101
|
Topman-Rakover S, Malach E, Burdman S, Hayouka Z. Antibacterial lipo-random peptide mixtures exhibit high selectivity and synergistic interactions. Chem Commun (Camb) 2020; 56:12053-12056. [PMID: 32902531 DOI: 10.1039/d0cc04493h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Random peptide mixtures (RPMs) have been recently proposed as powerful antimicrobial compounds. These are unique mixtures of peptides synthesized by random combination of a cationic and a hydrophobic amino acid. Here, we introduce a new type of antimicrobial compounds, short lipo-RPMs, which result from N-palmitoylation of RPMs. We report the characterization of 5-mer lipo-RPMs containing l-phenylalanine and d-lysine, named p-FdK5. p-FdK5 had high antibacterial activity against several bacterial strains and was able to reduce disease severity caused by a plant pathogen. We further synthesized and studied all 32 (25) possible lipopeptides that compose the p-FdK5 mixture. We showed that the antibacterial activity of specific lipopeptides depends on the peptide hydrophobicity and on the location of the hydrophobic amino acids relative to the palmitic acid. Interestingly, synergism assays revealed positive interactions between different sequence-specific lipopeptides in terms of antimicrobial activity.
Collapse
Affiliation(s)
- Shiri Topman-Rakover
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | | | | | | |
Collapse
|
102
|
Bekiesch P, Zehl M, Domingo-Contreras E, Martín J, Pérez-Victoria I, Reyes F, Kaplan A, Rückert C, Busche T, Kalinowski J, Zotchev SB. Viennamycins: Lipopeptides Produced by a Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2020; 83:2381-2389. [PMID: 32786880 PMCID: PMC7460545 DOI: 10.1021/acs.jnatprod.0c00152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Extracts from Streptomyces sp. S4.7 isolated from the rhizosphere of edelweiss, an alpine medicinal plant, exhibited activity against Gram-positive bacteria. LC-HRMS analyses of the extracts resulted in the detection of two unknown, structurally related lipopeptides that were assumed to be responsible for the antibiotic activity. LC-MS guided isolation and structure elucidation of viennamycins A and B (1 and 2) by HR-MS/MS, 1D and 2D NMR, and Marfey's analyses revealed them to be novel compounds, with viennamycin A containing cysteic acid, a unique feature for lipopeptides. Tests for antibacterial, antifungal, and cytotoxic activities of purified viennamycins, both with and without divalent cations, did not reveal any bioactivity, suggesting that their biological function, which could not be determined in the tests used, is atypical for lipopeptides. The genome of Streptomyces sp. S4.7 was sequenced and analyzed, revealing the viennamycin biosynthetic gene cluster. Detailed bioinformatics-based analysis of the viennamycin gene cluster allowed elucidation of the biosynthetic pathway for these lipopeptides.
Collapse
Affiliation(s)
- Paulina Bekiesch
- Department
of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Martin Zehl
- Department
of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Elizabeth Domingo-Contreras
- Fundación
Medina, Centro de Excelencia
en Investigación de Medicamentos Innovadores en Andalucía, 18016, Armilla, Granada, Spain
| | - Jesús Martín
- Fundación
Medina, Centro de Excelencia
en Investigación de Medicamentos Innovadores en Andalucía, 18016, Armilla, Granada, Spain
| | - Ignacio Pérez-Victoria
- Fundación
Medina, Centro de Excelencia
en Investigación de Medicamentos Innovadores en Andalucía, 18016, Armilla, Granada, Spain
| | - Fernando Reyes
- Fundación
Medina, Centro de Excelencia
en Investigación de Medicamentos Innovadores en Andalucía, 18016, Armilla, Granada, Spain
| | - Arthur Kaplan
- Department
of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Christian Rückert
- Center
for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Center
for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Center
for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Sergey B. Zotchev
- Department
of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
103
|
Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Appl Microbiol Biotechnol 2020; 104:8077-8087. [DOI: 10.1007/s00253-020-10801-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/08/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
|
104
|
Rani A, Kavianinia I, Hume P, De Leon-Rodriguez LM, Kihara S, Williams DE, McGillivray DJ, Plank NOV, Gerrard J, Hodgkiss JM, Brimble MA. Directed self-assembly of peptide-diketopyrrolopyrrole conjugates - a platform for bio-organic thin film preparation. SOFT MATTER 2020; 16:6563-6571. [PMID: 32588868 DOI: 10.1039/d0sm01071e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Increased water solubility and long-range intermolecular ordering have been introduced into the fluorescent organic molecule thiophene-diketopyrrolopyrrole (TDPP) via its conjugation to the octapeptide HEFISTAH, which is derived from the protein-protein β-interface of the homo-tetramer protein diaminopimelate decarboxylase. The octapeptide, and its TDPP mono- and cross-linked conjugates were synthesised using 9-fluorenylmethoxycarbonyl (Fmoc) based solid-phase peptide synthesis (SPPS). Unlike the unmodified peptide, the resulting mono-linked and cross-linked peptides showed a fibrous morphology and formed hydrogels at 4 wt% in water at neutral pH, but failed to assemble at pH 2 and pH 9. Further peptide characterization showed that the TDPP organic core enhances peptide self-assembly and that both peptides assembled into fibers with a parallel β-sheet structure. Furthermore, UV-vis spectroscopic analysis suggests that the TDPP molecules form H-type aggregates where the chromophores are likely to be co-facially packed, but rotationally and/or laterally offset from one another. This intermolecular coupling indicates that π-π stacking interactions are highly likely - a favourable sign for charge transport. The enhanced aqueous solubility and self-assembling properties of the TDPP-peptide conjugates allowed the successful preparation of thin films. Atomic force microscopy, X-ray diffraction and UV-vis spectroscopic analysis of these thin films revealed that the hybrid materials retained a fibrous morphology, β-sheet structures and strong intermolecular coupling between neighbouring TDPP molecules. These results open an exciting avenue for bio-organic materials development, through structural and electronic tuning of the TDPP core.
Collapse
Affiliation(s)
- Aakanksha Rani
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Iman Kavianinia
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| | - Paul Hume
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Luis M De Leon-Rodriguez
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Shinji Kihara
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - David E Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Natalie O V Plank
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Juliet Gerrard
- School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Justin M Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand. and School of Biological Sciences, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds St., Auckland 1010, New Zealand
| |
Collapse
|
105
|
Abstract
A polar head and an apolar tail chemically characterize surfactants, they show different properties and are categorized by different factors such as head charge and molecular weight. They work by reducing the surface tension between oil and water phases to facilitate the formation of one homogeneous mixture. In this respect, they represent unavoidable ingredients, their main application is in the production of detergents, one of if not the most important categories of cosmetics. Their role is very important, it should be remembered that it was precisely soaps and hygiene that defeated the main infectious diseases at the beginning of the last century. Due to their positive environmental impact, the potential uses of microbial sourced surfactants are actively investigated. These compounds are produced with different mechanisms by microorganisms in the aims to defend themselves from external threats, to improve the mobility in the environment, etc. In the cosmetic field, biosurfactants, restricted in the present work to those described above, can carry high advantages, in comparison to traditional surfactants, especially in the field of sustainable and safer approaches. Besiede this, costs still remain an obsatcle to their diffusion; in this regard, exploration of possible multifunctional actions could help to contain application costs. To highlight their features and possible multifunctional role, on the light of specific biological profiles yet underestimated, we have approached the present review work.
Collapse
|
106
|
Pelin JNBD, Edwards-Gayle CJC, Aguilar AM, Kaur A, Hamley IW, Alves WA. Polymorphism of asymmetric catalysts based on amphiphilic lipopeptides in solution. SOFT MATTER 2020; 16:4615-4624. [PMID: 32368775 DOI: 10.1039/d0sm00245c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The self-assembly of model [P]RWG lipopeptides (P: l-proline, R: l-arginine, W: l-tryptophan, G: l-glycine), containing one or two aliphatic octadecyl (C18) chains in water and cyclohexanone/water solutions was examined. The self-assembly of mixtures of these RWG and PRWG lipopeptides was also investigated. These materials presented a similar critical aggregation concentration of ∼4.0 × 10-4 wt% and were characterized by unordered secondary structures with some β-sheet content. TEM and cryo-TEM revealed the presence of mainly nanotape structures with micelles observed for systems rich in PRWG(C18H37). Analysis of detailed SAXS form factor measurements revealed the presence of bilayers 3-4 nm thick while the PRWG(C18H37) micelles have a core radius of approximately 3 nm, and a shell thickness of 2 nm. For the cyclohexanone/water systems polymorphs containing cluster aggregates (with radius of 0.25 nm to 0.50 nm) and some elongated structures (with radius of 5.7 nm to 26.1 nm) were seen. Longer structures were formed with the increase of the proline-containing lipopeptide content. The catalytic activity of these peptides was assessed using a model nitro-aldol reaction. The concentration of water in the reaction system influenced the conversion, higher content promoted better efficiency for the water systems, but the opposite was observed for the cyclohexanone/water samples.
Collapse
Affiliation(s)
- Juliane N B D Pelin
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, Brazil.
| | | | | | | | | | | |
Collapse
|
107
|
Hasan A, Saxena V, Castelletto V, Zimbitas G, Seitsonen J, Ruokolainen J, Pandey LM, Sefcik J, Hamley IW, Lau KHA. Chain-End Modifications and Sequence Arrangements of Antimicrobial Peptoids for Mediating Activity and Nano-Assembly. Front Chem 2020; 8:416. [PMID: 32528930 PMCID: PMC7253723 DOI: 10.3389/fchem.2020.00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Poly(N-substituted glycine) "peptoids" are an interesting class of peptidomimics that can resist proteolysis and mimic naturally found antimicrobial peptides (AMPs), which exhibit wide spectrum activity against bacteria. This work investigates the possibility of modifying peptoid AMP mimics (AMPMs) with aliphatic lipid "tails" to generate "lipopeptoids" that can assemble into micellar nanostructures, and evaluates their antimicrobial activities. Two families of AMPMs with different distributions of hydrophobic and cationic residues were employed-one with a uniform repeating amphiphilicity, the other with a surfactant-like head-to-tail amphiphilicity. To further evaluate the interplay between self-assembly and activity, the lipopeptoids were variously modified at the AMPM chain ends with a diethylene glycol (EG2) and/or a cationic group (Nlys-Nlys dipeptoid) to adjust amphiphilicity and chain flexibility. Self-assembly was investigated by critical aggregation concentration (CAC) fluorescence assays and dynamic light scattering (DLS). The structure of a key species was also verified by small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-EM). To screen for antibacterial properties, we measured the minimum inhibitory concentrations (MIC) against S. aureus, E. coli, and P. aeruginosa. We found that certain combinations of lipid tail and AMPM sequences exhibit increased antibacterial activity (i.e., decreased MICs). Perhaps counter-intuitively, we were particularly interested in increased MICs in combination with low CACs. Concealing antimicrobial interactions due to packing of AMPMs in nano-assemblies could pave the way to AMPMs that may be "inert" even if unintentionally released and prevent microbes from gaining resistance to the lipopeptoids. Overall, incorporation of EG2 significantly improved lipopeptoids packing while the hydrophobic tail length was found to have a major influence over the MIC. One particular sequence, which we named C15-EG2-(kss)4, exhibited a very low CAC of 34 μM (0.0075 wt.%) and a significantly increased MIC above values for the unmodified AMPM. With the sequence design trends uncovered from this study, future work will focus on discovering more species such as C15-EG2-(kss)4 and on investigating release mechanisms and the potency of the released lipopeptoids.
Collapse
Affiliation(s)
- Abshar Hasan
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Varun Saxena
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | | | - Georgina Zimbitas
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom
| | | | | | - Lalit M. Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Jan Sefcik
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Reading, United Kingdom
| | - King Hang Aaron Lau
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
108
|
Yim V, Kavianinia I, Knottenbelt MK, Ferguson SA, Cook GM, Swift S, Chakraborty A, Allison JR, Cameron AJ, Harris PWR, Brimble MA. "CLipP"ing on lipids to generate antibacterial lipopeptides. Chem Sci 2020; 11:5759-5765. [PMID: 34094080 PMCID: PMC8159387 DOI: 10.1039/d0sc01814g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
We herein report the synthesis and biological and computational evaluation of 12 linear analogues of the cyclic lipopeptide battacin, enabled by Cysteine Lipidation on a Peptide or Amino Acid (CLipPA) technology. Several of the novel "CLipP"ed lipopeptides exhibited low micromolar MICs and MBCs against both Gram-negative and Gram-positive bacteria. The mechanism of action was then simulated with the MIC data using computational methods.
Collapse
Affiliation(s)
- Victor Yim
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Iman Kavianinia
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Melanie K Knottenbelt
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago 720 Cumberland Street Dunedin 9054 New Zealand
| | - Scott A Ferguson
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago 720 Cumberland Street Dunedin 9054 New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Medical Sciences, University of Otago 720 Cumberland Street Dunedin 9054 New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland 85 Park Road, Grafton Auckland 1023 New Zealand
| | - Aparajita Chakraborty
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
| | - Jane R Allison
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
| | - Alan J Cameron
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
| | - Paul W R Harris
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland 3A Symonds Street Auckland 1010 New Zealand
- School of Chemical Sciences, University of Auckland 23 Symonds Street Auckland 1010 New Zealand
| |
Collapse
|
109
|
Matsui K, Kan Y, Kikuchi J, Matsushima K, Takemura M, Maki H, Kozono I, Ueda T, Minagawa K. Stalobacin: Discovery of Novel Lipopeptide Antibiotics with Potent Antibacterial Activity against Multidrug-Resistant Bacteria. J Med Chem 2020; 63:6090-6095. [DOI: 10.1021/acs.jmedchem.0c00295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kouhei Matsui
- Pharmaceutical Research Center, Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Yukiko Kan
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Junko Kikuchi
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Keisuke Matsushima
- Pharmaceutical Research Center, Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Miki Takemura
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Hideki Maki
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Iori Kozono
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Taichi Ueda
- Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Kazuyuki Minagawa
- Pharmaceutical Research Center, Shionogi TechnoAdvance Research Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| |
Collapse
|
110
|
Novelli F, Strofaldi A, De Santis S, Del Giudice A, Casciardi S, Galantini L, Morosetti S, Pavel NV, Masci G, Scipioni A. Polymorphic Self-Organization of Lauroyl Peptide in Response to pH and Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3941-3951. [PMID: 32118446 DOI: 10.1021/acs.langmuir.9b02924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphipathic peptides are attractive building blocks for the preparation of self-assembling, bio-inspired, and stimuli responsive nanomaterials with pharmaceutical interest. The bioavailability of these materials can be improved with the insertion of d amino acid residues to avoid fast proteolysis in vivo. With this knowledge, a new lauroyl peptide consisting of a sequence of glycine, glycine, d-serine, and d-lysine was designed. In spite of its simple sequence, this lipopeptide self-assembles into spherical micelles at acid pH, when the peptide moiety adopts disordered conformations. Self-aggregates reshape toward fibers at basic pH, following the conformational transition of the peptide region from random coil to β-sheet. Finally, hydrogels are achieved at basic pH and higher concentrations. The transition from random coil to β-sheet conformation of the peptide headgroup obtained by increasing pH was monitored by circular dichroism and vibrational spectroscopy. A structural analysis, performed by combining dynamic light scattering, small-angle X-ray scattering, transmission electron microscopy, and molecular dynamic simulations, demonstrated that the transition allows the self-assemblies to remodel from spherical micelles to rodlike shapes, to long fibers with rectangular cross-section and a head-tail-tail-head structure. The viscoelastic behavior of the hydrogels formed at the highest pH was investigated by rheology measurements.
Collapse
Affiliation(s)
- Federica Novelli
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Alessandro Strofaldi
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Serena De Santis
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Alessandra Del Giudice
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL Research), Rome 00144, Italy
| | - Luciano Galantini
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Stefano Morosetti
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Nicolae V Pavel
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Giancarlo Masci
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| | - Anita Scipioni
- Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro, 5, Rome 00185, Italy
| |
Collapse
|
111
|
Habila N, Kulkarni K, Lee TH, Al-Garawi ZS, Serpell LC, Aguilar MI, Del Borgo MP. Transition of Nano-Architectures Through Self-Assembly of Lipidated β 3-Tripeptide Foldamers. Front Chem 2020; 8:217. [PMID: 32296680 PMCID: PMC7136582 DOI: 10.3389/fchem.2020.00217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
β3-peptides consisting exclusively of β3-amino acids adopt a variety of non-natural helical structures and can self-assemble into well-defined hierarchical structures by axial head-to-tail self-assembly resulting in fibrous materials of varying sizes and shapes. To allow control of fiber morphology, a lipid moiety was introduced within a tri-β3-peptide sequence at each of the three amino acid positions and the N-terminus to gain finer control over the lateral assembly of fibers. Depending on the position of the lipid, the self-assembled structures formed either twisted ribbon-like fibers or distinctive multilaminar nanobelts. The nanobelt structures were comprised of multiple layers of peptide fibrils as revealed by puncturing the surface of the nanobelts with an AFM probe. This stacking phenomenon was completely inhibited through changes in pH, indicating that the layer stacking was mediated by electrostatic interactions. Thus, the present study is the first to show controlled self-assembly of these fibrous structures, which is governed by the location of the acyl chain in combination with the 3-point H-bonding motif. Overall, the results demonstrate that the nanostructures formed by the β3-tripeptide foldamers can be tuned via sequential lipidation of N-acetyl β3-tripeptides which control the lateral interactions between peptide fibrils and provide defined structures with a greater homogeneous population.
Collapse
Affiliation(s)
- Nathan Habila
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Zahraa S Al-Garawi
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Chemistry Department, Mustansiriyah University, Baghdad, Iraq
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
112
|
Pelin JN, Edwards-Gayle CJC, Castelletto V, Aguilar AM, Alves WA, Seitsonen J, Ruokolainen J, Hamley IW. Self-Assembly, Nematic Phase Formation, and Organocatalytic Behavior of a Proline-Functionalized Lipopeptide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13671-13679. [PMID: 32134243 PMCID: PMC7146753 DOI: 10.1021/acsami.0c00686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The self-assembly of the amphiphilic lipopeptide PAEPKI-C16 (P = proline, A = alanine, E = glutamic acid, K = lysine, I = isoleucine, and C16 = hexadecyl) was investigated using a combination of microscopy, spectroscopy, and scattering methods and compared to that of C16-IKPEAP with the same (reversed) peptide sequence and the alkyl chain positioned at the N-terminus and lacking a free N-terminal proline residue. The catalytic activity of these peptides was then compared using a model aldol reaction system. For PAEPKI-C16, the cryo-TEM images showed the formation of micrometer-length fibers, which by small-angle X-ray scattering (SAXS) were found to have radii of 2.5-2.6 nm. Spectroscopic analysis shows that these fibers are built from β-sheets. This behavior is in complete contrast to that of C16-IKPEAP, which forms spherical micelles with peptides in a disordered conformation [Hutchinson J. Phys. Chem. B 2019, 123, 613]. In PAEPKI-C16, spontaneous alignment of fibers was observed upon increasing pH, which was accompanied by observed birefringence and anisotropy of SAXS patterns. This shows the ability to form a nematic phase, and unprecedented nematic hydrogel formation was also observed for these lipopeptides at sufficiently high concentrations. SAXS shows retention of an ultrafine (1.7 nm core radius) fibrillar network within the hydrogel. PAEPKI-C16 with free N-terminal proline shows enhanced anti:syn diastereoselectivity and better conversion compared to C16-IKPEAP. The cytotoxicity of PAEPKI-C16 was also lower than that of C16-IKPEAP for both fibroblast and cancer cell lines. These results highlight the sensitivity of lipopeptide properties to the presence of a free proline residue. The spontaneous nematic phase formation by PAEPKI-C16 points to the high anisotropy of its ultrafine fibrillar structure, and the formation of such a phase at low concentrations in aqueous solution may be valuable for future applications.
Collapse
Affiliation(s)
- Juliane N.B.D. Pelin
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo André 09210-580, Brazil
| | | | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Andrea M. Aguilar
- Instituto
de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Wendel A. Alves
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo André 09210-580, Brazil
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
113
|
Pelin JBD, Gerbelli BB, Edwards-Gayle CJC, Aguilar AM, Castelletto V, Hamley IW, Alves WA. Amyloid Peptide Mixtures: Self-Assembly, Hydrogelation, Nematic Ordering, and Catalysts in Aldol Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2767-2774. [PMID: 32131599 PMCID: PMC7146849 DOI: 10.1021/acs.langmuir.0c00198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/04/2020] [Indexed: 05/23/2023]
Abstract
Morphological, spectroscopic, and scattering studies of the self-assembly and aggregation of mixtures of [RF]4 and P[RF]4 peptides (where R = arginine; F = phenylalanine; P = proline), in solution and as hydrogels, were performed to obtain information about polymorphism. CD data confirmed a β-sheet secondary structure in aqueous solution, and TEM images revealed nanofibers with diameters of ∼10 nm and micrometer lengths. SAXS curves were fitted using a mass fractal-component and a long cylinder shell form factor for the liquid samples, and only a long cylinder shell form factor for the gels. Increasing the P[RF]4 content in the systems leads to a reduction in cylinder radius and core scattering density, suggesting an increase in packing of the peptide molecules; however, the opposite effect is observed for the gels, where the scattering density is higher in the shell for the systems containing higher P[RF]4 content. These compounds show potential as catalysts in the asymmetric aldol reactions, with cyclohexanone and p-nitrobenzaldehyde in aqueous media. A moderate conversion (36.9%) and a good stereoselectivity (69:31) were observed for the system containing only [RF]4. With increasing P[RF]4 content, a considerable decrease of the conversion was observed, suggesting differences in the self-assembly and packing factor. Rheological measurements were performed to determine the shear moduli for the soft gels.
Collapse
Affiliation(s)
- Juliane
N. B. D. Pelin
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, 09210-580, Santo André, Brazil
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | - Barbara B. Gerbelli
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, 09210-580, Santo André, Brazil
| | | | - Andrea M. Aguilar
- Instituto
de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, 09972-270, Brazil
| | - Valeria Castelletto
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | - Ian W. Hamley
- Department
of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | - Wendel A. Alves
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, 09210-580, Santo André, Brazil
| |
Collapse
|
114
|
Lesson from Ecotoxicity: Revisiting the Microbial Lipopeptides for the Management of Emerging Diseases for Crop Protection. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041434. [PMID: 32102264 PMCID: PMC7068399 DOI: 10.3390/ijerph17041434] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Microorganisms area treasure in terms of theproduction of various bioactive compounds which are being explored in different arenas of applied sciences. In agriculture, microbes and their bioactive compounds are being utilized in growth promotion and health promotion withnutrient fortification and its acquisition. Exhaustive explorations are unraveling the vast diversity of microbialcompounds with their potential usage in solving multiferous problems incrop production. Lipopeptides are one of such microbial compounds which havestrong antimicrobial properties against different plant pathogens. These compounds are reported to be produced by bacteria, cyanobacteria, fungi, and few other microorganisms; however, genus Bacillus alone produces a majority of diverse lipopeptides. Lipopeptides are low molecular weight compounds which havemultiple industrial roles apart from being usedas biosurfactants and antimicrobials. In plant protection, lipopeptides have wide prospects owing totheirpore-forming ability in pathogens, siderophore activity, biofilm inhibition, and dislodging activity, preventing colonization bypathogens, antiviral activity, etc. Microbes with lipopeptides that haveall these actions are good biocontrol agents. Exploring these antimicrobial compounds could widen the vistasof biological pest control for existing and emerging plant pathogens. The broader diversity and strong antimicrobial behavior of lipopeptides could be a boon for dealing withcomplex pathosystems and controlling diseases of greater economic importance. Understanding which and how these compounds modulate the synthesis and production of defense-related biomolecules in the plants is a key question—the answer of whichneeds in-depth investigation. The present reviewprovides a comprehensive picture of important lipopeptides produced by plant microbiome, their isolation, characterization, mechanisms of disease control, behavior against phytopathogens to understand different aspects of antagonism, and potential prospects for future explorations as antimicrobial agents. Understanding and exploring the antimicrobial lipopeptides from bacteria and fungi could also open upan entire new arena of biopesticides for effective control of devastating plant diseases.
Collapse
|
115
|
Song S, Wang J, Song N, Di H, Liu D, Yu Z. Peptide interdigitation-induced twisted nanoribbons as chiral scaffolds for supramolecular nanozymes. NANOSCALE 2020; 12:2422-2433. [PMID: 31916547 DOI: 10.1039/c9nr09492j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Establishing reliable strategies for rationally manipulating the organization of peptide building blocks and thereby precisely creating chiral nanostructures is challenging, while meaningful toward development of advanced functional materials. Here we report on a peptide-interdigitating mechanism for the reliable self-assembly of lipid-inspired amphiphiles (LIPIAs) into robust twisted nanoribbons by grafting domains to one alkyl tail of lipids as an extended element. Peptide interdigitation promoted the self-assembly of LIPIAs into twisted or flat nanoribbons driven by antiparallel or parallel β-sheet hydrogen bonds, respectively, strongly associated with the connecting direction of the incorporated domains. We found that the LIPIAs containing N-terminus-connected domains with either bulky or small side chain groups formed twisted nanoribbons in a broad pH range, thus implying a sequence- and pH-independent strategy for creation of robust chiral nanostructures. Integrating the resulting twisted nanoribbons with gold nanoparticles led to supramolecular nanozymes exhibiting the excellent catalytic activity and enantioselectivity of asymmetric oxidation of 3,4-dihyroxy-phenylalanine molecules. Our finding demonstrates that the peptide-interdigitating mechanism is a reliable strategy for precise creation of chiral nanostructures serving as chiral matrices for supramolecular nanozymes with improved catalytic performance, thus potentially paving the way towards advanced biomimetic systems resembling natural systems.
Collapse
Affiliation(s)
- Shuxin Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jingyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Na Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Huixia Di
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
116
|
Wolff M, Schüler A, Gast K, Seckler R, Evers A, Pfeiffer-Marek S, Kurz M, Nagel N, Haack T, Wagner M, Thalhammer A. Self-Assembly of Exendin-4-Derived Dual Peptide Agonists is Mediated by Acylation and Correlated to the Length of Conjugated Fatty Acyl Chains. Mol Pharm 2020; 17:965-978. [DOI: 10.1021/acs.molpharmaceut.9b01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martin Wolff
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Anja Schüler
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Klaus Gast
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Robert Seckler
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Andreas Evers
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | | | - Michael Kurz
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Norbert Nagel
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Torsten Haack
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Michael Wagner
- Sanofi-Aventis Deutschland GmbH, Industrial Park Höchst, D-65926 Frankfurt, Germany
| | - Anja Thalhammer
- Physical Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| |
Collapse
|
117
|
Ultrashort Cationic Lipopeptides-Effect of N-Terminal Amino Acid and Fatty Acid Type on Antimicrobial Activity and Hemolysis. Molecules 2020; 25:molecules25020257. [PMID: 31936341 PMCID: PMC7024302 DOI: 10.3390/molecules25020257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023] Open
Abstract
Ultrashort cationic lipopeptides (USCLs) are promising antimicrobial agents that hypothetically may be alternatively used to combat pathogens such as bacteria and fungi. In general, USCLs consist of fatty acid chains and a few basic amino acid residues. The main shortcoming of USCLs is their relatively high cytotoxicity and hemolytic activity. This study focuses on the impact of the hydrophobic fatty acid chain, on both antimicrobial and hemolytic activities. To learn more about this region, a series of USCLs with different straight-chain fatty acids (C8, C10, C12, C14) attached to the tripeptide with two arginine residues were synthesized. The amino acid at the N-terminal position was exchanged for proteinogenic and non-proteinogenic amino acid residues (24 in total). Moreover, the branched fatty acid residues were conjugated to N-terminus of a dipeptide with two arginine residues. All USCLs had C-terminal amides. USCLs were tested against reference bacterial strains (including ESKAPE group) and Candida albicans. The hemolytic potential was tested on human erythrocytes. Hydrophobicity of the compounds was evaluated by RP-HPLC. Shortening of the fatty acid chain and simultaneous addition of amino acid residue at N-terminus were expected to result in more selective and active compounds than those of the reference lipopeptides with similar lipophilicity. Hypothetically, this approach would also be beneficial to other antimicrobial peptides where N-lipidation strategy was used to improve their biological characteristics.
Collapse
|
118
|
Singh R, Mishra NK, Singh N, Rawal P, Gupta P, Joshi KB. Transition metal ions induced secondary structural transformation in a hydrophobized short peptide amphiphile. NEW J CHEM 2020. [DOI: 10.1039/d0nj01501f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal ions mediate the secondary structural transformation of hydrophobized sPA and can be applied to the design and development of stimuli-responsive nanomaterials.
Collapse
Affiliation(s)
- Ramesh Singh
- Department of Chemistry
- School of Chemical Science and Technology
- Dr Harisingh Gour Central University
- Sagar
- India
| | | | - Narendra Singh
- Department of Chemistry
- Indian Institute of Technology
- Kanpur
- India
| | - Parveen Rawal
- Department of Chemistry
- Indian Institute of Technology
- Roorkee 247667
- India
| | - Puneet Gupta
- Department of Chemistry
- Indian Institute of Technology
- Roorkee 247667
- India
| | - Khashti Ballabh Joshi
- Department of Chemistry
- School of Chemical Science and Technology
- Dr Harisingh Gour Central University
- Sagar
- India
| |
Collapse
|
119
|
Xi J, Liu H. Recent Advances in the Design of Self‐Delivery Amphiphilic Drugs and Vaccines. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jingchao Xi
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
- Department of Oncology Wayne State University Detroit MI 48201 United States
- Tumor Biology and Microenvironment Program Barbara Ann Karmanos Cancer Institute Detroit MI 48201 United States
| |
Collapse
|
120
|
Hutchinson JA, Hamley IW, Edwards-Gayle CJC, Castelletto V, Piras C, Cramer R, Kowalczyk R, Seitsonen J, Ruokolainen J, Rambo RP. Melanin production by tyrosinase activity on a tyrosine-rich peptide fragment and pH-dependent self-assembly of its lipidated analogue. Org Biomol Chem 2019; 17:4543-4553. [PMID: 30994696 DOI: 10.1039/c9ob00550a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigate the self-assembly of a palmitoylated (C16-chain at the N terminus) peptide fragment in comparison to the unlipidated peptide EELNRYY, a fragment of the gut hormone peptide PYY3-36. The lipopeptide C16-EELNRYY shows remarkable pH-dependent self-assembly above measured critical aggregation concentrations, forming fibrils at pH 7, but micelles at pH 10. The parent peptide does not show self-assembly behaviour. The lipopeptide forms hydrogels at sufficiently high concentration at pH 7, the dynamic mechanical properties of which were measured. We also show that the tyrosine functionality at the C terminus of EELNRYY can be used to enzymatically produce the pigment melanin. The enzyme tyrosinase oxidises tyrosine into 3,4-dihydroxyphenylalanine (DOPA), DOPA-quinone and further products, eventually forming eumelanin. This is a mechanism of photo-protection in the skin, for this reason controlling tyrosinase activity is a major target for skin care applications and EELNRYY has potential to be developed for such uses.
Collapse
Affiliation(s)
- Jessica A Hutchinson
- School of Chemistry, Pharmacy and Food Biosciences. University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Wang D, Ma B, Wang Z, Zhao Y, Sun Y, Luan Y, Wang J. Preparation and characterization of β-casein stabilized lipopeptide lyotropic liquid crystal nanoparticles for delivery of doxorubicin. SOFT MATTER 2019; 15:9011-9017. [PMID: 31687734 DOI: 10.1039/c9sm01931f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A kind of lyotropic liquid crystal nanoparticle (LLC NPs) has been designed and prepared. LLC NPs are dSMO/OA/β-casein/water quaternary systems, and their cubic or hexagonal microstructures have been characterized by cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS). The phase transition of LLC NPs takes place with ratio and pH adjustments. The properties, such as cytotoxicity, stability, drug encapsulation and release ability, have been investigated with MTT assay, cryo-TEM and UV-Vis spectroscopy. The results showed that LLC NPs were nontoxic to cells and stable to enzymatic degradation. Hydrophilic drug doxorubicin hydrochloride (DOX·HCl) could be effectively encapsulated in LLC NPs and its release rate could be regulated by pH. It was concluded that LLC NPs are potential nanocarriers in nanomedicine technologies. We hope that this work provides new guidelines for the rational design of LLC NP systems with lipopeptides for biomedical applications.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Bente Ma
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Zhaoyu Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Yuxia Luan
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, 266580, China.
| |
Collapse
|
122
|
Geometrical reorganization of Dectin-1 and TLR2 on single phagosomes alters their synergistic immune signaling. Proc Natl Acad Sci U S A 2019; 116:25106-25114. [PMID: 31754039 DOI: 10.1073/pnas.1909870116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Receptors of innate immune cells function synergistically to detect pathogens and elicit appropriate immune responses. Many receptor pairs also appear "colocalized" on the membranes of phagosomes, the intracellular compartments for pathogen ingestion. However, the nature of the seemingly receptor colocalization and the role it plays in immune regulation are unclear, due to the inaccessibility of intracellular phagocytic receptors. Here, we report a geometric manipulation technique to directly probe the role of phagocytic receptor "colocalization" in innate immune regulation. Using particles with spatially patterned ligands as phagocytic targets, we can decouple the receptor pair, Dectin-1 and Toll-like receptor (TLR)2, to opposite sides on a single phagosome or bring them into nanoscale proximity without changing the overall membrane composition. We show that Dectin-1 enhances immune responses triggered predominantly by TLR2 when their centroid-to-centroid proximity is <500 nm, but this signaling synergy diminishes upon receptor segregation beyond this threshold distance. Our results demonstrate that nanoscale proximity, not necessarily colocalization, between Dectin-1 and TLR2 is required for their synergistic regulation of macrophage immune responses. This study elucidates the relationship between the spatial organization of phagocytic receptors and innate immune responses. It showcases a technique that allows spatial manipulation of receptors and their signal cross-talk on phagosomes inside living cells.
Collapse
|
123
|
Rammensee HG, Wiesmüller KH, Chandran PA, Zelba H, Rusch E, Gouttefangeas C, Kowalewski DJ, Di Marco M, Haen SP, Walz JS, Gloria YC, Bödder J, Schertel JM, Tunger A, Müller L, Kießler M, Wehner R, Schmitz M, Jakobi M, Schneiderhan-Marra N, Klein R, Laske K, Artzner K, Backert L, Schuster H, Schwenck J, Weber ANR, Pichler BJ, Kneilling M, la Fougère C, Forchhammer S, Metzler G, Bauer J, Weide B, Schippert W, Stevanović S, Löffler MW. A new synthetic toll-like receptor 1/2 ligand is an efficient adjuvant for peptide vaccination in a human volunteer. J Immunother Cancer 2019; 7:307. [PMID: 31730025 PMCID: PMC6858783 DOI: 10.1186/s40425-019-0796-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We previously showed that the bacterial lipopeptide Pam3Cys-Ser-Ser, meanwhile established as a toll-like receptor (TLR) 1/2 ligand, acts as a strong adjuvant for the induction of virus specific CD8+ T cells in mice, when covalently coupled to a synthetic peptide. CASE PRESENTATION We now designed a new water-soluble synthetic Pam3Cys-derivative, named XS15 and characterized it in vitro by a TLR2 NF-κB luciferase reporter assay. Further, the capacity of XS15 to activate immune cells and stimulate peptide-specific CD8+ T and NK cells by 6-sulfo LacNAc+ monocytes was assessed by flow cytometry as well as cytokine induction using immunoassays. The induction of a functional immune response after vaccination of a volunteer with viral peptides was assessed by ELISpot assay and flow cytometry in peripheral blood cells and infiltrating cells at the vaccination site, as well as by immunohistochemistry and imaging. XS15 induced strong ex vivo CD8+ and TH1 CD4+ responses in a human volunteer upon a single injection of XS15 mixed to uncoupled peptides in a water-in-oil emulsion (Montanide™ ISA51 VG). A granuloma formed locally at the injection site containing highly activated functional CD4+ and CD8+ effector memory T cells. The total number of vaccine peptide-specific functional T cells was experimentally assessed and estimated to be 3.0 × 105 in the granuloma and 20.5 × 106 in peripheral blood. CONCLUSION Thus, in one volunteer we show a granuloma forming by peptides combined with an efficient adjuvant in a water-in-oil-emulsion, inducing antigen specific T cells detectable in circulation and at the vaccination site, after one single vaccination only. The ex vivo T cell responses in peripheral blood were detectable for more than one year and could be strongly boosted by a second vaccination. Hence, XS15 is a promising adjuvant candidate for peptide vaccination, in particular for tumor peptide vaccines in a personalized setting.
Collapse
Affiliation(s)
- Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.
| | | | - P Anoop Chandran
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Henning Zelba
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Elisa Rusch
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Daniel J Kowalewski
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Moreno Di Marco
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Sebastian P Haen
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Juliane S Walz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Yamel Cardona Gloria
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Johanna Bödder
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Jill-Marie Schertel
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Antje Tunger
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Luise Müller
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Maximilian Kießler
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany
| | - Rebekka Wehner
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/ Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Reinhild Klein
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmonology, University Hospital of Tübingen, Tübingen, Germany
| | - Karoline Laske
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Kerstin Artzner
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany
| | - Linus Backert
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Heiko Schuster
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Present address: Immatics Biotechnologies GmbH, Tübingen, Germany
| | - Johannes Schwenck
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tübingen, Tübingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Bernd J Pichler
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Werner Siemens Imaging Center, Medical Faculty, University of Tübingen, Tübingen, Germany.,Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Christian la Fougère
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital of Tübingen, Tübingen, Germany
| | - Stephan Forchhammer
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Gisela Metzler
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Jürgen Bauer
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Benjamin Weide
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Wilfried Schippert
- Department of Dermatology, University Hospital of Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany
| | - Markus W Löffler
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) partner site Tübingen, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tubingen, Germany. .,Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Tübingen, Germany. .,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
124
|
Schneider YKH, Ø. Hansen K, Isaksson J, Ullsten S, H. Hansen E, Hammer Andersen J. Anti-Bacterial Effect and Cytotoxicity Assessment of Lipid 430 Isolated from Algibacter sp. Molecules 2019; 24:molecules24213991. [PMID: 31694159 PMCID: PMC6864645 DOI: 10.3390/molecules24213991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Two bacterial isolates from the Barents Sea, both belonging to the genus Algibacter, were found to yield extracts with anti-bacterial bioactivity. Mass spectrometry guided dereplication and purification of the active extracts lead to the isolation of the same active principle in both extracts. The structure of the bioactive compound was identified via mass spectrometry and nuclear resonance spectroscopy and it turned out to be the known lipopeptide Lipid 430. We discovered and determined its previously unknown anti-bacterial activity against Streptococcus agalactiae and revealed a cytotoxic effect against the A2058 human melanoma cell line at significantly lower concentrations compared to its anti-bacterial concentration. Flow cytometry and microscopy investigations of the cytotoxicity against the melanoma cell line indicated that Lipid 430 did not cause immediate cell lysis. The experiments with melanoma cells suggest that the compound functions trough more complex pathways than acting as a simple detergent.
Collapse
Affiliation(s)
- Yannik K.-H. Schneider
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT—The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (S.U.); (E.H.H.); (J.H.A.)
- Correspondence: ; Tel.: +47-77649267
| | - Kine Ø. Hansen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT—The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (S.U.); (E.H.H.); (J.H.A.)
| | - Johan Isaksson
- Department of Chemistry, Faculty of Natural Sciences, UiT—The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway;
| | - Sara Ullsten
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT—The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (S.U.); (E.H.H.); (J.H.A.)
| | - Espen H. Hansen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT—The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (S.U.); (E.H.H.); (J.H.A.)
| | - Jeanette Hammer Andersen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT—The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway (S.U.); (E.H.H.); (J.H.A.)
| |
Collapse
|
125
|
Thach TT, Bae DH, Kim NH, Kang ES, Lee BS, Han K, Kwak M, Choi H, Nam J, Bae T, Suh M, Hur JK, Kim YH. Lipopeptide-Based Nanosome-Mediated Delivery of Hyperaccurate CRISPR/Cas9 Ribonucleoprotein for Gene Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903172. [PMID: 31588686 DOI: 10.1002/smll.201903172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/16/2019] [Indexed: 06/10/2023]
Abstract
A transient cytosolic delivery system for accurate Cas9 ribonucleoprotein is a key factor for target specificity of the CRIPSR/Cas9 toolkit. Owing to the large size of the Cas9 protein and a long negative strand RNA, the development of the delivery system is still a major challenge. Here, a size-controlled lipopeptide-based nanosome system is reported, derived from the blood-brain barrier-permeable dNP2 peptide which is capable of delivering a hyperaccurate Cas9 ribonucleoprotein complex (HypaRNP) into human cells for gene editing. Each nanosome is capable of encapsulating and delivering ≈2 HypaRNP molecules into the cytoplasm, followed by nuclear localization at 4 h post-treatment without significant cytotoxicity. The HypaRNP thus efficiently enacts endogenous eGFP silencing and editing in human embryonic kidney cells (up to 27.6%) and glioblastoma (up to 19.7% frequency of modification). The lipopeptide-based nanosome system shows superior delivery efficiency, high controllability, and simplicity, thus providing biocompatibility and versatile platform approach for CRISPR-mediated transient gene editing applications.
Collapse
Affiliation(s)
- Trung Thanh Thach
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, South Suwon, 16419, Korea
| | - Do Hyun Bae
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Nam Hyeong Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, South Suwon, 16419, Korea
| | - Eun Sung Kang
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, South Suwon, 16419, Korea
| | - Bok Soo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, South Suwon, 16419, Korea
| | - Kayoung Han
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Minsuk Kwak
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, South Suwon, 16419, Korea
| | - Hojae Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, South Suwon, 16419, Korea
| | - JiYoung Nam
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, South Suwon, 16419, Korea
| | - Taegeun Bae
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Junho K Hur
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, 02447, South Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, South Suwon, 16419, Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
126
|
Jakinala P, Lingampally N, Kyama A, Hameeda B. Enhancement of atrazine biodegradation by marine isolate Bacillus velezensis MHNK1 in presence of surfactin lipopeptide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109372. [PMID: 31255866 DOI: 10.1016/j.ecoenv.2019.109372] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/15/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is one of the widely used toxic herbicide and considered as serious environmental contaminant worldwide due to its long term use in crop production. In this study, the effect of surfactin lipopeptide produced by Bacillus velezensis MHNK1 on atrazine biodegradation was investigated. B. velezensis MHNK1 produced 0.83 ± 0.07 g/L of anionic biosurfactant that reduced surface tension from 72.12 ± 0.02 to 33.2 ± 0.61 mN/m and CMC was 40 mg/L with 85.21 ± 1.60% emulsification index. Further, biosurfactant was characterized as surfactin by TLC, HPLC, FTIR, 1H and 13C NMR and LCMS-ESI. B. velezensis MHNK1 showed 87.10 ± 3.10% atrazine biodegradation within 5 days which was revealed by HPLC and MS analysis. Atrazine biodegradation using a combination of B. velezensis MHNK1 (2%) and surfactin (2 CMC) resulted in 100 ± 1.20% degradation within 4 days. Presence of atrazine degrading genes in B. velezensis MHNK1 was also confirmed by PCR. To the best of our knowledge, there are no previous reports available on atrazine degradation using B. velezensis strain and also in combination with surfactin. The results of this study reveal that strain B. velezensis MHNK1 and surfactin can be potential source of ecofriendly application for removal of atrazine from contaminated sites.
Collapse
Affiliation(s)
| | | | - Archana Kyama
- Department of Microbiology, Osmania University, Hyderabad, India
| | - Bee Hameeda
- Department of Microbiology, Osmania University, Hyderabad, India.
| |
Collapse
|
127
|
Grace JL, Amado M, Reid JC, Elliott AG, Landersdorfer CB, Truong NP, Kempe K, Cooper MA, Davis TP, Montembault V, Pascual S, Fontaine L, Velkov T, Quinn JF, Whittaker MR. An optimised Cu(0)-RDRP approach for the synthesis of lipidated oligomeric vinyl azlactone: toward a versatile antimicrobial materials screening platform. J Mater Chem B 2019; 7:6796-6809. [PMID: 31603181 DOI: 10.1039/c9tb01624d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers via an optimised Cu(0)-mediated reversible-deactivation radical polymerisation approach, and the use of these oligomers as a versatile functional platform for the rapid generation of antimicrobial materials. The relative amounts of CuBr2 and Me6TREN were optimised to allow the fast and controlled polymerisation of VDM. These conditions were then used with the initiators ethyl 2-bromoisobutyrate, dodecyl 2-bromoisobutyrate, and (R)-3-((2-bromo-2-methylpropanoyl)oxy)propane-1,2-diyl didodecanoate to synthesise a library of oligo(VDM) (degree of polymerisation = 10) with ethyl, dodecyl or diglyceride end-groups. Subsequently, ring-opening of the pendant oxazolone group with various amines (i.e., 2-(2-aminoethyl)-1,3-di-Boc-guanidine, 1-(3-aminopropyl)imidazole, N-Boc-ethylenediamine, or N,N-dimethylethylenediamine) expanded the library to give 12 functional oligomers incorporating different cationic and lipid elements. The antimicrobial activities of these oligomers were assessed against a palette of bacteria and fungi: i.e. Staphylococcus aureus, Escherichia coli, Candida albicans, and Cryptococcus neoformans. The oligomers generally exhibited the greatest activity against the fungus, C. neoformans, with a minimum inhibitory concentration of 1 μg mL-1 (comparable to the clinically approved antifungal fluconazole). To assess haemocompatibility, the oligomers were assayed against erythrocytes, with the primary amine or guanidine containing C12 and 2C12 oligomers exhibiting greater lysis against the red blood cells (HC10 values between 7.1 and 43 μg mL-1) than their imidazole and tertiary amine counterparts (HC10 of >217 μg mL-1). Oligomers showed the greatest selectivity for C. neoformans, with the C12- and 2C12-tertiary amine and C12-imidazole oligomers possessing the greatest selectivity of >54-109. These results demonstrate the utility of reactive oligomers for rapidly assessing structure-property relationships for antibacterial and antifungal materials.
Collapse
Affiliation(s)
- James L Grace
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Maite Amado
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Janet C Reid
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alysha G Elliott
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia and Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Matthew A Cooper
- Institute of Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia and Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Le Mans Université, Av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Le Mans Université, Av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS - Le Mans Université, Av. O. Messiaen, 72085 Le Mans Cedex 9, France
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia. and Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC 3052, Australia
| |
Collapse
|
128
|
Wang D, Ma B, Zhao Y, Sun Y, Luan Y, Wang J. Preparation and Properties of Semi-Self-Assembled Lipopeptide Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13174-13181. [PMID: 31532218 DOI: 10.1021/acs.langmuir.9b02513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Novel lipopeptide vesicles are prepared from self-assembled nanomembranes through an extrusion method. The size of vesicles can be controlled by the pore diameter of the extrusion filter. The vesicles are rather stable because hydrogen bonds exist among the peptide headgroups. When doxorubicin hydrochloride (DOX·HCl) is encapsulated in the vesicles, it could be released sustainably, and its side effect would also be reduced due to encapsulation. The leakage rate of DOX·HCl depends on the pH via charge regulation. As drug carriers, lipopeptide vesicles have been proved to have nontoxicity to normal cells. A magnetic surfactant CH3(CH2)14CH2N(CH3)3+ [FeCl3Br]- (CTAFe) was mixed with lipopeptide to modify the vesicles. Also, the results demonstrated that the vesicles is endowed with magnetic property after the addition of CTAFe. We believe that the strategy of lipopeptide vesicle preparation would enrich the drug carrier family and expand the application of lipopeptide materials.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Bente Ma
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Yuxia Luan
- School of Pharmaceutical Science, Key Laboratory of Chemical Biology (Ministry of Education) , Shandong University , 44 West Wenhua Road , Jinan , Shandong 250012 , China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , Qingdao 266580 , China
| |
Collapse
|
129
|
Castelletto V, Edwards-Gayle CJC, Greco F, Hamley IW, Seitsonen J, Ruokolainen J. Self-Assembly, Tunable Hydrogel Properties, and Selective Anti-Cancer Activity of a Carnosine-Derived Lipidated Peptide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33573-33580. [PMID: 31407889 PMCID: PMC7007010 DOI: 10.1021/acsami.9b09065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A novel lipopeptide C16KTTβAH was designed that incorporates the KTT tripeptide sequence from "Matrixyl" lipopeptides along with the bioactive βAH (β-alanine-histidine) carnosine dipeptide motif, attached to a C16 hexadecyl lipid chain. We show that this peptide amphiphile self-assembles above a critical aggregation concentration into β-sheet nanotape structures in water, phosphate-buffered saline (PBS), and cell culture media. Nanotape bundle structures were imaged in PBS, the bundling resulting from nanotape associations because of charge screening in the buffer. In addition, hydrogelation was observed and the gel modulus was measured in different aqueous media conditions, revealing tunable hydrogel modulus depending on the concentration and nature of the aqueous phase. Stiff hydrogels were observed by direct dissolution in PBS, and it was also possible to prepare hydrogels with unprecedented high modulus from low-concentration solutions by injection of dilute aqueous solutions into PBS. These hydrogels have exceptional stiffness compared to previously reported β-sheet peptide-based materials. In addition, macroscopic soft threads which contain aligned nematic structures can be drawn from concentrated aqueous solutions of the lipopeptides. The anti-cancer activity of the lipopeptide was assessed using two model breast cancer cell lines compared to two fibroblast cell line controls. These studies revealed selective concentration-dependent cytotoxicity against MCF-7 cancer cells in the mM concentration range. It was shown that this occurs below the onset of lipopeptide aggregation (i.e., below the critical aggregation concentration), indicating that the cytotoxicity is not related to self-assembly but is an intrinsic property of C16KTTβAH. Finally, hydrogels of this lipopeptide demonstrated slow uptake and release of the Congo red dye, a model diagnostic compound.
Collapse
Affiliation(s)
- Valeria Castelletto
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, U.K.
- E-mail: (V.C.)
| | | | - Francesca Greco
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, U.K.
| | - Ian W. Hamley
- School of Chemistry, Pharmacy and Food Biosciences, University of Reading, Reading RG6 6AD, U.K.
- E-mail: (I.W.H.)
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto
University, Puumiehenkuja
2, Espoo FIN-02150, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto
University, Puumiehenkuja
2, Espoo FIN-02150, Finland
| |
Collapse
|
130
|
Fischer D, Gessner G, Fill TP, Barnett R, Tron K, Dornblut K, Kloss F, Stallforth P, Hube B, Heinemann SH, Hertweck C, Scherlach K, Brunke S. Disruption of Membrane Integrity by the Bacterium-Derived Antifungal Jagaricin. Antimicrob Agents Chemother 2019; 63:e00707-19. [PMID: 31235622 PMCID: PMC6709453 DOI: 10.1128/aac.00707-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 01/05/2023] Open
Abstract
Jagaricin is a lipopeptide produced by the bacterial mushroom pathogen Janthinobacterium agaricidamnosum, the causative agent of mushroom soft rot disease. Apart from causing lesions in mushrooms, jagaricin is a potent antifungal active against human-pathogenic fungi. We show that jagaricin acts by impairing membrane integrity, resulting in a rapid flux of ions, including Ca2+, into susceptible target cells. Accordingly, the calcineurin pathway is required for jagaricin tolerance in the fungal pathogen Candida albicans Transcriptional profiling of pathogenic yeasts further revealed that jagaricin triggers cell wall strengthening, general shutdown of membrane potential-driven transport, and the upregulation of lipid transporters, linking cell envelope integrity to jagaricin action and resistance. Whereas jagaricin shows hemolytic effects, it exhibited either no or low plant toxicity at concentrations at which the growth of prevalent phytopathogenic fungi is inhibited. Therefore, jagaricin may have potential for agricultural applications. The action of jagaricin as a membrane-disrupting antifungal is promising but would require modifications for use in humans.
Collapse
Affiliation(s)
- Daniel Fischer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Guido Gessner
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Taicia Pacheco Fill
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Robert Barnett
- Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Kyrylo Tron
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Katharina Dornblut
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Florian Kloss
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| |
Collapse
|
131
|
Dasgupta A, Das D. Designer Peptide Amphiphiles: Self-Assembly to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10704-10724. [PMID: 31330107 DOI: 10.1021/acs.langmuir.9b01837] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Peptide amphiphiles (PAs) are extremely attractive as molecular building blocks, especially in the bottom-up fabrication of supramolecular soft materials, and have potential in many important applications across various fields of science and technology. In recent years, we have designed and synthesized a large group of peptide amphiphiles. This library of PAs has the ability to self-assemble into a variety of aggregates such as fibers, nanosphere, vesicles, nanosheet, nanocups, nanorings, hydrogels, and so on. The mechanism behind the formation of such a wide range of structures is intriguing. Each system has its individual method of aggregation and results in assemblies with important applications in areas including chemistry, biology, and materials science. The aim of this feature article is to bring together our recent achievements with designer PAs with respect to their self-assembly processes and applications. Emphasis is placed on rational design, mechanistic aspects of the self-assembly processes, and the applications of these PAs. We hope that this article will provide a conceptual demonstration of the different approaches taken toward the construction of these task-specific PAs.
Collapse
Affiliation(s)
- Antara Dasgupta
- Eris Lifesciences , Plot Nos. 30 and 31, Brahmaputra Industrial Park, Amingaon, North Guwahati , Guwahati , Assam 781031 , India
| | - Debapratim Das
- Department of Chemistry , Indian Institute of Technology Guwahati , Assam - 781039 , India
| |
Collapse
|
132
|
Castelletto V, Edwards-Gayle CJC, Hamley IW, Pelin JNBD, Alves WA, Aguilar AM, Seitsonen J, Ruokolainen J. Self-Assembly of a Catalytically Active Lipopeptide and Its Incorporation into Cubosomes. ACS APPLIED BIO MATERIALS 2019; 2:3639-3647. [PMID: 32064461 PMCID: PMC7011704 DOI: 10.1021/acsabm.9b00489] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022]
Abstract
The self-assembly and biocatalytic activity of the proline-functionalized lipopeptide PRW-NH-C16 are examined and compared to that of the related PRW-O-C16 lipopeptide, which differs in having an ester linker between the lipid chain and tripeptide headgroup instead of an amide linker. Lipopeptide PRW-NH-C16 self-assembles into spherical micelles above a critical aggregation concentration, similar to the behavior of PRW-O-C16 reported previously [B. M. Soares et al. Phys. Chem. Chem. Phys., 2017, 19, 1181-1189]. However, PRW-NH-C16 shows an improved catalytic activity in a model aldol reaction. In addition, we explore the incorporation of the biocatalytic lipopeptide into lipid cubosomes. SAXS shows that increasing lipopeptide concentration leads to an expansion of the monoolein cubosome lattice spacing and a loss of long-range cubic order as the lipopeptide is encapsulated in the cubosomes. At higher loadings of lipopeptide, reduced cubosome formation is observed at the expense of vesicle formation. Our results show that the peptide-lipid chain linker does not influence self-assembly but does impart an improved biocatalytic activity. Furthermore, we show that lipopeptides can be incorporated into lipid cubosomes, leading to restructuring into vesicles at high loadings. These findings point the way toward the future development of bioactive lipopeptide assemblies and slow release cubosome-based delivery systems.
Collapse
Affiliation(s)
- Valeria Castelletto
- Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | | | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | - Juliane N B D Pelin
- Centro de Ciências Naturais e Humanas, Federal do ABC, Santo André 09210-580, Brazil
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Federal do ABC, Santo André 09210-580, Brazil
| | - Andrea M Aguilar
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| |
Collapse
|
133
|
Multifunctional Pharmaceutical Effects of the Antibiotic Daptomycin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8609218. [PMID: 31263709 PMCID: PMC6556800 DOI: 10.1155/2019/8609218] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Daptomycin (DAP), a cyclic lipopeptide produced by Streptomyces roseosporus, is a novel antibiotic to clinically treat various Gram-positive pathogenic bacteria-induced infections. Although DAP has a strong broad-spectrum bactericidal effect, recently rare bacterial antibiotic resistance against DAP gradually arises. The review is to summarize the normal indications of DAP, its off-label usage against several clinical pathogen infections, the unique antibacterial mechanisms of DAP, and the combination of antibiotic therapies for highly DAP-resistant pathogens. More noticeably, rising evidences demonstrate that DAP has new potential activity of anticancer and immunomodulatory effects. So far the multifunctional pharmaceutical effects of DAP deserve to be further explored for future clinical applications.
Collapse
|
134
|
Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides. J Membr Biol 2019; 252:131-157. [PMID: 31098678 DOI: 10.1007/s00232-019-00067-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
Several experimental and theoretical studies have extensively investigated the effects of a large diversity of antimicrobial peptides (AMPs) on model lipid bilayers and living cells. Many of these peptides disturb cells by forming pores in the plasma membrane that eventually lead to the cell death. The complexity of these peptide-lipid interactions is mainly related to electrostatic, hydrophobic and topological issues of these counterparts. Diverse studies have shed some light on how AMPs act on lipid bilayers composed by different phospholipids, and how mechanical properties of membranes could affect the antimicrobial effects of such compounds. On the other hand, cyclic lipopeptides (cLPs), an important class of microbial secondary metabolites, have received comparatively less attention. Due to their amphipathic structures, cLPs exhibit interesting biological activities including interactions with biofilms, anti-bacterial, anti-fungal, antiviral, and anti-tumoral properties, which deserve more investigation. Understanding how physicochemical properties of lipid bilayers contribute and determining the antagonistic activity of these secondary metabolites over a broad spectrum of microbial pathogens could establish a framework to design and select effective strategies of biological control. This implies unravelling-at the biophysical level-the complex interactions established between cLPs and lipid bilayers. This review presents, in a systematic manner, the diversity of lipidated antibiotics produced by different microorganisms, with a critical analysis of the perturbing actions that have been reported in the literature for this specific set of membrane-active lipopeptides during their interactions with model membranes and in vivo. With an overview on the mechanical properties of lipid bilayers that can be experimentally determined, we also discuss which parameters are relevant in the understanding of those perturbation effects. Finally, we expose in brief, how this knowledge can help to design novel strategies to use these biosurfactants in the agronomic and pharmaceutical industries.
Collapse
|
135
|
Qi R, Liu J, Zhang N, Ji X, Han Y, Wang Y. Assembly and Evolution of Gemini-Type Peptide Amphiphile with a Di-Lysine Spacer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6154-6160. [PMID: 30983363 DOI: 10.1021/acs.langmuir.9b00688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peptide amphiphiles (PAs) can self-assemble into a variety of supramolecular structures with excellent biofunctions. However, their assembly with time has rarely been observed and reported. Here, we find that a novel gemini-type PA [12-(Lys)2-12], taking two lysine (Lys) groups as the spacer, shows an obvious assembly and evolution process with time. Driven by the strong hydrophobic interaction between the alkyl chains as well as the electrostatic force and hydrogen bonding among the peptide spacers, the 12-(Lys)2-12 molecules first self-assemble into vesicles and then transform into fibrils, ribbons, and belts with time. If replacing the -(Lys)2- spacer with four lysine groups [-(Lys)4-] or two glutamic acid groups [-(Glu)2-], the PA molecules do not show the aggregate growth with time. This indicates that the lysine structure and its length are important structural factors contributing to the dynamic aggregate evolution behavior. More interestingly, this assembly and evolution behavior is highly dependent on 12-(Lys)2-12 concentration. Only in the proper concentration region (0.5-0.7 mM), the self-assembly displays the aggregate growth with time. At lower or higher concentrations, the aggregate growth is largely delayed or inhibited. Moreover, we also find that the aggregate growth of 12-(Lys)2-12 is related to the fibril solubilization temperature ( Tf→s). The faster aggregate growth occurs when the temperature is much lower than Tf→s. This work gains new insights into the evolution of the self-assembling structures of peptide amphiphiles.
Collapse
Affiliation(s)
- Ruilian Qi
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jian Liu
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Na Zhang
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | | | | | - Yilin Wang
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
136
|
Rozas EE, Mendes MA, Custódio MR, Espinosa DCR, do Nascimento CAO. Self-assembly of supramolecular structure based on copper-lipopeptides isolated from e-waste bioleaching liquor. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:63-71. [PMID: 30665109 DOI: 10.1016/j.jhazmat.2019.01.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Supramolecular structures were produced by auto-assembling CuCN blocks derived from copper-lipopeptides (CuLps) isolated from bioleaching liquor. Lipopeptides produced by B. subtilis Hyhel1 have been previously related as responsible by bioleaching and intracellular copper crystal production. However, there were no records relating CuLps to extracellular copper crystal production. To study this process, CuLps were isolated from bioleaching liquor and kept at 8 °C to facilitate the CuLps aggregation. After three months, blue spheres (BS) were observed in the CuLp fraction. These spheres were then analyzed by SEM-EDS, MALDI-TOF-MS/MS, GC-MS and FTIR. SEM-EDS analysis showed that they were formed by polycrystalline structures mainly composed by Cu (46.5% m/m) and positioned concentrically. MALDI-TOF-MS/MS and GCMS showed that peptide bonds of CuLp were broken, producing lipid chains and amino acids free. The FTIR of BS showed three nitro groups: CN, NN and NO, which were not found in the control. These data suggest that the CuLp amino acid produced a CN group linked to copper, as CuCN blocks, that auto-assembled in supramolecular structures. This phenomenon could be explored as a method to recover copper and to obtain supramolecular CuCN structures, which in turn may be used as template for superconductor or computing devices.
Collapse
Affiliation(s)
- Enrique E Rozas
- Dempster-Poli-USP, Chemical Engineering Department, University of São Paulo (USP), Av. Prof. Lineu Prestes 580, block 21, CEP: 05508-910, São Paulo, Brazil.
| | - Maria Anita Mendes
- Dempster-Poli-USP, Chemical Engineering Department, University of São Paulo (USP), Av. Prof. Lineu Prestes 580, block 21, CEP: 05508-910, São Paulo, Brazil
| | - Marcio Reis Custódio
- Department of General Physiology, Institute of Biosciences, University of São Paulo, Rua do Matão, Travessa 14, 101, CEP: 05508-090, Brazil
| | - Denise C R Espinosa
- LAREX, Chemical Engineering Department, University of São Paulo, Av. Prof. Lineu Prestes 580, block 21, CEP: 05508-910, São Paulo (USP), Brazil
| | - Claudio A O do Nascimento
- Dempster-Poli-USP, Chemical Engineering Department, University of São Paulo (USP), Av. Prof. Lineu Prestes 580, block 21, CEP: 05508-910, São Paulo, Brazil
| |
Collapse
|
137
|
Castelletto V, Edwards-Gayle CJC, Hamley IW, Barrett G, Seitsonen J, Ruokolainen J. Peptide-Stabilized Emulsions and Gels from an Arginine-Rich Surfactant-like Peptide with Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9893-9903. [PMID: 30785266 PMCID: PMC7005944 DOI: 10.1021/acsami.9b00581] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/20/2019] [Indexed: 05/05/2023]
Abstract
The preparation of hydrogels and stable emulsions is important in the formulation of many functional nanostructured soft materials. We investigate the multifunctional self-assembly and bioactivity properties of a novel surfactant-like peptide (SLP) that shows antimicrobial activity, is able to form hydrogels without pH adjustment, and is able to stabilize oil-in-water emulsions. Furthermore, we demonstrate on-demand de-emulsification in response to the protease enzyme elastase. We show that SLP (Ala)9-Arg (A9R) forms β-sheet fibers above a critical aggregation concentration and that water-in-oil emulsions are stabilized by a coating of β-sheet fibers around the emulsion droplets. Furthermore, we demonstrate enzyme-responsive de-emulsification, which has potential in the development of responsive release systems. The peptide shows selective antimicrobial activity against Gram-negative pathogens including Pseudomonas aeruginosa, which causes serious infections. Our results highlight the utility of SLPs in the stabilization of oil/water emulsions and the potential for these to be used to formulate antimicrobial peptide emulsions which are additionally responsive to protease. The peptide A9R has pronounced antibacterial activity against clinically challenging pathogens, and its ability to form β-sheet fibers plays a key role in its diverse structural properties, ranging from hydrogel formation to emulsion stabilization.
Collapse
Affiliation(s)
- Valeria Castelletto
- Department of Chemistry and School of Biological
Sciences, University of Reading, Reading RG6 6AD, United Kingdom
| | | | - Ian W. Hamley
- Department of Chemistry and School of Biological
Sciences, University of Reading, Reading RG6 6AD, United Kingdom
| | - Glyn Barrett
- Department of Chemistry and School of Biological
Sciences, University of Reading, Reading RG6 6AD, United Kingdom
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| |
Collapse
|
138
|
Characterization and Synergistic Antimicrobial Evaluation of Lipopeptides from Bacillus amyloliquefaciens Isolated from Oil-Contaminated Soil. Int J Microbiol 2019; 2019:3704198. [PMID: 30956662 PMCID: PMC6431436 DOI: 10.1155/2019/3704198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/17/2019] [Indexed: 12/02/2022] Open
Abstract
Lipopeptides show great potential for biomedical application. Several lipopeptides exhibit narrow and broad-spectrum inhibition activities. The aim of the study is to characterize the lipopeptides produced by B. amyloliquefaciens strain MD4-12 and evaluate the synergistic antimicrobial activity in combination with a conventional antibiotic against Gram-negative bacteria. B. amyloliquefaciens strain MD4-12 was isolated from oil-contaminated soil. The isolate was cultivated in McKeen medium, and the lipopeptides were isolated by precipitation and extraction with methanol. Characterization of the lipopeptides by ESI-MS gave nine mass ion peaks with m/z 994–1072, resulted from protonating of the main ions in [M + H]+ and [M + Na]+ ion form. These mass ion peaks attributed to surfactin homologs. By tandem mass spectrometry, five variants of surfactin with the same amino acid sequence in peptide moiety could be revealed. The peptide moiety contains seven amino acids identified as Glu-Leu/Ile-Leu-Val-Asp-Leu-Leu/Ile while the fatty acid moiety comprises a different length of chain from C12 to C16. Surfactin showed antibacterial activity against various Gram-positive and Gram-negative bacteria. Combination surfactin with ampicillin showed a synergistic effect against P. aeruginosa ATCC 27853.
Collapse
|
139
|
Mitra M, Asad M, Kumar S, Yadav K, Chaudhary S, Bhavesh NS, Khalid S, Thukral L, Bajaj A. Distinct Intramolecular Hydrogen Bonding Dictates Antimicrobial Action of Membrane-Targeting Amphiphiles. J Phys Chem Lett 2019; 10:754-760. [PMID: 30694679 DOI: 10.1021/acs.jpclett.8b03508] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As mechanisms underpinning the molecular interactions between membrane-targeting antimicrobials and Gram-negative bacterial membranes at atomistic scale remain elusive, we used cholic acid (CA)-derived amphiphiles with different hydrophobicities as model antimicrobials and assessed the effect of their conformational flexibility on antimicrobial activity. Relative to other hydrophobic counterparts, a compound with a hexyl chain (6) showed the strongest binding with the lipopolysaccharide (LPS) of Gram-negative bacterial membranes and acted as an effective antimicrobial. Biomolecular simulations, validated by complementary approaches, revealed that specific intramolecular hydrogen bonding imparts conformationally rigid character to compound 6. This conformational stability of compound 6 allows minimum but specific interactions of the amphiphile with LPS that are a sum of exothermic processes like electrostatic interactions, membrane insertion, and endothermic contributions from disaggregation of LPS. Therefore, our study reveals that a membrane-targeting mechanism with the help of conformationally selective molecules offers a roadmap for developing future therapeutics against bacterial infections.
Collapse
Affiliation(s)
- Madhurima Mitra
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
| | - Mohammad Asad
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
- Manipal Academy of Higher Education , Manipal 576104 , Karnataka , India
| | - Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
- Manipal Academy of Higher Education , Manipal 576104 , Karnataka , India
| | - Sarika Chaudhary
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg , New Delhi 110067 , India
| | - Syma Khalid
- School of Chemistry , University of Southampton , Highfield, Southampton SO17 1BJ , United Kingdom
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology , Mathura Road , New Delhi 110025 , India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology , Regional Centre for Biotechnology , NCR Biotech Science Cluster, third Milestone, Faridabad-Gurgaon Expressway , Faridabad 121001 , Haryana , India
| |
Collapse
|
140
|
Yadav K, Kumar S, Mishra D, Asad M, Mitra M, Yavvari PS, Gupta S, Vedantham M, Ranga P, Komalla V, Pal S, Sharma P, Kapil A, Singh A, Singh N, Srivastava A, Thukral L, Bajaj A. Deciphering the Role of Intramolecular Networking in Cholic Acid–Peptide Conjugates on the Lipopolysaccharide Surface in Combating Gram-Negative Bacterial Infections. J Med Chem 2019; 62:1875-1886. [DOI: 10.1021/acs.jmedchem.8b01357] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Deepakkumar Mishra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Mohammad Asad
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Madhurima Mitra
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Prabhu S. Yavvari
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462030, Madhya Pradesh, India
| | - Siddhi Gupta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Madhukar Vedantham
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Pavit Ranga
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Varsha Komalla
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Sanjay Pal
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
- Kalinga Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Priyanka Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Nirpendra Singh
- Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462030, Madhya Pradesh, India
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, 3rd Milestone Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India
| |
Collapse
|
141
|
Hentati D, Chebbi A, Hadrich F, Frikha I, Rabanal F, Sayadi S, Manresa A, Chamkha M. Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:441-449. [PMID: 30384057 DOI: 10.1016/j.ecoenv.2018.10.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 05/21/2023]
Abstract
This work aimed at studying the potential of a new hydrocarbonoclastic marine bacterium, Bacillus stratosphericus FLU5, to produce an efficient surface-active agent BS-FLU5. Biosurfactant production was examined on different carbon sources; using the surface tension measurement and the oil displacement test. Strain FLU5 showed its capacity to produce biosurfactants from all tested substrates, in particular the residual frying oil, which is a cheap renewable carbon source alternative, thus minimizing the high cost of producing those surfactants. MALDI-TOF MS/MS analysis confirmed the presence of lipopeptides, which are identified as members of surfactin and pumilacidin series. The critical micelle concentration (CMC) of the purified lipopeptides produced by strain FLU5 was 50 mg/l. At this concentration, the surface tension of the water was reduced from 72 to 28 mN/m. Furthermore, the crude lipopeptides showed an interesting stability against a broad range of pH, temperature and salinity. In addition, the application of BS-FLU5 in oil recovery from hydrocarbons-contaminated soil (used motor oil) showed that it was more effective on the hydrocarbon-remobilization than some tested synthetic surfactants. Interestingly, the biosurfactant BS-FLU5 showed a negligible cytotoxic effect against the mammalian cells HEK293. These results highlight the applicability of the lipopeptides BS-FLU5 in different fields, especially in environmental remediation processes.
Collapse
Affiliation(s)
- Dorra Hentati
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Alif Chebbi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Fatma Hadrich
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Ilhem Frikha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Francesc Rabanal
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Martí i Franquès, 1, 08028 Barcelona, Spain
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia
| | - Angeles Manresa
- Section of Microbiology, Department of Biology, Health and Environment, Faculty of Pharmacy, University of Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
142
|
Hutchinson JA, Hamley IW, Torras J, Alemán C, Seitsonen J, Ruokolainen J. Self-Assembly of Lipopeptides Containing Short Peptide Fragments Derived from the Gastrointestinal Hormone PYY 3-36: From Micelles to Amyloid Fibrils. J Phys Chem B 2019; 123:614-621. [PMID: 30609361 PMCID: PMC7005981 DOI: 10.1021/acs.jpcb.8b11097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We
investigate the impact of lipidation on the self-assembly of
two peptide fragments from the gastrointestinal peptide hormone PYY3–36. The lipopeptides C16IKPEAP and C16IKPEAPGE contain the first 6 and 8 amino acid residues, respectively,
from the PYY3–36 peptide sequence, with a palmitoyl
C16 tail attached at the N-terminus. These lipopeptides
form spherical micelles in aqueous solution, above a critical micelle
concentration (cmc), which is pH-dependent. Modeling of small-angle
X-ray scattering data along with molecular dynamics simulations shows
the formation of micelles with a hydrophobic interior and a well-hydrated
exterior. The lipopeptides have a disordered conformation over the
pH and temperature ranges studied. The cmc is found to be independent
of temperature, pointing to athermal micellization. In contrast to
the presence of hydrated micelles in solution, β-sheet amyloid
fibrils form in dried samples. Thus, the nanostructure of lipidated
PYY3–36 fragment peptides can be tuned by control
of pH or concentration, for future applications.
Collapse
Affiliation(s)
- Jessica A Hutchinson
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Ian W Hamley
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| | - Juan Torras
- Department of Chemical Engineering and Barcelona Research Center for Multiscale Science and Engineering , Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est (EEBE) Campus Diagonal Besòs , C/Eduard Maristany 10-14 , 08019 Barcelona , Spain
| | - Carlos Alemán
- Department of Chemical Engineering and Barcelona Research Center for Multiscale Science and Engineering , Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est (EEBE) Campus Diagonal Besòs , C/Eduard Maristany 10-14 , 08019 Barcelona , Spain
| | - Jani Seitsonen
- Nanomicroscopy Center , Aalto University , Puumiehenkuja 2 , FIN-02150 Espoo , Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center , Aalto University , Puumiehenkuja 2 , FIN-02150 Espoo , Finland
| |
Collapse
|
143
|
Grady EN, MacDonald J, Ho MT, Weselowski B, McDowell T, Solomon O, Renaud J, Yuan ZC. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6. BMC Microbiol 2019; 19:5. [PMID: 30621587 PMCID: PMC6325804 DOI: 10.1186/s12866-018-1380-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/25/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Bacillus velezensis is an endospore-forming, free-living soil bacterium with potential as a biopesticide against a broad spectrum of microbial pathogens of plants. Its potential for commercial development is enhanced by rapid replication and resistance to adverse environmental conditions, typical of Bacillus species. However, the use of beneficial microbes against phytopathogens has not gained dominance due to limitations that may be overcome with new biopesticidal strains and/or new biological knowledge. RESULTS Here, we isolated B. velezensis strain 9D-6 and showed that it inhibits the in vitro growth of prokaryotic and eukaryotic pathogens, including the bacteria Bacillus cereus , Clavibacter michiganensis, Pantoea agglomerans, Ralstonia solanacearum, Xanthomonas campestris, and Xanthomonas euvesicatoria; and the fungi Alternaria solani, Cochliobolus carbonum, Fusarium oxysporum, Fusarium solani, Gibberella pulicaris, Gibberella zeae, Monilinia fructicola, Pyrenochaeta terrestris and Rhizoctonia solani. Antimicrobial compounds with activity against Clavibacter michiganensis were isolated from B. velezensis 9D-6 and characterized by high resolution LC-MS/MS, yielding formulae of C52H91N7O13 and C53H93N7O13, which correspond to [Leu7] surfactins C14 and C15 (also called surfactin B and surfactin C), respectively. We further sequenced the B. velezensis 9D-6 genome which consists of a single circular chromosome and revealed 13 gene clusters expected to participate in antimicrobial metabolite production, including surfactin and two metabolites that have not typically been found in this species - ladderane and lantipeptide. Despite being unable to inhibit the growth of Pseudomonas syringae DC3000 in an in vitro plate assay, B. velezensis 9D-6 significantly reduced root colonization by DC3000, suggesting that 9D-6 uses methods other than antimicrobials to control phytopathogens in the environment. Finally, using in silico DNA-DNA hybridization (isDDH), we confirm previous findings that many strains currently classified as B. amyloliquefaciens are actually B. velezensis. CONCLUSIONS The data presented here suggest B. velezensis 9D-6 as a candidate plant growth promoting bacterium (PGPB) and biopesticide, which uses a unique complement of antimicrobials, as well as other mechanisms, to protect plants against phytopathogens. Our results may contribute to future utilization of this strain, and will contribute to a knowledge base that will help to advance the field of microbial biocontrol.
Collapse
Affiliation(s)
- Elliot Nicholas Grady
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Dental Science Building Rm. 3014, University of Western Ontario, London, ON N6A 5C1 Canada
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Jacqueline MacDonald
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Dental Science Building Rm. 3014, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Margaret T. Ho
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Dental Science Building Rm. 3014, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Brian Weselowski
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Ori Solomon
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Dental Science Building Rm. 3014, University of Western Ontario, London, ON N6A 5C1 Canada
| | - Justin Renaud
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| | - Ze-Chun Yuan
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, Dental Science Building Rm. 3014, University of Western Ontario, London, ON N6A 5C1 Canada
- London Research and Development Centre, Agriculture & Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3 Canada
| |
Collapse
|
144
|
Chen L, Yang D, Feng J, Zhang M, Qian Q, Zhou Y. Switchable modulation of bacterial growth and biofilm formation based on supramolecular tripeptide amphiphiles. J Mater Chem B 2019; 7:6420-6427. [DOI: 10.1039/c9tb00973f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A minimalistic dual-responsive supramolecular tripeptide system was developed for switchable control of bacterial growth and biofilm formation.
Collapse
Affiliation(s)
- Limin Chen
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Dan Yang
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Jie Feng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325000
- P. R. China
| | - Min Zhang
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| | - Qiuping Qian
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou 325000
- P. R. China
| | - Yunlong Zhou
- School of Ophthalmology and Optometry
- Eye Hospital
- School of Biomedical Engineering
- Wenzhou Medical University
- Wenzhou 325000
| |
Collapse
|
145
|
A Novel Actin Binding Drug with In Vivo Efficacy. Antimicrob Agents Chemother 2018; 63:AAC.01585-18. [PMID: 30323040 PMCID: PMC6325233 DOI: 10.1128/aac.01585-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 11/23/2022] Open
Abstract
Occidiofungin is produced by the soil bacterium Burkolderia contaminans MS14 and is structurally similar or identical to the burkholdines, xylocandins, and cepacidines. This study identified the primary cellular target of occidiofungin, which was determined to be actin. Occidiofungin is produced by the soil bacterium Burkolderia contaminans MS14 and is structurally similar or identical to the burkholdines, xylocandins, and cepacidines. This study identified the primary cellular target of occidiofungin, which was determined to be actin. The modification of occidiofungin with a functional alkyne group enabled affinity purification assays and localization studies in yeast. Occidiofungin has a subtle effect on actin dynamics that triggers apoptotic cell death. We demonstrate the highly specific localization of occidiofungin to cellular regions rich in actin in yeast and the binding of occidiofungin to purified actin in vitro. Furthermore, a disruption of actin-mediated cellular processes, such as endocytosis, nuclear segregation, and hyphal formation, was observed. All of these processes require the formation of stable actin cables, which are disrupted following the addition of a subinhibitory concentration of occidiofungin. We were also able to demonstrate the effectiveness of occidiofungin in treating a vulvovaginal yeast infection in a murine model. The results of this study are important for the development of an efficacious novel class of actin binding drugs that may fill the existing gap in treatment options for fungal infections or different types of cancer.
Collapse
|
146
|
Jamshidi-Aidji M, Morlock GE. Fast Equivalency Estimation of Unknown Enzyme Inhibitors in Situ the Effect-Directed Fingerprint, Shown for Bacillus Lipopeptide Extracts. Anal Chem 2018; 90:14260-14268. [DOI: 10.1021/acs.analchem.8b03407] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maryam Jamshidi-Aidji
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gertrud E. Morlock
- Chair of Food Science, Institute of Nutritional Science, and Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
147
|
Grace JL, Schneider-Futschik EK, Elliott AG, Amado M, Truong NP, Cooper MA, Li J, Davis TP, Quinn JF, Velkov T, Whittaker MR. Exploiting Macromolecular Design To Optimize the Antibacterial Activity of Alkylated Cationic Oligomers. Biomacromolecules 2018; 19:4629-4640. [PMID: 30359516 DOI: 10.1021/acs.biomac.8b01317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
There is growing interest in synthetic polymers which co-opt the structural features of naturally occurring antimicrobial peptides. However, our understanding of how macromolecular architecture affects antibacterial activity remains limited. To address this, we investigated whether varying architectures of a series of block and statistical co-oligomers influenced antibacterial and hemolytic activity. Cu(0)-mediated polymerization was used to synthesize oligomers constituting 2-(Boc-amino)ethyl acrylate units and either diethylene glycol ethyl ether acrylate (DEGEEA) or poly(ethylene glycol) methyl ether acrylate units with varying macromolecular architecture; subsequent deprotection produced primary amine functional oligomers. Further guanylation provided an additional series of antimicrobial candidates. Both chemical composition and macromolecular architecture were shown to affect antimicrobial activity. A broad spectrum antibacterial oligomer (containing guanidine moieties and DEGEEA units) was identified that possessed promising activity (MIC = 2 μg mL-1) toward both Gram-negative and Gram-positive bacteria. Bacterial membrane permeabilization was identified as an important contributor to the mechanism of action.
Collapse
Affiliation(s)
- James L Grace
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| | - Elena K Schneider-Futschik
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Alysha G Elliott
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Maite Amado
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Nghia P Truong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| | - Matthew A Cooper
- Institute of Molecular Biosciences , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology , Monash University , Clayton , Victoria 3800 , Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Department of Chemistry , Warwick University , Gibbet Hill , Coventry , CV4 7AL , U.K
| | - John F Quinn
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences , The University of Melbourne , Parkville , VIC 3010 , Australia
| | - Michael R Whittaker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia.,Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences , Monash University , 381 Royal Pde , Parkville , VIC 3052 , Australia
| |
Collapse
|
148
|
Malekkhaiat Häffner S, Malmsten M. Influence of self-assembly on the performance of antimicrobial peptides. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
149
|
Zhao L, Tu Y, Fang H, Hamley IW, Wang Z. Self-Assembled Micellar Structures of Lipopeptides with Variable Number of Attached Lipid Chains Revealed by Atomistic Molecular Dynamics Simulations. J Phys Chem B 2018; 122:9605-9615. [PMID: 30253107 DOI: 10.1021/acs.jpcb.8b07877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present atomistic molecular dynamics simulation study of the self-assembly behavior of toll-like agonist lipopeptides (Pam nCSK4) in aqueous solutions. The variable number of hexadecyl lipid chains ( n = 1, 2, 3) per molecule has been experimentally suggested to have remarkable influence on their self-assembled nanostructures. Starting from preassembled spherical or bilayer configurations, the aggregates of lipopeptides, PamCSK4 and Pam2CSK4, which contain peptide sequences CSK4 linked to either mono- or dilipid chains (Pam), evolve into spherical-like micelles within 30 ns, whereas the self-assembled structure of trilipidated lipopeptides, Pam3CSK4, relaxes much slower and reaches an equilibrium state of flattened wormlike micelle with a bilayer packing structure. The geometric shapes and sizes, namely the gyration radii of spherical micelles and thickness of the flattened wormlike micelle, are found to be in good agreement with experimental measurements, which effectively validates the simulation models and employed force fields. Detailed analyses of molecular packing reveal that these self-assembled nanostructures all consist of a hydrophobic core constructed of lipid chains, a transitional layer, and a hydrophilic interfacial layer composed of peptide sequences. The average area per peptide head at the interfaces is found to be nearly constant for all micellar structures studied. The packing parameter of the lipopeptide molecules thus increases with the increase of the number of linked lipid chains, giving rise to the distinct micellar shape transition from spherical-like to flattened wormlike geometry with bilayer stacking, which is qualitatively different from the shape transitions of surfactant micelles induced by variation of concentration or salt type. To facilitate the close-packing of the lipid chains in the hydrophobic core, the lipopeptide molecules typically take the bent conformation with average tilt angles between the peptide sequences and the lipid chains ranging from 110° to 140°. This consequently affects the orientation angles of the lipid chains with respect to the radial or normal direction of the spherical-like or flattened wormlike micelles. In addition, the secondary structures of the peptides may also be altered by the number of lipid chains to which they are linked and the resultant micellar structures. Our simulation results on the microscopic structural features of the lipopeptide nanostructures may provide potential insights into their bioactivities and contribute to the design of bioactive medicines or drug carriers. The force fields built for these lipopeptides and the geometric packing discussions could also be adopted for simulating and understanding the self-assembly behavior of other bioactive amiphiphiles with similar chemical compositions.
Collapse
Affiliation(s)
- Liang Zhao
- College of Physical Science and Technology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Yusong Tu
- College of Physical Science and Technology , Yangzhou University , Yangzhou , Jiangsu 225009 , China
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800 , China
| | - Ian W Hamley
- Department of Chemistry , University of Reading , Whiteknights, Reading RG6 6AD , United Kingdom
| | - Zuowei Wang
- School of Mathematical, Physical and Computational Sciences , University of Reading , Whiteknights, Reading RG6 6AX , United Kingdom
| |
Collapse
|
150
|
Castelletto V, Hamley IW, Seitsonen J, Ruokolainen J, Harris G, Bellmann-Sickert K, Beck-Sickinger AG. Conformation and Aggregation of Selectively PEGylated and Lipidated Gastric Peptide Hormone Human PYY3–36. Biomacromolecules 2018; 19:4320-4332. [DOI: 10.1021/acs.biomac.8b01209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, United Kingdom
| | - Jani Seitsonen
- Department of Applied Physics, Aalto University School of Science,
P.O. Box 15100, FI-00076 Aalto, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University School of Science,
P.O. Box 15100, FI-00076 Aalto, Finland
| | - Gemma Harris
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Fermi Avenue, Didcot OX11 0DE, United Kingdom
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, Brüderstrasse 3, D 04103 Leipzig, Germany
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Science, Leipzig University, Brüderstrasse 3, D 04103 Leipzig, Germany
| |
Collapse
|