNγ gene expression in peripheral blood was upregulated compared to those treated with PL (P = 0.043). Additionally, AB pigs showed stronger activation among neutrophils infiltrating the peritoneal cavity after in vivo immune challenge, based on higher levels of NF-κB nuclear translocation (P = 0.001). Overall, our results indicate that early life treatment with a therapeutically relevant dose of a commonly prescribed antibiotic has a programming effect on the immune system. Despite antibiotics only causing a transient disruption in gut-associated microbial communities, implications were long-term, with antibiotic treated pigs mounting an upregulated response to an immune challenge. This research adds to the growing body of evidence indicating adverse immune outcomes of early life antibiotic exposures.
Collapse
Affiliation(s)
- Janelle M Fouhse
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kaiyuan Yang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Juan More-Bayona
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Yanhua Gao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Daniel R Barreda
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
110
|
Natural and modified IL-2 for the treatment of cancer and autoimmune diseases. Clin Immunol 2019; 206:63-70. [DOI: 10.1016/j.clim.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/06/2018] [Indexed: 01/09/2023]
|
111
|
Bovine κ-Casein Fragment Induces Hypo-Responsive M2-Like Macrophage Phenotype. Nutrients 2019; 11:nu11071688. [PMID: 31340476 PMCID: PMC6683041 DOI: 10.3390/nu11071688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023] Open
Abstract
Immunomodulatory nutraceuticals have garnered special attention due to their therapeutic potential for the amelioration of many chronic inflammatory conditions. Macrophages are key players in the induction, propagation and resolution of inflammation, actively contributing to the pathogenesis and resolution of inflammatory disorders. As such, this study aimed to investigate the possible therapeutic effects bovine casein derived nutraceuticals exert on macrophage immunological function. Initial studies demonstrated that sodium caseinate induced a M2-like macrophage phenotype that was attributed to the kappa-casein subunit. Kappa-casein primed macrophages acquired a M2-like phenotype that expressed CD206, CD54, OX40L, CD40 on the cell surface and gene expression of Arg-1, RELM-α and YM1, archetypical M2 markers. Macrophages stimulated with kappa-casein secreted significantly reduced TNF-α and IL-10 in response to TLR stimulation through a mechanism that targeted the nuclear factor-κB signal transduction pathway. Macrophage proteolytic processing of kappa-casein was required to elicit these suppressive effects, indicating that a fragment other than C-terminal fragment, glycomacropeptide, induced these modulatory effects. Kappa-casein treated macrophages also impaired T-cell responses. Given the powerful immuno-modulatory effects exhibited by kappa-casein and our understanding of immunopathology associated with inflammatory diseases, this fragment has the potential as an oral nutraceutical and therefore warrants further investigation.
Collapse
|
112
|
Bonam SR, Bhunia D, Muller S, Nerella SG, Alvala M, Halmuthur Mahabalarao SK. Novel trisaccharide based phospholipids as immunomodulators. Int Immunopharmacol 2019; 74:105684. [PMID: 31200340 DOI: 10.1016/j.intimp.2019.105684] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022]
Abstract
A focused library of novel mannosylated glycophospholipids was synthesized employing imidate coupling and H-phosphate phosphorylation methods. All novel glycophospholipids were evaluated for their receptor interactions by molecular docking studies. Docking studies revealed dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) specific interaction of the glycophospholipid ligand P4 acts, which was further confirmed by in vitro DC-SIGN expression on monocyte-derived dendritic cells (MoDCs). Further, in vitro and in vivo immunomodulatory activity among the six compounds (P1-P6) examined, compound P4 displayed good immunopotentiation and adjuvant properties as indicated by the induced cytokine expression and enhanced ovalbumin (OVA) specific antibody (IgG) titers. Phosphatidylinositol mannosides (PIMs) analogues in the present study enforced the immunomodulatory properties, truncating parent PIMs or tailor-made of PIMs may bring the novel efficacious molecules, which will be useful in vaccine preparation against different diseases.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, 500007, India; UMR 7242 CNRS- Neuroimmunology & Peptide Therapy Team, University of Strasbourg, Biotechnology and cell signaling, Illkirch, France/Laboratory of excellence Medalis, Institut de science et d'ingénierie supramoléculaire (ISIS), 67000, Strasbourg, France
| | - Debabrata Bhunia
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India
| | - Sylviane Muller
- UMR 7242 CNRS- Neuroimmunology & Peptide Therapy Team, University of Strasbourg, Biotechnology and cell signaling, Illkirch, France/Laboratory of excellence Medalis, Institut de science et d'ingénierie supramoléculaire (ISIS), 67000, Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| | - Sridhar Goud Nerella
- Molecular Modeling Facility, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Mallika Alvala
- Molecular Modeling Facility, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Sampath Kumar Halmuthur Mahabalarao
- Vaccine Immunology Laboratory, Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, 500007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, 500007, India.
| |
Collapse
|
113
|
Sengupta A, Keswani T, Sarkar S, Ghosh S, Mukherjee S, Bhattacharyya A. Autophagic induction modulates splenic plasmacytoid dendritic cell mediated immune response in cerebral malarial infection model. Microbes Infect 2019; 21:475-484. [PMID: 31185303 DOI: 10.1016/j.micinf.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/16/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Splenic plasmacytoid dendritic cells (pDC) possess the capability to harbor live replicative Plasmodium parasite. Isolated splenic pDC from infected mice causes malaria when transferred to naïve mice. Incomplete autophagic degradation might cause poor antigen processing and poor immune response. Induction of autophagic flux by rapamycin treatment led to better prognosis by boosting pDC centered immune response against the pathogen. Splenic pDC from rapamycin-treated infected mice, caused less parasitemia in naïve mice. The downregulation of adhesion with unaltered phagocytic potential of the cells post autophagic induction restricted excessive parasite burden within them. Rapamycin-treated pDC played a better role in antigen presentation. They showed higher expression of co-stimulatory molecules CD80, CD86, DEC205, MHCI. Rapamycin-treated pDC induced CD28 expression on CD8+ T cells and suppressed FasL level. This cells also influenced differentiation of effector, memory T cell population. The increase in IL10: TNFα ratio, Treg: Th17 ratio and lowering of myeloid DC: plasmacytoid DC ratio was observed. It shifted the overaggressive inflammation mediated Th1 pathway that is reported to incur host damage, to a better well-balanced cytokine profile exhibiting Th2 pathway. Autophagic flux induction within pDC proved to be beneficial in combating malarial pathogenicity.
Collapse
Affiliation(s)
- Anirban Sengupta
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Tarun Keswani
- Basic and Clinical Immunology of Parasitic Diseases, Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre of Infection and Immunity Lille, F-59000 Lille, France, 1 Rue du Professeur Calmette, 59019, Lille, France.
| | - Samrat Sarkar
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Soubhik Ghosh
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Saikat Mukherjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
114
|
Roy U. Structure and Function of an Inflammatory Cytokine, Interleukin-2, Analyzed Using the Bioinformatic Approach. Protein J 2019; 38:525-536. [PMID: 31006082 DOI: 10.1007/s10930-019-09833-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The inflammatory cytokine, interleukin-2 (IL-2), is an important regulator of cellular functions. This relatively less studied member of the interleukin protein family is responsible for multiple immuno-modulatory and immuno-stimulatory tasks, like T cell activation, triggering of natural killer cells, inflammation, as well as proliferation and progression of autoimmune diseases and cancers. In this communication we report the temporally variant structural aspects of the IL-2 ligand and its receptor interfaces, based on the available crystal structures. The intended goal of this effort is to generate simulated results that could potentially aid the designs of novel structure based therapeutics.
Collapse
Affiliation(s)
- Urmi Roy
- Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699-5820, USA.
| |
Collapse
|
115
|
Xin GLL, Khee YP, Ying TY, Chellian J, Gupta G, Kunnath AP, Nammi S, Collet T, Hansbro PM, Dua K, Chellappan DK. Current Status on Immunological Therapies for Type 1 Diabetes Mellitus. Curr Diab Rep 2019; 19:22. [PMID: 30905013 DOI: 10.1007/s11892-019-1144-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) occurs when there is destruction of beta cells within the islets of Langerhans in the pancreas due to autoimmunity. It is considered a complex disease, and different complications can surface and worsen the condition if T1D is not managed well. Since it is an incurable disease, numerous treatments and therapies have been postulated in order to control T1D by balancing hyperglycemia control while minimizing hypoglycemic episodes. The purpose of this review is to primarily look into the current state of the available immunological therapies and their advantages for the treatment of T1D. RECENT FINDINGS Over the years, immunological therapy has become the center of attraction to treat T1D. Immunomodulatory approaches on non-antigens involving agents such as cyclosporine A, mycophenolate mofetil, anti-CD20, cytotoxic T cells, anti-TNF, anti-CD3, and anti-thymocyte globulin as well as immunomodulative approaches on antigens such as insulin, glutamic acid decarboxylase, and heat shock protein 60 have been studied. Aside from these two approaches, studies and trials have also been conducted on regulatory T cells, dendritic cells, interleukin 2, interleukin 4, M2 macrophages, and rapamycin/interleukin 2 combination therapy to test their effects on patients with T1D. Many of these agents have successfully suppressed T1D in non-obese diabetic (NOD) mice and in human trials. However, some have shown negative results. To date, the insights into the management of the immune system have been increasing rapidly to search for potential therapies and treatments for T1D. Nevertheless, some of the challenges are still inevitable. A lot of work and effort need to be put into the investigation on T1D through immunological therapy, particularly to reduce complications to improve and enhance clinical outcomes.
Collapse
Affiliation(s)
- Griselda Lim Loo Xin
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Yap Pui Khee
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Tan Yoke Ying
- School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, 302017, India
| | - Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Srinivas Nammi
- School of Science and Health, Western Sydney University, Sydney, NSW, 2751, Australia
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2751, Australia
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Philip Michael Hansbro
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Newcastle, NSW, 2308, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, Newcastle, NSW, 2308, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
116
|
Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol 2019; 208:131-169. [PMID: 30834965 DOI: 10.1007/s00430-019-00583-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes a transactivator of transcription (Tat) protein, which has several functions that promote viral replication, pathogenesis, and disease. Amino acid variation within Tat has been observed to alter the functional properties of Tat and, depending on the HIV-1 subtype, may produce Tat phenotypes differing from viruses' representative of each subtype and commonly used in in vivo and in vitro experimentation. The molecular properties of Tat allow for distinctive functional activities to be determined such as the subcellular localization and other intracellular and extracellular functional aspects of this important viral protein influenced by variation within the Tat sequence. Once Tat has been transported into the nucleus and becomes engaged in transactivation of the long terminal repeat (LTR), various Tat variants may differ in their capacity to activate viral transcription. Post-translational modification patterns based on these amino acid variations may alter interactions between Tat and host factors, which may positively or negatively affect this process. In addition, the ability of HIV-1 to utilize or not utilize the transactivation response (TAR) element within the LTR, based on genetic variation and cellular phenotype, adds a layer of complexity to the processes that govern Tat-mediated proviral DNA-driven transcription and replication. In contrast, cytoplasmic or extracellular localization of Tat may cause pathogenic effects in the form of altered cell activation, apoptosis, or neurotoxicity. Tat variants have been shown to differentially induce these processes, which may have implications for long-term HIV-1-infected patient care in the antiretroviral therapy era. Future studies concerning genetic variation of Tat with respect to function should focus on variants derived from HIV-1-infected individuals to efficiently guide Tat-targeted therapies and elucidate mechanisms of pathogenesis within the global patient population.
Collapse
Affiliation(s)
- Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
117
|
Yang H, Kureshi R, Spangler JB. Structural Basis for Signaling Through Shared Common γ Chain Cytokines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1172:1-19. [PMID: 31628649 DOI: 10.1007/978-981-13-9367-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The common γ chain (γc) family of hematopoietic cytokines consists of six distinct four α-helix bundle soluble ligands that signal through receptors which include the shared γc subunit to coordinate a wide range of physiological processes, in particular, those related to innate and adaptive immune function. Since the first crystallographic structure of a γc family cytokine/receptor signaling complex (the active Interleukin-2 [IL-2] quaternary complex) was determined in 2005 [1], tremendous progress has been made in the structural characterization of this protein family, transforming our understanding of the molecular mechanisms underlying immune activity. Although many conserved features of γc family cytokine complex architecture have emerged, distinguishing details have been observed for individual cytokine complexes that rationalize their unique functional properties. Much work remains to be done in the molecular characterization of γc family signaling, particularly with regard to intracellular activation events, and looking forward, new technologies in structural biophysics will offer further insight into the biology of cytokine signaling to inform the design of targeted therapeutics for treatment of immune-linked diseases such as cancer, infection, and autoimmune disorders.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rakeeb Kureshi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
118
|
Kalia V, Sarkar S. Regulation of Effector and Memory CD8 T Cell Differentiation by IL-2-A Balancing Act. Front Immunol 2018; 9:2987. [PMID: 30619342 PMCID: PMC6306427 DOI: 10.3389/fimmu.2018.02987] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
Interleukin-2 (IL-2) regulates key aspects of CD8 T cell biology–signaling through distinct pathways IL-2 triggers critical metabolic and transcriptional changes that lead to a spectrum of physiological outcomes such as cell survival, proliferation, and effector differentiation. In addition to driving effector differentiation, IL-2 signals are also critical for formation of long-lived CD8 T cell memory. This review discusses a model of rheostatic control of CD8 T cell effector and memory differentiation by IL-2, wherein the timing, duration, dose, and source of IL-2 signals are considered in fine-tuning the balance of key transcriptional regulators of cell fate.
Collapse
Affiliation(s)
- Vandana Kalia
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Surojit Sarkar
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, United States.,M3D Graduate Program, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pathology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
119
|
Liu Y, Luo M, Jin Z, Zhao M, Qu H. dbLGL: an online leukemia gene and literature database for the retrospective comparison of adult and childhood leukemia genetics with literature evidence. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5042823. [PMID: 29961819 PMCID: PMC6014132 DOI: 10.1093/database/bay062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
Leukemia is a group of cancers with increased numbers of immature or abnormal leucocytes that originated in the bone marrow and other blood-forming organs. The development of differentially diagnostic biomarkers for different subtypes largely depends on understanding the biological pathways and regulatory mechanisms associated with leukemia-implicated genes. Unfortunately, the leukemia-implicated genes that have been identified thus far are scattered among thousands of published studies, and no systematic summary of the differences between adult and childhood leukemia exists with regard to the causative genetic mutations and genetic mechanisms of the various subtypes. In this study, we performed a systematic literature review of those susceptibility genes reported in small-scale experiments and built an online gene database containing a total of 1805 leukemia-associated genes, available at http://soft.bioinfo-minzhao.org/lgl/. Our comparison of genes from the four primary subtypes and between adult and childhood cases identified a number of potential genes related to patient survival. These curated genes can satisfy a growing demand for further integrating genomics screening for leukemia-associated low-frequency mutated genes. Database URL: http://soft.bioinfo-minzhao.org/lgl/
Collapse
Affiliation(s)
- Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Mingyu Luo
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Zhaochen Jin
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, P.R. China
| | - Min Zhao
- School of Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Hong Qu
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, P.R. China
| |
Collapse
|
120
|
Overcoming immunogenicity issues of HIV p24 antigen by the use of innovative nanostructured lipid carriers as delivery systems: evidences in mice and non-human primates. NPJ Vaccines 2018; 3:46. [PMID: 30302284 PMCID: PMC6167354 DOI: 10.1038/s41541-018-0086-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 12/23/2022] Open
Abstract
HIV is one of the deadliest pandemics of modern times, having already caused 35 million deaths around the world. Despite the huge efforts spent to develop treatments, the virus cannot yet be eradicated and continues to infect new people. Spread of the virus remains uncontrolled, thus exposing the worldwide population to HIV danger, due to the lack of efficient vaccines. The latest clinical trials describe the challenges associated with developing an effective prophylactic HIV vaccine. These immunological obstacles will only be overcome by smart and innovative solutions applied to the design of vaccine formulations. Here, we describe the use of nanostructured lipid carriers (NLC) for the delivery of p24 protein as a model HIV antigen, with the aim of increasing its immunogenicity. We have designed vaccine formulations comprising NLC grafted with p24 antigen, together with cationic NLC optimized for the delivery of immunostimulant CpG. This tailored system significantly enhanced immune responses against p24, in terms of specific antibody production and T-cell activation in mice. More importantly, the capacity of NLC to induce specific immune responses against this troublesome HIV antigen was further supported by a 7-month study on non-human primates (NHP). This work paves the way toward the development of a future HIV vaccine, which will also require the use of envelope antigens. To date, HIV vaccines have resulted in poor or absent protection. A team led by Fabrice P. Navarro at the CEA LETI use the conserved HIV capsid protein p24 vectorized into cationic nanostructured lipid carriers (NLC-p24) along with NLC-delivered CpG. Owing to their small size, NLCs gain access to lymph nodes and deliver antigen directly to antigen presenting cells. Anti-p24 responses have been associated with effective HIV control, making them an attractive vaccine antigen, but they are poorly immunogenic. NLC-p24 shows a good safety profile while at the same time being able to elicit robust humoral and cellular immune responses in both mice and Cynomolgus macaques. NLC-mediated delivery of both p24 and CpG results in more effective immune stimulation than delivery of free antigen and adjuvant. These findings demonstrate the possibility of priming effective responses to a potent but otherwise poorly immunogenic HIV antigen.
Collapse
|
121
|
Costa AG, Ramasawmy R, Val FFA, Ibiapina HNS, Oliveira AC, Tarragô AM, Garcia NP, Heckmann MIO, Monteiro WM, Malheiro A, Lacerda MVG. Polymorphisms in TLRs influence circulating cytokines production in Plasmodium vivax malaria. Cytokine 2018; 110:374-380. [DOI: 10.1016/j.cyto.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/22/2018] [Accepted: 04/07/2018] [Indexed: 02/08/2023]
|
122
|
Zia SR, Ul-Haq Z. Molecular dynamics simulation of interleukin-2 and its complex and determination of the binding free energy. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1513651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Syeda Rehana Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
123
|
Taylor ES, McCall JL, Shen S, Girardin A, Munro FM, Black MA, Ward-Hartstonge KA, Kemp RA. Prognostic roles for IL-2-producing and CD69 + T cell subsets in colorectal cancer patients. Int J Cancer 2018; 143:2008-2016. [PMID: 29752720 DOI: 10.1002/ijc.31598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/08/2018] [Accepted: 04/17/2018] [Indexed: 01/30/2023]
Abstract
Tumor infiltrating T cells are a predictor of patient outcome in patients with colorectal cancer (CRC). However, many T cell populations have been associated with both poor and positive patient prognoses, indicating a need to further understand the role of different T cell subsets in CRC. In this study, the T cell infiltrate from the tumor and nontumor bowel (NTB) was examined in 95 CRC patients using flow cytometry and associations with cancer stage and disease recurrence made. Our findings showed that IFN-γ-producing T cells were associated with positive patient outcomes, and CD69+ T cells were associated with disease recurrence. Inflammatory (IL-17) and regulatory T cells were not associated with disease recurrence. Surprisingly, in a second cohort of 32 patients with long-term clinical follow up data, tumor infiltrating IL-2-producing T cells correlated negatively with disease free survival (DFS) and a higher frequency of IL-2-producing T cells was found in the NTB of patients with poorly differentiated tumors. These results point toward the possibility of a negative impact of IL-2 in tumor immune responses, which may influence future immunotherapy treatments in CRC patients.
Collapse
Affiliation(s)
- Edward S Taylor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John L McCall
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Shirley Shen
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Adam Girardin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Fran M Munro
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
124
|
Silva AP, Neves CL, Silva EDA, Portela TCL, Iunes RS, Cogliati B, Severino D, Baptista MDS, Dagli MLZ, Blazquez FJH, Silva JRMCD. Effects of methylene blue-mediated photodynamic therapy on a mouse model of squamous cell carcinoma and normal skin. Photodiagnosis Photodyn Ther 2018; 23:154-164. [PMID: 29908976 DOI: 10.1016/j.pdpdt.2018.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Photodynamic therapy is used to treat a variety of cancers and skin diseases by inducing apoptosis, necrosis, immune system activation, and/or vascular damage. Here, we describe the effects of a single photodynamic therapy session using methylene blue on a mouse model of squamous cell carcinoma and normal skin. METHODS The photodynamic therapy protocol comprised application of a 1% methylene blue solution, followed by irradiation with a diode laser for 15 min at 74 mW/cm2, for a total dose of 100 J/cm2. Morphological changes, cell proliferation, apoptosis, collagen quantity, immune system activity, and blood vessel number were analyzed 24 h and 15 days after photodynamic therapy. RESULTS In the squamous cell carcinoma group, photodynamic therapy reduced tumor size and cell proliferation and raised cytokine levels. In normal skin, it decreased cell proliferation and collagen quantity and increased apoptosis and blood vessel numbers. CONCLUSIONS The effects of photodynamic therapy were greater on normal skin than squamous cell carcinoma tissues. The reduced epithelial thickness and keratinization of the former are factors that contribute to the efficacy of this treatment. Adjustments to the treatment protocol are necessary to potentiate the effects for squamous cell carcinoma therapy.
Collapse
Affiliation(s)
- Ana Paula Silva
- Department of Cell Biology and Development, Biomedical Science Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil.
| | - Camila Lima Neves
- Department of Cell Biology and Development, Biomedical Science Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - Elizangela Dos Anjos Silva
- Departament of Medicine, Federal University of Pampa, BR 472, Km 585, CEP 97501 970, Uruguaiana, RS, Brazil
| | - Tânia Cristina Lima Portela
- Department of Cell Biology and Development, Biomedical Science Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - Renata Stecca Iunes
- Department of Cell Biology and Development, Biomedical Science Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| | - Bruno Cogliati
- Department of Pathology, College of Veterinary Medicine and Zootechny, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, CEP 05508 270, São Paulo, SP, Brazil
| | - Divinomar Severino
- Department of Biochemistry, Chemical Institute, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, CEP 05513-970, São Paulo, SP, Brazil
| | - Maurício da Silva Baptista
- Department of Biochemistry, Chemical Institute, University of São Paulo, Av. Prof. Lineu Prestes, 748, Cidade Universitária, CEP 05513-970, São Paulo, SP, Brazil
| | - Maria Lúcia Zaidan Dagli
- Department of Pathology, College of Veterinary Medicine and Zootechny, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, CEP 05508 270, São Paulo, SP, Brazil
| | - Francisco Javier Hernandez Blazquez
- Department of Surgery, College of Veterinary Medicine and Zootechny, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, CEP 05508 270, São Paulo, SP, Brazil
| | - José Roberto Machado Cunha da Silva
- Department of Cell Biology and Development, Biomedical Science Institute, University of São Paulo, Av. Prof. Lineu Prestes, 1524, Cidade Universitária, CEP 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
125
|
Sahin A, Sanchez C, Bullain S, Waterman P, Weissleder R, Carter BS. Development of third generation anti-EGFRvIII chimeric T cells and EGFRvIII-expressing artificial antigen presenting cells for adoptive cell therapy for glioma. PLoS One 2018; 13:e0199414. [PMID: 29975720 PMCID: PMC6033533 DOI: 10.1371/journal.pone.0199414] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/13/2018] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and deadly form of adult brain cancer. Despite of many attempts to identify potential therapies for this disease, including promising cancer immunotherapy approaches, it remains incurable. To address the need of improved persistence, expansion, and optimal antitumor activity of T-cells in the glioma milieu, we have developed an EGFRvIII-specific third generation (G3-EGFRvIII) chimeric antigen receptor (CAR) that expresses both co-stimulatory factors CD28 and OX40 (MR1-CD8TM-CD28-OX40-CD3ζ). To enhance ex vivo target specific activation and optimize T-cell culturing conditions, we generated artificial antigen presenting cell lines (aAPC) expressing the extracellular and transmembrane domain of EGFRvIII (EGFRVIIIΔ654) with costimulatory molecules including CD32, CD80 and 4-1BBL (EGFRVIIIΔ654 aAPC and CD32-80-137L-EGFRVIIIΔ654 aAPC). We demonstrate that the highest cell growth was achieved when G3-EGFRvIII CAR T-cells were cocultured with both co-stimulatory aAPCs and with exposure to EGFRvIII (CD32-80-137L-EGFRVIIIΔ654 aAPCs) in culturing periods of three to six weeks. G3-EGFRvIII CAR T-cells showed an increased level of IFN-γ when cocultured with CD32-80-137L-EGFRVIIIΔ654 aAPCs. Evaluation of G3-EGFRvIII CAR T-cells in an orthotropic human glioma xenograft model demonstrated a prolonged survival of G3-EGFRvIII CAR treated mice compared to control mice. Importantly, we observed survival of G3-EGFRvIII CAR T-cells within the tumor as long as 90 days after implantation in low-dose and single administration, accompanied by a marked tumor stroma demolition. These findings suggest that G3-EGFRvIII CAR cocultured with CD32-80-137L-EGFRVIIIΔ654 aAPCs warrants itself as a potential anti-tumor therapy strategy for glioblastoma.
Collapse
Affiliation(s)
- Ayguen Sahin
- HMS-MGH Center for Nervous System Repair, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America
- * E-mail:
| | - Carlos Sanchez
- HMS-MGH Center for Nervous System Repair, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America
| | - Szofia Bullain
- HMS-MGH Center for Nervous System Repair, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America
| | - Peter Waterman
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Bob S. Carter
- HMS-MGH Center for Nervous System Repair, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
126
|
Metryka E, Chibowska K, Gutowska I, Falkowska A, Kupnicka P, Barczak K, Chlubek D, Baranowska-Bosiacka I. Lead (Pb) Exposure Enhances Expression of Factors Associated with Inflammation. Int J Mol Sci 2018; 19:ijms19061813. [PMID: 29925772 PMCID: PMC6032409 DOI: 10.3390/ijms19061813] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022] Open
Abstract
The human immune system is constantly exposed to xenobiotics and pathogens from the environment. Although the mechanisms underlying their influence have already been at least partially recognized, the effects of some factors, such as lead (Pb), still need to be clarified. The results of many studies indicate that Pb has a negative effect on the immune system, and in our review, we summarize the most recent evidence that Pb can promote inflammatory response. We also discuss possible molecular and biochemical mechanisms of its proinflammatory action, including the influence of Pb on cytokine metabolism (interleukins IL-2, IL-4, IL-8, IL-1b, IL-6), interferon gamma (IFNγ), and tumor necrosis factor alpha (TNF-α); the activity and expression of enzymes involved in the inflammatory process (cyclooxygenases); and the effect on selected acute phase proteins: C-reactive protein (CRP), haptoglobin, and ceruloplasmin. We also discuss the influence of Pb on the immune system cells (T and B lymphocytes, macrophages, Langerhans cells) and the secretion of IgA, IgE, IgG, histamine, and endothelin.
Collapse
Affiliation(s)
- Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Karina Chibowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24, 71-460 Szczecin, Poland.
| | - Anna Falkowska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| |
Collapse
|
127
|
Chen ZH, Wang C, Wei FX, Xu BB, Liu J, Pu Y, Zhang SL, Jiang PC. Adenovirus-mediated OX40Ig gene transfer induces long-term survival of orthotopic liver allograft in rats. Transpl Immunol 2018; 48:32-38. [DOI: 10.1016/j.trim.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 01/02/2023]
|
128
|
Dhume K, McKinstry KK. Early programming and late-acting checkpoints governing the development of CD4 T-cell memory. Immunology 2018; 155:53-62. [PMID: 29701246 DOI: 10.1111/imm.12942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
CD4 T cells contribute to protection against pathogens through numerous mechanisms. Incorporating the goal of memory CD4 T-cell generation into vaccine strategies therefore offers a powerful approach to improve their efficacy, especially in situations where humoral responses alone cannot confer long-term immunity. These threats include viruses such as influenza that mutate coat proteins to avoid neutralizing antibodies, but that are targeted by T cells that recognize more conserved protein epitopes shared by different strains. A major barrier in the design of such vaccines is that the mechanisms controlling the efficiency with which memory cells form remain incompletely understood. Here, we discuss recent insights into fate decisions controlling memory generation. We focus on the importance of three general cues: interleukin-2, antigen and co-stimulatory interactions. It is increasingly clear that these signals have a powerful influence on the capacity of CD4 T cells to form memory during two distinct phases of the immune response. First, through 'programming' that occurs during initial priming, and second, through 'checkpoints' that operate later during the effector stage. These findings indicate that novel vaccine strategies must seek to optimize cognate interactions, during which interleukin-2-, antigen- and co-stimulation-dependent signals are tightly linked, well beyond initial antigen encounter to induce robust memory CD4 T cells.
Collapse
Affiliation(s)
- Kunal Dhume
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Karl Kai McKinstry
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
129
|
Xiong W, Chen Y, Kang X, Chen Z, Zheng P, Hsu YH, Jang JH, Qin L, Liu H, Dotti G, Liu D. Immunological Synapse Predicts Effectiveness of Chimeric Antigen Receptor Cells. Mol Ther 2018; 26:963-975. [PMID: 29503199 PMCID: PMC6080133 DOI: 10.1016/j.ymthe.2018.01.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has the potential to improve the overall survival of patients with malignancies by enhancing the effectiveness of CAR T cells. Precisely predicting the effectiveness of various CAR T cells represents one of today’s key unsolved problems in immunotherapy. Here, we predict the effectiveness of CAR-modified cells by evaluating the quality of the CAR-mediated immunological synapse (IS) by quantitation of F-actin, clustering of tumor antigen, polarization of lytic granules (LGs), and distribution of key signaling molecules within the IS. Long-term killing capability, but not secretion of conventional cytokines or standard 4-hr cytotoxicity, correlates positively with the quality of the IS in two different CAR T cells that share identical antigen specificity. Xenograft model data confirm that the quality of the IS in vitro correlates positively with performance of CAR-modified immune cells in vivo. Therefore, we propose that the quality of the IS predicts the effectiveness of CAR-modified immune cells, which provides a novel strategy to guide CAR therapy.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Biomarkers
- Cell Line
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Gene Expression
- Gene Order
- Genes, Reporter
- Genetic Vectors/genetics
- Humans
- Immunological Synapses/immunology
- Immunological Synapses/metabolism
- Immunotherapy, Adoptive/methods
- Mice
- Microscopy, Confocal
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Retroviridae/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transduction, Genetic
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wei Xiong
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Yuhui Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Xi Kang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Zhiying Chen
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Peilin Zheng
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Yi-Hsin Hsu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| | - Hao Liu
- Biostatistics Core of the Dan L. Duncan Cancer Center, Houston, TX 77030, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dongfang Liu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
130
|
Li J, Bach A, Crawford RB, Phadnis-Moghe AS, Chen W, D'Ingillo S, Kovalova N, Suarez-Martinez JE, Zhou J, Kaplan BLF, Kaminski NE. CLARITY-BPA: Effects of chronic bisphenol A exposure on the immune system: Part 2 - Characterization of lymphoproliferative and immune effector responses by splenic leukocytes. Toxicology 2018; 396-397:54-67. [PMID: 29427786 DOI: 10.1016/j.tox.2018.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Bisphenol A (BPA) is commonly used in the manufacturing of a wide range of consumer products, including polycarbonate plastics, epoxy resin that lines beverage and food cans, and some dental sealants. Consumption of food and beverages containing BPA represents the primary route of human BPA exposure, which is virtually ubiquitous. An increasing number of studies have evaluated the effects of BPA on immune responses in laboratory animals that have reported a variety of effects some of which have been contradictory. To address the divergent findings surrounding BPA exposure, a comprehensive chronic treatment study of BPA was conducted in Sprague-Dawley rats, termed the Consortium Linking Academic and Regulatory Insights on Toxicity of BPA (CLARITY-BPA). As a participant in the CLARITY-BPA project, our studies evaluated the effects of BPA on a broad range of immune function endpoints using spleen cells isolated from BPA or vehicle treated rats. This comprehensive assessment included measurements of lymphoproliferation in response to mitogenic stimuli, immunoglobulin production by B cells, and cellular activation of T cells, NK cells, monocytes, granulocytes, macrophages and dendritic cells. In total, 630 different measurements in BPA treated rats were performed of which 35 measurements were statistically different from vehicle controls. The most substantive alteration associated with BPA treatment was the augmentation of lymphoproliferation in response to pokeweed mitogen stimulations in 1 year old male rats, which was also observed in the reference estrogen ethinyl estradiol treated groups. With the exception of the aforementioned, the statistically significant changes associated with BPA treatment were mostly sporadic and not dose-dependent with only one out of five BPA dose groups showing a statistical difference. In addition, the observed BPA-associated alterations were mostly moderate in magnitude and showed no persistent trend over the one-year time period. Based on these findings, we conclude that the observed BPA-mediated changes observed in this study are unlikely to alter immune competence in adult rats.
Collapse
Affiliation(s)
- Jinpeng Li
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Anthony Bach
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Ashwini S Phadnis-Moghe
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Weimin Chen
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Shawna D'Ingillo
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Natalia Kovalova
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Jose E Suarez-Martinez
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Jiajun Zhou
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Barbara L F Kaplan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
131
|
Kangethe RT, Pichler R, Chuma FNJ, Cattoli G, Wijewardana V. Bovine monocyte derived dendritic cell based assay for measuring vaccine immunogenicity in vitro. Vet Immunol Immunopathol 2018; 197:39-48. [PMID: 29475505 DOI: 10.1016/j.vetimm.2018.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 12/21/2022]
Abstract
During both human and animal vaccine development phases, animal testing is necessary to demonstrate vaccine efficacy. Since the number of antigen candidates for testing is usually large when developing a potential vaccine, it is too costly, time consuming and would involve higher risks to carry out selection using in vivo models. The currently available in vitro assays that measure immunogenicity do not adequately reproduce the in vivo state and this is especially true for vaccine research in livestock species. With this in mind, we have developed a bovine monocyte derived dendritic cell (MODC)s based assay to prime CD4 and CD8 lymphocytes in order to investigate vaccine immunogenicity in vitro. MODCs were generated, pulsed with diphtheria toxoid (DT) and co-cultured with lymphocytes for priming. Immunogenicity was measured through antigen recall when antigen pulsed MODC were re-introduced to the co-culture and proliferation of CD4 and CD8 positive lymphocytes were quantified using expressed Ki-67. Having developed the protocol for the assay, we then employed two licenced vaccines against blue tongue virus and rabies virus to validate the assay. Our results show the ability of the assay to satisfactorily measure immunogenicity in cattle. The assay could be used to identify antigens that induce CD4 and CD8 T cell responses prior to embarking on in vivo experiments and can also be used for the quality control of established vaccines in vaccine production facilities as a supplement for in vivo experiments.
Collapse
Affiliation(s)
- Richard T Kangethe
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Rudolf Pichler
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Francis N J Chuma
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Viskam Wijewardana
- Animal Production and Health Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| |
Collapse
|
132
|
Afanasieva KS, Chopei MI, Lozovik AV, Rushkovsky SR, Sivolob AV. Redistribution of DNA loop domains in human lymphocytes under blast transformation with interleukin 2. UKRAINIAN BIOCHEMICAL JOURNAL 2017; 88:45-51. [PMID: 29235835 DOI: 10.15407/ubj88.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
At higher order levels chromatin fibers in interphase nuclei are organized into loop domains. Gene regulatory elements (promoters and enhancers) are often located near the sites of loop attachments. Therefore, loop domains play a key role in regulation of cell transcriptional activity. We investigated the kinetics of DNA loop exit during single cell gel electrophoresis (the comet assay) of nucleoids obtained from two cell types that differ in their synthetic activity – human lymphocytes and lymphoblasts. Lymphocyte activation and transformation into lymphoblasts (blast transformation) was performed with interleukin 2. The results obtained suggest that a rearrangement of the loops occurs after lymphocyte activation. After blast transformation we observed an increase of the amount of loop domains on the surface of nucleoids against a decrease of the inner loop fraction. Therefore, the comet assay can be used for detection of large-scale changes in the cell nucleus that follow changes in cell functional state.
Collapse
|
133
|
PSMA-targeted polyinosine/polycytosine vector induces prostate tumor regression and invokes an antitumor immune response in mice. Proc Natl Acad Sci U S A 2017; 114:13655-13660. [PMID: 29229829 DOI: 10.1073/pnas.1714587115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is an urgent need for an effective treatment for metastatic prostate cancer (PC). Prostate tumors invariably overexpress prostate surface membrane antigen (PSMA). We designed a nonviral vector, PEI-PEG-DUPA (PPD), comprising polyethylenimine-polyethyleneglycol (PEI-PEG) tethered to the PSMA ligand, 2-[3-(1, 3-dicarboxy propyl)ureido] pentanedioic acid (DUPA), to treat PC. The purpose of PEI is to bind polyinosinic/polycytosinic acid (polyIC) and allow endosomal release, while DUPA targets PC cells. PolyIC activates multiple pathways that lead to tumor cell death and to the activation of bystander effects that harness the immune system against the tumor, attacking nontargeted neighboring tumor cells and reducing the probability of acquired resistance and disease recurrence. Targeting polyIC directly to tumor cells avoids the toxicity associated with systemic delivery. PPD selectively delivered polyIC into PSMA-overexpressing PC cells, inducing apoptosis, cytokine secretion, and the recruitment of human peripheral blood mononuclear cells (PBMCs). PSMA-overexpressing tumors in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with partially reconstituted immune systems were significantly shrunken following PPD/polyIC treatment, in all cases. Half of the tumors showed complete regression. PPD/polyIC invokes antitumor immunity, but unlike many immunotherapies does not need to be personalized for each patient. The potent antitumor effects of PPD/polyIC should spur its development for clinical use.
Collapse
|
134
|
McKeithen DN, Omosun YO, Ryans K, Mu J, Xie Z, Simoneaux T, Blas-machado U, Eko FO, Black CM, Igietseme JU, He Q. The emerging role of ASC in dendritic cell metabolism during Chlamydia infection. PLoS One 2017; 12:e0188643. [PMID: 29216217 PMCID: PMC5720709 DOI: 10.1371/journal.pone.0188643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/10/2017] [Indexed: 11/18/2022] Open
Abstract
Chlamydia trachomatis is a bacterial agent that causes sexually transmitted infections worldwide. The regulatory functions of dendritic cells (DCs) play a major role in protective immunity against Chlamydia infections. Here, we investigated the role of ASC in DCs metabolism and the regulation of DCs activation and function during Chlamydia infection. Following Chlamydia stimulation, maturation and antigen presenting functions were impaired in ASC-/- DCs compared to wild type (WT) DCs, in addition, ASC deficiency induced a tolerant phenotype in Chlamydia stimulated DCs. Using real-time extracellular flux analysis, we showed that activation in Chlamydia stimulated WT DCs is associated with a metabolic change in which mitochondrial oxidative phosphorylation (OXPHOS) is inhibited and the cells become committed to utilizing glucose through aerobic glycolysis for differentiation and antigen presenting functions. However, in ASC-/- DCs Chlamydia-induced metabolic change was prevented and there was a significant effect on mitochondrial morphology. The mitochondria of Chlamydia stimulated ASC-/- DCs had disrupted cristae compared to the normal narrow pleomorphic cristae found in stimulated WT DCs. In conclusion, our results suggest that Chlamydia-mediated activation of DCs is associated with a metabolic transition in which OXPHOS is inhibited, thereby dedicating the DCs to aerobic glycolysis, while ASC deficiency disrupts DCs function by inhibiting the reprogramming of DCs metabolism within the mitochondria, from glycolysis to electron transport chain.
Collapse
Affiliation(s)
- Danielle N. McKeithen
- Department Microbiology, Biochemistry, and, Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
- Department of Biology, Clark Atlanta University, Atlanta, GA, United States of America
| | - Yusuf O. Omosun
- Department Microbiology, Biochemistry, and, Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
| | - Khamia Ryans
- Department Microbiology, Biochemistry, and, Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
- Department of Biology, Clark Atlanta University, Atlanta, GA, United States of America
| | - Jing Mu
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States of America
| | - Zhonglin Xie
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States of America
| | - Tankya Simoneaux
- Department Microbiology, Biochemistry, and, Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
| | - Uriel Blas-machado
- College of Veterinary Medicine, University of Georgia, Georgia, Atlanta, United States of America
| | - Francis O. Eko
- Department Microbiology, Biochemistry, and, Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
| | - Carolyn M. Black
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, United States of America
| | - Joseph U. Igietseme
- Department Microbiology, Biochemistry, and, Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
- National Center for Emerging Zoonotic and Infectious Diseases, Centers for Disease Control & Prevention (CDC), Atlanta, GA, United States of America
| | - Qing He
- Department Microbiology, Biochemistry, and, Immunology, Morehouse School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
135
|
Kumar S, Saini RV, Mahindroo N. Recent advances in cancer immunology and immunology-based anticancer therapies. Biomed Pharmacother 2017; 96:1491-1500. [PMID: 29198747 DOI: 10.1016/j.biopha.2017.11.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 11/12/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapies offer promise for cure of cancer with specificity and minimal toxicity. Recent developments in cancer immunology have led to the better understanding of role of immune regulatory mechanisms in cancer. There is rapid progress in this field in the last few years. Several clinical studies report the efficacy of immunotherapies for treating cancer. The immunology-based anticancer therapies have shown better safety profiles in clinic as compared to other chemotherapeutic agents, thus increasing interest in this area. This review summarizes recent advances in cancer immunology and discusses tumor microenvironment and immunology-based anticancer therapies, including vaccines and therapies targeting immune checkpoints.
Collapse
Affiliation(s)
- Sunil Kumar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India
| | - Reena Vohra Saini
- School of Biotechnology, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India; Centre of Research on Himalayan Sustainability and Development, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India; Centre of Research on Himalayan Sustainability and Development, Shoolini University, Post Box 9, Solan, 173212, Himachal Pradesh, India.
| |
Collapse
|
136
|
Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation. Sci Rep 2017; 7:14542. [PMID: 29109461 PMCID: PMC5674070 DOI: 10.1038/s41598-017-15026-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023] Open
Abstract
Cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC) have well documented immunomodulatory effects in vitro, but not following oral administration in humans. Here we show that oral co-administration of cannabinoids with lipids can substantially increase their intestinal lymphatic transport in rats. CBD concentrations in the lymph were 250-fold higher than in plasma, while THC concentrations in the lymph were 100-fold higher than in plasma. Since cannabinoids are currently in clinical use for the treatment of spasticity in multiple sclerosis (MS) patients and to alleviate nausea and vomiting associated with chemotherapy in cancer patients, lymphocytes from those patients were used to assess the immunomodulatory effects of cannabinoids. The levels of cannabinoids recovered in the intestinal lymphatic system, but not in plasma, were substantially above the immunomodulatory threshold in murine and human lymphocytes. CBD showed higher immunosuppressive effects than THC. Moreover, immune cells from MS patients were more susceptible to the immunosuppressive effects of cannabinoids than those from healthy volunteers or cancer patients. Therefore, administering cannabinoids with a high-fat meal or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders. However, intestinal lymphatic transport of cannabinoids in immunocompromised patients requires caution.
Collapse
|
137
|
Aas IB, Austbø L, Falk K, Hordvik I, Koppang EO. The interbranchial lymphoid tissue likely contributes to immune tolerance and defense in the gills of Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:247-254. [PMID: 28655579 DOI: 10.1016/j.dci.2017.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Central and peripheral immune tolerance is together with defense mechanisms a hallmark of all lymphoid tissues. In fish, such tolerance is especially important in the gills, where the intimate contact between gill tissue and the aqueous environment would otherwise lead to continual immune stimulation by innocuous antigens. In this paper, we focus on the expression of genes associated with immune regulation by the interbranchial lymphoid tissue (ILT) in an attempt to understand its role in maintaining immune homeostasis. Both healthy and virus-challenged fish were investigated, and transcript levels were examined from laser-dissected ILT, gills, head kidney and intestine. Lack of Aire expression in the ILT excluded its involvement in central tolerance and any possibility of its being an analogue to the thymus. On the other hand, the ILT appears to participate in peripheral immune tolerance due to its relatively high expression of forkhead box protein 3 (Foxp3) and other genes associated with regulatory T cells (Tregs) and immune suppression.
Collapse
Affiliation(s)
- Ida Bergva Aas
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lars Austbø
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, 0454 Oslo, Norway
| | - Ivar Hordvik
- Department of Biology, High Technology Centre, University of Bergen, 5006 Bergen, Norway
| | - Erling Olaf Koppang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
138
|
Marciano BE, Holland SM. Primary Immunodeficiency Diseases: Current and Emerging Therapeutics. Front Immunol 2017; 8:937. [PMID: 28848545 PMCID: PMC5552668 DOI: 10.3389/fimmu.2017.00937] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiency diseases (PID) result from defects in genes affecting the immune and other systems in many and varied ways (1, 2). Until the last few years, treatments have been largely supportive, with the exception of bone marrow transplantation. However, recent advances in immunobiology, genetics, and the explosion of discovery and commercialization of biologic modifiers have drastically altered the landscape and opportunities in clinical immunology. Therapeutic options and life expectancy of PID patients have also improved dramatically, in large part as a result of better prevention and treatment of infections as well as better understanding and treatment of autoimmune complications (3). As early-life infection-related mortality declines we should anticipate the emergence of other conditions that were previously not appreciated, including malignancies and degenerative disorders unmasked by increasing longevity (4). The genomic revolution has identified literally hundreds of new genetic etiologies of immune dysfunction, many of which are or will soon be eligible for targeted therapies. These emerging immunomodulatory agents represent new therapeutic options in PIDs (5).
Collapse
Affiliation(s)
- Beatriz E Marciano
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
139
|
Comte D, Karampetsou MP, Kis-Toth K, Yoshida N, Bradley SJ, Kyttaris VC, Tsokos GC. Brief Report: CD4+ T Cells From Patients With Systemic Lupus Erythematosus Respond Poorly to Exogenous Interleukin-2. Arthritis Rheumatol 2017; 69:808-813. [PMID: 27992687 DOI: 10.1002/art.40014] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/01/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Imbalanced cytokine production by T cells characterizes both patients with systemic lupus erythematosus (SLE) and lupus-prone mice and contributes to immune dysregulation. This study was undertaken to further investigate in detail the production of interleukin-2 (IL-2), interferon-γ (IFNγ), IL-4, and IL-17A by CD4+ cell subsets in healthy subjects and patients with SLE, and the signaling response of CD4+ T cells in response to exogenous IL-2. METHODS Cytokine production by differentiated subsets of CD4+ T cells was assessed by intracellular staining following stimulation with phorbol myristate acetate and ionomycin and by enzyme-linked immunosorbent assay after anti-CD3/anti-CD28 stimulation. The IL-2 signaling pathway was examined by assessing JAK-3/STAT-5 phosphorylation. Cell proliferation in response to IL-2 was examined by carboxyfluorescein succinimidyl ester dilution. RESULTS Production of IL-2 was defective primarily among naive CD4+ T cells, whereas the production of IFNγ, IL-4, and IL-17A was not significantly different between patients with SLE and healthy subjects. JAK-3/STAT-5 phosphorylation and proliferation of CD4+ T cells from SLE patients in response to exogenous IL-2 were impaired compared to cells from healthy subjects. CONCLUSION These data suggest that altered IL-2 production, as well as impaired IL-2-mediated signaling and proliferative responses, characterize SLE CD4+ T cells. Our data demonstrate the need for caution in designing IL-2 treatment trials for patients with SLE. Approaches to restore CD4+ T cell sensitivity to IL-2 should be considered.
Collapse
Affiliation(s)
- Denis Comte
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, and Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Maria P Karampetsou
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Katalin Kis-Toth
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nobuya Yoshida
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sean J Bradley
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Vasileios C Kyttaris
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - George C Tsokos
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
140
|
Li W, Tu J, Liu X, Yang W. Farnesyltransferase inhibitor FTI-277 inhibits PD-L1 expression on septic spleen lymphocytes and promotes spleen lymphocyte activation. Clin Exp Immunol 2017; 190:8-18. [PMID: 28556912 DOI: 10.1111/cei.12995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
Farnesyltransferase inhibitors have been tested in clinical trials for the treatment of tumours. In sepsis, the binding of programmed death 1 (PD-1) to programmed death ligand 1 (PD-L1) promotes lymphocyte apoptosis and decreases cytokine expression, thus affecting survival rates. The PD-1/PD-L1 pathway plays an important role in chronic viral infection, bacterial infection and sepsis. However, the precise immunosuppressive and anti-inflammatory functions of this pathway remain poorly understood. In our previous study, the induction of sepsis by caecal ligation and puncture (CLP) resulted in increased farnesyltransferase activity and farnesylated protein levels in the spleen relative to sham treatment. However, the effect of inhibition of farnesyltransferase activity on overall survival rates in patients with sepsis and the specific signalling pathway involved remain to be investigated. In this study, mice with CLP-induced sepsis were treated with farnesyltransferase inhibitor (FTI-277), and PD-L1 expression on septic spleen lymphocytes was examined. Flow cytometric analysis revealed that PD-L1 is expressed constitutively on lymphocytes and that PD-L1 protein expression was up-regulated strongly following CLP. FTI-277 down-regulated PD-L1 mRNA and protein expression on septic spleen lymphocytes in a dose-dependent manner. This effect was associated closely with nuclear factor kappa B (NF-κB). In addition, the significant damping effect of FTI-277 on the PD-L1 signal promoted interferon (IFN)-γ secretion, interleukin (IL)-2 production and splenocyte proliferation in response to anti-CD3+ CD28+ antibodies in mice. Furthermore, FTI-277 reduced spleen lymphocyte apoptosis in septic mice. Therefore, FTI-277 regulates spleen lymphocyte activity via the PD-L1 signalling pathway, with significant anti-inflammatory effects attributable to suppression of the NF-κB pathway. Farnesyltransferase represents a valuable therapeutic target for the treatment of sepsis.
Collapse
Affiliation(s)
- W Li
- Wuhan Institute of Biological Products Co. Ltd, Wuhan, Hubei Province, China
| | - J Tu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - X Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - W Yang
- Department of Anaesthesia, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
141
|
West CE, Kvistgaard AS, Peerson JM, Donovan SM, Peng YM, Lönnerdal B. Effects of osteopontin-enriched formula on lymphocyte subsets in the first 6 months of life: a randomized controlled trial. Pediatr Res 2017; 82:63-71. [PMID: 28355198 DOI: 10.1038/pr.2017.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 02/19/2017] [Indexed: 02/03/2023]
Abstract
BackgroundHuman milk is rich in osteopontin (OPN), which has immunomodulatory functions.MethodsIn a randomized controlled trial, standard formula (SF) and the same formula with 65 mg of OPN/L (F65) or 130 mg of OPN/L (F130), representing ~50 and 100% of the OPN concentration in human milk, were compared. We examined frequencies and composition of peripheral blood immune cells by four-color immunoflow cytometry of formula-fed infants at ages 1, 4, and 6 months, and compared them with a breastfed (BF) reference group.ResultsThe F130 group had increased T-cell proportions compared with the SF (P=0.036, average effect size 0.51) and F65 groups (P=0.008, average effect size 0.65). Compared with the BF group, the monocyte proportions were increased in the F65 (P=0.001, average effect size 0.59) and F130 (P=0.006, average effect size 0.50) groups, but were comparable among the formula groups.ConclusionOPN in an infant formula at a concentration close to that of human milk increased the proportion of circulating T cells compared with both SF and formula with added OPN at ~50% of the concentration in human milk. This suggests that OPN may favorably influence immune ontogeny in infancy and that the effects appear to be dose-dependent.
Collapse
Affiliation(s)
- Christina E West
- Department of Clincial Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | | | - Janet M Peerson
- Department of Nutrition, University of California, Davis, California
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois
| | - Yong-Mei Peng
- Department of Pediatrics, Fudan University, Shanghai, China
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, California
| |
Collapse
|
142
|
Abe S, Nochi H, Ito H. Human Articular Chondrocytes Induce Interleukin-2 Nonresponsiveness to Allogeneic Lymphocytes. Cartilage 2017; 8:300-306. [PMID: 28618867 PMCID: PMC5625858 DOI: 10.1177/1947603516661820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Introduction We previously showed that articular chondrocytes (ACs) have immune privilege and immunomodulatory functions like those of mesenchymal stem cells. To elucidate these mechanisms, we focused on interleukin-2 (IL-2), which plays critical roles in lymphocyte mitogenic activity. The purpose of this study was to explore whether ACs affect the role of IL-2 underlying immunomodulatory functions. Material and Methods Irradiated human ACs from osteoarthritis donors were used. Third-party ACs were added to the mixed lymphocyte reaction (MLR) with or without recombinant human IL-2 (rhIL-2), and the levels of IL-2 and the soluble form of the IL-2 receptor α (sIL-2Rα) protein in supernatant were measured by enzyme-linked immunosorbent assay. Recombinant human IL-2 (rhIL-2) was also added to the MLR. To detect the expression of IL-2 receptor α (CD25) on lymphocytes in the MLR, flow cytometric analysis was performed. Last, ACs and allogeneic activated CD4+ T cell were co-cultured, and the expression of CD25 on activated T cells was examined by flow cytometry. Results Third-party ACs significantly inhibited the MLR and reduced the level of sIL-2Rα in a dose-dependent manner, but did not affect the concentration of IL-2. Exogenous rhIL-2 accelerated MLR but did not rescue the inhibitory effect of ACs. ACs inhibited the expression of CD25 on activated CD4+ T cells. Discussion Our results showed that third-party ACs inhibited the proliferation of allogeneic activated lymphocytes, thereby inhibiting production sIL-2Rα, although ACs did not affect IL-2 secretion from lymphocytes. Also, ACs inhibited CD25 expression on activated CD4+ T cells. Thus, ACs inhibited the immune response of allogeneic lymphocytes by inducing IL-2 nonresponsiveness.
Collapse
Affiliation(s)
- Satomi Abe
- Department of Orthopaedic Surgery, Asahikawa Medical University, Asahikawa, Japan,Satomi Abe, Department of Orthopaedic Surgery, Asahikawa Medical University, Midorigaoka Higashi 2-1, 1-1, Asahikawa, Japan.
| | - Hitoshi Nochi
- Department of Orthopaedic Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroshi Ito
- Department of Orthopaedic Surgery, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
143
|
Antigen delivery to dendritic cells shapes human CD4+ and CD8+ T cell memory responses to Staphylococcus aureus. PLoS Pathog 2017; 13:e1006387. [PMID: 28542586 PMCID: PMC5444865 DOI: 10.1371/journal.ppat.1006387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Intracellular persistence of Staphylococcus aureus favors bacterial spread and chronic infections. Here, we provide evidence for the existence of human CD4+ and CD8+ T cell memory against staphylococcal antigens. Notably, the latter could provide a missing link in our understanding of immune control of intracellular S. aureus. The analyses showed that pulsing of monocyte-derived dendritic cells (MoDC) with native staphylococcal protein antigens induced release of Th2-associated cytokines and mediators linked to T regulatory cell development (G-CSF, IL-2 and IL-10) from both CD4+ and CD8+ T cells, thus revealing a state of tolerance predominantly arising from preformed memory T cells. Furthermore, G-CSF was identified as a suppressor of CD8+ T cell-derived IFNγ secretion, thus confirming a tolerogenic role of this cytokine in the regulation of T cell responses to S. aureus. Nevertheless, delivery of in vitro transcribed mRNA-encoded staphylococcal antigens triggered Th1-biased responses, e.g. IFNγ and TNF release from both naïve and memory T cells. Collectively, our data highlight the potential of mRNA-adjuvanted antigen presentation to enable inflammatory responses, thus overriding the existing Th2/Treg-biased memory T cell response to native S. aureus antigens. Staphylococcus aureus is deemed one of the most important nosocomial pathogens but, to date, there are no safe and protective vaccines. In this study we investigate the nature of the preformed T cell response to S. aureus antigens in healthy donors. Our data reveal that CD4+ and—so far not described—CD8+ T cell memory responses against native staphylococcal antigens exist but are skewed towards minimizing inflammation and promoting tolerance. The T cell response to staphylococcal antigens is characterized by the secretion of typical Th2 cytokines such as IL-5 and IL-13 and mediators associated with formation of T regulatory cells. Most importantly, G-CSF suppresses IFNγ release from pre-existent memory T cells. However, our data reveal that the use of mRNA-encoded antigens to trigger S. aureus-specific T cell responses bears the potential to override the tolerogenic bias. It favors TNF- and IFNγ-releasing T cells and may, thus, represent an innovative tool in prophylactic and therapeutic vaccine development.
Collapse
|
144
|
The effects of increased heme oxygenase-1 on the lymphoproliferative response in dogs with visceral leishmaniasis. Immunobiology 2017; 222:693-703. [DOI: 10.1016/j.imbio.2016.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/05/2016] [Accepted: 12/27/2016] [Indexed: 12/16/2022]
|
145
|
Waide EH, Tuggle CK, Serão NVL, Schroyen M, Hess A, Rowland RRR, Lunney JK, Plastow G, Dekkers JCM. Genomewide association of piglet responses to infection with one of two porcine reproductive and respiratory syndrome virus isolates. J Anim Sci 2017; 95:16-38. [PMID: 28177360 DOI: 10.2527/jas.2016.0874] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a devastating disease in the swine industry. Identification of host genetic factors that enable selection for improved performance during PRRS virus (PRRSV) infection would reduce the impact of this disease on animal welfare and production efficiency. We conducted genomewide association study (GWAS) analyses of data from 13 trials of approximately 200 commercial crossbred nursery-age piglets that were experimentally infected with 1 of 2 type 2 isolates of PRRSV (NVSL 97-7985 [NVSL] and KS2006-72109 [KS06]). Phenotypes analyzed were viral load (VL) in blood during the first 21 d after infection (dpi) and weight gain (WG) from 0 to 42 dpi. We accounted for the previously identified QTL in the region on SSC4 in our models to increase power to identify additional regions. Many regions identified by single-SNP analyses were not identified using Bayes-B, but both analyses identified the same regions on SSC3 and SSC5 to be associated with VL in the KS06 trials and on SSC6 in the NVSL trials ( < 5 × 10); for WG, regions on SSC5 and SSC17 were associated in the NVSL trials ( < 3 × 10). No regions were identified with either method for WG in the KS06 trials. Except for the region on SSC4, which was associated with VL for both isolates (but only with WG for NVSL), identified regions did not overlap between the 2 PRRSV isolate data sets, despite high estimates of the genetic correlation between isolates for traits based on these data. We also identified genomic regions whose associations with VL or WG interacted with either PRRSV isolate or with genotype at the SSC4 QTL. Gene ontology (GO) annotation terms for genes located near moderately associated SNP ( < 0.003) were enriched for multiple immunologically (VL) and metabolism- (WG) related GO terms. The biological relevance of these regions suggests that, although it may increase the number of false positives, the use of single-SNP analyses and a relaxed threshold also increased the identification of true positives. In conclusion, although only the SSC4 QTL was associated with response to both PRRSV isolates, genes near associated SNP were enriched for the same GO terms across PRRSV isolates, suggesting that host responses to these 2 isolates are affected by the actions of many genes that function together in similar biological processes.
Collapse
|
146
|
Afanasieva K, Chopei M, Lozovik A, Semenova A, Lukash L, Sivolob A. DNA loop domain organization in nucleoids from cells of different types. Biochem Biophys Res Commun 2017; 483:142-146. [DOI: 10.1016/j.bbrc.2016.12.177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022]
|
147
|
Lewicki S, Bałan BJ, Skopińska-Różewska E, Zdanowski R, Stelmasiak M, Szymański Ł, Stankiewicz W. Modulatory effects of feeding pregnant and lactating mice Rhodiola kirilowii extracts on the immune system of offspring. Exp Ther Med 2016; 12:3450-3458. [PMID: 27882178 PMCID: PMC5103842 DOI: 10.3892/etm.2016.3759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Plants of Rhodiola genus are medicinal herbs that have a number of therapeutic properties, including anti-inflammatory and immunomodulatory activity. The present study aimed to determine whether the use Rhodiola kirilowii as an immunostimulant during pregnancy has an adverse effect on the development of the offspring immune system. Following mating, pregnant mice were placed in three groups that were fed during pregnancy and lactation with R. kirilowii aqueous extract (RKW; 20 mg/kg), R. kirilowii 50% hydro-alcoholic extract (RKW-A; 20 mg/kg) or water (control group), receiving water. Following birth, offspring were given six weeks to develop prior to evaluation of their immune system. Morphometric and morphological examination of the spleen did not reveal any abnormalities or differences between the experimental and control groups. However, both RKW and RKW-A splenic lymphocytes presented a diminished proliferative response to concanavalin A. RKW spleen lymphocytes demonstrated increased metabolic activity following phytohaemagglutinin (PHA) stimulation, which was associated with a higher percentage of cluster of differentiation 4 positive spleen cells and lower interleukin-17a (IL-17a) serum concentration. The RKW-A group exhibited a diminished proliferative response of spleen lymphocytes to PHA and lipopolysaccharide (LPS), and increased serum concentrations of IL-10 and tumor necrosis factor-α (TNF-α). The progeny of mice fed with RKW-A extract demonstrated a significantly lower level of anti-SRBC antibody following immunization compared with progeny of the control (P=0.0305) and RKW (P=0.0331) groups. In conclusion, caution is recommended in the use of RKW and RKW-A extracts as immunostimulants in pregnancy.
Collapse
Affiliation(s)
- Sławomir Lewicki
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Barbara Joanna Bałan
- Department of Immunology, Biochemistry and Nutrition, Warsaw Medical University, 02-004 Warsaw, Poland
| | - Ewa Skopińska-Różewska
- Department of Pathomorphology, Center for Biostructure Research, Warsaw Medical University, 02-004 Warsaw, Poland
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Robert Zdanowski
- Department of Regenerative Medicine, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Marta Stelmasiak
- Department of Immunology, Biochemistry and Nutrition, Warsaw Medical University, 02-004 Warsaw, Poland
| | - Łukasz Szymański
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| | - Wanda Stankiewicz
- Department of Microwave Safety, Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland
| |
Collapse
|
148
|
Yang X, Xu F, Zhuang C, Bai C, Huang W, Song M, Han Y, Li Y. Effects of Corticosterone on Immune Functions of Cultured Rat Splenic Lymphocytes Exposed to Aluminum Trichloride. Biol Trace Elem Res 2016; 173:399-404. [PMID: 27008427 DOI: 10.1007/s12011-016-0678-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 01/13/2023]
Abstract
Aluminum (Al) exposure is toxic to immune system. Studies have implicated that glucocorticoids (GCs) exert the dual regulation effect on the immune function depending on the concentration. However, it is unknown whether a dual effect of GCs exists in the AlCl3-treated lymphocytes. Corticosterone (Cort) is one kind of GCs. To investigate the effect of different concentration Cort on AlCl3-treated lymphocytes, rat splenic lymphocyte was isolated and cultured with 0.55 mmol/L AlCl3, simultaneously administrated Cort at final concentration of 0 (control group, CG), 10(-8) (low-level group, LG), and 10(-6) (high-level group, HG) mol/L, respectively. Another group without AlCl3 and Cort served as the blank group (BG). We found that low concentration Cort increased the T and B lymphocyte proliferation rate, proportions of CD4(+) T lymphocyte subset, IgG, IL-2, and TNF-α contents, whereas high concentration Cort decreased those in AlCl3-treated lymphocytes. In conclusion, the results of this study indicated that low concentration Cort relieves the immunotoxicity of AlCl3 on the splenic lymphocytes, whereas high concentration Cort aggravates it.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Feibo Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Cuicui Zhuang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chongsheng Bai
- Yulin animal disease control center, Yulin, 719000, China
| | - Wanyue Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
149
|
Agur Z, Halevi-Tobias K, Kogan Y, Shlagman O. Employing dynamical computational models for personalizing cancer immunotherapy. Expert Opin Biol Ther 2016; 16:1373-1385. [PMID: 27564141 DOI: 10.1080/14712598.2016.1223622] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Recently, cancer immunotherapy has shown considerable success, but due to the complexity of the immune-cancer interactions, clinical outcomes vary largely between patients. A possible approach to overcome this difficulty may be to develop new methodologies for personal predictions of therapy outcomes, by the integration of patient data with dynamical mathematical models of the drug-affected pathophysiological processes. AREAS COVERED This review unfolds the story of mathematical modeling in cancer immunotherapy, and examines the feasibility of using these models for immunotherapy personalization. The reviewed studies suggest that response to immunotherapy can be improved by patient-specific regimens, which can be worked out by personalized mathematical models. The studies further indicate that personalized models can be constructed and validated relatively early in treatment. EXPERT OPINION The suggested methodology has the potential to raise the overall efficacy of the developed immunotherapy. If implemented already during drug development it may increase the prospects of the technology being approved for clinical use. However, schedule personalization, per se, does not comply with the current, 'one size fits all,' paradigm of clinical trials. It is worthwhile considering adjustment of the current paradigm to involve personally tailored immunotherapy regimens.
Collapse
Affiliation(s)
- Zvia Agur
- a Institute for Medical BioMathematics (IMBM) , Bene Ataroth , Israel
| | | | - Yuri Kogan
- a Institute for Medical BioMathematics (IMBM) , Bene Ataroth , Israel
| | - Ofer Shlagman
- a Institute for Medical BioMathematics (IMBM) , Bene Ataroth , Israel
| |
Collapse
|
150
|
Gill D, Hahn AW, Sonpavde G, Agarwal N. Immunotherapy of advanced renal cell carcinoma: Current and future therapies. Hum Vaccin Immunother 2016; 12:2997-3004. [PMID: 27494417 DOI: 10.1080/21645515.2016.1212794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously a malignancy with few therapeutic options, metastatic renal cell carcinoma (mRCC) treatment is rapidly evolving. Although cytokine therapies (interferon-a, interleukin-2) have been used less frequently over the past decade, recent approval of an immune checkpoint inhibitor, nivolumab, has led to a resurgence in immune therapy for mRCC. With greater understanding of the complex and dynamic interaction between the tumor and the immune system, numerous new immunotherapies are being studied for mRCC. In this article, we review the mechanism of action, clinical outcomes and toxicity profiles of both clinically approved and selected investigational immunotherapies. Either alone or in combination, these novel agents are encouraging for the future of mRCC therapy.
Collapse
Affiliation(s)
- David Gill
- a Department of Internal Medicine , University of Utah , Salt Lake City , UT , USA
| | - Andrew W Hahn
- a Department of Internal Medicine , University of Utah , Salt Lake City , UT , USA
| | - Guru Sonpavde
- b University of Alabama at Birmingham (UAB) , Birmingham , AL , USA
| | | |
Collapse
|