101
|
Abstract
Disruption of epigenetic gene control mechanisms in the brain causes significant cognitive impairment that is a debilitating hallmark of most neurodegenerative disorders, including Alzheimer's disease (AD). Histone acetylation is one of the best characterized of these epigenetic mechanisms that is critical for regulating learning- and memory- associated gene expression profiles, yet the specific histone acetyltransferases (HATs) that mediate these effects have yet to be fully characterized. Here, we investigate an epigenetic role for the HAT Tip60 in learning and memory formation using the Drosophila CNS mushroom body (MB) as a well-characterized cognition model. We show that Tip60 is endogenously expressed in the Kenyon cells, the intrinsic neurons of the MB, and in the MB axonal lobes. Targeted loss of Tip60 HAT activity in the MB causes thinner and shorter axonal lobes while increasing Tip60 HAT levels cause no morphological defects. Functional consequences of both loss and gain of Tip60 HAT levels in the MB are evidenced by defects in immediate-recall memory. Our ChIP-Seq analysis reveals that Tip60 target genes are enriched for functions in cognitive processes, and, accordingly, key genes representing these pathways are misregulated in the Tip60 HAT mutant fly brain. Remarkably, we find that both learning and immediate-recall memory deficits that occur under AD-associated, amyloid precursor protein (APP)-induced neurodegenerative conditions can be effectively rescued by increasing Tip60 HAT levels specifically in the MB. Together, our findings uncover an epigenetic transcriptional regulatory role for Tip60 in cognitive function and highlight the potential of HAT activators as a therapeutic option for neurodegenerative disorders.
Collapse
|
102
|
Im GI, Shin KJ. Epigenetic approaches to regeneration of bone and cartilage from stem cells. Expert Opin Biol Ther 2014; 15:181-93. [DOI: 10.1517/14712598.2015.960838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
103
|
Jensen AN, Chindaudomsate W, Thitiananpakorn K, Mongkolsuk S, Jensen LT. Improper protein trafficking contributes to artemisinin sensitivity in cells lacking the KDAC Rpd3p. FEBS Lett 2014; 588:4018-25. [PMID: 25263705 DOI: 10.1016/j.febslet.2014.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Lysine deacetylases (KDACs) inhibitors may have therapeutic value in anti-malarial combination therapies with artemisinin. To evaluate connections between KDACs and artemisinin, Saccharomyces cerevisiae deletion mutants in KDAC genes were assayed. Deletion of RPD3, but not other KDAC genes, resulted in strong sensitivity to artemisinin, which was also observed in sit4Δ mutants with impaired endoplasmic reticulum (ER) to Golgi protein trafficking. Decreased accumulation of the transporters Pdr5p, Fur4p, and Tat2p was observed in rpd3Δ and sit4Δ cells. The unfolded protein response is induced in rpd3Δ cells consistent with retention of proteins in the ER. Disruption of protein trafficking appears to sensitize cells to artemisinin and targeting these pathways may be useful as part of artemisinin based anti-malarial therapy.
Collapse
Affiliation(s)
| | | | | | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
104
|
Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens. Adv Bioinformatics 2014; 2014:104823. [PMID: 25214833 PMCID: PMC4158260 DOI: 10.1155/2014/104823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 01/26/2023] Open
Abstract
Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔGbinding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations.
Collapse
|
105
|
van Loosdregt J, Coffer PJ. Post-translational modification networks regulating FOXP3 function. Trends Immunol 2014; 35:368-78. [PMID: 25047417 DOI: 10.1016/j.it.2014.06.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 01/01/2023]
Abstract
Forkhead box (FOX)P3 is a requisite transcription factor for the development and maintenance of immunosuppressive function of regulatory T (Treg) cells, and therefore for immune homeostasis. Post-translational modifications (PTMs) can transiently alter the functionality of transcription factors, and recent evidence reveals that FOXP3 can be regulated by various PTMs including acetylation, ubiquitination, and phosphorylation. Here, we review the current understanding of how these modifications control FOXP3, including regulation of DNA binding, transactivation potential, and proteasomal degradation. We place these findings in the context of the biology of Treg cells, and discuss both limitations in translating biochemical findings into in vivo functions and the opportunities presented by a better understanding of the molecular mechanisms that can transiently control FOXP3 activity in response to environmental cues.
Collapse
Affiliation(s)
- Jorg van Loosdregt
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J Coffer
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
106
|
Ganai SA, Kalladi SM, Mahadevan V. HDAC inhibition through valproic acid modulates the methylation profiles in human embryonic kidney cells. J Biomol Struct Dyn 2014; 33:1185-97. [PMID: 25012937 DOI: 10.1080/07391102.2014.938247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Post-translational modifications on the tails of core and linker histones dictate transcription and have vital roles in disease and development. Acetylation and deacetylation events enabled by histone acetyl transferases and histone deacetylases (HDACs) on the chromatin milieu are intricately involved in gene regulation. Inhibition of HDACs is emerging as a powerful strategy in regenerative therapy, transplantation, development and in nuclear reprogramming events. Valproic acid (VPA), belonging to the short-chain fatty acid group of HDAC inhibitors, modulates the epigenome altering gene expression profiles across cell lines. This work attempts to explore the methylation profiles triggered by VPA treatment on human embryonic kidney cells (HEK 293) through a biochemical and computational approach. VPA treatment (for 48 h) has been observed to hypermethylate lysine 4 on the core histone H3 and confers a hypomethylation status of H3 lysine 27 in HEK 293 cells leaving the nuclear area and nuclear contour unaltered. Our structural docking and Binding Free Energy (BFE) calculations establish an active role for VPA in inhibiting the demethylase JARID1A (Jumonji, AT Rich Interactive Domain 1A) and the methyl-transferase EZH2 (Enhancer of Zeste Homologue 2). This work has also proven that VPA can inhibit the activity of proteins like GSK3β and PKCβII involved in developmental disorders. This work establishes a dynamic correlation between histone methylation events and HDAC inhibition and may define newer epigenetic strategies for treating neurodevelopmental and oncological disorders.
Collapse
Affiliation(s)
- Shabir Ahmad Ganai
- a Center for Nanotechnology & Advanced Biomaterials, School of Chemical & Biotechnology , SASTRA University , Thanjavur 613401 , India
| | | | | |
Collapse
|
107
|
Tsuchiya Y, Pham U, Hu W, Ohnuma SI, Gout I. Changes in acetyl CoA levels during the early embryonic development of Xenopus laevis. PLoS One 2014; 9:e97693. [PMID: 24831956 PMCID: PMC4022644 DOI: 10.1371/journal.pone.0097693] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/22/2014] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A (CoA) is a ubiquitous and fundamental intracellular cofactor. CoA acts as a carrier of metabolically important carboxylic acids in the form of CoA thioesters and is an obligatory component of a multitude of catabolic and anabolic reactions. Acetyl CoA is a CoA thioester derived from catabolism of all major carbon fuels. This metabolite is at a metabolic crossroads, either being further metabolised as an energy source or used as a building block for biosynthesis of lipids and cholesterol. In addition, acetyl CoA serves as the acetyl donor in protein acetylation reactions, linking metabolism to protein post-translational modifications. Recent studies in yeast and cultured mammalian cells have suggested that the intracellular level of acetyl CoA may play a role in the regulation of cell growth, proliferation and apoptosis, by affecting protein acetylation reactions. Yet, how the levels of this metabolite change in vivo during the development of a vertebrate is not known. We measured levels of acetyl CoA, free CoA and total short chain CoA esters during the early embryonic development of Xenopus laevis using HPLC. Acetyl CoA and total short chain CoA esters start to increase around midblastula transition (MBT) and continue to increase through stages of gastrulation, neurulation and early organogenesis. Pre-MBT embryos contain more free CoA relative to acetyl CoA but there is a shift in the ratio of acetyl CoA to CoA after MBT, suggesting a metabolic transition that results in net accumulation of acetyl CoA. At the whole-embryo level, there is an apparent correlation between the levels of acetyl CoA and levels of acetylation of a number of proteins including histones H3 and H2B. This suggests the level of acetyl CoA may be a factor, which determines the degree of acetylation of these proteins, hence may play a role in the regulation of embryogenesis.
Collapse
Affiliation(s)
- Yugo Tsuchiya
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Uyen Pham
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Wanzhou Hu
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Shin-ichi Ohnuma
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ivan Gout
- Institute of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
108
|
Wisnieski F, Calcagno DQ, Leal MF, Chen ES, Gigek CO, Santos LC, Pontes TB, Rasmussen LT, Payão SLM, Assumpção PP, Lourenço LG, Demachki S, Artigiani R, Burbano RR, Smith MC. Differential expression of histone deacetylase and acetyltransferase genes in gastric cancer and their modulation by trichostatin A. Tumour Biol 2014; 35:6373-81. [PMID: 24668547 DOI: 10.1007/s13277-014-1841-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/11/2014] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer is still the second leading cause of cancer-related death worldwide, even though its incidence and mortality have declined over the recent few decades. Epigenetic control using histone deacetylase inhibitors, such as trichostatin A (TSA), is a promising cancer therapy. This study aimed to assess the messenger RNA (mRNA) levels of three histone deacetylases (HDAC1, HDAC2, and HDAC3), two histone acetyltransferases (GCN5 and PCAF), and two possible targets of these histone modifiers (MYC and CDKN1A) in 50 matched pairs of gastric tumors and corresponding adjacent nontumors samples from patients with gastric adenocarcinoma, as well as their correlations and their possible associations with clinicopathological features. Additionally, we evaluated whether these genes are sensitive to TSA in gastric cancer cell lines. Our results demonstrated downregulation of HDAC1, PCAF, and CDKN1A in gastric tumors compared with adjacent nontumors (P < 0.05). On the other hand, upregulation of HDAC2, GCN5, and MYC was observed in gastric tumors compared with adjacent nontumors (P < 0.05). The mRNA level of MYC was correlated to HDAC3 and GCN5 (P < 0.05), whereas CDKN1A was correlated to HDAC1 and GCN5 (P < 0.05 and P < 0.01, respectively). In addition, the reduced expression of PCAF was associated with intestinal-type gastric cancer (P = 0.03) and TNM stages I/II (P = 0.01). The increased expression of GCN5 was associated with advanced stage gastric cancer (P = 0.02) and tumor invasion (P = 0.03). The gastric cell lines treated with TSA showed different patterns of histone deacetylase and acetyltransferase mRNA expression, downregulation of MYC, and upregulation of CDKN1A. Our findings suggest that alteration of histone modifier genes play an important role in gastric carcinogenesis, contributing to MYC and CDKN1A deregulation. In addition, all genes studied here are modulated by TSA, although this modulation appears to be dependent of the genetic background of the cell line.
Collapse
Affiliation(s)
- Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Bergadà L, Yeramian A, Sorolla A, Matias-Guiu X, Dolcet X. Antioxidants impair anti-tumoral effects of Vorinostat, but not anti-neoplastic effects of Vorinostat and caspase-8 downregulation. PLoS One 2014; 9:e92764. [PMID: 24651472 PMCID: PMC3961419 DOI: 10.1371/journal.pone.0092764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 02/26/2014] [Indexed: 11/18/2022] Open
Abstract
We have recently demonstrated that histone deacetylase inhibitor, Vorinostat, applied as a single therapy or in combination with caspase-8 downregulation exhibits high anti-tumoral activity on endometrial carcinoma cell lines. In the present study, we have assessed the signalling processes underlying anti-tumoral effects of Vorinostat. Increasing evidence suggests that reactive oxygen species are responsible for histone deacetylase inhibitor-induced cell killing. We have found that Vorinostat induces formation of reactive oxygen species and DNA damage. To investigate the role of oxidative stress as anti-neoplastic mechanism, we have evaluated the effects of different antioxidants (Bha, Nac and Tiron) on endometrial carcinoma cell line Ishikawa treated with Vorinostat. We show that Bha, Nac and Tiron markedly inhibited the cytotoxic effects of Vorinostat, increasing cell viability in vitro. We found that all three antioxidants did not inhibited accumulation of acetyl Histone H4, so that antioxidants did not inhibit Vorinostat activity. Finally, we have evaluated the effects of antioxidants on anti-tumoral activity of Vorinostat as monotherapy or in combination with caspase-8 downregulation in vivo. Interestingly, antioxidants blocked the reduction of tumour growth caused by Vorinostat, but they were unable to inhibit anti-tumoral activity of Vorinostat plus caspase-8 inhibition.
Collapse
Affiliation(s)
- Laura Bergadà
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Andree Yeramian
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Annabel Sorolla
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Dolcet
- Oncologic Pathology Group, Department de Ciències Mèdiques Bàsiques, Universitat de Lleida, Hospital Universitari Arnau de Vilanova, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
- * E-mail:
| |
Collapse
|
110
|
Cosín-Tomás M, Alvarez-López MJ, Sanchez-Roige S, Lalanza JF, Bayod S, Sanfeliu C, Pallàs M, Escorihuela RM, Kaliman P. Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Front Aging Neurosci 2014; 6:51. [PMID: 24688469 PMCID: PMC3960508 DOI: 10.3389/fnagi.2014.00051] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/03/2014] [Indexed: 02/03/2023] Open
Abstract
The senescence-accelerated SAMP8 mouse model displays features of cognitive decline and Alzheimer's disease. With the purpose of identifying potential epigenetic markers involved in aging and neurodegeneration, here we analyzed the expression of 84 mature miRNAs, the expression of histone-acetylation regulatory genes and the global histone acetylation in the hippocampus of 8-month-old SAMP8 mice, using SAMR1 mice as control. We also examined the modulation of these parameters by 8 weeks of voluntary exercise. Twenty-one miRNAs were differentially expressed between sedentary SAMP8 and SAMR1 mice and seven miRNAs were responsive to exercise in both strains. SAMP8 mice showed alterations in genes involved in protein acetylation homeostasis such as Sirt1 and Hdac6 and modulation of Hdac3 and Hdac5 gene expression by exercise. Global histone H3 acetylation levels were reduced in SAMP8 compared with SAMR1 mice and reached control levels in response to exercise. In sum, data presented here provide new candidate epigenetic markers for aging and neurodegeneration and suggest that exercise training may prevent or delay some epigenetic alterations associated with accelerated aging.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Unitat de Farmacologia, Facultat de Farmàcia Institut de Biomedicina Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes Barcelona, Spain ; Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, Spain
| | - María J Alvarez-López
- Unitat de Farmacologia, Facultat de Farmàcia Institut de Biomedicina Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes Barcelona, Spain ; Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, Spain
| | - Sandra Sanchez-Roige
- Departamento de Psiquiatría y Medicina Legal, Facultad de Medicina, Instituto de Neurociencias, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Jaume F Lalanza
- Departamento de Psiquiatría y Medicina Legal, Facultad de Medicina, Instituto de Neurociencias, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Sergi Bayod
- Unitat de Farmacologia, Facultat de Farmàcia Institut de Biomedicina Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes Barcelona, Spain
| | - Coral Sanfeliu
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, Spain
| | - Merce Pallàs
- Unitat de Farmacologia, Facultat de Farmàcia Institut de Biomedicina Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes Barcelona, Spain
| | - Rosa M Escorihuela
- Departamento de Psiquiatría y Medicina Legal, Facultad de Medicina, Instituto de Neurociencias, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Perla Kaliman
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC) Barcelona, Spain
| |
Collapse
|
111
|
Spiegelberg BD. G protein coupled-receptor signaling and reversible lysine acetylation. J Recept Signal Transduct Res 2013; 33:261-6. [PMID: 23895385 DOI: 10.3109/10799893.2013.822889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Emerging data suggest that interaction with reversible protein acetylation is an important mediator of GPCR-initiated changes in transcription and other processes. Alteration of acetylation downstream of GPCR activation occurs through a variety of mechanisms, including kinase-dependent and -independent regulation of histone deacetylases (HDACs) and histone acetyltransferases (HATs). The prominence of both GPCR and acetylation in pathology and drug development efforts highlights the importance of understanding cross-talk between these two signaling mechanisms.
Collapse
Affiliation(s)
- Bryan D Spiegelberg
- Department of Chemistry and Biochemistry, Rider University , New Jersey , USA
| |
Collapse
|
112
|
Posttranslational modifications of HIV-1 integrase by various cellular proteins during viral replication. Viruses 2013; 5:1787-801. [PMID: 23863879 PMCID: PMC3738961 DOI: 10.3390/v5071787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022] Open
Abstract
HIV-1 integrase (IN) is a key viral enzyme during HIV-1 replication that catalyzes the insertion of viral DNA into the host genome. Recent studies have provided important insights into the multiple posttranslational modifications (PTMs) of IN (e.g., ubiquitination, SUMOylation, acetylation and phosphorylation), which regulate its multifaceted functions. A number of host cellular proteins, including Lens Epithelium‑derived Growth factor (LEDGF/p75), p300 and Ku70 have been shown to interact with IN and be involved in the PTM process of IN, either facilitating or counteracting the IN PTMs. Although previous studies have revealed much about the important roles of IN PTMs, how IN functions are fine-tuned by these PTMs under the physiological setting still needs to be determined. Here, we review the advances in the understanding of the mechanisms and roles of multiple IN PTMs.
Collapse
|
113
|
Park BNR, Kim SW, Cho SR, Lee JY, Lee YH, Kim SH. Epigenetic regulation in the brain after spinal cord injury : a comparative study. J Korean Neurosurg Soc 2013; 53:337-41. [PMID: 24003367 PMCID: PMC3756125 DOI: 10.3340/jkns.2013.53.6.337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/03/2013] [Accepted: 06/19/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE After spinal cord injury (SCI), functional and structural reorganization occurs at multiple levels of brain including motor cortex. However, the underlying mechanism still remains unclear. The current study was performed to investigate the alterations in the expression of the main regulators of neuronal development, survival and death, in the brain following thoracic contusive SCI in a mouse model. METHODS Eight-week-old female imprinting control region mice (n=60; 30-35 g) were used in this study. We analyzed the expression levels of regulators such as brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF) and histone deacetylase (HDAC) 1 in the brain following thoracic contusive SCI. RESULTS The expression of BDNF levels were elevated significantly compared with control group at 2 weeks after injury (p<0.05). The expression of NGF levels were elevated at 2, 4 weeks compared with control group, but these difference were not significant (p>0.05). The GDNF levels were elevated at 2 week compared with control group, but these differences were not significant (p>0.05). The difference of HDAC1 levels were not significant at 2, 4 and 8 weeks compared with control group (p>0.05). CONCLUSION These results demonstrate that the upregulation of BDNF may play on important role in brain reorganization after SCI.
Collapse
Affiliation(s)
- Bit-Na-Ri Park
- Department of Rehabilitation Medicine, Wonju Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | | | | | | | | | | |
Collapse
|
114
|
Li M, Li X, Wang E, Luo E. Upregulation of Toll-like receptor 2 gene expression by acetylation of AP-2 alpha in THP-1 cells, a human monocytic cell line. Int J Biochem Cell Biol 2013; 45:1594-9. [PMID: 23680675 DOI: 10.1016/j.biocel.2013.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 11/27/2022]
Abstract
Human Toll-like receptor 2 (TLR2) is a receptor for a variety of microbial products and mediates activation signals in cells of the innate immune system. Therefore, it is of great interest to investigate the molecular mechanisms that control the expression of TLR2. In this study, using real-time PCR and western blot assays, we show that trichostatin A (TSA), which is a histone deacetylase inhibitor, upregulates the expression of both TLR2 mRNA and protein in the human THP-1 cell line. A luciferase activity analysis of the truncated TLR2 promoter indicated that the region from -230 to -140 in the TLR2 promoter was sensitive to TSA. Moreover, using electrophoresis mobility shift and chromatin immunoprecipitation assays, we identified an AP-2 alpha (AP-2α) responsive element at position -184 and found that the binding of AP-2α to this element was enhanced by TSA under in vitro and in vivo conditions. Immunoprecipitation and western blot analyses showed that the levels of acetylated AP-2α were increased in THP-1 cells after TSA treatment, and this increase is consistent with the increased binding affinity to the AP-2α responsive elements. In summary, these data define a mechanism through which AP-2α acetylation and increased promoter access induce the expression of the TLR2 gene. This mechanism may provide insight into a regulatory mode of TLR2 expression and the molecular foundations of certain immunological diseases.
Collapse
Affiliation(s)
- Miao Li
- Department of Pathogen Biology, College of Basic Medical Sciences, China Medical University, Shenyang 110001, China
| | | | | | | |
Collapse
|
115
|
Pirooznia SK, Elefant F. A HAT for sleep?: epigenetic regulation of sleep by Tip60 in Drosophila. Fly (Austin) 2013; 7:99-104. [PMID: 23572111 DOI: 10.4161/fly.24141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sleep disturbances are common in neurodegenerative diseases such as Alzheimer disease (AD). Unfortunately, how AD is mechanistically linked with interference of the body's natural sleep rhythms remains unclear. Our recent findings provide insight into this question by demonstrating that sleep disruption associated with AD is driven by epigenetic changes mediated by the histone acetyltransferase (HAT) Tip60. In this study, we show that Tip60 functionally interacts with the AD associated amyloid precursor protein (APP) to regulate axonal growth of Drosophila small ventrolateral neuronal (sLNv) pacemaker cells, and their production of neuropeptide pigment dispersing factor (PDF) that stabilizes appropriate sleep-wake patterns in the fly. Loss of Tip60 HAT activity under APP neurodegenerative conditions causes decreased PDF production, retraction of the sLNv synaptic arbor required for PDF release and disruption of sleep-wake cycles in these flies. Remarkably, excess Tip60 in conjunction with APP fully rescues these sleep-wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for Tip60 in these processes. Our studies highlight the importance of epigenetic based mechanisms underlying sleep disturbances in neurodegenerative diseases like AD.
Collapse
|
116
|
Pirooznia SK, Elefant F. Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities. Front Cell Neurosci 2013; 7:30. [PMID: 23543406 PMCID: PMC3610086 DOI: 10.3389/fncel.2013.00030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/10/2013] [Indexed: 12/28/2022] Open
Abstract
Dynamic epigenetic regulation of neurons is emerging as a fundamental mechanism by which neurons adapt their transcriptional responses to specific developmental and environmental cues. While defects within the neural epigenome have traditionally been studied in the context of early developmental and heritable cognitive disorders, recent studies point to aberrant histone acetylation status as a key mechanism underlying acquired inappropriate alterations of genome structure and function in post-mitotic neurons during the aging process. Indeed, it is becoming increasingly evident that chromatin acetylation status can be impaired during the lifetime of neurons through mechanisms related to loss of function of histone acetyltransferase (HAT) activity. Several HATs have been shown to participate in vital neuronal functions such as regulation of neuronal plasticity and memory formation. As such, dysregulation of such HATs has been implicated in the pathogenesis associated with age-associated neurodegenerative diseases and cognitive decline. In order to counteract the loss of HAT function in neurodegenerative diseases, the current therapeutic strategies involve the use of small molecules called histone deacetylase (HDAC) inhibitors that antagonize HDAC activity and thus enhance acetylation levels. Although this strategy has displayed promising therapeutic effects, currently used HDAC inhibitors lack target specificity, raising concerns about their applicability. With rapidly evolving literature on HATs and their respective functions in mediating neuronal survival and higher order brain function such as learning and memory, modulating the function of specific HATs holds new promises as a therapeutic tool in neurodegenerative diseases. In this review, we focus on the recent progress in research regarding epigenetic histone acetylation mechanisms underlying neuronal activity and cognitive function. We discuss the current understanding of specific HDACs and HATs in neurodegenerative diseases and the future promising prospects of using specific HAT based therapeutic approaches.
Collapse
|
117
|
Pagliarani A, Nesci S, Ventrella V. Toxicity of organotin compounds: shared and unshared biochemical targets and mechanisms in animal cells. Toxicol In Vitro 2013; 27:978-990. [PMID: 23232461 DOI: 10.1016/j.tiv.2012.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 11/08/2012] [Accepted: 12/03/2012] [Indexed: 01/10/2023]
Abstract
Most biochemical effects of organotin compounds leading to toxicity are astonishingly similar in different animal species. In vitro tests, designed to explore organotin action modes at cell level by minimizing interfering factors, point out akin responses to these man-made environmental pollutants from prokaryotes to mammals. On the other hand, a broad susceptibility range to organotin toxicants of animal cells and variegated action mechanisms of these compounds have been reported both in vitro and in vivo studies. Endocrine and lipid homeostasis perturbations span from mollusks to mammals, in which organotins mainly favor fat accumulation. Lipid changes were also found in Bacteria. Organotin are immunotoxic both in invertebrates and humans. Mitochondria and membrane functions seem to be a preferred target of these lipophilic pollutants. The inhibition of key membrane-bound enzyme complexes such as Na,K-and F0F1-ATPases, accompanied by perturbation of hydromineral balance, membrane potential and bioenergetics, has been widely reported. Highly conserved mechanisms could be involved in organotin binding to nuclear receptors, membrane components and intracellular proteins as well as in promoting DNA damage, all widely shared action modes of these toxicants. Accordingly, the different responsiveness/refractoriness to organotins, here overviewed, may mirror the biochemical-physiological selectivity of biomembranes, signalling pathways and intracellular protein components.
Collapse
|
118
|
Hunt CR, Ramnarain D, Horikoshi N, Iyengar P, Pandita RK, Shay JW, Pandita TK. Histone modifications and DNA double-strand break repair after exposure to ionizing radiations. Radiat Res 2013; 179:383-92. [PMID: 23373901 DOI: 10.1667/rr3308.2] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ionizing radiation exposure induces highly lethal DNA double-strand breaks (DSBs) in all phases of the cell cycle. After DSBs are detected by the cellular machinery, these breaks are repaired by either of two mechanisms: (1) nonhomologous end joining (NHEJ), which re-ligates the broken ends of the DNA and (2) homologous recombination (HR), that makes use of an undamaged identical DNA sequence as a template to maintain the fidelity of DNA repair. DNA DSB repair must occur within the context of the natural cellular DNA structure. Among the major factors influencing DNA organization are specific histone and nonhistone proteins that form chromatin. The overall chromatin structure regulates DNA damage responses since chromatin status can impede DNA damage site access by repair proteins. During the process of DNA DSB repair, several chromatin alterations are required to sense damage and facilitate accessibility of the repair machinery. The DNA DSB response is also facilitated by hierarchical signaling networks that orchestrate chromatin structural changes that may coordinate cell-cycle checkpoints involving multiple enzymatic activities to repair broken DNA ends. During DNA damage sensing and repair, histones undergo posttranslational modifications (PTMs) including phosphorylation, acetylation, methylation and ubiquitylation. Such histone modifications represent a histone code that directs the recruitment of proteins involved in DNA damage sensing and repair processes. In this review, we summarize histone modifications that occur during DNA DSB repair processes.
Collapse
Affiliation(s)
- Clayton R Hunt
- University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Li CY, Peng J, Ren LP, Gan LX, Lu XJ, Liu Q, Gu W, Guo XJ. Roles of histone hypoacetylation in LAT expression on T cells and Th2 polarization in allergic asthma. J Transl Med 2013; 11:26. [PMID: 23360572 PMCID: PMC3598218 DOI: 10.1186/1479-5876-11-26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/12/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Linker for activation of T cells (LAT), a transmembrane adaptor protein, plays a role in T cell and mast cell function, while it remains unclear how histone modifications mediate LAT expression in allergic asthma. The present study aimed at understanding alterations of lymphocyte LAT in patients with asthma and potential mechanisms by which histone modulation may be involved in. METHOD The expression of LAT mRNA was checked by Quantitative real-time PCR and histone hypoacetylation on LAT promoter was detected by Chromatin Immunoprecipitation. RESULTS Our results demonstrated that the expression of LAT mRNA in peripheral blood T cells from patients with asthma decreased, as compared to healthy controls. Peripheral blood T cells were treated with pCMV-myc-LAT, pCMV-myc or LAT-siRNA plasmid. Over-expression of LAT mRNA and decrease of Th2 cytokine production were noted, which could be prevented by the inhibition of LAT. The further investigation of the role of histone was performed in an asthma model induced by allergen. Histone hypoacetylation on LAT promoter could inhibit LAT expression and enhanced Th2 differentiation, while trichostatin A, a histone deacetylase inhibitor, promoted LAT expression and inhibited Th2 cytokine production. CONCLUSION Our results indicate that histone hypoacetylation may regulate LAT expression on T cells and modify Th2 polarization in allergic asthma.
Collapse
Affiliation(s)
- Cheng-ye Li
- Department of Respiratory Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
121
|
Histone deacetylase inhibitors in the treatment of cancer: overview and perspectives. Future Med Chem 2012; 4:1439-60. [PMID: 22857533 DOI: 10.4155/fmc.12.80] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are one of the last frontiers in pharmaceutical research. Several classes of HDACi have been identified. Although more than 20 HDACi are under preclinical and clinical investigation as single agents and in combination therapies against different cancers, just two of them were approved by the US FDA: Zolinza(®) and Istodax(®), both licensed for the treatment of cutaneous T-cell lymphoma, the latter also of peripheral T-cell lymphoma. Since HDAC enzymes act by forming multiprotein complexes (clusters), containing cofactors, the main problem in designing new HDACi is that the inhibition activity evaluated on isolated enzyme isoforms does not match the in vivo outcomes. In the coming years, the research will be oriented toward a better understanding of the functioning of these protein complexes as well as the development of new screening assays, with the final goal to obtain new drug candidates for the treatment of cancer.
Collapse
|
122
|
Abstract
Aging is a complex trait and is influenced by multiple factors that are both intrinsic and extrinsic to the organism (Kirkwood et al. 2000; Knight 2000). Efforts to understanding the mechanisms that extend or shorten lifespan have been made since the early twentieth century. Aging is characteristically associated with a progressive decline in the overall fitness of the organism. Several studies have provided valuable information about the molecular events that accompany this process and include accumulation of nuclear and mitochondrial mutations, shortened and dysfunctional telomeres, oxidative damage of protein/DNA, senescence and apoptosis (Muller 2009). Clinical studies and work on model organisms have shown that there is an increased susceptibility to conditions such as neurological disorders, diabetes, cardiovascular diseases, degenerative syndromes and even cancers, with age (Arvanitakis et al. 2006; Lee and Kim 2006; Rodriguez and Fraga 2010).
Collapse
Affiliation(s)
- Asmitha Lazarus
- B-306, Department of Biological Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai, 400 005, India
| | | | | |
Collapse
|
123
|
Monk C, Spicer J, Champagne FA. Linking prenatal maternal adversity to developmental outcomes in infants: the role of epigenetic pathways. Dev Psychopathol 2012; 24:1361-76. [PMID: 23062303 PMCID: PMC3730125 DOI: 10.1017/s0954579412000764] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Prenatal exposure to maternal stress, anxiety, and depression can have lasting effects on infant development with risk of psychopathology. Although the impact of prenatal maternal distress has been well documented, the potential mechanisms through which maternal psychosocial variables shape development have yet to be fully elucidated. Advances in molecular biology have highlighted the role of epigenetic mechanisms in regulating gene activity, neurobiology, and behavior and the potential role of environmentally induced epigenetic variation in linking early life exposures to long-term biobehavioral outcomes. In this article, we discuss evidence illustrating the association between maternal prenatal distress and both fetal and infant developmental trajectories and the potential role of epigenetic mechanisms in mediating these effects. Postnatal experiences may have a critical moderating influence on prenatal effects, and we review findings illustrating prenatal-postnatal interplay and the developmental and epigenetic consequences of postnatal mother-infant interactions. The in utero environment is regulated by placental function and there is emerging evidence that the placenta is highly susceptible to maternal distress and a target of epigenetic dysregulation. Integrating studies of prenatal exposures, placental function, and postnatal maternal care with the exploration of epigenetic mechanisms may provide novel insights into the pathophysiology induced by maternal distress.
Collapse
Affiliation(s)
- Catherine Monk
- Columbia University, Departments of Psychiatry and Obstetrics & Gynecology, 1150 St. Nicholas Avenue, Suite 1-121, New York, NY 10032
| | - Julie Spicer
- Columbia University, Departments of Psychiatry and Obstetrics & Gynecology, 1150 St. Nicholas Avenue, Suite 1-121, New York, NY 10032
| | - Frances A. Champagne
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York NY 10027
| |
Collapse
|
124
|
Zhang W, Prakash C, Sum C, Gong Y, Li Y, Kwok JJT, Thiessen N, Pettersson S, Jones SJM, Knapp S, Yang H, Chin KC. Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem 2012; 287:43137-55. [PMID: 23086925 DOI: 10.1074/jbc.m112.413047] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transcriptional elongation by RNA polymerase II (Pol II) is regulated by positive transcription elongation factor b (P-TEFb) in association with bromodomain-containing protein 4 (BRD4). We used genome-wide chromatin immunoprecipitation sequencing in primary human CD4+ T cells to reveal that BRD4 co-localizes with Ser-2-phosphorylated Pol II (Pol II Ser-2) at both enhancers and promoters of active genes. Disruption of bromodomain-histone acetylation interactions by JQ1, a small-molecule bromodomain inhibitor, resulted in decreased BRD4 binding, reduced Pol II Ser-2, and reduced expression of lineage-specific genes in primary human CD4+ T cells. A large number of JQ1-disrupted BRD4 binding regions exhibited diacetylated H4 (lysine 5 and -8) and H3K27 acetylation (H3K27ac), which correlated with the presence of histone acetyltransferases and deacetylases. Genes associated with BRD4/H3K27ac co-occupancy exhibited significantly higher activity than those associated with H3K27ac or BRD4 binding alone. Comparison of BRD4 binding in T cells and in human embryonic stem cells revealed that enhancer BRD4 binding sites were predominantly lineage-specific. Our findings suggest that BRD4-driven Pol II phosphorylation at serine 2 plays an important role in regulating lineage-specific gene transcription in human CD4+ T cells.
Collapse
Affiliation(s)
- Weishi Zhang
- Laboratory of Gene Regulation and Inflammation, SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, Immunos 04-00, 8A Biomedical Grove, Singapore
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
The introduction of highly active antiretroviral therapy (HAART) has been an important breakthrough in the treatment of HIV-1 infection and has also a powerful tool to upset the equilibrium of viral production and HIV-1 pathogenesis. Despite the advent of potent combinations of this therapy, the long-lived HIV-1 reservoirs like cells from monocyte-macrophage lineage and resting memory CD4+ T cells which are established early during primary infection constitute a major obstacle to virus eradication. Further HAART interruption leads to immediate rebound viremia from latent reservoirs. This paper focuses on the essentials of the molecular mechanisms for the establishment of HIV-1 latency with special concern to present and future possible treatment strategies to completely purge and target viral persistence in the reservoirs.
Collapse
|
126
|
Murayama C, Miyazaki H, Miyamoto A, Shimizu T. Luteinizing hormone (LH) regulates production of androstenedione and progesterone via control of histone acetylation of StAR and CYP17 promoters in ovarian theca cells. Mol Cell Endocrinol 2012; 350:1-9. [PMID: 22155568 DOI: 10.1016/j.mce.2011.11.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/11/2011] [Accepted: 11/15/2011] [Indexed: 11/17/2022]
Abstract
Although luteinizing hormone (LH) affects androstenedione (A4) and progesterone (P4) production in theca cells, it is still unknown how LH influences molecular mechanism of A4 and P4 production. To examine the relationship between LH and transcription factors involved in A4 and P4 production, ovarian theca cells were cultured in the presence or absence of high concentrations of LH for 24 h (pre-treatment with high concentration of LH) and then cultured in the presence or absence of low concentration of LH for 48 h. Low LH enhanced production of A4 and P4, and expressions of CYP17 and StAR mRNA in theca cells without pre-treatment with high LH. In addition, low LH stimulated the expression of SF-1 protein in nuclear fractions from theca cells with or without pre-treatment with high LH. The binding of SF-1 to the CYP17 and StAR promoter regions increased in theca cells treated with low LH. Although GATA-4 and GATA-6 are both found in the nuclear fraction but not in the cytosol of theca cells, low LH enhanced the binding of GATA-6, but not of GATA-4, to the CYP17 promoter region without pre-treatment with high LH. Acetylation histone H3 in StAR and CYP17 promoter regions were changed by different LH-dosage. Overall, we showed that LH regulates the production of A4 and P4 by affecting the nuclear localization and switching of transcription factors in theca cells and that target transcription factors involved in steroid production in theca cells are changed by different LH concentration.
Collapse
Affiliation(s)
- Chiaki Murayama
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Inada-machi, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | |
Collapse
|
127
|
Shen T, Li Y, Yang L, Xu X, Liang F, Liang S, Ba G, Xue F, Fu Q. Upregulation of Polo-like kinase 2 gene expression by GATA-1 acetylation in human osteosarcoma MG-63 cells. Int J Biochem Cell Biol 2012; 44:423-9. [DOI: 10.1016/j.biocel.2011.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 01/15/2023]
|
128
|
Saha B, Mukherjee A, Samanta S, Paul S, Bhattacharya D, Santra CR, Karmakar P. A novel Cu(ii)–mal–picoline complex induces mitotic catastrophe mediated by deacetylation of histones and α-tubulin leading to apoptosis in human cell lines. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md00285j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
129
|
Champagne FA. Interplay between social experiences and the genome: epigenetic consequences for behavior. ADVANCES IN GENETICS 2012; 77:33-57. [PMID: 22902125 DOI: 10.1016/b978-0-12-387687-4.00002-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Social experiences can have a persistent effect on biological processes leading to phenotypic diversity. Variation in gene regulation has emerged as a mechanism through which the interplay between DNA and environments leads to the biological encoding of these experiences. Epigenetic modifications-molecular pathways through which transcription is altered without altering the underlying DNA sequence-play a critical role in the normal process of development and are being increasingly explored as a mechanism linking environmental experiences to long-term biobehavioral outcomes. In this review, evidence implicating epigenetic factors, such as DNA methylation and histone modifications, in the link between social experiences occurring during the postnatal period and in adulthood and altered neuroendocrine and behavioral outcomes will be highlighted. In addition, the role of epigenetic mechanisms in shaping variation in social behavior and the implications of epigenetics for our understanding of the transmission of traits across generations will be discussed.
Collapse
|
130
|
Bhadra MP, Horikoshi N, Pushpavallipvalli SNCVL, Sarkar A, Bag I, Krishnan A, Lucchesi JC, Kumar R, Yang Q, Pandita RK, Singh M, Bhadra U, Eissenberg JC, Pandita TK. The role of MOF in the ionizing radiation response is conserved in Drosophila melanogaster. Chromosoma 2011; 121:79-90. [PMID: 22072291 DOI: 10.1007/s00412-011-0344-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/05/2011] [Accepted: 09/19/2011] [Indexed: 12/20/2022]
Abstract
In Drosophila, males absent on the first (MOF) acetylates histone H4 at lysine 16 (H4K16ac). This acetylation mark is highly enriched on the male X chromosome and is required for dosage compensation in Drosophila but not utilized for such in mammals. Recently, we and others reported that mammalian MOF, through H4K16ac, has a critical role at multiple stages in the DNA damage response (DDR) and double-strand break repair pathways. The goal of this study was to test whether mof is similarly required for the response to ionizing radiation (IR) in Drosophila. We report that Drosophila mof mutations in males and females, as well as mof knockdown in SL-2 cells, reduce post-irradiation survival. MOF depletion in SL-2 cells also results in an elevated frequency of metaphases with chromosomal aberrations, suggesting that MOF is involved in DDR. Mutation in Drosophila mof also results in a defective mitotic checkpoint, enhanced apoptosis, and a defective p53 response post-irradiation. In addition, IR exposure enhanced H4K16ac levels in Drosophila as it also does in mammals. These results are the first to demonstrate a requirement for MOF in the whole animal IR response and suggest that the role of MOF in the response to IR is conserved between Drosophila and mammals.
Collapse
Affiliation(s)
- Manika P Bhadra
- Indian Institute of Chemical Technology, Hyderabad, AP 500007, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
132
|
Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys J 2011; 100:1902-9. [PMID: 21504726 DOI: 10.1016/j.bpj.2011.03.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/16/2011] [Accepted: 03/09/2011] [Indexed: 11/21/2022] Open
Abstract
Histone deacetylation and acetylation are catalyzed by histone deacetylase (HDAC) and histone acetyltransferase, respectively, which play important roles in the regulation of chromatin remodeling, gene expression, and cell functions. However, whether and how biophysical cues modulate HDAC activity and histone acetylation is not well understood. Here, we tested the hypothesis that microtopographic patterning and mechanical strain on the substrate regulate nuclear shape, HDAC activity, and histone acetylation. Bone marrow mesenchymal stem cells (MSCs) were cultured on elastic membranes patterned with parallel microgrooves 10 μm wide that kept MSCs aligned along the axis of the grooves. Compared with MSCs on an unpatterned substrate, MSCs on microgrooves had elongated nuclear shape, a decrease in HDAC activity, and an increase of histone acetylation. To investigate anisotropic mechanical sensing by MSCs, cells on the elastic micropatterned membranes were subjected to static uniaxial mechanical compression or stretch in the direction parallel or perpendicular to the microgrooves. Among the four types of loads, compression or stretch perpendicular to the microgrooves caused a decrease in HDAC activity, accompanied by the increase in histone acetylation and slight changes of nuclear shape. Knocking down nuclear matrix protein lamin A/C abolished mechanical strain-induced changes in HDAC activity. These results demonstrate that micropattern and mechanical strain on the substrate can modulate nuclear shape, HDAC activity, and histone acetylation in an anisotropic manner and that nuclear matrix mediates mechanotransduction. These findings reveal a new mechanism, to our knowledge, by which extracellular biophysical signals are translated into biochemical signaling events in the nucleus, and they will have significant impact in the area of mechanobiology and mechanotransduction.
Collapse
|
133
|
Meissner JD, Freund R, Krone D, Umeda PK, Chang KC, Gros G, Scheibe RJ. Extracellular signal-regulated kinase 1/2-mediated phosphorylation of p300 enhances myosin heavy chain I/beta gene expression via acetylation of nuclear factor of activated T cells c1. Nucleic Acids Res 2011; 39:5907-25. [PMID: 21498542 PMCID: PMC3152325 DOI: 10.1093/nar/gkr162] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nuclear factor of activated T-cells (NFAT) c1 has been shown to be essential for Ca2+-dependent upregulation of myosin heavy chain (MyHC) I/β expression during skeletal muscle fiber type transformation. Here, we report activation of extracellular signal-regulated kinase (ERK) 1/2 in Ca2+-ionophore-treated C2C12 myotubes and electrostimulated soleus muscle. Activated ERK1/2 enhanced NFATc1-dependent upregulation of a −2.4 kb MyHCI/β promoter construct without affecting subcellular localization of endogenous NFATc1. Instead, ERK1/2-augmented phosphorylation of transcriptional coactivator p300, promoted its recruitment to NFATc1 and increased NFATc1–DNA binding to a NFAT site of the MyHCI/β promoter. In line, inhibition of ERK1/2 signaling abolished the effects of p300. Comparison between wild-type p300 and an acetyltransferase-deficient mutant (p300DY) indicated increased NFATc1–DNA binding as a consequence of p300-mediated acetylation of NFATc1. Activation of the MyHCI/β promoter by p300 depends on two conserved acetylation sites in NFATc1, which affect DNA binding and transcriptional stimulation. NFATc1 acetylation occurred in Ca2+-ionophore treated C2C12 myotubes or electrostimulated soleus. Finally, endogenous MyHCI/β gene expression in C2C12 myotubes was strongly inhibited by p300DY and a mutant deficient in ERK phosphorylation sites. In conclusion, ERK1/2-mediated phosphorylation of p300 is crucial for enhancing NFATc1 transactivation function by acetylation, which is essential for Ca2+-induced MyHCI/β expression.
Collapse
Affiliation(s)
- Joachim D Meissner
- Department of Vegetative Physiology, Institute of Biochemistry, Hannover Medical School, D-30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
134
|
Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J, Rossi D, Chadburn A, Murty VV, Mullighan CG, Gaidano G, Rabadan R, Brindle PK, Dalla-Favera R. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 2011; 471:189-95. [PMID: 21390126 PMCID: PMC3271441 DOI: 10.1038/nature09730] [Citation(s) in RCA: 718] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 12/02/2010] [Indexed: 12/21/2022]
Abstract
B-cell non-Hodgkin's lymphoma comprises biologically and clinically distinct diseases the pathogenesis of which is associated with genetic lesions affecting oncogenes and tumour-suppressor genes. We report here that the two most common types--follicular lymphoma and diffuse large B-cell lymphoma--harbour frequent structural alterations inactivating CREBBP and, more rarely, EP300, two highly related histone and non-histone acetyltransferases (HATs) that act as transcriptional co-activators in multiple signalling pathways. Overall, about 39% of diffuse large B-cell lymphoma and 41% of follicular lymphoma cases display genomic deletions and/or somatic mutations that remove or inactivate the HAT coding domain of these two genes. These lesions usually affect one allele, suggesting that reduction in HAT dosage is important for lymphomagenesis. We demonstrate specific defects in acetylation-mediated inactivation of the BCL6 oncoprotein and activation of the p53 tumour suppressor. These results identify CREBBP/EP300 mutations as a major pathogenetic mechanism shared by common forms of B-cell non-Hodgkin's lymphoma, with direct implications for the use of drugs targeting acetylation/deacetylation mechanisms.
Collapse
MESH Headings
- Acetyl Coenzyme A/metabolism
- Acetylation
- Acetyltransferases/chemistry
- Acetyltransferases/deficiency
- Acetyltransferases/genetics
- Acetyltransferases/metabolism
- Animals
- Base Sequence
- CREB-Binding Protein/chemistry
- CREB-Binding Protein/deficiency
- CREB-Binding Protein/genetics
- CREB-Binding Protein/metabolism
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- E1A-Associated p300 Protein/chemistry
- E1A-Associated p300 Protein/deficiency
- E1A-Associated p300 Protein/genetics
- E1A-Associated p300 Protein/metabolism
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Histone Acetyltransferases/chemistry
- Histone Acetyltransferases/deficiency
- Histone Acetyltransferases/genetics
- Histone Acetyltransferases/metabolism
- Humans
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Lymphoma, Follicular/enzymology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/enzymology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mutation/genetics
- Mutation, Missense/genetics
- Polymorphism, Single Nucleotide/genetics
- Protein Binding
- Protein Structure, Tertiary/genetics
- Proto-Oncogene Proteins c-bcl-6
- Recurrence
- Sequence Deletion/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Laura Pasqualucci
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
BMP-4 suppresses progesterone production by inhibiting histone H3 acetylation of StAR in bovine granulosa cells in vitro. Mol Cell Biochem 2010; 348:183-90. [DOI: 10.1007/s11010-010-0653-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/18/2010] [Indexed: 11/27/2022]
|
136
|
Verma A, Bhatt AN, Farooque A, Khanna S, Khaitan D, Arya MB, Arya A, Dhawan A, Raj HG, Saluja D, Prasad AK, Parmar VS, Dwarakanath BS. 7, 8-diacetoxy-4-methylcoumarin induced cell death in human tumor cells is influenced by calreticulin. Biochimie 2010; 93:497-505. [PMID: 21075165 DOI: 10.1016/j.biochi.2010.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 10/30/2010] [Indexed: 10/18/2022]
Abstract
Calreticulin (CRT), an endoplasmic reticulum resident protein demonstrates transacetylase activity in presence of 7, 8 diacetoxy-4-methyl coumarin (DAMC) in vitro. To investigate the possible role of CRT and DAMC mediated protein acetylation in cells, we investigated the effects of DAMC in tumor cells with different levels of CRT. DAMC was more toxic (clonogenicity, metabolic viability and proliferation) to human glioma cells (BMG-1) expressing low endogenous CRT level as compared to head and neck carcinoma cells (KB) with a high CRT level. The cytotoxicity was accompanied by loss of mitochondrial membrane potential in both the cells, which correlated with corresponding changes in the levels of pro-apoptotic (Bax) and anti-apoptotic (NFkB) regulators. Manipulation of CRT protein level in KB cells by application of small RNA interference enhanced the sensitivity by four folds while over expression of CRT in BMG-1 cells reduced their sensitivity to DAMC by ~20% strongly suggesting the influence of CRT on DAMC induced cytotoxicity. The partial rescue of CROE cells from DAMC induced toxicity was accompanied by changes in NFkB levels and over all protein acetylation status, besides increase in the NADPH-cytochrome c reductase activity related to its well known antioxidant property. Since CRT is over-expressed in cancer cells, which are generally resistant to radio- and chemotherapy; targeting CRT transacetylase system, may be an attractive approach for increasing the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Amit Verma
- Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Majumdar Marg, Timarpur, Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Arif M, Senapati P, Shandilya J, Kundu TK. Protein lysine acetylation in cellular function and its role in cancer manifestation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:702-16. [PMID: 20965294 DOI: 10.1016/j.bbagrm.2010.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 01/05/2023]
Abstract
Lysine acetylation appears to be crucial for diverse biological phenomena, including all the DNA-templated processes, metabolism, cytoskeleton dynamics, cell signaling, and circadian rhythm. A growing number of cellular proteins have now been identified to be acetylated and constitute the complex cellular acetylome. Cross-talk among protein acetylation together with other post-translational modifications fine-tune the cellular functions of different protein machineries. Dysfunction of acetylation process is often associated with several diseases, especially cancer. This review focuses on the recent advances in the role of protein lysine acetylation in diverse cellular functions and its implications in cancer manifestation.
Collapse
Affiliation(s)
- Mohammed Arif
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur (P.O.), Bangalore-560 064, Karnataka, India
| | | | | | | |
Collapse
|
138
|
Hu X, Zhang W, Carmichael I, Serianni AS. Amide cis-trans isomerization in aqueous solutions of methyl N-formyl-D-glucosaminides and methyl N-acetyl-D-glucosaminides: chemical equilibria and exchange kinetics. J Am Chem Soc 2010; 132:4641-52. [PMID: 20225805 DOI: 10.1021/ja9086787] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amide cis-trans isomerization (CTI) in methyl 2-deoxy-2-acylamido-d-glucopyranosides was investigated by (1)H and (13)C NMR spectroscopy. Singly (13)C-labeled methyl 2-deoxy-2-formamido-d-glucopyranoside (MeGlcNFm) anomers provided standard (1)H and (13)C chemical shifts and (1)H-(1)H and (13)C-(13)C spin-coupling constants for cis and trans amides that are detected readily in aqueous solution. Equipped with this information, doubly (13)C-labeled methyl 2-deoxy-2-acetamido-d-glucopyranoside (MeGlcNAc) anomers were investigated, leading to the detection and quantification of cis and trans amides in this biologically important aminosugar. In comparison to MeGlcNFm anomers, the percentage of cis amide in aqueous solutions of MeGlcNAc anomers is small ( approximately 23% for MeGlcNFm versus approximately 1.8% for MeGlcNAc at 42 degrees C) but nevertheless observable with assistance from (13)C-labeling. Temperature studies gave thermodynamic parameters DeltaG degrees , DeltaH degrees , and DeltaS degrees for cis-trans interconversion in MeGlcNFm and MeGlcNAc anomers. Cis/trans equilibria depended on anomeric configuration, with solutions of alpha-anomers containing less cis amide than those of beta-anomers. Confirmation of the presence of cis amide in MeGlcNAc solutions derived from quantitative (13)C saturation transfer measurements of CTI rate constants as a function of solution temperature, yielding activation parameters E(act), DeltaG degrees (), DeltaH degrees (), and DeltaS degrees () for saccharide CTI. Rate constants for the conversion of trans to cis amide in MeGlcNFm and MeGlcNAc anomers ranged from 0.02 to 3.59 s(-1) over 31-85 degrees C, compared to 0.24-80 s(-1) for the conversion of cis to trans amide over the same temperature range. Energies of activation ranged from 16-19 and 19-20 kcal/mol for the cis --> trans and trans --> cis processes, respectively. Complementary DFT calculations on MeGlcNFm and MeGlcNAc model structures were conducted to evaluate the effects of an acyl side chain and anomeric structure, as well as C2-N2 bond rotation, on CTI energetics. These studies show that aqueous solutions of GlcNAc-containing structures contain measurable amounts of both cis and trans amides, which may influence their biological properties.
Collapse
Affiliation(s)
- Xiaosong Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | |
Collapse
|
139
|
Askew EB, Bai S, Blackwelder AJ, Wilson EM. Transcriptional synergy between melanoma antigen gene protein-A11 (MAGE-11) and p300 in androgen receptor signaling. J Biol Chem 2010; 285:21824-36. [PMID: 20448036 DOI: 10.1074/jbc.m110.120600] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen receptor (AR)-mediated gene regulation involves interactions with coregulatory proteins that include the melanoma antigen gene protein-A11 (MAGE-11). To understand the functional significance of sequence similarity between MAGE-11 and the adenovirus early protein E1A, we determined whether MAGE-11 contributes to AR transcriptional activity through an interaction with p300, a potent and ubiquitous transcriptional regulator. Here, we report that MAGE-11 interacts with the NH(2)-terminal region of p300 through the MAGE-11 MXXIF motif (185)MXXIF(189), with transcriptional activity depending on the MAGE-11 F-box and MAPK phosphorylation. The MAGE-11- and p300-dependent increase in AR transactivation required the NH(2)-terminal regions of AR and p300, p300 acetyltransferase activity, and the AR FXXLF motif (23)FQNLF(27) interaction with MAGE-11. MAGE-11 linked AR to p300 and the p160 coactivator, transcriptional intermediary protein 2 (TIF2). The p300 NH(2)-terminal FXXLF motif (33)FGSLF(37) was required for transcriptional activation by TIF2. Increased expression of p300 decreased the ubiquitinylation of MAGE-11 and transiently increased endogenous MAGE-11 levels. Autoacetylation of p300 and decreased acetylation of TIF2 were evident in the MAGE-11, p300, and TIF2 complex. The studies suggest that MAGE-11 links NH(2)-terminal domains of AR and p300 to promote transcriptional synergy through a cadre of FXXLF-related interacting motifs.
Collapse
Affiliation(s)
- Emily B Askew
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
140
|
Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino Acids 2010; 39:1087-105. [PMID: 20204433 DOI: 10.1007/s00726-010-0530-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 02/12/2010] [Indexed: 02/06/2023]
Abstract
Eukaryotic genomic DNA is orderly compacted to fit into the nucleus and to inhibit accessibility of specific sequences. DNA is manipulated in many different ways by bound RNA and proteins within the composite material known as chromatin. All of the biological processes that require access to genomic DNA (such as replication, recombination and transcription) therefore are dependent on the precise characteristics of chromatin in eukaryotes. This distinction underlies a fundamental property of eukaryotic versus prokaryotic gene regulation such that chromatin structure must be regulated to precisely repress or relieve repression of particular regions of the genome in an appropriate spatio-temporal manner. As well as playing a key role in structuring genomic DNA, histones are subject to site-specific modifications that can influence the organization of chromatin structure. This review examines the molecular processes regulating site-specific histone acetylation, methylation and phosphorylation with an emphasis on how these processes underpin differentiation-regulated transcription.
Collapse
Affiliation(s)
- Mark N Cruickshank
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | | | | |
Collapse
|
141
|
|
142
|
Colin L, Van Lint C. Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 2009; 6:111. [PMID: 19961595 PMCID: PMC2797771 DOI: 10.1186/1742-4690-6-111] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
The persistence of HIV-1 latent reservoirs represents a major barrier to virus eradication in infected patients under HAART since interruption of the treatment inevitably leads to a rebound of plasma viremia. Latency establishes early after infection notably (but not only) in resting memory CD4+ T cells and involves numerous host and viral trans-acting proteins, as well as processes such as transcriptional interference, RNA silencing, epigenetic modifications and chromatin organization. In order to eliminate latent reservoirs, new strategies are envisaged and consist of reactivating HIV-1 transcription in latently-infected cells, while maintaining HAART in order to prevent de novo infection. The difficulty lies in the fact that a single residual latently-infected cell can in theory rekindle the infection. Here, we review our current understanding of the molecular mechanisms involved in the establishment and maintenance of HIV-1 latency and in the transcriptional reactivation from latency. We highlight the potential of new therapeutic strategies based on this understanding of latency. Combinations of various compounds used simultaneously allow for the targeting of transcriptional repression at multiple levels and can facilitate the escape from latency and the clearance of viral reservoirs. We describe the current advantages and limitations of immune T-cell activators, inducers of the NF-κB signaling pathway, and inhibitors of deacetylases and histone- and DNA- methyltransferases, used alone or in combinations. While a solution will not be achieved by tomorrow, the battle against HIV-1 latent reservoirs is well- underway.
Collapse
Affiliation(s)
- Laurence Colin
- Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| | | |
Collapse
|
143
|
Cichewicz RH. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep 2009; 27:11-22. [PMID: 20024091 DOI: 10.1039/b920860g] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The covalent modification of chromatin is an important control mechanism used by fungi to modulate the transcription of genes involved in secondary metabolite production. To date, both molecular-based and chemical approaches targeting histone and DNA posttranslational processes have shown great potential for rationally directing the activation and/or suppression of natural-product-encoding gene clusters. In this Highlight, the organization of the fungal epigenome is summarized and strategies for manipulating chromatin-related targets are presented. Applications of these techniques are illustrated using several recently published accounts in which chemical-epigenetic methods and mutant studies were successfully employed for the de novo or enhanced production of structurally diverse fungal natural products (e.g., anthraquinones, cladochromes, lunalides, mycotoxins, and nygerones).
Collapse
Affiliation(s)
- Robert H Cichewicz
- Natural Products Discovery Group and Graduate Program in Ecology and Evolutionary Biology, Department of Chemistry and Biochemistry, 620 Parrington Oval, Room 208, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
144
|
Biochemical pathways that regulate acetyltransferase and deacetylase activity in mammalian cells. Trends Biochem Sci 2009; 34:571-8. [PMID: 19819149 DOI: 10.1016/j.tibs.2009.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/22/2009] [Accepted: 06/22/2009] [Indexed: 11/20/2022]
Abstract
Protein phosphorylation is regulated dynamically in eukaryotic cells via modulation of the enzymatic activity of kinases and phosphatases. Like phosphorylation, acetylation has emerged as a critical regulatory protein modification that is altered dynamically in response to diverse cellular cues. Moreover, acetyltransferases and deacetylases are tightly linked to cellular signaling pathways. Recent studies provide clues about the mechanisms utilized to regulate acetyltransferases and deacetylases. The therapeutic value of deacetylase inhibitors suggests that understanding acetylation pathways will directly impact our ability to rationally target these enzymes in patients. Recently discovered mechanisms that directly regulate the catalytic activity of acetyltransferases and deacetylases provide exciting new insights about these enzymes.
Collapse
|
145
|
Li X, Chen BD. Histone Deacetylase Inhibitor M344 Inhibits Cell Proliferation and Induces Apoptosis in Human THP-1 Leukemia Cells. ACTA ACUST UNITED AC 2009; 1:352-363. [PMID: 20526416 DOI: 10.5099/aj090400352] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Histone acetylation plays an important role in the silencing and activation of genes involved in tumoregenesis. Trichostatin A, originally identified as an anti-fungal drug, is a potent inhibitor of histone deacetylase (HDAC) with potential anti-tumor activity. In this study, we investigated the effect of M344, an amide analogues of trichostatin A, on the growth and differentiation of THP-1 human leukemia cells. We showed that at low doses, (< 0.2 muM), M344 could inhibit the growth of THP-1 cells at G1 phase in vitro with low cytotoxic effect. Low dose of M344 exerted some differentiating effect on THP-1 cells as judged by the expression of c-fms proto-oncogene (M-CSF receptor) and appearance of adherent cells. Growth arrest induced by M344 is associated with increased levels of cyclin-dependent protein kinase inhibitor p21 and cyclin E, in agreement with G1 phase arrest. At higher doses (2 muM), M344 could induce THP-1 cells to undergo apoptosis, which was associated with the cleavage of PARP, cytochrome c release and activation of both caspases-8, -9, followed by the activation of caspase-3. In addition, M344 could increase the levels of pro-apoptotic protein Bax but decreased the levels of anti-apoptotic protein XIAP. M344 is a potent activator of NF-kappaB transcription factor. RT-PCR assay showed that the M344 could transiently increase IL-1 expression yet markedly decreased TNF-alpha expression. Our results show that M344 is a potent growth inhibitor and inducer of apoptosis in human leukemia cells and suggest potential therapeutic strategies of HDAC inhibitors for patients with leukemias.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Internal medicine and Karmanos Cancer Institute, Wayne State University School of Medicine, 550 E. Canfield, Detroit, MI 48201
| | | |
Collapse
|
146
|
Joanna F, van Grunsven LA, Mathieu V, Sarah S, Sarah D, Karin V, Tamara V, Vera R. Histone deacetylase inhibition and the regulation of cell growth with particular reference to liver pathobiology. J Cell Mol Med 2009; 13:2990-3005. [PMID: 19583816 PMCID: PMC4516460 DOI: 10.1111/j.1582-4934.2009.00831.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transcriptional activity of genes largely depends on the accessibility of specific chromatin regions to transcriptional regulators. This process is controlled by diverse post-transcriptional modifications of the histone amino termini of which reversible acetylation plays a vital role. Histone acetyltransferases (HATs) are responsible for the addition of acetyl groups and histone deacetylases (HDACs) catalyse the reverse reaction. In general, though not exclusively, histone acetylation is associated with a positive regulation of transcription, whereas histone deacetylation is correlated with transcriptional silencing. The elucidation of unequivocal links between aberrant action of HDACs and tumorigenesis lies at the base of key scientific importance of these enzymes. In particular, the potential benefit of HDAC inhibition has been confirmed in various tumour cell lines, demonstrating antiproliferative, differentiating and pro-apoptotic effects. Consequently, the dynamic quest for HDAC inhibitors (HDIs) as a new class of anticancer drugs was set off, resulting in a number of compounds that are currently evaluated in clinical trials. Ironically, the knowledge with respect to the expression pattern and function of individual HDAC isoenzymes remains largely elusive. In the present review, we provide an update of the current knowledge on the involvement of HDACs in the regulation of fundamental cellular processes in the liver, being the main site for drug metabolism within the body. Focus lies on the involvement of HDACs in the regulation of growth of normal and transformed hepatocytes and the transdifferentiation process of stellate cells. Furthermore, extrapolation of our present knowledge on HDAC functionality towards innovative treatment of malignant and non-malignant, hyperproliferative and inflammatory disorders is discussed.
Collapse
Affiliation(s)
- Fraczek Joanna
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Oxidized low-density lipoprotein-induced matrix metalloproteinase-9 expression via PKC-delta/p42/p44 MAPK/Elk-1 cascade in brain astrocytes. Neurotox Res 2009; 17:50-65. [PMID: 19554388 DOI: 10.1007/s12640-009-9077-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
After ischemic injury to brain, disruption of the blood-brain barrier (BBB) raises the possibility of exposing the central nervous system (CNS) to oxidized low-density lipoprotein (oxLDL), a risk factor implicated in neurodegenerative diseases. Matrix metalloproteinases (MMPs), especially MMP-9, contribute to extracellular matrix (ECM) remodeling during the CNS diseases. However, the molecular mechanisms underlying oxLDL-induced MMP-9 expression in astrocytes remained unclear. Here, we reported that oxLDL induced MMP-9 expression via a PKC-delta/p42/p44 MAPK-dependent Elk-1 activation in rat brain astrocyte (RBA)-1 cells, revealed by gelatin zymography, RT-PCR, and Western blotting analyses. These responses were attenuated by pretreatment with pharmacological inhibitors and transfection with dominant negative mutants. Moreover, Elk-1-mediated MMP-9 gene transcription was confirmed by transfection with an Elk-1 binding site-mutated MMP-9 promoter construct (mt-Ets-MMP9), which blocked oxLDL-stimulated MMP-9 luciferase activity. Understanding the regulatory mechanisms by which oxLDL induced MMP-9 expression in astrocytes might provide a new therapeutic strategy of brain diseases.
Collapse
|
148
|
Kim JR, Kee HJ, Kim JY, Joung H, Nam KI, Eom GH, Choe N, Kim HS, Kim JC, Kook H, Seo SB, Kook H. Enhancer of polycomb1 acts on serum response factor to regulate skeletal muscle differentiation. J Biol Chem 2009; 284:16308-16316. [PMID: 19359245 DOI: 10.1074/jbc.m807725200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle differentiation is well regulated by a series of transcription factors. We reported previously that enhancer of polycomb1 (Epc1), a chromatin protein, can modulate skeletal muscle differentiation, although the mechanisms of this action have yet to be defined. Here we report that Epc1 recruits both serum response factor (SRF) and p300 to induce skeletal muscle differentiation. Epc1 interacted physically with SRF. Transfection of Epc1 to myoblast cells potentiated the SRF-induced expression of skeletal muscle-specific genes as well as multinucleation. Proximal CArG box in the skeletal alpha-actin promoter was responsible for the synergistic activation of the promoter-luciferase. Epc1 knockdown caused a decrease in the acetylation of histones associated with serum response element (SRE) of the skeletal alpha-actin promoter. The Epc1.SRF complex bound to the SRE, and the knockdown of Epc1 resulted in a decrease in SRF binding to the skeletal alpha-actin promoter. Epc1 recruited histone acetyltransferase activity, which was potentiated by cotransfection with p300 but abolished by si-p300. Epc1 directly bound to p300 in myoblast cells. Epc1+/- mice showed distortion of skeletal alpha-actin, and the isolated myoblasts from the mice had impaired muscle differentiation. These results suggest that Epc1 is required for skeletal muscle differentiation by recruiting both SRF and p300 to the SRE of muscle-specific gene promoters.
Collapse
Affiliation(s)
- Ju-Ryoung Kim
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; Departments of Pharmacology, Gwangju 501-746
| | - Hae Jin Kee
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; Departments of Pharmacology, Gwangju 501-746; BK 21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-745, South Korea
| | - Hosouk Joung
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; BK 21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746
| | - Kwang-Il Nam
- BK 21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746; Anatomy, Gwangju 501-746
| | - Gwang Hyeon Eom
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; Departments of Pharmacology, Gwangju 501-746
| | - Nakwon Choe
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; Departments of Pharmacology, Gwangju 501-746
| | - Hyung-Suk Kim
- BK 21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746; Forensic Medicine, Gwangju 501-746
| | | | - Hoon Kook
- Pediatrics, Chonnam National University Hospital, Gwangju 501-746
| | - Sang Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-745, South Korea
| | - Hyun Kook
- From the Medical Research Center for Gene Regulation, Gwangju 501-746; Departments of Pharmacology, Gwangju 501-746; BK 21 Center for Biomedical Human Resources, Chonnam National University Medical School, Gwangju 501-746.
| |
Collapse
|
149
|
Iciek M, Kwiecień I, Włodek L. Biological properties of garlic and garlic-derived organosulfur compounds. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:247-265. [PMID: 19253339 DOI: 10.1002/em.20474] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Medicinal properties of garlic (Allium sativum) have been widely known and used since ancient times till the present. Garlic enhances immune functions and has antibacterial, antifungal and antivirus activities. It is known to prevent platelet aggregation, and to have hypotensive and cholesterol- and triglyceride-lowering properties, although the latter features have been questioned. This review is focused on anticancer efficacy of Allium sativum, and attempts to explain the mechanisms of this action. Medicinal properties of garlic rely upon organosulfur compounds mostly derived from alliin. Organosulfur compounds originating from garlic inhibit carcinogen activation, boost phase 2 detoxifying processes, cause cell cycle arrest mostly in G2/M phase, stimulate the mitochondrial apoptotic pathway, increase acetylation of histones. Garlic-derived sulfur compounds influence also gap-junctional intercellular communication and participate in the development of multidrug resistance. This review presents also other little known aspects of molecular action of garlic-derived compounds, like modulation of cellular redox state, involvement in signal transduction and post-translational modification of proteins by sulfane sulfur or by formation of mixed disulfides (S-thiolation reactions).
Collapse
Affiliation(s)
- Małgorzata Iciek
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kraków, Poland
| | | | | |
Collapse
|
150
|
A genetic screen in zebrafish defines a hierarchical network of pathways required for hematopoietic stem cell emergence. Blood 2009; 113:5776-82. [PMID: 19332767 DOI: 10.1182/blood-2008-12-193607] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Defining the genetic pathways essential for hematopoietic stem cell (HSC) development remains a fundamental goal impacting stem cell biology and regenerative medicine. To genetically dissect HSC emergence in the aorta-gonad-mesonephros (AGM) region, we screened a collection of insertional zebrafish mutant lines for expression of the HSC marker, c-myb. Nine essential genes were identified, which were subsequently binned into categories representing their proximity to HSC induction. Using overexpression and loss-of-function studies in zebrafish, we ordered these signaling pathways with respect to each other and to the Vegf, Notch, and Runx programs. Overexpression of vegf and notch is sufficient to induce HSCs in the tbx16 mutant, despite a lack of axial vascular organization. Although embryos deficient for artery specification, such as the phospholipase C gamma-1 (plcgamma1) mutant, fail to specify HSCs, overexpression of notch or runx1 can rescue their hematopoietic defect. The most proximal HSC mutants, such as hdac1, were found to have no defect in vessel or artery formation. Further analysis demonstrated that hdac1 acts downstream of Notch signaling but upstream or in parallel to runx1 to promote AGM hematopoiesis. Together, our results establish a hierarchy of signaling programs required and sufficient for HSC emergence in the AGM.
Collapse
|