101
|
Yu Y, Liu Y, An W, Song J, Zhang Y, Zhao X. STING-mediated inflammation in Kupffer cells contributes to progression of nonalcoholic steatohepatitis. J Clin Invest 2018; 129:546-555. [PMID: 30561388 DOI: 10.1172/jci121842] [Citation(s) in RCA: 277] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/06/2018] [Indexed: 12/18/2022] Open
Abstract
Innate immune activation contributes to the transition from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). Stimulator of IFN genes (STING, also referred to Tmem173) is a universal receptor that recognizes released DNA and triggers innate immune activation. In this work, we investigated the role of STING in the progression of NASH in mice. Both methionine- and choline-deficient diet (MCD) and high-fat diet (HFD) were used to induce NASH in mice. Strikingly, STING deficiency attenuated steatosis, fibrosis, and inflammation in livers in both murine models of NASH. Additionally, STING deficiency increased fasting glucose levels in mice independently of insulin, but mitigated HFD-induced insulin resistance and weight gain and reduced levels of cholesterol, triglycerides, and LDL in serum; it also enhanced levels of HDL. The mitochondrial DNA (mtDNA) from hepatocytes of HFD-fed mice induced TNF-α and IL-6 expression in cultured Kupffer cells (KCs), which was attenuated by STING deficiency or pretreatment with BAY11-7082 (an NF-κB inhibitor). Finally, chronic exposure to 5,6-dimethylxanthenone-4-acetic acid (DMXAA, a STING agonist) led to hepatic steatosis and inflammation in WT mice, but not in STING-deficient mice. We proposed that STING functions as an mtDNA sensor in the KCs of liver under lipid overload and induces NF-κB-dependent inflammation in NASH.
Collapse
Affiliation(s)
- Yongsheng Yu
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yu Liu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Weishuai An
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jingwen Song
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuefan Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xianxian Zhao
- Department of Cardiovasology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
102
|
Yang G, Lee HE, Yeon SH, Kang HC, Cho YY, Lee HS, Zouboulis CC, Han SH, Lee JH, Lee JY. Licochalcone A attenuates acne symptoms mediated by suppression of NLRP3 inflammasome. Phytother Res 2018; 32:2551-2559. [PMID: 30281174 DOI: 10.1002/ptr.6195] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
Abstract
Activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome by Propionibacterium acnes (P. acnes) is critical for inducing inflammation and aggravating the development of acne lesions. We searched for available small-molecule inhibitors of the NLRP3 inflammasome that could be topically administered for the treatment of acne. We found that licochalcone A, a chalconoid isolated from the root of Glycyrrhiza inflate, was an effective inhibitor for P. acnes-induced NLRP3 inflammasome activation. Licochalcone A blocked P. acnes-induced production of caspase-1(p10) and IL-1β in primary mouse macrophages and human SZ95 sebocytes, indicating the suppression of NLRP3 inflammasome. Licochalcone A suppressed P. acnes-induced ASC speck formation and mitochondrial reactive oxygen species. Topical application of licochalcone A to mouse ear skin attenuated P. acnes-induced skin inflammation as shown by histological assessment, ear thickness measurement, and inflammatory gene expression. Licochalcone A reduced caspase-1 activity and IL-1β production in mouse ear injected with P. acnes. This study demonstrated that licochalcone A is effective in the control of P. acnes-induced skin inflammation as an efficient inhibitor for NLRP3 inflammasome. Our study provides a new paradigm for the development of anti-acne therapy via targeting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Gabsik Yang
- BK21plus team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Hye Eun Lee
- BK21plus team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Sang Hyeon Yeon
- BK21plus team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Han Chang Kang
- BK21plus team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Yong-Yeon Cho
- BK21plus team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Hye Suk Lee
- BK21plus team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane, Dessau, Germany
| | - Sin-Hee Han
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumsung, Korea
| | - Jeong-Hoon Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumsung, Korea
| | - Joo Young Lee
- BK21plus team, College of Pharmacy, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
103
|
Lee HE, Yang G, Kim KB, Lee BM, Lee JY. Phloxine O, a Cosmetic Colorant, Suppresses the Expression of Thymic Stromal Lymphopoietin and Acute Dermatitis Symptoms in Mice. Biomol Ther (Seoul) 2018; 26:481-486. [PMID: 29310423 PMCID: PMC6131015 DOI: 10.4062/biomolther.2017.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023] Open
Abstract
Cosmetics are primarily applied to the skin; therefore, the association of cosmetic dyes with skin diseases or inflammation is a topic of great interest. Thymic stromal lymphopoietin (TSLP) is an interleukin 7-like cytokine that activates dendritic cells to promote Th2 inflammatory immune responses. TSLP is highly expressed in keratinocytes under inflammatory conditions, which suggests that it may play a critical role in the development of skin diseases, such as atopic dermatitis. Therefore, we investigated whether cosmetic dyes influenced the production of TSLP by keratinocytes. Phloxine O, also known as D&C Red No.27, is one of the most common red synthetic pigments and is widely used in colored cosmetics. Our results showed that Phloxine O downregulated phorbol 12-myristate 13-acetate-induced production of TSLP in a murine keratinocyte cell line (PAM212). Phloxine O also suppressed TSLP expression in KCMH-1 cells, which are mouse keratinocytes that constitutively produce high levels of TSLP. To investigate the in vivo effects of Phloxine O, we induced TSLP expression in mouse ear skin by topically applying MC903, a vitamin D3 analogue that is a well-known inducer of atopic dermatitis-like symptoms. Topical application of Phloxine O prevented MC903-induced TSLP production in mouse ear skin, attenuated the acute dermatitis-like symptoms and decreased serum IgE and histamine levels in mice. Suppression of TSLP expression by Phloxine O correlated with reduced expression of OX40 ligand and Th2 cytokines in mouse ear skin. Our results showed that Phloxine O may be beneficial to prevent dermatitis by suppressing the expression of TSLP and Th2 cytokines in skin.
Collapse
Affiliation(s)
- Hye Eun Lee
- BK21 Plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662,
Republic of Korea
| | - Gabsik Yang
- BK21 Plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662,
Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan 31116,
Republic of Korea
| | - Byung-Mu Lee
- College of Pharmacy, Sungkyunkwan University, Suwon 16419,
Republic of Korea
| | - Joo Young Lee
- BK21 Plus Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662,
Republic of Korea
| |
Collapse
|
104
|
Wu MY, Yiang GT, Cheng PW, Chu PY, Li CJ. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. J Clin Med 2018; 7:213. [PMID: 30104473 PMCID: PMC6112027 DOI: 10.3390/jcm7080213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocarcinogenesis comprises of multiple, complex steps that occur after liver injury and usually involve several pathways, including telomere dysfunction, cell cycle, WNT/β-catenin signaling, oxidative stress and mitochondria dysfunction, autophagy, apoptosis, and AKT/mTOR signaling. Following liver injury, gene mutations, accumulation of oxidative stress, and local inflammation lead to cell proliferation, differentiation, apoptosis, and necrosis. The persistence of this vicious cycle in turn leads to further gene mutation and dysregulation of pro- and anti-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-13, IL-18, and transforming growth factor (TGF)-β, resulting in immune escape by means of the NF-κB and inflammasome signaling pathways. In this review, we summarize studies focusing on the roles of hepatocarcinogenesis and the immune system in liver cancer. In addition, we furnish an overview of recent basic and clinical studies to provide a strong foundation to develop novel anti-carcinogenesis targets for further treatment interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giuo-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Pei-Wen Cheng
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 807, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 704, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| |
Collapse
|
105
|
Patel B, Mann GE, Chapple SJ. Concerted redox modulation by sulforaphane alleviates diabetes and cardiometabolic syndrome. Free Radic Biol Med 2018; 122:150-160. [PMID: 29427794 DOI: 10.1016/j.freeradbiomed.2018.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023]
Abstract
Diabetes and cardiometabolic disorders such as hypertension and obesity are major risk factors for the development of cardiovascular disease, with a wealth of evidence suggesting that oxidative stress is linked to the initiation and pathogenesis of these disease processes. With yearly increases in the global incidence of cardiovascular diseases (CVD) and diabetes, numerous studies have focused on characterizing whether upregulating antioxidant defenses through exogenous antioxidants (e.g. vitamin E, vitamin C) or activation of endogenous defenses (e.g. the Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant defense pathway) may be of benefit. The dietary isothiocyanate sulforaphane (SFN) is currently the subject of several clinical trials for a variety of disease states, including the evaluation of its therapeutic potential to ameliorate diabetic and cardiometabolic complications. SFN is a well characterized and potent Nrf2 inducer, however recent studies suggest its protective actions may be in part mediated by its modulation of various pro-inflammatory (e.g. Nuclear factor-kappa B (NFκB)) and metabolic (e.g. Peroxisome Proliferator-Activator Receptor Gamma (PPARγ)) signaling pathways. The focus of this review is to provide a detailed analysis of the known mechanisms by which SFN modulates Nrf2, NFκB and PPARγ signaling and crosstalk and to provide a critical evaluation of the evidence linking these transcriptional pathways with diabetic and cardiometabolic complications and SFN mediated cytoprotection. To allow comparison between rodent and human studies, we discuss the published bioavailability of SFN metabolites achieved in rodents and man in the context of Nrf2, NFκB and PPARγ signaling. Furthermore, we provide an update on the functional outcomes and implicated signaling pathways reported in recent clinical trials with SFN in Type 2 diabetic patients.
Collapse
Affiliation(s)
- Bijal Patel
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Giovanni E Mann
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Sarah J Chapple
- King's BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| |
Collapse
|
106
|
He H, Jiang H, Chen Y, Ye J, Wang A, Wang C, Liu Q, Liang G, Deng X, Jiang W, Zhou R. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun 2018; 9:2550. [PMID: 29959312 PMCID: PMC6026158 DOI: 10.1038/s41467-018-04947-6] [Citation(s) in RCA: 532] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 06/02/2018] [Indexed: 12/27/2022] Open
Abstract
Oridonin (Ori) is the major active ingredient of the traditional Chinese medicinal herb Rabdosia rubescens and has anti-inflammatory activity, but the target of Ori remains unknown. NLRP3 is a central component of NLRP3 inflammasome and has been involved in a wide variety of chronic inflammation-driven human diseases. Here, we show that Ori is a specific and covalent inhibitor for NLRP3 inflammasome. Ori forms a covalent bond with the cysteine 279 of NLRP3 in NACHT domain to block the interaction between NLRP3 and NEK7, thereby inhibiting NLRP3 inflammasome assembly and activation. Importantly, Ori has both preventive or therapeutic effects on mouse models of peritonitis, gouty arthritis and type 2 diabetes, via inhibition of NLRP3 activation. Our results thus identify NLRP3 as the direct target of Ori for mediating Ori's anti-inflammatory activity. Ori could serve as a lead for developing new therapeutics against NLRP3-driven diseases.
Collapse
Affiliation(s)
- Hongbin He
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, 230027, China
| | - Hua Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yun Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jin Ye
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Aoli Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Gaolin Liang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| | - Wei Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China. .,Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
107
|
Finley J. Cellular stress and AMPK activation as a common mechanism of action linking the effects of metformin and diverse compounds that alleviate accelerated aging defects in Hutchinson-Gilford progeria syndrome. Med Hypotheses 2018; 118:151-162. [PMID: 30037605 DOI: 10.1016/j.mehy.2018.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder characterized by an accelerated aging phenotype that typically leads to death via stroke or myocardial infarction at approximately 14.6 years of age. Most cases of HGPS have been linked to the extensive use of a cryptic splice donor site located in the LMNA gene due to a de novo mutation, generating a truncated and toxic protein known as progerin. Progerin accumulation in the nuclear membrane and within the nucleus distorts the nuclear architecture and negatively effects nuclear processes including DNA replication and repair, leading to accelerated cellular aging and premature senescence. The serine-arginine rich splicing factor SRSF1 (also known as ASF/SF2) has recently been shown to modulate alternative splicing of the LMNA gene, with SRSF1 inhibition significantly reducing progerin at both the mRNA and protein levels. In 2014, we hypothesized for the first time that compounds including metformin that induce activation of AMP-activated protein kinase (AMPK), a master metabolic regulator activated by cellular stress (e.g. increases in intracellular calcium, reactive oxygen species, and/or an AMP(ADP)/ATP ratio increase, etc.), will beneficially alter gene splicing in progeria cells by inhibiting SRSF1, thus lowering progerin levels and altering the LMNA pre-mRNA splicing ratio. Recent evidence has substantiated this hypothesis, with metformin significantly reducing the mRNA and protein levels of both SRSF1 and progerin, activating AMPK, and alleviating pathological defects in HGPS cells. Metformin has also recently been shown to beneficially alter gene splicing in normal humans. Interestingly, several chemically distinct compounds, including rapamycin, methylene blue, all-trans retinoic acid, MG132, 1α,25-dihydroxyvitamin D3, sulforaphane, and oltipraz have each been shown to alleviate accelerated aging defects in patient-derived HGPS cells. Each of these compounds has also been independently shown to induce AMPK activation. Because these compounds improve accelerated aging defects in HGPS cells either by enhancing mitochondrial functionality, increasing Nrf2 activity, inducing autophagy, or by altering gene splicing and because AMPK activation beneficially modulates each of the aforementioned processes, it is our hypothesis that cellular stress-induced AMPK activation represents an indirect yet common mechanism of action linking such chemically diverse compounds with the beneficial effects of those compounds observed in HGPS cells. As normal humans also produce progerin at much lower levels through a similar mechanism, compounds that safely induce AMPK activation may have wide-ranging implications for both normal and pathological aging.
Collapse
|
108
|
Association of Inflammatory Responses and ECM Disorganization with HMGB1 Upregulation and NLRP3 Inflammasome Activation in the Injured Rotator Cuff Tendon. Sci Rep 2018; 8:8918. [PMID: 29891998 PMCID: PMC5995925 DOI: 10.1038/s41598-018-27250-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Inflammation and extracellular matrix (ECM) disorganization following the rotator cuff tendon injuries (RCTI) delay the repair and healing process and the molecular mechanisms underlying RCTI pathology are largely unknown. Here, we examined the role of HMGB1 and NLRP3 inflammasome pathway in the inflammation and ECM disorganization in RCTI. This hypothesis was tested in a tenotomy-RCTI rat model by transecting the RC tendon from the humerus. H&E and pentachrome staining revealed significant changes in the morphology, architecture and ECM organization in RC tendon tissues following RCTI when compared with contralateral control. Severity of the injury was high in the first two weeks with improvement in 3–4 weeks following RCTI, and this correlated with the healing response. The expression of proteins associated with increased HMGB-1 and upregulation of NLRP3 inflammasome pathway, TLR4, TLR2, TREM-1, RAGE, ASC, Caspase-1, and IL-1β, in the first two weeks following RCTI followed by decline in 3–4 weeks. These results suggest the association of inflammatory responses and ECM disorganization with HMGB1 upregulation and NLRP3 inflammasome activation in the RC tendons and could provide novel target(s) for development of better therapeutic strategies in the management of RCTI.
Collapse
|
109
|
Pei L, Wan T, Wang S, Ye M, Qiu Y, Jiang R, Pang N, Huang Y, Zhou Y, Jiang X, Ling W, Zhang Z, Yang L. Cyanidin-3-O-β-glucoside regulates the activation and the secretion of adipokines from brown adipose tissue and alleviates diet induced fatty liver. Biomed Pharmacother 2018; 105:625-632. [PMID: 29898429 DOI: 10.1016/j.biopha.2018.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023] Open
Abstract
AIM Cyanidin-3-O-β-glucoside (Cy-3-G) the most abundant monomer of anthocyanins has multiple protective effects on many diseases. To date, whether Cy-3-G could regulate the function of brown adipose tissue (BAT) is still unclear and whether this regulation could influence the secretion of adipokines from BAT to prevent non-alcoholic fatty liver disease (NAFLD) indirectly remains to be explored. In this study we investigated the effect of Cy-3-G on BAT and the potential role of Cy-3-G to prevent fatty liver through regulating the secretion of BAT. METHODS Male C57BL/6 J mice were fed with a high fat high cholesterol (HFC) diet with or without 200 mg/kg B.W Cy-3-G for 8 weeks. In in vitro experiments, the differentiated brown adipocytes (BAC) and C3H10T1/2 clone8 cells were treated with 0.2 mM palmitate with or without Cy-3-G for 72 or 96 h. Then the culture media of C3H10T1/2 clone8 cells were collected for measuring the adipokines secretion by immunoblot assay and were applied to culture HepG2 cells or LO2 cells for 24 h. Lipid accumulation in HepG2 cells or LO2 cells were evaluated by oil red O staining. RESULTS Here we found that Cy-3-G regulated the activation of BAT and the expression of adipokines in BAT which were disrupted by HFC diet and alleviated diet induced fatty liver in mice. In in vitro experiments, Cy-3-G inhibited the release of adipokines including extracellular nicotinamide phosphoribosyltransferase (eNAMPT) and fibroblast growth factor 21 (FGF21) from differentiated C3H10T1/2 clone8 cells induced by palmitate, which was accompanied by a reduction of lipid accumulation in HepG2 cells and LO2 cells cultured by the corresponding collected media of C3H10T1/2 clone8 cells. CONCLUSIONS These results indicate that Cy-3-G can regulate the thermogenic and secretory functions of BAT. Furthermore, our data suggest that the protective effect of Cy-3-G on hepatic lipid accumulation is probably via regulating the secretion of adipokines from BAT.
Collapse
Affiliation(s)
- Lei Pei
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Ting Wan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Sufan Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Mingtong Ye
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Yun Qiu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Rui Jiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Nengzhi Pang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Yuanling Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Yujia Zhou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Xuye Jiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510260, PR China
| | - Lili Yang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, PR China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, Guangdong Province, 510080, PR China.
| |
Collapse
|
110
|
Yang G, Yeon SH, Lee HE, Kang HC, Cho YY, Lee HS, Lee JY. Suppression of NLRP3 inflammasome by oral treatment with sulforaphane alleviates acute gouty inflammation. Rheumatology (Oxford) 2018; 57:727-736. [PMID: 29340626 DOI: 10.1093/rheumatology/kex499] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 01/22/2023] Open
Abstract
Objective The aetiology of gout is closely linked to the deposition of monosodium uric acid (MSU) crystals and the consequent activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. In this study, we investigated whether oral administration of an NLRP3 inhibitor would be effective to attenuate the symptoms of gout. Methods The effects of oral administration with sulforaphane (SFN) were examined in two mouse models of acute gout induced by injection of MSU crystals into footpads or air pouch. The production of caspase-1 (p10) and IL-1β was examined by immunoblotting and ELISA as hallmarks of NLRP3 inflammasome activation. Results Oral administration of SFN attenuated MSU crystal-induced swelling and neutrophil recruitment in a mouse foot acute gout model, correlating with the suppression of the NLRP3 inflammasome activation in foot tissues. Consistently, oral administration of SFN blocked MSU-crystal-induced activation of the NLRP3 inflammasome in a mouse air pouch gout model. SFN suppressed NLRP3 inflammasome activation induced by MSU crystals, adenosine triphosphate and nigericin but not by poly(dA:dT) in primary mouse macrophages, independent of the reactive oxygen species pathway. SFN inhibited ligand-independent activation of the NLRP3 inflammasome, suggesting that SFN may act directly on the NLRP3 inflammasome complex. Conclusion Oral administration of SFN effectively alleviated acute gouty inflammation by suppression of the NLRP3 inflammasome. Our results provide a novel strategy in which oral treatment with SFN may be beneficial in preventing acute attacks of gout.
Collapse
Affiliation(s)
- Gabsik Yang
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Sang Hyeon Yeon
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hye Eun Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Han Chang Kang
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong Yeon Cho
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hye Suk Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Joo Young Lee
- BK21 PLUS Team, College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
111
|
Huang Y, Jiang H, Chen Y, Wang X, Yang Y, Tao J, Deng X, Liang G, Zhang H, Jiang W, Zhou R. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med 2018. [PMID: 29531021 DOI: 10.1525/emmm.201708689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
The dysregulation of NLRP3 inflammasome can cause uncontrolled inflammation and drive the development of a wide variety of human diseases, but the medications targeting NLRP3 inflammasome are not available in clinic. Here, we show that tranilast (TR), an old anti-allergic clinical drug, is a direct NLRP3 inhibitor. TR inhibits NLRP3 inflammasome activation in macrophages, but has no effects on AIM2 or NLRC4 inflammasome activation. Mechanismly, TR directly binds to the NACHT domain of NLRP3 and suppresses the assembly of NLRP3 inflammasome by blocking NLRP3 oligomerization. In vivo experiments show that TR has remarkable preventive or therapeutic effects on the mouse models of NLRP3 inflammasome-related human diseases, including gouty arthritis, cryopyrin-associated autoinflammatory syndromes, and type 2 diabetes. Furthermore, TR is active ex vivo for synovial fluid mononuclear cells from patients with gout. Thus, our study identifies the old drug TR as a direct NLRP3 inhibitor and provides a potentially practical pharmacological approach for treating NLRP3-driven diseases.
Collapse
Affiliation(s)
- Yi Huang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, China
| | - Hua Jiang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yun Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaqiong Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Yanqing Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jinhui Tao
- Department of Rheumatology & Immunology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Huafeng Zhang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, China
| | - Wei Jiang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, China
- Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, China
| |
Collapse
|
112
|
Sharma RS, Harrison DJ, Kisielewski D, Cassidy DM, McNeilly AD, Gallagher JR, Walsh SV, Honda T, McCrimmon RJ, Dinkova-Kostova AT, Ashford ML, Dillon JF, Hayes JD. Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related Factor 2). Cell Mol Gastroenterol Hepatol 2018; 5:367-398. [PMID: 29552625 PMCID: PMC5852394 DOI: 10.1016/j.jcmgh.2017.11.016] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. METHODS Nrf2+/+ and Nrf2-/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. RESULTS TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. CONCLUSIONS Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.
Collapse
Key Words
- ACACA, acetyl-CoA carboxylase alpha
- ACLY, ATP citrate lyase
- ACOT7, acetyl-CoA thioesterase 7
- ACOX2, acetyl-CoA oxidase 2
- ADRP, adipose differentiation-related protein
- AP-1, activator protein 1
- ATF4, activating transcription factor-4
- ATF6, activating transcription factor-6
- ApoB, apolipoprotein B
- BCL-2, B-cell lymphoma
- BIP, binding immunoglobulin protein
- C/EBP, CCAAT/enhancer-binding protein
- CAT, catalase
- CD36, cluster of differentiation 36
- CDDO, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid
- CES1G, carboxylesterase 1g
- CHOP, C/EBP homologous protein
- COL1A1, collagen, type I, alpha-1
- COX2, cyclooxygenase-2
- CPT1A, carnitine palmitoyltransferase 1a
- ChREBP, carbohydrate-responsive element-binding protein
- DGAT2, diacylglycerol acyltransferase-2
- DMSO, dimethyl sulfoxide
- ER, endoplasmic reticulum
- FASN, fatty acid synthase
- FXR, farnesoid X receptor
- GCLC, glutamate-cysteine ligase catalytic
- GCLM, glutamate-cysteine ligase modifier
- GPX2, glutathione peroxidase-2
- GSH, reduced glutathione
- GSSG, oxidized glutathione
- GSTA4, glutathione S-transferase Alpha-4
- GSTM1, glutathione S-transferase Mu-1
- GTT, glucose tolerance test
- H&E, hematoxylin and eosin
- HF, high-fat
- HF30Fr, high-fat diet with 30% fructose in drinking water
- HF55Fr, high-fat diet with 55% fructose in drinking water
- HFFr, high-fat diet with fructose in drinking water
- HMOX1, heme oxygenase-1
- IKK, IκB kinase
- IRE1α, inositol requiring kinase-1α
- ITT, insulin tolerance test
- IκB, inhibitor of NF-κB
- JNK1, c-Jun N-terminal kinase 1
- Keap1, Kelch-like ECH-associated protein-1
- LXRα, liver X receptor α
- MCD, methionine- and choline-deficient
- MCP-1, monocyte chemotactic protein-1
- MGPAT, mitochondrial glycerol-3-phosphate acetyltransferase
- MPO, myeloperoxidase
- MTTP, microsomal triglyceride transfer protein
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-κB
- NOS2, nitric oxide synthase-2
- NQO1, NAD(P)H:quinone oxidoreductase 1
- Nrf2
- Nrf2, NF-E2 p45-related factor 2
- PARP, poly ADP ribose polymerase
- PCR, polymerase chain reaction
- PDI, protein disulfide isomerase
- PERK, PRK-like endoplasmic reticulum kinase
- PPARα, peroxisome proliferator-activated receptor α
- PPARγ, peroxisome proliferator-activated receptor γ
- PRDX6, peroxiredoxin 6
- PTGR1, prostaglandin reductase-1
- PTT, pyruvate tolerance test
- RC, regular chow
- SCAD, short-chain acyl-CoA dehydrogenase
- SCD1, stearoyl-CoA desaturase-1
- SFN, sulforaphane
- SHP, small heterodimer partner
- SLC7A11, solute carrier family 7 member 11
- SREBP-1c, sterol regulatory element-binding protein-1c
- TBE-31
- TGFβ, transforming growth factor beta-1
- TNF-α, tumor necrosis factor-α
- TXN1, thioredoxin-1
- TXNRD1, thioredoxin reductase-1
- UPR, unfolded protein response
- XBP1, X-box binding protein-1
- eIf2α, eukaryotic translation initiation factor 2A
- p58IPK, p58 inhibitor of the PKR kinase
- qRT-PCR, quantitative reverse transcriptase PCR
- α-SMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Ritu S. Sharma
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews, Scotland, United Kingdom
| | - Dorothy Kisielewski
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Diane M. Cassidy
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Alison D. McNeilly
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Jennifer R. Gallagher
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Shaun V. Walsh
- Department of Pathology, Ninewells Hospital and Medical School, Tayside NHS Trust, Dundee, Scotland, United Kingdom
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York
| | - Rory J. McCrimmon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Albena T. Dinkova-Kostova
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Michael L.J. Ashford
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - John F. Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - John D. Hayes
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| |
Collapse
|
113
|
Potentiation of skin TSLP production by a cosmetic colorant leads to aggravation of dermatitis symptoms. Chem Biol Interact 2018; 284:41-47. [PMID: 29462589 DOI: 10.1016/j.cbi.2018.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 11/23/2022]
Abstract
Certain cosmetic colorants are irritant to skin or aggravate dermatitis. Thymic stromal lymphopoietin (TSLP) plays an important role in the initiation and progress of skin inflammation and atopic dermatitis by triggering Th2 immune responses. However, the effects of cosmetic colorants on TSLP production are unknown yet. Therefore, we investigated whether cosmetic colorants regulated TSLP production and dermatitis. Lithol Rubine B (LR-B, Pigment Red 57) and its calcium salt (LR-BCA), commonly used cosmetic colorants, potentiated phorbol-12-myristate-13-acetate-induced TSLP production in keratinocytes. In addition, the topical exposure to LR-B or LR-BCA on mouse ear upregulated a TSLP inducer (MC903)-induced TSLP production and Th2 cytokine expression. Dermatitis symptoms and serum IgE and histamine levels were also aggravated by LR-B or LR-BCA, implicating the role of increased TSLP expression in acute dermatitis. LR-B or LR-BCA induced IκBα degradation and NF-κB activation in keratinocytes, leading to TSLP expression. Collectively, our results demonstrate that LR-B and LR-BCA increase TSLP expression and Th2 immune responses, thereby aggravating acute dermatitis in the compromised skin. The results further suggest that certain cosmetic colorants such as LR-B may aggravate dermatitis under pro-inflammatory conditions by upregulating TSLP production.
Collapse
|
114
|
Wu Y, Shen Y, Wu X, Zhu Y, Mupunga J, Bao W, Huang J, Mao J, Liu S, You Y. Hydrolysis before Stir-Frying Increases the Isothiocyanate Content of Broccoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1509-1515. [PMID: 29357241 DOI: 10.1021/acs.jafc.7b05913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Broccoli is found to be a good source of glucosinolates, which can be hydrolyzed by endogenous myrosinase to obtain chemopreventive isothiocyanates (ITCs); among them, sulforaphane (SF) is the most important agent. Studies have shown that cooking greatly affects the levels of SF and total ITCs in broccoli. However, the stability of these compounds during cooking has been infrequently examined. In this study, we proved that the half-lives of SF and total ITCs during stir-frying were 7.7 and 5.9 min, respectively, while the myrosinase activity decreased by 80% after stir-frying for 3 min; SF and total ITCs were more stable than myrosinase. Thus, the contents of SF and total ITCs decreased during stir-frying largely because myrosinase was destroyed. Subsequently, it was confirmed that compared to direct stir-frying, hydrolysis of glucosinolates in broccoli for 90 min followed by stir-frying increased the SF and total ITC concentration by 2.8 and 2.6 times, respectively. This method provides large quantities of beneficial ITCs even after cooking.
Collapse
Affiliation(s)
- Yuanfeng Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640, Guangdong, China
| | - Yuke Shen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Xuping Wu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Ye Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Jothame Mupunga
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Wenna Bao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Jianwei Mao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Shiwang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| | - Yuru You
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology , Hangzhou 310023, Zhejiang, China
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Products , Hangzhou 310023, Zhejiang, China
| |
Collapse
|
115
|
Tubbs E, Axelsson AS, Vial G, Wollheim CB, Rieusset J, Rosengren AH. Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production. Mol Cell Endocrinol 2018; 461:205-214. [PMID: 28923347 DOI: 10.1016/j.mce.2017.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/10/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
AIMS Exaggerated hepatic glucose production is one of the hallmarks of type 2 diabetes. Sulforaphane (SFN) has been suggested as a new potential anti-diabetic compound. However, the effects of SFN in hepatocytes are yet unclear. Accumulating evidence points to the close structural contacts between the ER and mitochondria, known as mitochondria-associated ER membranes (MAMs), as important hubs for hepatic metabolism. We wanted to investigate whether SFN could affect hepatic glucose production and MAMs. MATERIALS AND METHODS We used proximity ligation assays, analysis of ER stress markers and glucose production assays in hepatoma cell lines, primary mouse hepatocytes and diabetic animal models. RESULTS SFN counteracted the increase of glucose production in palmitate-treated mouse hepatocytes. SFN also counteracted palmitate-induced MAM disruptions. Moreover, SFN decreased the ER stress markers CHOP and Grp78. In ob/ob mice, SFN improved glucose tolerance and reduced exaggerated glucose production. In livers of these mice, SFN increased MAM protein content, restored impaired VDAC1-IP3R1 interactions and reduced ER stress markers. In mice on HFHSD, SFN improved glucose tolerance, MAM protein content and ER-mitochondria interactions to a similar extent to that of metformin. CONCLUSIONS The present findings show that MAMs are severely reduced in animal models of glucose intolerance, which reinforces the role of MAMs as a hub for insulin signaling in the liver. We also show that SFN restores MAMs and improves glucose tolerance by a similar magnitude to that of metformin. These data highlight SFN as a new potential anti-diabetic compound.
Collapse
Affiliation(s)
- Emily Tubbs
- Lund University Diabetes Centre, Jan Waldenströms Gata 35, SE-20502 Malmö, Sweden
| | - Annika S Axelsson
- Lund University Diabetes Centre, Jan Waldenströms Gata 35, SE-20502 Malmö, Sweden
| | - Guillaume Vial
- INSERM UMR-1060 CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Charles Merieux Lyon-Sud Medical Universities, Lyon, France
| | - Claes B Wollheim
- Lund University Diabetes Centre, Jan Waldenströms Gata 35, SE-20502 Malmö, Sweden; Department of Cell Physiology and Metabolism, University Medical Center, 1211 Geneva, Switzerland
| | - Jennifer Rieusset
- INSERM UMR-1060 CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Charles Merieux Lyon-Sud Medical Universities, Lyon, France
| | - Anders H Rosengren
- Lund University Diabetes Centre, Jan Waldenströms Gata 35, SE-20502 Malmö, Sweden; Department of Neuroscience and Physiology, University of Gothenburg, Medicinaregatan 11, SE-41390 Göteborg, Sweden.
| |
Collapse
|
116
|
Zhang B, Xu D, She L, Wang Z, Yang N, Sun R, Zhang Y, Yan C, Wei Q, Aa J, Liu B, Wang G, Xie Y. Silybin inhibits NLRP3 inflammasome assembly through the NAD +/SIRT2 pathway in mice with nonalcoholic fatty liver disease. FASEB J 2018; 32:757-767. [PMID: 28970254 DOI: 10.1096/fj.201700602r] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Silybin is one of the effective, traditional Chinese medicines used as a hepatoprotective agent in nonalcoholic fatty liver disease (NAFLD) therapy worldwide, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been recognized as an important factor involved in NAFLD development. However, little is known about the mechanisms of silybin in the regulation of high-fat diet (HFD)-induced liver inflammation. In our study, we found that silybin inhibited endoplasmic reticulum stress and NLRP3 inflammasome activation in the livers of HFD-fed mice and in cultured hepatocytes. Phosphorylation of inositol-requiring enzyme (IRE)1α and eIF2α, expression of thioredoxin-interacting protein and cleaved caspase-1, and release of IL-1β were reduced by silybin. In addition, silybin inhibited the approach of calreticulin and translocase of outer membrane 20 (Tom20), prevented assembly of the NLRP3 inflammasome complex, and suppressed the accumulation of acetylated α-tubulin in the perinuclear region. Both MEC-17 and sirtuin 2 (SIRT2) were influenced by palmitate and silybin, whereas histone deacetylase 6 was not affected. In addition, supplementing NAD+ directly or increasing NAD+ concentration with silybin could maintain the activity of SIRT2. The anti-inflammatory effect of silybin was blocked by SIRT2 silencing or by the SIRT2 inhibitor AGK2, as evidenced by NLRP3/ASC colocalization, AC-α-tubulin expression, and IL-1β release. These findings indicate that the NAD+/SIRT2 pathway is an important mediator through which silybin prevents NLRP3 inflammasome activation during NAFLD.-Zhang, B., Xu, D., She, L., Wang, Z., Yang, N., Sun, R., Zhang, Y., Yan, C., Wei, Q., Aa, J., Liu, B., Wang, G., Xie, Y. Silybin inhibits NLRP3 inflammasome assembly through the NAD+/SIRT2 pathway in mice with nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Bangling Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dan Xu
- Research and Development Center, Nanjing Chia Tai Tianqing Pharmaceutical, Nanjing, China
| | - Linlin She
- Department of Pharmacology of Chinese Materia Medica, Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Zixia Wang
- Department of Pharmacology of Chinese Materia Medica, Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Na Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Runbin Sun
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yirui Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Caixia Yan
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qingli Wei
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Baolin Liu
- Department of Pharmacology of Chinese Materia Medica, Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
117
|
Wu X, Dong L, Lin X, Li J. Relevance of the NLRP3 Inflammasome in the Pathogenesis of Chronic Liver Disease. Front Immunol 2017; 8:1728. [PMID: 29312290 PMCID: PMC5732938 DOI: 10.3389/fimmu.2017.01728] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Inflammation is a common characteristic of chronic liver disease (CLD). Inflammasomes are multiprotein complexes that can sense and recognize various exogenous and endogenous danger signals, eventually activating interleukin (IL)-1β and IL-18. The sensor component of the inflammasome system is a nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). The NLRs family pyrin domain containing 3 (NLRP3) inflammasome has been involved in the initiation and progression of CLD. However, the molecular mechanisms by which it triggers liver inflammation and damage remain unclear. Here, we focus on recent advances on the potential role of NLRP3 inflammasome activation in the progression of CLD, including viral hepatitis, non-alcoholic steatohepatitis and alcoholic liver disease, and in particular, its ability to alleviate liver inflammation in animal models. Additionally, we also discuss various pharmacological inhibitors identifying the NLRP3 inflammasome signaling cascade as novel therapeutic targets in the treatment of CLD. In summary, this review summarizes the relevance of the NLRP3 inflammasome in the initiation and progression of CLD, and provides critical targets to suppress the development of CLD in clinical management.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Department of Cardiology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILDAMU, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Lei Dong
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States.,School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xianhe Lin
- Department of Cardiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILDAMU, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
118
|
Sulforaphane exerts anti-angiogenesis effects against hepatocellular carcinoma through inhibition of STAT3/HIF-1α/VEGF signalling. Sci Rep 2017; 7:12651. [PMID: 28978924 PMCID: PMC5627255 DOI: 10.1038/s41598-017-12855-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis plays an important role in hepatocellular carcinoma (HCC), the inhibition of which is explored for cancer prevention and treatment. The dietary phytochemical sulforaphane (SFN) is known for its anti-cancer properties in vitro and in vivo; but until now, no study has focused on the role of SFN in HCC tumor angiogenesis. In the present study, in vitro cell models using a HCC cell line, HepG2, and human endothelial cells, HUVECs, as well as ex vivo and in vivo models have been used to investigate the anti-tumor and anti-angiogenic effect of SFN. The results showed that SFN decreased HUVEC cell viability, migration and tube formation, all of which are important steps in angiogenesis. More importantly, SFN markedly supressed HepG2-stimulated HUVEC migration, adhesion and tube formation; which may be due to its inhibition on STAT3/HIF-1α/VEGF signalling in HepG2 cells. In addition, SFN significantly reduced HepG2 tumor growth in a modified chick embryo chorioallantoic membrane (CAM) assay, associated with a decrease of HIF-1α and VEGF expression within tumors. Collectively, these findings provide new insights into the inhibitory effect of SFN on HCC tumor angiogenesis as well as tumor growth, and indicate that SFN has potential for the prevention and treatment of HCC.
Collapse
|
119
|
Pierantonelli I, Rychlicki C, Agostinelli L, Giordano DM, Gaggini M, Fraumene C, Saponaro C, Manghina V, Sartini L, Mingarelli E, Pinto C, Buzzigoli E, Trozzi L, Giordano A, Marzioni M, Minicis SD, Uzzau S, Cinti S, Gastaldelli A, Svegliati-Baroni G. Lack of NLRP3-inflammasome leads to gut-liver axis derangement, gut dysbiosis and a worsened phenotype in a mouse model of NAFLD. Sci Rep 2017; 7:12200. [PMID: 28939830 PMCID: PMC5610266 DOI: 10.1038/s41598-017-11744-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) represents the most common form of chronic liver injury and can progress to cirrhosis and hepatocellular carcinoma. A "multi-hit" theory, involving high fat diet and signals from the gut-liver axis, has been hypothesized. The role of the NLRP3-inflammasome, which senses dangerous signals, is controversial. Nlrp3-/- and wild-type mice were fed a Western-lifestyle diet with fructose in drinking water (HFHC) or a chow diet. Nlrp3-/--HFHC showed higher hepatic expression of PPAR γ2 (that regulates lipid uptake and storage) and triglyceride content, histological score of liver injury and greater adipose tissue inflammation. In Nlrp3-/--HFHC, dysregulation of gut immune response with impaired antimicrobial peptides expression, increased intestinal permeability and the occurrence of a dysbiotic microbiota led to bacterial translocation, associated with higher hepatic expression of TLR4 (an LPS receptor) and TLR9 (a receptor for double-stranded bacterial DNA). After antibiotic treatment, gram-negative species and bacterial translocation were reduced, and adverse effects restored both in liver and adipose tissue. In conclusion, the combination of a Western-lifestyle diet with innate immune dysfunction leads to NAFLD progression, mediated at least in part by dysbiosis and bacterial translocation, thus identifying new specific targets for NAFLD therapy.
Collapse
Affiliation(s)
- Irene Pierantonelli
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Rychlicki
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Agostinelli
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | | | - Melania Gaggini
- Cardiometabolic Risk Lab, Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Cristina Fraumene
- Porto Conte Ricerche, Parco Scientifico e Tecnologico della Sardegna, Alghero, Italy
| | - Chiara Saponaro
- Cardiometabolic Risk Lab, Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Valeria Manghina
- Porto Conte Ricerche, Parco Scientifico e Tecnologico della Sardegna, Alghero, Italy
- Department of Biomedical Sciences, Università di Sassari, Sassari, Italy
| | - Loris Sartini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Eleonora Mingarelli
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Claudio Pinto
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Emma Buzzigoli
- Cardiometabolic Risk Lab, Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Luciano Trozzi
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Samuele De Minicis
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, Parco Scientifico e Tecnologico della Sardegna, Alghero, Italy
- Department of Biomedical Sciences, Università di Sassari, Sassari, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
- Obesity Center, Università Politecnica delle Marche, Ancona, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Lab, Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Gianluca Svegliati-Baroni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy.
- Obesity Center, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
120
|
Ralston JC, Lyons CL, Kennedy EB, Kirwan AM, Roche HM. Fatty Acids and NLRP3 Inflammasome-Mediated Inflammation in Metabolic Tissues. Annu Rev Nutr 2017; 37:77-102. [PMID: 28826373 DOI: 10.1146/annurev-nutr-071816-064836] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Worldwide obesity rates have reached epidemic proportions and significantly contribute to the growing prevalence of metabolic diseases. Chronic low-grade inflammation, a hallmark of obesity, involves immune cell infiltration into expanding adipose tissue. In turn, obesity-associated inflammation can lead to complications in other metabolic tissues (e.g., liver, skeletal muscle, pancreas) through lipotoxicity and inflammatory signaling networks. Importantly, although numerous signaling pathways are known to integrate metabolic and inflammatory processes, the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is now noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome can be influenced by various metabolites, including fatty acids. Specifically, although saturated fatty acids may promote NLRP3 inflammasome activation, monounsaturated fatty acids and polyunsaturated fatty acids have recently been shown to impede NLRP3 activity. Therefore, the NLRP3 inflammasome and associated metabolic inflammation have key roles in the relationships among fatty acids, metabolites, and metabolic disease. This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body. In addition, we explore some perspectives for the future, wherein recent work in the immunology field clearly demonstrates that metabolic reprogramming defines immune cell functionality. Although there is a paucity of information about how diet and fatty acids modulate this process, it is possible that this will open up a new avenue of research relating to nutrient-sensitive metabolic inflammation.
Collapse
Affiliation(s)
- Jessica C Ralston
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health, Physiotherapy, and Sports Science; and Institute of Food and Health; University College Dublin, Dublin 4, Ireland; , , , ,
| | - Claire L Lyons
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health, Physiotherapy, and Sports Science; and Institute of Food and Health; University College Dublin, Dublin 4, Ireland; , , , ,
| | - Elaine B Kennedy
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health, Physiotherapy, and Sports Science; and Institute of Food and Health; University College Dublin, Dublin 4, Ireland; , , , ,
| | - Anna M Kirwan
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health, Physiotherapy, and Sports Science; and Institute of Food and Health; University College Dublin, Dublin 4, Ireland; , , , ,
| | - Helen M Roche
- Nutrigenomics Research Group; UCD Conway Institute of Biomolecular and Biomedical Research; School of Public Health, Physiotherapy, and Sports Science; and Institute of Food and Health; University College Dublin, Dublin 4, Ireland; , , , ,
| |
Collapse
|
121
|
Olagnier D, Lababidi RR, Hadj SB, Sze A, Liu Y, Naidu SD, Ferrari M, Jiang Y, Chiang C, Beljanski V, Goulet ML, Knatko EV, Dinkova-Kostova AT, Hiscott J, Lin R. Activation of Nrf2 Signaling Augments Vesicular Stomatitis Virus Oncolysis via Autophagy-Driven Suppression of Antiviral Immunity. Mol Ther 2017; 25:1900-1916. [PMID: 28527723 PMCID: PMC5542709 DOI: 10.1016/j.ymthe.2017.04.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022] Open
Abstract
Oncolytic viruses (OVs) offer a promising therapeutic approach to treat multiple types of cancer. In this study, we show that the manipulation of the antioxidant network via transcription factor Nrf2 augments vesicular stomatitis virus Δ51 (VSVΔ51) replication and sensitizes cancer cells to viral oncolysis. Activation of Nrf2 signaling by the antioxidant compound sulforaphane (SFN) leads to enhanced VSVΔ51 spread in OV-resistant cancer cells and improves the therapeutic outcome in different murine syngeneic and xenograft tumor models. Chemoresistant A549 lung cancer cells that display constitutive dominant hyperactivation of Nrf2 signaling are particularly vulnerable to VSVΔ51 oncolysis. Mechanistically, enhanced Nrf2 signaling stimulated viral replication in cancer cells and disrupted the type I IFN response via increased autophagy. This study reveals a previously unappreciated role for Nrf2 in the regulation of autophagy and the innate antiviral response that complements the therapeutic potential of VSV-directed oncolysis against multiple types of OV-resistant or chemoresistant cancer.
Collapse
Affiliation(s)
- David Olagnier
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Rassin R Lababidi
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Samar Bel Hadj
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Alexandre Sze
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Yiliu Liu
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Matteo Ferrari
- Pasteur Laboratory, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Yuan Jiang
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Cindy Chiang
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| | - Marie-Line Goulet
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Elena V Knatko
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John Hiscott
- Pasteur Laboratory, Istituto Pasteur-Fondazione Cenci Bolognetti, Rome 00161, Italy.
| | - Rongtuan Lin
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada; Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
122
|
Andrographolide Ameliorates Inflammation and Fibrogenesis and Attenuates Inflammasome Activation in Experimental Non-Alcoholic Steatohepatitis. Sci Rep 2017; 7:3491. [PMID: 28615649 PMCID: PMC5471224 DOI: 10.1038/s41598-017-03675-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Therapy for nonalcoholic steatohepatitis (NASH) is limited. Andrographolide (ANDRO), a botanical compound, has a potent anti-inflammatory activity due to its ability to inhibit NF-κB. ANDRO has been also shown to inhibit the NLRP3 inflammasome, a relevant pathway in NASH. Our aim was to evaluate the effects of ANDRO in NASH and its influence on inflammasome activation in this setting. Thus, mice were fed a choline-deficient-amino-acid–defined (CDAA) diet with/without concomitant ANDRO administration (1 mg/kg, 3-times/week). Also, we assessed serum levels of alanine-aminotransferase (ALT), liver histology, hepatic triglyceride content (HTC) and hepatic expression of pro-inflammatory, pro-fibrotic and inflammasome genes. Inflammasome activation was also evaluated in fat-laden HepG2 cells. Our results showed that ANDRO administration decreased HTC and attenuated hepatic inflammation and fibrosis in CDAA-fed mice. ANDRO treatment determined a strong reduction in hepatic macrophage infiltration and reduced hepatic mRNA levels of both pro-inflammatory and pro-fibrotic genes. In addition, mice treated with ANDRO showed reduced expression of inflammasome genes. Finally, ANDRO inhibited LPS-induced interleukin-1β expression through NF-κB inhibition in fat-laden HepG2 cells and inflammasome disassembly. In conclusion, ANDRO administration reduces inflammation and fibrosis in experimental NASH. Inflammasome modulation by a NF-κB-dependent mechanism may be involved in the therapeutic effects of ANDRO.
Collapse
|
123
|
Axelsson AS, Tubbs E, Mecham B, Chacko S, Nenonen HA, Tang Y, Fahey JW, Derry JMJ, Wollheim CB, Wierup N, Haymond MW, Friend SH, Mulder H, Rosengren AH. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med 2017; 9:9/394/eaah4477. [DOI: 10.1126/scitranslmed.aah4477] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 02/23/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022]
|
124
|
Zhang YY, Gong JP, Li ZM. Autophagy and hepatic lipid metabolism. Shijie Huaren Xiaohua Zazhi 2017; 25:491-497. [DOI: 10.11569/wcjd.v25.i6.491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is initially thought to be a non-selective process in which intracellular proteins or damaged organelles are degraded. It is activated when cells lack nutrients and energy. Autophagy degrades cytoplasmic components within lysosomes and reuses the energy of amino acids to promote cell survival and maintain the cytoplasmic content. Current evidence implicates autophagy in the regulation of lipid stores within the two main organs involved in maintaining lipid homeostasis, the liver and adipose tissue. Upregulation of autophagy may lead to conversion of white adipose tissue into brown adipose tissue, thus regulating energy expenditure and obesity. Discovering new therapeutic interventions to treat lipid and lipoprotein disorders is of great interest and the discovery of autophagy as a regulator of lipid metabolism has opened up a new avenue for this area. In the liver, autophagy can play a role in some common metabolic disorders, which needs further research.
Collapse
|
125
|
Xu MX, Wang M, Yang WW. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-κB signaling and Nrf2 pathway in high fat diet fed mice. Int J Nanomedicine 2017; 12:327-345. [PMID: 28115850 PMCID: PMC5221813 DOI: 10.2147/ijn.s116010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-fat diet-induced metabolic syndrome followed by chronic kidney disease caused by intestinal endotoxemia have received extensive attention. Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) and oxidative stress-related Nrf2/Keap1 were regarded as the key target points involved in metabolic inflammation and kidney injury. However, the molecular mechanism of interaction between TLR4/NF-κB and Nrf2 activation in high-fat diet-induced renal injury is not absolutely understood. Quercetin, a natural product, has been reported to possess antitumor and anti-inflammatory effects. In this regard, this study attempted to prepare poly(d,l-lactide-co-glycolide)-loaded gold nanoparticles precipitated with quercetin (GQ) to investigate the anti-inflammatory and anti-oxidative stress effects in high-fat diet-induced kidney failure. For this study, C57BL/6 mice fed fat-rich fodder were used as the metabolic syndrome model to evaluate the protective effects of GQ on kidney injury and to determine whether TLR4/NF-κB and Nrf2 pathways were associated with the process. Moreover, histological examinations, enzyme-linked immunosorbent assay, Western blot, and basic blood tests and systemic inflammation-related indicators were used to investigate the inhibitory effects of GQ and underlying molecular mechanism by which it may reduce renal injury. Of note, podocyte injury was found to participate in endotoxin-stimulated inflammatory response. TLR4/NF-κB and Nrf2 pathways were upregulated with high-fat diet intake in mice, resulting in reduction of superoxide dismutase activity and increase in superoxide radical, H2O2, malondialdehyde, XO, XDH, and XO/XDH ratio. In addition, upregulation of TLR4/NF-κB and oxidative stress by endotoxin were observed in vitro, which were suppressed by GQ administration, ultimately alleviating podocyte injury. These findings indicated that GQ could restore the metabolic disorders caused by high-fat diet, which suppresses insulin resistance, lipid metabolic imbalance, and proinflammatory cytokine production. Also, it may prevent kidney injury by inhibition of TLR4/NF-κB and oxidative stress, further increasing superoxide dismutase activity.
Collapse
Affiliation(s)
- Min-Xuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing; College of Engineering and Applied Sciences, Nanjing University, Nanjing
| | - Ming Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang
| | - Wei-Wei Yang
- Department of Nephrology, Huai'an First People's Hospital, Nanjing Medical University, Jiangsu, People's Republic of China
| |
Collapse
|
126
|
Pahwa R, Balderas M, Jialal I, Chen X, Luna RA, Devaraj S. Gut Microbiome and Inflammation: A Study of Diabetic Inflammasome-Knockout Mice. J Diabetes Res 2017; 2017:6519785. [PMID: 29435463 PMCID: PMC5804379 DOI: 10.1155/2017/6519785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/16/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
AIMS Diabetes is a proinflammatory state, evidenced by increased pattern recognition receptors and the inflammasome (NOD-like receptor family pyrin domain (NLRP)) complex. Recent reports have elucidated the role of the gut microbiome in diabetes, but there is limited data on the gut microbiome in NLRP-KO mice and its effect on diabetes-induced inflammation. METHODS Gut microbiome composition and biomarkers of inflammation (IL-18, serum amyloid A) were assessed in streptozotocin- (STZ-) induced diabetic mice on a NLRP3-knockout (KO) background versus wild-type diabetic mice. RESULTS SAA and IL-18 levels were significantly elevated in diabetic mice (STZ) compared to control (WT) mice, and there was a significant attenuation of inflammation in diabetic NLRP3-KO mice (NLRP3-KO STZ) compared to control mice (p < 0.005). Principal coordinate analysis clearly separated controls, STZ, and NLRP3-KO STZ mice. Among the different phyla, there was a significant increase in the Firmicutes : Bacteroidetes ratio in the diabetic group compared to controls. When compared to the WT STZ group, the NLRP3-KO STZ group showed a significant decrease in the Firmicutes : Bacteroidetes ratio. Together, these findings indicate that interaction of the intestinal microbes with the innate immune system is a crucial factor that could modify diabetes and complications.
Collapse
Affiliation(s)
- Roma Pahwa
- Veterans Affairs Medical Center, Mather, CA, USA
- College of Medicine, California Northstate University, Elk Grove, CA, USA
| | - Miriam Balderas
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ishwarlal Jialal
- Veterans Affairs Medical Center, Mather, CA, USA
- College of Medicine, California Northstate University, Elk Grove, CA, USA
| | - Xinpu Chen
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Ruth Ann Luna
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Sridevi Devaraj
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
127
|
Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: a novel strategy to treat acute gout. Sci Rep 2016; 6:38622. [PMID: 27934918 PMCID: PMC5146947 DOI: 10.1038/srep38622] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Gouty arthritis is caused by the deposition of uric acid crystals, which induce the activation of NOD-like receptor family, pyrin domain containing 3(NLRP3) inflammasome. The NLRP3 inflammasome, composed of NLRP3, the adaptor protein ASC, and caspase-1, is closely linked to the pathogenesis of various metabolic diseases including gouty arthritis. We investigated whether an orally administrable inhibitor of NLRP3 inflammasome was effective for alleviating the pathological symptoms of gouty arthritis and what was the underlying mechanism. In primary mouse macrophages, caffeic acid phenethyl ester(CAPE) blocked caspase-1 activation and IL-1β production induced by MSU crystals, showing that CAPE suppresses NLRP3 inflammasome activation. In mouse gouty arthritis models, oral administration of CAPE suppressed MSU crystals-induced caspase-1 activation and IL-1β production in the air pouch exudates and the foot tissues, correlating with attenuation of inflammatory symptoms. CAPE directly associated with ASC as shown by SPR analysis and co-precipitation, resulting in blockade of NLRP3-ASC interaction induced by MSU crystals. Our findings provide a novel regulatory mechanism by which small molecules harness the activation of NLRP3 inflammasome by presenting ASC as a new target. Furthermore, the results suggest the preventive or therapeutic strategy for NLRP3-related inflammatory diseases such as gouty arthritis using orally available small molecules.
Collapse
|
128
|
Natural Compounds as Regulators of NLRP3 Inflammasome-Mediated IL-1 β Production. Mediators Inflamm 2016; 2016:5460302. [PMID: 27672241 PMCID: PMC5031844 DOI: 10.1155/2016/5460302] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/18/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
IL-1β is one of the main proinflammatory cytokines that regulates a broad range of immune responses and also participates in several physiological processes. The canonical production of IL-1β requires multiprotein complexes called inflammasomes. One of the most intensively studied inflammasome complexes is the NLRP3 inflammasome. Its activation requires two signals: one signal “primes” the cells and induces the expression of NLRP3 and pro-IL-1β, while the other signal leads to the assembly and activation of the complex. Several stimuli were reported to function as the second signal including reactive oxygen species, lysosomal rupture, or cytosolic ion perturbation. Despite very intensive studies, the precise function and regulation of the NLRP3 inflammasome are still not clear. However, many chronic inflammatory diseases are related to the overproduction of IL-1β that is mediated via the NLRP3 inflammasome. In this review, we aimed to provide an overview of studies that demonstrated the effect of plant-derived natural compounds on NLRP3 inflammasome-mediated IL-1β production. Although many of these studies lack the mechanistic explanation of their action, these compounds may be considered as complementary supplements in the treatment of chronic inflammatory diseases, consumed as preventive agents, and may also be considered as molecular tools to study NLRP3 function.
Collapse
|
129
|
Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E. Non-alcoholic fatty liver and the gut microbiota. Mol Metab 2016; 5:782-94. [PMID: 27617201 PMCID: PMC5004228 DOI: 10.1016/j.molmet.2016.06.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023] Open
Abstract
Background Non-alcoholic fatty liver (NAFLD) is a common, multi-factorial, and poorly understood liver disease whose incidence is globally rising. NAFLD is generally asymptomatic and associated with other manifestations of the metabolic syndrome. Yet, up to 25% of NAFLD patients develop a progressive inflammatory liver disease termed non-alcoholic steatohepatitis (NASH) that may progress towards cirrhosis, hepatocellular carcinoma, and the need for liver transplantation. In recent years, several lines of evidence suggest that the gut microbiome represents a significant environmental factor contributing to NAFLD development and its progression into NASH. Suggested microbiome-associated mechanisms contributing to NAFLD and NASH include dysbiosis-induced deregulation of the gut endothelial barrier function, which facilitates systemic bacterial translocation, and intestinal and hepatic inflammation. Furthermore, increased microbiome-modulated metabolites such as lipopolysaccharides, short chain fatty acids (SCFAs), bile acids, and ethanol, may affect liver pathology through multiple direct and indirect mechanisms. Scope of review Herein, we discuss the associations, mechanisms, and clinical implications of the microbiome's contribution to NAFLD and NASH. Understanding these contributions to the development of fatty liver pathogenesis and its clinical course may serve as a basis for development of therapeutic microbiome-targeting approaches for treatment and prevention of NAFLD and NASH. Major conclusions Intestinal host–microbiome interactions play diverse roles in the pathogenesis and progression of NAFLD and NASH. Elucidation of the mechanisms driving these microbial effects on the pathogenesis of NAFLD and NASH may enable to identify new diagnostic and therapeutic targets of these common metabolic liver diseases. This article is part of a special issue on microbiota.
Collapse
Affiliation(s)
- Stavros Bashiardes
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Hagit Shapiro
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Shachar Rozin
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Oren Shibolet
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Department of Gastroenterology, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
130
|
GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway. Biochem Biophys Res Commun 2016; 476:196-203. [PMID: 27208776 DOI: 10.1016/j.bbrc.2016.05.086] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/16/2016] [Indexed: 01/27/2023]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) keeps rising year by year, and NAFLD is rapidly becoming the most common liver disease worldwide. Clinical studies have found that glucagon-like peptide-1 (GLP-1) analogue, liraglutide (LRG), cannot only reduce glucose levels, but also improve hepatic lipase, especially in patients also with type 2 diabetes mellitus (T2DM). In addition, enhancing autophagy decreases lipid accumulation in hepatocytes. The aim of the present study is to explore the effect of LRG on hepatocyte steatosis and the possible role of autophagy. We set up an obesity mouse model with a high-fat diet (HFD) and induced hepatocyte steatosis with free fatty acids (FFA) in human L-O2 cells. LRG and two inhibitors of autophagy, Chloroquine (CQ) and bafilomycin A1 (Baf), were added into each group, respectively. The lipid profiles and morphological modifications of each group were tested. Immunohistochemistry, immunofluorescence staining and transmission electron microscopy (TEM) were used to measure autophagy in this study. The autophagy protein expression of SQSTM1 (P62), and LC3B, along with the signaling pathway proteins of mTOR, phosphorylated mTOR (p-mTOR), AMPK, phosphorylated AMPK (p-AMPK) and Beclin1, were evaluated by western blot. Our results showed that LRG improved hepatocyte steatosis by inducing autophagy, and the AMPK/mTOR pathway is involved. These findings suggest an important mechanism for the positive effects of LRG on hepatic steatosis, and provide new evidence for clinical use of LRG in NAFLD.
Collapse
|