101
|
Wen F, Wu X, Li X, Huang N. Two-Dimensional Covalent Organic Frameworks as Tailor-Made Scaffolds for Water Harvesting. Chemistry 2023; 29:e202302399. [PMID: 37718650 DOI: 10.1002/chem.202302399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/19/2023]
Abstract
Developing materials to harvest water from the air is of great importance to alleviate the water shortage for people living in arid regions, where the annual average relative humidity (RH) is lower than 0.4. In this work, we report a general nitrogen atom incorporation strategy to prepare high-performance covalent organic frameworks (COFs) for water harvesting from the air in arid areas. A series of COFs, namely COF-W1, COF-W2, and COF-W3 were developed for this purpose. Different contents of nitrogen were embedded into COFs by incorporating pyridine units into the building blocks. With the increasing content of nitrogen from COF-W1 to COF-W3, the inflection points of their water isotherms shift distinctly from RH values from 0.65 to 0.25. Significantly, COF-W3 exhibits the lowest inflection point at a low RH value of 0.25 and reaches a high uptake capacity of 0.28 g g-1 at 25 °C with a low hysteresis loop. Moreover, the gram-scale COF-W3 retains its high performance, which renders it more attractive in water harvesting. This work demonstrates the feasibility of this nitrogen incorporation strategy to acquire high-performance COFs as water harvesters in the future.
Collapse
Affiliation(s)
- Fuxiang Wen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| | - Xiangyu Li
- Dalian Ecological and Environmental Affairs Service Center, Dalian Municipal Bureau of Ecological Environment, 116023, Dalian, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
102
|
Xu S, Wu J, Wang X, Zhang Q. Recent advances in the utilization of covalent organic frameworks (COFs) as electrode materials for supercapacitors. Chem Sci 2023; 14:13601-13628. [PMID: 38075665 PMCID: PMC10699565 DOI: 10.1039/d3sc04571d] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/05/2023] [Indexed: 04/26/2024] Open
Abstract
Due to their excellent stability, ease of modification, high specific surface area, and tunable redox potentials, covalent organic frameworks (COFs) as potential electrodes in supercapacitors (SCs) have raised much research interest because these materials can enable the achievement of high electric double-layer supercapacitance and high pseudocapacitance. Here, the design strategies and SC applications of COF-based electrode materials are summarized. The detailed principles are introduced first, followed by discussions on strategies with diverse examples. The updated advances in design and applications are also discussed. Finally, in the outlook section, we provide some guidelines on the rational design of COF-based electrode materials for high-performance SCs, which we hope will inspire novel concepts for COF-based supercapacitors.
Collapse
Affiliation(s)
- Shen Xu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Jinghang Wu
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong Hong Kong SAR 999077 P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Hong Kong SAR 999077 P. R. China
| |
Collapse
|
103
|
Li J, Liu L, Tang X, Bai X, Liu Y, Wang D, Tao S, Liu R, Jiang D. Covalent Organic Frameworks: Reversible 3D Coalesce via Interlocked Skeleton-Pore Actions and Impacts on π Electronic Structures. J Am Chem Soc 2023; 145:26383-26392. [PMID: 37983008 DOI: 10.1021/jacs.3c10280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Covalent organic frameworks (COFs) create extended two-dimensional (2D) skeletons and aligned one-dimensional (1D) channels, constituting a class of novel π architectures with predesignable structural ordering. A distinct feature is that stacks of π building units in skeletons shape the pore walls, onto which a diversity of different units can be assembled to form various pore interfaces, opening a great potential to trigger a strong structural correlation between the skeleton and the pore. However, such a possibility has not yet been explored. Herein, we report reversible three-dimensional (3D) coalescence and interlocked actions between the skeleton and pore in COFs by controlling hydrogen-bonding networks in the pores. Introducing carboxylic acid units to the pore walls develops COFs that can confine water molecular networks, which are locked by the surface carboxylic acid units on the pore walls via multipoint, multichain, and multidirectional hydrogen-bonding interactions. As a result, the skeleton undergoes an interlocked action with pores to shrink over the x-y plane and to stack closer along the z direction upon water uptake. Remarkably, this interlocked action between the skeleton and pore is reversibly driven by water adsorption and desorption and triggers profound effects on π electronic structures and functions, including band gap, light absorption, and emission.
Collapse
Affiliation(s)
- Juan Li
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Lili Liu
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Centre, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science & Technology, Shanghai 200237, China
| | - Xi Bai
- Pharmaceutical Department, Changzhi Medical College, Changzhi 046000, China
| | - Yukun Liu
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Dongsheng Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan 03006, China
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
104
|
Zhang R, Yang ZD, Yang Y, Zhang FM, Zhang G. Understanding Photocatalytic Overall Water Splitting of β-Ketoamine COFs through the N-C Site Synergistic Mechanism. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38038242 DOI: 10.1021/acsami.3c14311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Overcoming the sluggish reaction kinetics of the oxygen evolution reaction (OER) is a determining factor for the practical application of photocatalysts for overall water splitting. Two-dimensional covalent organic frameworks (2D-COFs) offer an ideal platform for catalyst design in the field of overall water splitting for their exceptional chemical tunability and high efficiency of light capture. In this work, four β-ketoamine 2D-COFs, consisting of 1,3,5-triformylphloroglucinol (Tp) groups and different linkers with pyridine segments, were constructed and optimized. By means of first-principles calculations, the band structures, free energy changes of photocatalytic hydrogen evolution reaction (HER) and OER, and charge density distributions were calculated and investigated systemically to discuss the visible-light response, overall water splitting activities on active sites, and the characteristic of charge transfer and separation. The protonated pyridine N derived from the double-H2O closed-ring H-bond adsorption model could efficiently induce N-C sites' synergistic effect between pyridine N and its ortho-position C to minimize the OER energy barrier and to enhance the charge transfer and separation. A N-C site synergistic mechanism has been proposed to provide a comprehensive explanation for the experimental results and a new strategy to design novel 2D-COF photocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Rui Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Zhao-Di Yang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Yan Yang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| | - Guiling Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, China
| |
Collapse
|
105
|
Ajnsztajn A, Harikrishnan VVJ, Alahakoon SB, Zhu D, Barnes M, Daum J, Gayle J, Tomur G, Lowenstein J, Roy S, Ajayan PM, Verduzco R. Synthesis and Additive Manufacturing of Hydrazone-Linked Covalent Organic Framework Aerogels. Chemistry 2023; 29:e202302304. [PMID: 37665636 DOI: 10.1002/chem.202302304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Covalent Organic Frameworks (COFs) are crystalline, porous organic materials. Recent studies have demonstrated novel processing strategies for COFs to form adaptable architectures, but these have focused primarily on imine-linked COFs. This work presents a new synthesis and processing route to produce crystalline hydrazone-linked COF gels and aerogels with hierarchical porosity. The method was implemented to produce a series of hydrazone-linked COFs with different alkyl side-chain substituents, achieving control of the hydrophilicity of the final aerogel. Variation in the length of the alkyl substituents yielded materials with controllable form factors that can preferentially adsorb water or nonpolar organic solvents. Additionally, a method for additive manufacturing of hydrazone-linked COFs using hydroxymethylcellulose as a sacrificial additive is presented. This work demonstrates an effective and simple approach to the fabrication of hydrazone COF aerogels and additive manufacturing to produce hydrazone COFs of desired shape.
Collapse
Affiliation(s)
- Alec Ajnsztajn
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | | | - Sampath B Alahakoon
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
- Institute for Combinatorial Advanced Research and Education, General Sir John Kotelawala Defence University, Kandawala Rd, Ratmalana, 10390, Sri Lanka
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX-77005, USA
| | - Morgan Barnes
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jeremy Daum
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jessica Gayle
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Gulnihal Tomur
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jacob Lowenstein
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Soumyabrata Roy
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Rafael Verduzco
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX-77005, USA
| |
Collapse
|
106
|
Ma Z, Fang L, Liu L, Hu B, Wang S, Yu S, Wang X. Efficient decontamination of organic pollutants from wastewater by covalent organic framework-based materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166453. [PMID: 37607627 DOI: 10.1016/j.scitotenv.2023.166453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Covalent organic frameworks (COFs), assembling through covalent bonds, are a rising class of porous materials. Nowadays, various COFs are widely applied in organic pollutants decontamination due to the outstanding capabilities of large surface area, multiple functional groups, porous structure, excellent absorptivity, flexible design and so on. This review concentrates on the applications of COFs in different decontamination technologies such as solid-phase extraction, membrane filtration and sieving, adsorption, and catalysis reaction. The factors influencing water chemistry, such as pH, temperature, salt concentration and natural organic matter, are summarized in terms of their impact on decontamination performance and the extraction mechanisms for the diverse analytes. The interaction mechanisms between COFs and organic pollutants were hydrogen bonding, π-π stacking, hydrophilic, hydrophobic, and electrostatic interactions. Furthermore, a perspective on current obstacles and upcoming developments of COFs for organic pollutant removal has been provided. Due to their adaptable and versatile design as well as elaborate and diverse functionalization, COFs possess significant possibility in ameliorating environmental pollution.
Collapse
Affiliation(s)
- Zixuan Ma
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Lin Fang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China.
| | - Lijie Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
107
|
Xu X, Cui Q, Chen H, Huang N. Carborane-Based Three-Dimensional Covalent Organic Frameworks. J Am Chem Soc 2023; 145:24202-24209. [PMID: 37890127 DOI: 10.1021/jacs.3c08541] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The predesignable porous structure and high structural flexibility of covalent organic frameworks (COFs) render this material desirable as a platform for addressing various cutting-edge issues. Precise control over their composition, topological structure, porosity, and stability to realize tailor-made functionality still remains a great challenge. In this work, we developed a new kind of three-dimensional (3D) carborane-based COF with a 7-fold interpenetrating dia topological diagram. The resulting COFs exhibited high crystallinity, exceptional porosity, and strong robustness. The slightly lower electronegativity of boron (2.04) than that of hydrogen (2.20) can lead to the polarization of the B-H bond into a Bδ+-Hδ- mode, which renders these COFs as high-performance materials for the adsorption and separation of hexane isomers through the B-Hδ-···Hδ+-C interaction. Significantly, the carborane content of obtained COFs reached up to 54.2 wt %, which gets the highest rank among all the reported porous materials. Combining high surface area, strong robustness, and high content of carborane, the obtained COFs can work as efficient adsorbents for the separation of the five hexane isomers with high separation factors. This work not only enhances the diversity of 3D functional COFs but also constitutes a further step toward the efficient separation of alkane isomers.
Collapse
Affiliation(s)
- Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qirui Cui
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
108
|
Paz R, Viltres H, Gupta NK, Phung V, Srinivasan S, Rajabzadeh AR, Leyva C. Covalent organic frameworks as highly versatile materials for the removal and electrochemical sensing of organic pollutants. CHEMOSPHERE 2023; 342:140145. [PMID: 37714485 DOI: 10.1016/j.chemosphere.2023.140145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The presence of persistent organic compounds in water has become a worldwide issue due to its resistance to natural degradation, inducing its environmental resilience. Therefore, the accumulation in water bodies, soils, and humans produces toxic effects. Also, low levels of organic pollutants can lead to serious human health issues, such as cancer, chronic diseases, thyroid complications, immune system suppression, etc. Therefore, developing efficient and economically viable remediation strategies motivates researchers to delve into novel domains within material science. Moreover, finding approaches to detect pollutants in drinking water systems is vital for safeguarding water safety and security. Covalent organic frameworks (COFs) are valuable materials constructed through strong covalent interactions between blocked monomers. These materials have tremendous potential in removing and detecting persistent organic pollutants due to their high adsorption capacity, large surface area, tunable porosity, porous structure, and recyclability. This review discusses various synthesis routes for constructing non-functionalized and functionalized COFs and their application in the remediation and electrochemical sensing of persistent organic compounds from contaminated water sources. The development of COF-based materials has some major challenges that need to be addressed for their suitability in the industrial configuration. This review also aims to highlight the importance of COFs in the environmental remediation application with detailed scrutiny of their challenges and outcomes in the current research scenario.
Collapse
Affiliation(s)
- Roxana Paz
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Nishesh Kumar Gupta
- Department of Environmental Research, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Vivian Phung
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico.
| |
Collapse
|
109
|
Wang S, Wu T, Wu S, Guo J, He T, Wu Y, Yuan W, Zhang Z, Hua Y, Zhao Y. Cobaloxime-Integrated Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution Coupled with Alcohol Oxidation. Angew Chem Int Ed Engl 2023; 62:e202311082. [PMID: 37698088 DOI: 10.1002/anie.202311082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
We report an azide-functionalized cobaloxime proton-reduction catalyst covalently tethered into the Wurster-type covalent organic frameworks (COFs). The cobaloxime-modified COF photocatalysts exhibit enhanced photocatalytic activity for hydrogen evolution reaction (HER) in alcohol-containing solution with no presence of a typical sacrificial agent. The best performing cobaloxime-modified COF hybrid catalyzes hydrogen production with an average HER rate up to 38 μmol h-1 in ethanol/phosphate buffer solution under 4 h illumination. Ultrafast transient optical spectroscopy characterizations and charge carrier analysis reveal that the alcohol contents functioning as hole scavengers could be oxidized by the photogenerated holes of COFs to form aldehydes and protons. The consumption of the photogenerated holes thus suppresses exciton recombination of COFs and improves the ratio of free electrons that were effectively utilized to drive catalytic reaction for HER. This work demonstrates a great potential of COF-catalyzed HER using alcohol solvents as hole scavengers and provides an example toward realizing the accessibility to the scope of reaction conditions and a greener route for energy conversion.
Collapse
Affiliation(s)
- Shihuai Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Tai Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shuyang Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhengyang Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yong Hua
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, Yunnan, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
110
|
Luo Y, Chang Z, Pei J, Guo Z, Zhan H. Design, Synthesis, and Ultrafast Carrier Dynamics of Core-Substituted Naphthalene Diimide-Based Covalent Organic Frameworks. NANO LETTERS 2023; 23:9266-9271. [PMID: 37812523 DOI: 10.1021/acs.nanolett.3c02222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
A series of two-dimensional polyimide covalent organic frameworks (2D COF) based on core-substituted naphthalene diimides (cNDIs) were designed and synthesized with the characteristic of tunable bandgap without global structural changes. Cyclic voltammetry (CV) and DFT calculations indicated that COFcNDI-OEt and COFcNDI-SEt possess higher HOMO/LUMO levels and narrower bandgaps than COFNDI-H. Further investigation indicated that the COF bandgaps are not only related to the electron-donating substituents but also varied with respect to the interlayer distances. Moreover, the femtosecond transient absorption (TA) spectra manifested that the electron donor substituents are beneficial to the charge delocalization in the π-columnar unit, resulting in a longer lifetime of charge recombination, which is one of the pivotal prerequisites for high-performance solar cells and photocatalysis.
Collapse
Affiliation(s)
- Yafang Luo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
| | - Zhen Chang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
| | - Jiajie Pei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
| | - Zhiyong Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, P. R. China
| |
Collapse
|
111
|
Ghosh P, Banerjee P. Drug delivery using biocompatible covalent organic frameworks (COFs) towards a therapeutic approach. Chem Commun (Camb) 2023; 59:12527-12547. [PMID: 37724444 DOI: 10.1039/d3cc01829f] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Covalent organic frameworks (COFs) are constructed exclusively with lightweight organic scaffolds, which can have a 2D or 3D architecture. The ease of synthesis, robust skeleton and tunable properties of COFs make them superior candidates among their counterparts for a wide range of uses including biomedical applications. In the biomedical field, drug delivery or photodynamic-photothermal (PDT-PTT) therapy can be individually considered a potential parameter to be investigated. Therefore, this comprehensive review is focused on drug delivery using COFs, highlighting the encapsulation and decapsulation of drugs by COF scaffolds and their delivery in biological media including live cells. Versatile COF scaffolds together with the delivery of several drug molecules are considered. We attempted to incorporate the status of drug encapsulation and decapsulation considering a wide range of recent publications.
Collapse
Affiliation(s)
- Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamilnadu, India.
| | - Priyabrata Banerjee
- Electric Mobility and Tribology Research Group, CSIR-Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, India.
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Ghaziabad 201002, Uttarpradesh, India
| |
Collapse
|
112
|
Kim SW, Jung H, Okyay MS, Noh HJ, Chung S, Kim YH, Jeon JP, Wong BM, Cho K, Seo JM, Yoo JW, Baek JB. Hexaazatriphenylene-Based Two-Dimensional Conductive Covalent Organic Framework with Anisotropic Charge Transfer. Angew Chem Int Ed Engl 2023; 62:e202310560. [PMID: 37654107 DOI: 10.1002/anie.202310560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/02/2023]
Abstract
The development of covalent organic frameworks (COFs) with efficient charge transport is of immense interest for applications in optoelectronic devices. To enhance COF charge transport properties, electroactive building blocks and dopants can be used to induce extended conduction channels. However, understanding their intricate interplay remains challenging. We designed and synthesized a tailor-made COF structure with electroactive hexaazatriphenylene (HAT) core units and planar dioxin (D) linkages, denoted as HD-COF. With the support of theoretical calculations, we found that the HAT units in the HD-COF induce strong, eclipsed π-π stacking. The unique stacking of HAT units and the weak in-plane conjugation of dioxin linkages leads to efficient anisotropic charge transport. We fabricated HD-COF films to minimize the grain boundary effect of bulk COFs, which resulted in enhanced conductivity. As a result, the HD-COF films showed an electrical conductivity as high as 1.25 S cm-1 after doping with tris(4-bromophenyl)ammoniumyl hexachloroantimonate.
Collapse
Affiliation(s)
- Seong-Wook Kim
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyeonjung Jung
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Mahmut Sait Okyay
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, 92521, USA
| | - Hyuk-Jun Noh
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Young Hyun Kim
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Pil Jeon
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Bryan M Wong
- Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, CA, 92521, USA
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeong-Min Seo
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jung-Woo Yoo
- School of Materials Science and Engineering/, Graduate School of Semiconductor Materials and Devices, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jong-Beom Baek
- Department of Energy and Chemical Engineering/, Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
113
|
Xiao SJ, Yuan MY, Shi YD, Wang MP, Li HH, Zhang L, Qiu JD. Construction of covalent organic framework nanozymes with photo-enhanced hydrolase activities for colorimetric sensing of organophosphorus nerve agents. Anal Chim Acta 2023; 1278:341706. [PMID: 37709428 DOI: 10.1016/j.aca.2023.341706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Construction of covalent organic frameworks (COFs)-based nanozymes is of great importance for the extensive applications in catalysis and sensing fields. In this work, a two-dimensional COF (DAFB-DCTP COF) was fabricated via Knoevenagel condensation reaction. The integration of catalytically active sites of pyridine groups into the donor-acceptor (D-A) conjugated skeleton endows DAFB-DCTP COF with both hydrolytic and photosensitive properties. The DAFB-DCTP COF can be utilized as an artificial enzyme with selective and photo-enhanced catalytic efficiency, facilitating its application in photocatalytic degradation of hydrolase substrates (p-nitrophenyl acetate, pNPA) by nucleophilic reaction and further realizing colorimetric detection of the nanozyme inhibitor of organophosphorus nerve agent (diethyl cyanophosphonate, DCNP). The distinct color changes could be distinguished by naked eyes even at a low DCNP concentration, and the versatile smartphone analysis featured with reliability and simplicity. For the first time, the COFs' intrinsic hydrolase activity depending on their structural characteristics was investigated in synergy with the photosensitive performance originating from their photoelectric features. The present contribution provides a promising direction towards construction of colorimetric sensing platform based on the regulation of COFs' non-oxidoreductase activity under visible light irradiation.
Collapse
Affiliation(s)
- Sai-Jin Xiao
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Ming-Yue Yuan
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Ya-Di Shi
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Meng-Ping Wang
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Hui-Han Li
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, China.
| | - Jian-Ding Qiu
- School of Chemistry and Material Science, East China University of Technology (ECUT), Nanchang, 330013, China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
114
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
115
|
Pelkowski CE, Natraj A, Malliakas CD, Burke DW, Bardot MI, Wang Z, Li H, Dichtel WR. Tuning Crystallinity and Stacking of Two-Dimensional Covalent Organic Frameworks through Side-Chain Interactions. J Am Chem Soc 2023; 145:21798-21806. [PMID: 37773640 DOI: 10.1021/jacs.3c03868] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) form as layered 2D polymers whose sheets stack through high-surface-area, noncovalent interactions that can give rise to different interlayer arrangements. Manipulating the stacking of 2D COFs is crucial since it dictates the effective size and shape of the pores as well as the specific interactions between functional aromatic systems in adjacent layers, both of which will strongly influence the emergent properties of 2D COFs. However, principles for tuning layer stacking are not yet well understood, and many 2D COFs are disordered in the stacking direction. Here, we investigate effects of pendant chain length through a series of 2D imine-linked COFs functionalized with n-alkyloxy chains varying in length from one carbon (C1 COF) to 11 carbons (C11 COF). This series reveals previously unrecognized and unanticipated trends in both the stacking geometry and crystallinity. C1 COF adopts an averaged eclipsed geometry with no apparent offset between layers. In contrast, all subsequent chain lengths lead to some degree of unidirectional slip stacking. As pendant chain length is increased, trends show average layer offset increasing to a maximum of 2.07 Å in C5 COF and then decreasing as chain length is extended through C11 COF. Counterintuitively, shorter chains (C2-C4) give rise to lower yields of weakly crystalline materials, while longer chains (C6-C9) produce greater yields of highly crystalline materials, as confirmed by powder X-ray diffraction and scanning electron microscopy. Molecular dynamics simulations corroborate these observations, suggesting that long alkyl chains can interact favorably to promote the self-assembly of sheets. In situ proton NMR spectroscopy provides insights into the reaction equilibrium as well as the relationship between low COF yields and low crystallinity. These results provide fundamental insights into principles of supramolecular assembly in 2D COFs, demonstrating an opportunity for harnessing favorable side-chain interactions to produce highly crystalline materials.
Collapse
Affiliation(s)
- Chloe E Pelkowski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anusree Natraj
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David W Burke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Madison I Bardot
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zixiao Wang
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Jiading, Shanghai 201800, China
| | - Haoyuan Li
- School of Microelectronics, Shanghai University, 20 Chengzhong Road, Jiading, Shanghai 201800, China
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
116
|
Das A, Mohit, Thomas KRJ. Donor-Acceptor Covalent Organic Frameworks as a Heterogeneous Photoredox Catalyst for Scissoring Alkenes to Carbonyl Constituents. J Org Chem 2023; 88:14065-14077. [PMID: 37695568 DOI: 10.1021/acs.joc.3c01594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The conversion of alkenes to carbonyl constituents via the cleavage of the C═C bond is unique due to its biological and pharmacological significance. Though a number of oxidative C═C cleavage protocols have been demonstrated for terminal and electron-rich alkene systems, none of them were optimized for electron-deficient and conjugated alkenes. In this work, a covalent organic framework containing triphenylamine and triazine units was revealed to cleave the C═C bond of alkenes under very mild conditions involving visible light irradiation due to its photoredox property. The alkenes can be conveniently broken across the double bond to their constituent carbonyl derivatives on light irradiation in the presence of air and the covalent organic framework photocatalyst. This protocol is applicable for a wide range of alkenes in an aqueous acetonitrile medium with high functional group tolerance and regioselectivity. Though the electron-deficient alkenes required tetramethylethylene diamine as a sacrificial donor, the electron-rich alkenes do not demand any additives.
Collapse
Affiliation(s)
- Anupam Das
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mohit
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - K R Justin Thomas
- Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
117
|
Feng X, Wang X, Redshaw C, Tang BZ. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application. Chem Soc Rev 2023; 52:6715-6753. [PMID: 37694728 DOI: 10.1039/d3cs00251a] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Molecular aggregates are self-assembled from multiple molecules via weak intermolecular interactions, and new chemical and physical properties can emerge compared to their individual molecule. With the development of aggregate science, much research has focused on the study of the luminescence behaviour of aggregates rather than single molecules. Pyrene as a classical fluorophore has attracted great attention due to its diverse luminescence behavior depending on the solution state, molecular packing pattern as well as morphology, resulting in wide potential applications. For example, pyrene prefers to emit monomer emission in dilute solution but tends to form a dimer via π-π stacking in the aggregation state, resulting in red-shifted emission with quenched fluorescence and quantum yield. Over the past two decades, much effort has been devoted to developing novel pyrene-based fluorescent molecules and determining the luminescence mechanism for potential applications. Since the concept of "aggregation-induced emission (AIE)" was proposed by Tang et al. in 2001, aggregate science has been established, and the aggregated luminescence behaviour of pyrene-based materials has been extensively investigated. New pyrene-based emitters have been designed and synthesized not only to investigate the relationships between the molecular structure and properties and advanced applications but also to examine the effect of the aggregate morphology on their optical and electronic properties. Indeed, new aggregated pyrene-based molecules have emerged with unique properties, such as circularly polarized luminescence, excellent fluorescence and phosphorescence and electroluminescence, ultra-high mobility, etc. These properties are independent of their molecular constituents and allow for a number of cutting-edge technological applications, such as chemosensors, organic light-emitting diodes, organic field effect transistors, organic solar cells, Li-batteries, etc. Reviews published to-date have mainly concentrated on summarizing the molecular design and multi-functional applications of pyrene-based fluorophores, whereas the aggregation behaviour of pyrene-based luminescent materials has received very little attention. The majority of the multi-functional applications of pyrene molecules are not only closely related to their molecular structures, but also to the packing model they adopt in the aggregated state. In this review, we will summarize the intriguing optoelectronic properties of pyrene-based luminescent materials boosted by aggregation behaviour, and systematically establish the relationship between the molecular structure, aggregation states, and optoelectronic properties. This review will provide a new perspective for understanding the luminescence and electronic transition mechanism of pyrene-based materials and will facilitate further development of pyrene chemistry.
Collapse
Affiliation(s)
- Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
118
|
Liu H, Yao Y, Samorì P. Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. SMALL METHODS 2023; 7:e2300468. [PMID: 37431215 DOI: 10.1002/smtd.202300468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Recent developments in the design and synthesis of more and more sophisticated organic building blocks with controlled structures and physical properties, combined with the emergence of novel assembly modes and nanofabrication methods, make it possible to tailor unprecedented structurally complex porous systems with precise multiscale control over their architectures and functions. By tuning their porosity from the nanoscale to microscale, a wide range of functional materials can be assembled, including open frameworks and micro/nanoscaffold architectures. During the last two decades, significant progress is made on the generation and optimization of advanced porous systems, resulting in high-performance multifunctional scaffold materials and novel device configurations. In this perspective, a critical analysis is provided of the most effective methods for imparting controlled physical and chemical properties to multifunctional porous skeletons. The future research directions that underscore the role of skeleton structures with varying physical dimensions, from molecular-level open frameworks (<10 nm) to supramolecular scaffolds (10-100 nm) and micro/nano scaffolds (>100 nm), are discussed. The limitations, challenges, and opportunities for potential applications of these multifunctional and multidimensional material systems are also evaluated in particular by addressing the greatest challenges that the society has to face.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yifan Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
119
|
Choi J, Kim T, Li H, Jung HT, Zhao D. Gas Sensors with Two-Dimensional rGO@COF Composite Materials for Fast NO 2 Detection under Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44119-44126. [PMID: 37690035 DOI: 10.1021/acsami.3c10304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Covalent organic frameworks (COFs) are attracting increasing interest in various applications due to their ability to capture molecules originating from their highly crystallized porous structures. However, most types of COFs are non-conductive and cannot be directly applied to electronic devices. Herein, we utilize non-conductive COFs in chemiresistor sensors by forming composite structures with conductive reduced graphene oxide (rGO). The composites rGO@COF exhibit low-enough resistance to be measured as chemiresistors, demonstrating enhanced gas sensing performance than pristine rGO. In particular, rGO@COF sensors achieve 2.7 times higher sensitivity toward NO2 and a dramatically reduced response time from 234 to 32 s compared to rGO, which can be attributed to increased surface area and NO2 adsorption energy. Our strategy provides new perspectives for utilizing non-conductive COFs in various electronic applications.
Collapse
Affiliation(s)
- Junghoon Choi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Taewoo Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
120
|
Jiang QQ, Li YJ, Wu Q, Liang RP, Wang X, Zhang R, Wang YA, Liu X, Qiu JD. Molecular Insertion: A Master Key to Unlock Smart Photoelectric Responses of Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302254. [PMID: 37236205 DOI: 10.1002/smll.202302254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/07/2023] [Indexed: 05/28/2023]
Abstract
Covalent organic frameworks (COFs) show potentials in prominent photoelectric responses by judicious structural design. However, from the selections of monomers and condensation reactions to the synthesis procedures, the acquisition of photoelectric COFs has to meet overmuch high conditions, limiting the breakthrough and modulation in photoelectric responses. Herein, the study reports a creative "lock-key model" based on molecular insertion strategy. A COF with suitable cavity size, TP-TBDA, is used as the host to load guests. Merely through the volatilization of mixed solution, TP-TBDA and guests can be spontaneously assembled via non-covalent interactions (NCIs) to produce molecular-inserted COFs (MI-COFs). The NCIs between TP-TBDA and guests acted as a bridge to facilitate charge transfer in MI-COFs, unlocking the photoelectric responses of TP-TBDA. By exploiting the controllability of NCIs, the MI-COFs can realize the smart modulation of photoelectric responses by simply changing the guest molecule, thus avoiding the arduous selection of monomers and condensation reactions required by conventional COFs. The construction of molecular-inserted COFs circumvents complicated procedures for achieving performance improvement and modulation, providing a promising direction to construct late-model photoelectric responsive materials.
Collapse
Affiliation(s)
- Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ya-Jie Li
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qiong Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xun Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Rui Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Ying-Ao Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang, 330013, China
| |
Collapse
|
121
|
Yuan C, Wang Z, Xiong W, Huang Z, Lai Y, Fu S, Dong J, Duan A, Hou X, Yuan LM, Cui Y. Cyclodextrin Incorporation into Covalent Organic Frameworks Enables Extensive Liquid and Gas Chromatographic Enantioseparations. J Am Chem Soc 2023; 145:18956-18967. [PMID: 37596711 DOI: 10.1021/jacs.3c05973] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
The separation of enantiomers using high-performance chromatography technologies represents great importance and interest. In this aspect, β-cyclodextrin (β-CD) and its derivatives have been extensively studied as chiral stationary phases (CSPs). Nevertheless, β-CD that was immobilized on a traditional matrix often exhibited low stabilities and limited operating ranges. Recently, covalent organic frameworks (COFs) with highly ordered nanopores are emerging as promising CSPs for enantioseparations, but their practical applications are still hampered by the difficulty of monomer and COF synthesis. Herein, two β-CD-driven COFs are synthesized via a fast and facile plasma-induced polymerization combined postsynthesis modification strategy. The precisely defined COF channels enhanced the accessibility of the accommodated β-CD to the analytes and acted as robust protective barriers to safeguard the β-CD from harsh environments. Therefore, the β-CD-modified COFs can be potentially general CSPs for extensive enantioseparation in both gas chromatography and high-performance liquid chromatography, and a wide range of racemates were separated. Compared to the commonly employed commercial chiral columns, these COF-based columns exhibited comparable resolution capability and superior application versatility. This work integrates the advantages and overcomes the defects of COFs and β-CD, thus advancing COFs as platforms for chiral selector modification and giving great promise for practical chromatographic enantioseparation.
Collapse
Affiliation(s)
- Chen Yuan
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, China
| | - Zhen Wang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Wanqi Xiong
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Zhifeng Huang
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Yalin Lai
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Shiguo Fu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, China
| | - Aihong Duan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming 650500, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai 200240, China
| |
Collapse
|
122
|
Fabozzi FG, Severin N, Rabe JP, Hecht S. Room Temperature On-Surface Synthesis of a Vinylene-Linked Single Layer Covalent Organic Framework. J Am Chem Soc 2023; 145:18205-18209. [PMID: 37561921 DOI: 10.1021/jacs.3c04730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Conjugated single-layered two-dimensional covalent organic frameworks are flat and extended polymer networks with a unique combination of material properties, giving rise to potential applications in sensing, optoelectronics, and photonics. Despite their great potential, thus far only a few reactions to access such extended conjugated 2D polymers have been reported. Here, the on-surface polymerization of the first vinylene-linked single layered two-dimensional covalent organic framework using reversible Knoevenagel polycondensation under solvothermal conditions is described. Self-assembly of the two monomer building blocks at the solid-liquid interface led to the formation of extended covalent networks at room temperature without the need of additional catalysts or reagents. The described approach grants access to extended conjugated 2D polymers under unprecedentedly mild conditions and paves the way to new hybrid material systems.
Collapse
Affiliation(s)
- Filippo Giovanni Fabozzi
- DWI - Leibniz Institute for Interactive Materials, Aachen 52074, Germany
- Department of Chemistry, IRIS Adlershof and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Nikolai Severin
- Department of Physics, IRIS Adlershof and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Jürgen P Rabe
- Department of Physics, IRIS Adlershof and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Stefan Hecht
- DWI - Leibniz Institute for Interactive Materials, Aachen 52074, Germany
- Department of Chemistry, IRIS Adlershof and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| |
Collapse
|
123
|
Sun L, Guo H, Liu B, Pan Z, Wu N, Zhang H, Yang W. Ultrasensitive levofloxacin electrochemical biosensor based on semiconducting covalent organic framework/poly-L-cysteine/triangular Ag nanoplates modified glassy carbon electrode. Mikrochim Acta 2023; 190:346. [PMID: 37555996 DOI: 10.1007/s00604-023-05866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/06/2023] [Indexed: 08/10/2023]
Abstract
A novel electrochemical biosensor with excellent performance was fabricated for levofloxacin (LEV) detection, which adopted triangular Ag nanoplates (Tri-AgNP) confined in a poly-L-cysteine (poly-L-Cys) film and a semiconducting covalent organic framework (COF) as the electrochemical sensing material. The developed electrochemical sensor revealed excellent analytical properties because of its good electrical conductivity, fast electron transfer, and abundant bioactive site. Based on this, a linear relationship between the LEV concentration and the peak current response at 0.92 V was obtained under the optimal experimental conditions by differential pulse voltammetry (DPV), with a wide linear range of 0.05 to 600 μM and a low limit of detection (LOD) of 0.0061 μM. The prepared sensor also realized sensitive and accurate determination of LEV in human serum and urine samples by standard addition method, with satisfactory recoveries (97.1 to 104%) and a low relative standard deviation of less than 4.6%. These results indicated that the novel ternary system has a promising application in the development of electrochemical signal probe and electrochemical biosensing platform.
Collapse
Affiliation(s)
- Lei Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China.
| | - Bingqing Liu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Zhilan Pan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Ning Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Hao Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
124
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
125
|
Zhang J, Luo D, Xiao H, Zhao H, Ding B, Dou H, Zhang X. Post-synthetic Covalent Organic Framework to Improve the Performance of Solid-State Li + Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:34704-34710. [PMID: 37462202 DOI: 10.1021/acsami.3c03643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
As a new class of crystalline materials, covalent organic frameworks (COFs) have long-range ordered channels and feasibility to functionalize. The well-arranged pores make it possible to contain and transport ions. Here, we designed a novel functionalized anionic COF-SS-Li by a post-synthetic method utilizing the Povarov reaction of BDTA-COF, anchoring -SO3- groups to the COF backbone and converting the imine linkage to a more stable quinoline unit. The grafted -SO3- groups and directional channels can promote the lithium-ion transport through a hopping mechanism. As a solid-state lithium-ion electrolyte, COF-SS-Li exhibits the conductivities of 9.63 × 10-5 S cm-1 at 20 °C and 1.28 × 10-4 S cm-1 at 40 °C and a wide electrochemical window of 4.85 V. The assembled Li|COF-SS-Li|Li symmetric cell can cycle stably for 600 h at 0.1 mA cm-2. Also, the Li|COF-SS-Li|LiFePO4 cell delivers an initial capacity of 117 mAh g-1 at 0.1 A g-1 and retains a capacity rate of 56.7% after 500 cycles. The research enriches the solid-state electrolytes for lithium-ion batteries.
Collapse
Affiliation(s)
- Jing Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Derong Luo
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Hong Xiao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Huizi Zhao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Bing Ding
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
126
|
Mokhtari N, Dinari M, Khosravi Esmaeiltarkhani F. Imine-Linked Covalent Organic Frameworks: A Biocompatible and pH-Dependent Carrier for In Vitro Sustained Release of Doxorubicin. ACS OMEGA 2023; 8:25565-25573. [PMID: 37483239 PMCID: PMC10357574 DOI: 10.1021/acsomega.3c03316] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
Among the novel drug delivery systems (DDSs), covalent organic frameworks (COFs) show promising features in pharmaceutical science. In this paper, an imine-linked COF with hexagonal topology was synthesized using the autoclave condition. Then, the prepared COF (APB-COF) was used as a pH-dependent carrier for in vitro release of doxorubicin (DOX). The intrinsic properties of APB-COF caused reaching an excellent drug encapsulation efficiency. DOX@APB-COF shows an exemplary pH-dependent release in two different pHs. DOX release at pH = 7.4 was 32%, which increased to 54% by changing the pH to the cancer cell pH (pH = 5.4). Moreover, the cytotoxicity of APB-COF and DOX@APB-COF was studied using the standard MTT test against MCF10 (normal breast cell line) and MDAmb231 cells (breast cancer cell line), respectively. It was observed that the APB-COF does not affect cell proliferation, whereas the DOX@APB-COF only limits cancer cell proliferation. Using APB-COF as the drug carrier can pave the way for using COFs in innovative DDSs.
Collapse
|
127
|
Wang M, Fu S, Petkov P, Fu Y, Zhang Z, Liu Y, Ma J, Chen G, Gali SM, Gao L, Lu Y, Paasch S, Zhong H, Steinrück HP, Cánovas E, Brunner E, Beljonne D, Bonn M, Wang HI, Dong R, Feng X. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. NATURE MATERIALS 2023; 22:880-887. [PMID: 37337069 PMCID: PMC10313522 DOI: 10.1038/s41563-023-01581-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023]
Abstract
Two-dimensional conjugated polymers (2DCPs), composed of multiple strands of linear conjugated polymers with extended in-plane π-conjugation, are emerging crystalline semiconducting polymers for organic (opto)electronics. They are represented by two-dimensional π-conjugated covalent organic frameworks, which typically suffer from poor π-conjugation and thus low charge carrier mobilities. Here we overcome this limitation by demonstrating two semiconducting phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type 2DCPs (2DCP-MPc, with M = Cu or Ni), which are constructed from octaaminophthalocyaninato metal(II) and naphthalenetetracarboxylic dianhydride by polycondensation under solvothermal conditions. The 2DCP-MPcs exhibit optical bandgaps of ~1.3 eV with highly delocalized π-electrons. Density functional theory calculations unveil strongly dispersive energy bands with small electron-hole reduced effective masses of ~0.15m0 for the layer-stacked 2DCP-MPcs. Terahertz spectroscopy reveals the band transport of Drude-type free carriers in 2DCP-MPcs with exceptionally high sum mobility of electrons and holes of ~970 cm2 V-1 s-1 at room temperature, surpassing that of the reported linear conjugated polymers and 2DCPs. This work highlights the critical role of effective conjugation in enhancing the charge transport properties of 2DCPs and the great potential of high-mobility 2DCPs for future (opto)electronics.
Collapse
Affiliation(s)
- Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Petko Petkov
- Faculty of Chemistry and Pharmacy, University of Sofia, Sofia, Bulgaria
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Zhitao Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, China
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Sai Manoj Gali
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
| | - Lei Gao
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Yang Lu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Halle, Germany
| | - Silvia Paasch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Hans-Peter Steinrück
- Institute of Physical Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Enrique Cánovas
- Max Planck Institute for Polymer Research, Mainz, Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Eike Brunner
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, Belgium
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
- Max Planck Institute of Microstructure Physics, Halle, Germany.
| |
Collapse
|
128
|
Zhou S, Kuang Y, Lin H, Zheng J, Ouyang G. Modulating covalent organic frameworks with accessible carboxyl to boost superior extraction of polar nitrobenzene compounds from matrix-complicated beverages. Food Chem 2023; 426:136626. [PMID: 37354579 DOI: 10.1016/j.foodchem.2023.136626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
The wide use and high polarity of nitrobenzene compounds (NBCs) have caused a concern for their residues in daily beverages. Herein, the covalent organic frameworks (COFs) with abundant carboxyl were ingeniously designed by introducing a novel modulator, and further developed as solid phase microextraction (SPME) coatings. Due to the enhanced polar interaction, the extraction efficiencies of modified COF for NBCs were sharply increased. After coupling the high-performance SPME fiber with gas chromatograph-mass spectrometry (GC-MS), an ultrasensitive analytical method was developed, with a wide linear range (0.50-5000 ng/L), and low limits of detection (0.15-3.0 ng/L). More importantly, the method was highly feasible and practical, leading to the precise determinations of trace NBCs from variously matrix-complicated samples. This work provides a viable and efficacious approach for the extraction and analysis of polar pollutants form complicated matrices, and is of great significance for mild COF modification and its extended applications in analytical chemistry.
Collapse
Affiliation(s)
- Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Hongkai Lin
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
129
|
Xu X, Wu X, Xu K, Xu H, Chen H, Huang N. Pore partition in two-dimensional covalent organic frameworks. Nat Commun 2023; 14:3360. [PMID: 37291160 DOI: 10.1038/s41467-023-39126-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Covalent organic frameworks (COFs) have emerged as a kind of crystalline polymeric materials with high compositional and geometric tunability. Most COFs are currently designed and synthesized as mesoporous (2-50 nm) and microporous (1-2 nm) materials, while the development of ultramicroporous (<1 nm) COFs remains a daunting challenge. Here, we develop a pore partition strategy into COF chemistry, which allows for the segmentation of a mesopore into multiple uniform ultramicroporous domains. The pore partition is implemented by inserting an additional rigid building block with suitable symmetries and dimensions into a prebuilt parent framework, leading to the partitioning of one mesopore into six ultramicropores. The resulting framework features a wedge-shaped pore with a diameter down to 6.5 Å, which constitutes the smallest pore among COFs. The wedgy and ultramicroporous one-dimensional channels enable the COF to be highly efficient for the separation of five hexane isomers based on the sieving effect. The obtained average research octane number (RON) values of those isomer blends reach up to 99, which is among the highest records for zeolites and other porous materials. Therefore, this strategy constitutes an important step in the pore functional exploitation of COFs to implement pre-designed compositions, components, and functions.
Collapse
Affiliation(s)
- Xiaoyi Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xinyu Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Kai Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
130
|
Soni V, Patial S, Kumar A, Singh P, Thakur VK, Ahamad T, Van Le Q, Luque R, Raizada P, Nguyen VH. Covalent organic frameworks (COFs) core@shell nanohybrids: Novel nanomaterial support towards environmental sustainability applications. ENVIRONMENTAL RESEARCH 2023; 232:116353. [PMID: 37295591 DOI: 10.1016/j.envres.2023.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Covalent organic frameworks (COFs) based on core@shell nanohybrids have recently received significant attention and have become one of the most promising strategies for improving the stability and catalytic activity of COFs. Compared with traditional core@shell, COF-based core@shell hybrids own remarkable advantages, including size-selective reactions, bifunctional catalysis, and integration of multiple functions. These properties could enhance the stability and recyclability, resistance to sintering, and maximize the electronic interaction between the core and the shell. The activity and selectivity of COF-based core@shell could be simultaneously improved by taking benefit of the existing synergy between the functional encapsulating shell and the covered core material. Considering that, we have highlighted various topological diagrams and the role of COFs in COF-based core@shell hybrid for activity and selectivity enhancement. This concept article provides all-inclusive advances in the design and catalytic applications of COF-based core@shell hybrids. Various synthetic techniques have been developed for the facile tailoring of functional core@shell hybrids, including novel seed growth, in-situ, layer-by-layer, and one-pot method. Importantly, charge dynamics and structure-performance relationships are investigated through different characterization techniques. Different COF-based core@shell hybrids with established synergistic interactions have been detailed, and their influence on stability and catalytic efficiency for various applications is explained and discussed in this contribution. A comprehensive discussion on the remaining challenges associated with COF-based core@shell nanoparticles and research directions has also been provided to deliver insightful ideas for additional future developments.
Collapse
Affiliation(s)
- Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India.
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
131
|
Chen X, Kong L, Mehrez JAA, Fan C, Quan W, Zhang Y, Zeng M, Yang J, Hu N, Su Y, Wei H, Yang Z. Outstanding Humidity Chemiresistors Based on Imine-Linked Covalent Organic Framework Films for Human Respiration Monitoring. NANO-MICRO LETTERS 2023; 15:149. [PMID: 37286913 PMCID: PMC10247948 DOI: 10.1007/s40820-023-01107-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Human metabolite moisture detection is important in health monitoring and non-invasive diagnosis. However, ultra-sensitive quantitative extraction of respiration information in real-time remains a great challenge. Herein, chemiresistors based on imine-linked covalent organic framework (COF) films with dual-active sites are fabricated to address this issue, which demonstrates an amplified humidity-sensing signal performance. By regulation of monomers and functional groups, these COF films can be pre-engineered to achieve high response, wide detection range, fast response, and recovery time. Under the condition of relative humidity ranging from 13 to 98%, the COFTAPB-DHTA film-based humidity sensor exhibits outstanding humidity sensing performance with an expanded response value of 390 times. Furthermore, the response values of the COF film-based sensor are highly linear to the relative humidity in the range below 60%, reflecting a quantitative sensing mechanism at the molecular level. Based on the dual-site adsorption of the (-C=N-) and (C-N) stretching vibrations, the reversible tautomerism induced by hydrogen bonding with water molecules is demonstrated to be the main intrinsic mechanism for this effective humidity detection. In addition, the synthesized COF films can be further exploited to effectively detect human nasal and oral breathing as well as fabric permeability, which will inspire novel designs for effective humidity-detection devices.
Collapse
Affiliation(s)
- Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lingwei Kong
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jaafar Abdul-Aziz Mehrez
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chao Fan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wenjing Quan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yongwei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Wei
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
132
|
Maiti S, Sharma JK, Ling J, Tietje-Mckinney D, Heaney MP, Runčevski T, Addicoat MA, D'Souza F, Milner PJ, Das A. Emissive Substoichiometric Covalent Organic Frameworks for Water Sensing and Harvesting. Macromol Rapid Commun 2023; 44:e2200751. [PMID: 36413748 PMCID: PMC10200826 DOI: 10.1002/marc.202200751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/01/2022] [Indexed: 03/03/2024]
Abstract
Emissive covalent organic frameworks (COFs) have recently emerged as next-generation porous materials with attractive properties such as tunable topology, porosity, and inherent photoluminescence. Among the different types of COFs, substoichiometric frameworks (so-called Type III COFs) are especially attractive due to the possibility of not only generating unusual topology and complex pore architectures but also facilitating the introduction of well-defined functional groups at precise locations for desired functions. Herein, the first example of a highly emissive (PLQY 6.8%) substoichiometric 2D-COF (COF-SMU-1) featuring free uncondensed aldehyde groups is reported. In particular, COF-SMU-1 features a dual-pore architecture with an overall bex net topology, tunable emission in various organic solvents, and distinct colorimetric changes in the presence of water. To gain further insights into its photoluminescence properties, the charge transfer, excimer emission, and excited state exciton dynamics of COF-SMU-1 are investigated using femtosecond transient absorption spectroscopy in different organic solvents. Additionally, highly enhanced atmospheric water-harvesting properties of COF-SMU-1 are revealed using FT-IR and water sorption studies.The findings will not only lead to in-depth understanding of structure-property relationships in emissive COFs but also open new opportunities for designing COFs for potential applications in solid-state lighting and water harvesting.
Collapse
Affiliation(s)
- Sayan Maiti
- Department of Chemistry, Southern Methodist University, Dallas, TX, 75275, USA
| | - Jatan K Sharma
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Jianheng Ling
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | - Matthew P Heaney
- Department of Chemistry, Southern Methodist University, Dallas, TX, 75275, USA
| | - Tomče Runčevski
- Department of Chemistry, Southern Methodist University, Dallas, TX, 75275, USA
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, TX, 76201, USA
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Anindita Das
- Department of Chemistry, Southern Methodist University, Dallas, TX, 75275, USA
| |
Collapse
|
133
|
Li HJ, Huang Y, Zhang S, Chen C, Guo X, Xu L, Liao Q, Xu J, Zhu M, Wang X, Wang D, He B. S-Scheme Porphyrin Covalent Organic Framework Heterojunction for Boosted Photoelectrochemical Immunoassays in Myocardial Infarction Diagnosis. ACS Sens 2023; 8:2030-2040. [PMID: 37134009 DOI: 10.1021/acssensors.3c00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cardiac troponin I (cTnI) is an extremely sensitive biomarker for early indication of acute myocardial infarction (AMI). However, it still remains a tough challenge for many newly developed cTnI biosensors to achieve superior sensing performance including high sensitivity, rapid detection, and resistance to interference in clinical serum samples. Herein, a novel photocathodic immunosensor toward cTnI sensing has been successfully developed by designing a unique S-scheme heterojunction based on the porphyrin-based covalent organic frameworks (p-COFs) and p-type silicon nanowire arrays (p-SiNWs). In the novel heterojunction, the p-SiNWs are employed as the photocathode platform to acquire a strong photocurrent response. The in situ-grown p-COFs can accelerate the spatial migration rate of charge carriers by forming proper band alignment with the p-SiNWs. The crystalline π-conjugated network of p-COFs with abundant amino groups also promotes the electron transfer and anti-cTnI immobilizing process. The developed photocathodic immunosensor demonstrates a broad detection range of 5 pg/mL-10 ng/mL and a low limit of detection (LOD) of 1.36 pg/mL in clinical serum samples. Besides, the PEC sensor owns several advantages including good stability and superior anti-interference ability. By comparing our results with that of the commercial ELISA method, the relative deviations range from 0.06 to 0.18% (n = 3), and the recovery rates range from 95.4 to 109.5%. This work displays a novel strategy to design efficient and stable PEC sensing platforms for cTnI detection in real-life serums and provides guidance in future clinical diagnosis.
Collapse
Affiliation(s)
- Hui-Jun Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yueyi Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Shen Zhang
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chengzhen Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ling Xu
- Institute of Brain-inspired Circuits and Systems, Fudan University, Shanghai 200093, China
| | - Qiaobo Liao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Minfang Zhu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xianying Wang
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), Shanghai 200050, China
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Bin He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
134
|
Zojer E. Electrostatic Design of the Nanoscale Internal Surfaces of Porous Covalent Organic Frameworks. NANO LETTERS 2023; 23:3558-3564. [PMID: 37014999 PMCID: PMC10141416 DOI: 10.1021/acs.nanolett.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
It is well established that the collective action of assemblies of dipoles determines the electronic structure of surfaces and interfaces. This raises the question, to what extent the controlled arrangement of polar units can be used to also tune the electronic properties of the inner surfaces of materials with nanoscale pores. In the present contribution, state-of-the-art density-functional theory calculations are used to show for the prototypical case of covalent organic frameworks (COFs) that this is indeed possible. Decorating pore walls with assemblies of polar entities bonded to the building blocks of the COF layers triggers a massive change of the electrostatic energy within the pores. This, inevitably, also changes the relative alignment between electronic states in the framework and in guest molecules and is expected to have significant impacts on charge separation in COF heterojunctions, on redox reactions in COFs-based electrodes, and on (photo)catalysis.
Collapse
|
135
|
Gao S, Zhang Q, Su X, Wu X, Zhang XG, Guo Y, Li Z, Wei J, Wang H, Zhang S, Wang J. Ingenious Artificial Leaf Based on Covalent Organic Framework Membranes for Boosting CO 2 Photoreduction. J Am Chem Soc 2023; 145:9520-9529. [PMID: 37076447 DOI: 10.1021/jacs.2c11146] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Covalent organic frameworks (COFs) hold the potential in converting CO2 with water into value-added fuels and O2 to save the deteriorating ecological environment. However, reaching high yield and selectivity is a grand challenge under metal-, photosensitizer-, or sacrificial reagent-free conditions. Here, inspired by microstructures of natural leaves, we designed triazine-based COF membranes with the integration of steady light-harvesting sites, efficient catalytic center, and fast charge/mass transfer configuration to fabricate a novel artificial leaf for the first time. Significantly, a record high CO yield of 1240 μmol g-1 in a 4 h reaction, approximately 100% selectivity, and a long lifespan (at least 16 cycles) were achieved under gas-solid conditions without using any metal, photosensitizer, or sacrificial reagent. Unlike the existing knowledge, the chemical structural unit of triazine-imide-triazine and the unique physical form of the COF membrane are predominant for such a remarkable photocatalysis. This work opens a new pathway to simulating photosynthesis in leaves and may motivate relevant research in the future.
Collapse
Affiliation(s)
- Shuaiqi Gao
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Qian Zhang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Xiaofang Su
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Xiangkun Wu
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Yingying Guo
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Zhiyong Li
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Jishi Wei
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Huiyong Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Suojiang Zhang
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jianji Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| |
Collapse
|
136
|
Yildirim O, Tsaturyan A, Damin A, Nejrotti S, Crocellà V, Gallo A, Chierotti MR, Bonomo M, Barolo C. Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15819-15831. [PMID: 36926827 PMCID: PMC10064318 DOI: 10.1021/acsami.2c20853] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A novel 2D covalent organic polymer (COP), based on conjugated quinoid-oligothiophene (QOT) and tris(aminophenyl) benzene (TAPB) moieties, is designed and synthesized (TAPB-QOT COP). Some DFT calculations are made to clarify the equilibrium between different QOT isomers and how they could affect the COP formation. Once synthetized, the polymer has been thoroughly characterized by spectroscopic (i.e., Raman, UV-vis), SSNMR and surface (e.g., SEM, BET) techniques, showing a modest surface area (113 m2 g-1) and micropore volume (0.014 cm3 g-1 with an averaged pore size of 5.6-8 Å). Notwithstanding this, TAPB-QOT COP shows a remarkably high iodine (I2) uptake capacity (464 %wt) comparable to or even higher than state-of-the-art porous organic polymers (POPs). These auspicious values are due to the thoughtful design of the polymer with embedded sulfur sites and a conjugated scaffold with the ability to counterbalance the relatively low pore volumes. Indeed, both morphological and Raman data, supported by computational analyses, prove the very high affinity between the S atom in our COP and the I2. As a result, TAPB-QOT COP shows the highest volumetric I2 uptake (i.e., the amount of I2 uptaken per volume unit) up to 331 g cm-3 coupled with a remarkably high reversibility (>80% after five cycles).
Collapse
Affiliation(s)
- Onur Yildirim
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Arshak Tsaturyan
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- Institute
of Physical and Organic Chemistry, Southern
Federal University, 344006 Rostov-on-Don, Russia
- Université
Jean Monnet Saint-Etienne, CNRS, Institut d’Optique Graduate
School, Laboratoire Hubert Curien UMR 5516, F-42023 Saintt-Etienne, France
| | - Alessandro Damin
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Stefano Nejrotti
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Valentina Crocellà
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Angelo Gallo
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Michele Remo Chierotti
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Matteo Bonomo
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
| | - Claudia Barolo
- Department
of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy
- INSTM
Reference Centre, Università degli
Studi di Torino, Via
Gioacchino Quarello 15/a, 10125 Torino, Italy
- ICxT
Interdepartmental Centre, Università
degli Studi di Torino, Via Lungo Dora Siena 100, 10153 Torino, Italy
| |
Collapse
|
137
|
Wang JH, Gaber TA, Kuo SW, EL-Mahdy AFM. π-Electron-Extended Triazine-Based Covalent Organic Framework as Photocatalyst for Organic Pollution Degradation and H2 Production from Water. Polymers (Basel) 2023; 15:polym15071685. [PMID: 37050297 PMCID: PMC10096642 DOI: 10.3390/polym15071685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Herein, we report the efficient preparation of π-electron-extended triazine-based covalent organic framework (TFP-TPTPh COF) for photocatalysis and adsorption of the rhodamine B (RhB) dye molecule, as well as for photocatalytic hydrogen generation from water. The resultant TFP-TPTPh COF exhibited remarkable porosity, excellent crystallinity, high surface area of 724 m2 g−1, and massive thermal stability with a char yield of 63.41%. The TFP-TPTPh COF demonstrated an excellent removal efficiency of RhB from water in 60 min when used as an adsorbent, and its maximum adsorption capacity (Qm) of 480 mg g−1 is among the highest Qm values for porous polymers ever to be recorded. In addition, the TFP-TPTPh COF showed a remarkable photocatalytic degradation of RhB dye molecules with a reaction rate constant of 4.1 × 10−2 min−1 and an efficiency of 97.02% under ultraviolet–visible light irradiation. Furthermore, without additional co-catalysts, the TFP-TPTPh COF displayed an excellent photocatalytic capacity for reducing water to generate H2 with a hydrogen evolution rate (HER) of 2712 μmol g−1 h−1. This highly active COF-based photocatalyst appears to be a useful material for dye removal from water, as well as solar energy processing and conversion.
Collapse
Affiliation(s)
- Jing Han Wang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (J.H.W.); (T.A.G.); (S.-W.K.)
| | - Taher A. Gaber
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (J.H.W.); (T.A.G.); (S.-W.K.)
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (J.H.W.); (T.A.G.); (S.-W.K.)
| | - Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (J.H.W.); (T.A.G.); (S.-W.K.)
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Correspondence: ; Tel.: +886-7-5252-000 (ext. 4002)
| |
Collapse
|
138
|
An S, Li X, Shang S, Xu T, Yang S, Cui CX, Peng C, Liu H, Xu Q, Jiang Z, Hu J. One-Dimensional Covalent Organic Frameworks for the 2e - Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202218742. [PMID: 36655733 DOI: 10.1002/anie.202218742] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s-1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
Collapse
Affiliation(s)
- Shuhao An
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Science, 201210, Shanghai, P. R. China
| | - Shuaishuai Shang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Ting Xu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, 453003, Xinxiang, P. R. China
| | - Changjun Peng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zheng Jiang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Science, 201210, Shanghai, P. R. China
| | - Jun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| |
Collapse
|
139
|
He T, Zhao Z, Liu R, Liu X, Ni B, Wei Y, Wu Y, Yuan W, Peng H, Jiang Z, Zhao Y. Porphyrin-Based Covalent Organic Frameworks Anchoring Au Single Atoms for Photocatalytic Nitrogen Fixation. J Am Chem Soc 2023; 145:6057-6066. [PMID: 36888741 DOI: 10.1021/jacs.2c10233] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The development of efficient photocatalysts for N2 fixation to produce NH3 under ambient conditions remains a great challenge. Since covalent organic frameworks (COFs) possess predesignable chemical structures, good crystallinity, and high porosity, it is highly significant to explore their potential for photocatalytic nitrogen conversion. Herein, we report a series of isostructural porphyrin-based COFs loaded with Au single atoms (COFX-Au, X = 1-5) for photocatalytic N2 fixation. The porphyrin building blocks act as the docking sites to immobilize Au single atoms as well as light-harvesting antennae. The microenvironment of the Au catalytic center is precisely tuned by controlling the functional groups at the proximal and distal positions of porphyrin units. As a result, COF1-Au decorated with strong electron-withdrawing groups exhibits a high activity toward NH3 production with rates of 333.0 ± 22.4 μmol g-1 h-1 and 37.0 ± 2.5 mmol gAu-1 h-1, which are 2.8- and 171-fold higher than that of COF4-Au decorated with electron-donating functional groups and a porphyrin-Au molecular catalyst, respectively. The NH3 production rates could be further increased to 427.9 ± 18.7 μmol g-1 h-1 and 61.1 ± 2.7 mmol gAu-1 h-1 under the catalysis of COF5-Au featuring two different kinds of strong electron-withdrawing groups. The structure-activity relationship analysis reveals that the introduction of electron-withdrawing groups facilitates the separation and transportation of photogenerated electrons within the entire framework. This work manifests that the structures and optoelectronic properties of COF-based photocatalysts can be finely tuned through a rational predesign at the molecular level, thus leading to superior NH3 evolution.
Collapse
Affiliation(s)
- Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhanfeng Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Xinyan Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Bing Ni
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Yanping Wei
- College of Science, Gansu Agricultural University, Lanzhou 730070, P. R. China
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Hongjie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
140
|
Zhao Y, Das S, Sekine T, Mabuchi H, Irie T, Sakai J, Wen D, Zhu W, Ben T, Negishi Y. Record Ultralarge-Pores, Low Density Three-Dimensional Covalent Organic Framework for Controlled Drug Delivery. Angew Chem Int Ed Engl 2023; 62:e202300172. [PMID: 36688253 DOI: 10.1002/anie.202300172] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023]
Abstract
The unique structural characteristics of three-dimensional (3D) covalent organic frameworks (COFs) like high surface areas, interconnected pore system and readily accessible active sites render them promising platforms for a wide set of functional applications. Albeit promising, the reticular construction of 3D COFs with large pores is a very demanding task owing to the formation of interpenetrated frameworks. Herein we report the designed synthesis of a 3D non-interpenetrated stp net COF, namely TUS-64, with the largest pore size of all 3D COFs (47 Å) and record-low density (0.106 g cm-3 ) by reticulating a 6-connected triptycene-based linker with a 4-connected porphyrin-based linker. Characterized with a highly interconnected mesoporous scaffold and good stability, TUS-64 shows efficient drug loading and controlled release for five different drugs in simulated body fluid environment, demonstrating the competency of TUS-64 as drug nanocarriers.
Collapse
Affiliation(s)
- Yu Zhao
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Dan Wen
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Weidong Zhu
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, China.,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
141
|
Li Z, Deng T, Ma S, Zhang Z, Wu G, Wang J, Li Q, Xia H, Yang SW, Liu X. Three-Component Donor-π-Acceptor Covalent-Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. J Am Chem Soc 2023. [PMID: 36917067 DOI: 10.1021/jacs.2c11893] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Two-dimensional covalent-organic frameworks (2D COFs) have recently emerged as great prospects for their applications as new photocatalytic platforms in solar-to-hydrogen conversion; nevertheless, their inefficient solar energy capture and fast charge recombination hinder the improvement of photocatalytic hydrogen production performance. Herein, two photoactive three-component donor-π-acceptor (TCDA) materials were constructed using a multicomponent synthesis strategy by introducing electron-deficient triazine and electron-rich benzotrithiophene moieties into frameworks through sp2 carbon and imine linkages, respectively. Compared with two-component COFs, the novel TCDA-COFs are more convenient in regulating the inherent photophysical properties, thereby realizing outstanding photocatalytic activity for hydrogen evolution from water. Remarkably, the first sp2 carbon-linked TCDA-COF displays an impressive hydrogen evolution rate of 70.8 ± 1.9 mmol g-1 h-1 with excellent reusability in the presence of 1 wt % Pt under visible-light illumination (420-780 nm). Utilizing the combination of diversified spectroscopy and theoretical prediction, we show that the full π-conjugated linkage not only effectively broadens the visible-light harvesting of COFs but also enhances charge transfer and separation efficiency.
Collapse
Affiliation(s)
- Ziping Li
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianqi Deng
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Si Ma
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Gang Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Jiaao Wang
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| | - Qizhen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun 130012, P. R. China
| | - Shuo-Wang Yang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
142
|
Tao R, Yang T, Wang Y, Zhang J, Wu Z, Qiu L. Design strategies of covalent organic framework-based electrodes for supercapacitor application. Chem Commun (Camb) 2023; 59:3175-3192. [PMID: 36810434 DOI: 10.1039/d2cc06573h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Supercapacitors (SCs) have been recognized as a promising electrochemical energy storage (EES) device, thanks to their high-power density, long lifespan, fast charge-discharge capability, and eco-friendliness. The breakthrough of electrode materials that determine the electrochemical performance of SCs is urgently desired. Covalent organic frameworks (COFs), an emerging and burgeoning class of crystalline porous polymeric materials, have been found to have huge potential for application in EES devices by virtue of their unique properties including atomically adjustable structures, robust and tunable skeletons, well-defined and open channels, high surface areas, etc. In this feature article, we aim at summarizing the design strategies of COF-based electrode materials for SCs based on the representative advances. The current challenges and future perspectives of COFs for SC application are highlighted as well.
Collapse
Affiliation(s)
- Rao Tao
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Tianfu Yang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Yan Wang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Jingmin Zhang
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Zhengyi Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| | - Li Qiu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China.
| |
Collapse
|
143
|
Guo C, Zhou J, Chen Y, Zhuang H, Li J, Huang J, Zhang Y, Chen Y, Li SL, Lan YQ. Integrated Micro Space Electrostatic Field in Aqueous Zn-Ion Battery: Scalable Electrospray Fabrication of Porous Crystalline Anode Coating. Angew Chem Int Ed Engl 2023; 62:e202300125. [PMID: 36661867 DOI: 10.1002/anie.202300125] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
The inhomogeneous consumption of anions and direct contact between electrolyte and anode during the Zn-deposition process generate Zn-dendrites and side reactions that can aggravate the space-charge effect to hinder the practical implementation of zinc-metal batteries (ZMBs). Herein, electrospray has been applied for the scalable fabrication (>10 000 cm2 in a batch-experiment) of hetero-metallic cluster covalent-organic-frameworks (MCOF-Ti6 Cu3 ) nanosheet-coating (MNC) with integrated micro space electrostatic field for ZMBs anode protection. The MNC@Zn symmetric cell presents ultralow overpotential (≈72.8 mV) over 10 000 cycles at 1 mAh cm-2 with 20 mA cm-2 , which is superior to bare Zn and state-of-the-art porous crystalline materials. Theoretical calculations reveal that MNC with integrated micro space electrostatic field can facilitate the deposition-kinetic and homogenize the electric field of anode to significantly promote the lifespan of ZMBs.
Collapse
Affiliation(s)
- Can Guo
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Jie Zhou
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Yuting Chen
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Huifen Zhuang
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Jie Li
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Jianlin Huang
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Yuluan Zhang
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 51 0006, P. R. China
| |
Collapse
|
144
|
Sprachmann J, Wachsmuth T, Bhosale M, Burmeister D, Smales GJ, Schmidt M, Kochovski Z, Grabicki N, Wessling R, List-Kratochvil EJW, Esser B, Dumele O. Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes. J Am Chem Soc 2023; 145:2840-2851. [PMID: 36701177 DOI: 10.1021/jacs.2c10501] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO-LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10-8 S cm-1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g-1 at a potential of 3.9 V vs. Li/Li+. This work showcases antiaromaticity as a new design principle for functional framework materials.
Collapse
Affiliation(s)
- Josefine Sprachmann
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Tommy Wachsmuth
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Manik Bhosale
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - David Burmeister
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof, 12489 Berlin, Germany
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Maximilian Schmidt
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Niklas Grabicki
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| | - Robin Wessling
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany.,Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Emil J W List-Kratochvil
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, IRIS Adlershof, 12489 Berlin, Germany
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, 89081 Ulm, Germany
| | - Oliver Dumele
- Department of Chemistry & IRIS Adlershof, Humboldt University of Berlin, 12489 Berlin, Germany
| |
Collapse
|
145
|
Suzuki M, Miura M, Ohkubo E, Karimata H, Aizawa N, Yamada H, Nakayama KI. Possibilities and Limitations in Monomer Combinations for Ternary Two-Dimensional Covalent Organic Frameworks. J Am Chem Soc 2023; 145:3008-3015. [PMID: 36710457 DOI: 10.1021/jacs.2c11520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The diversity and complexity of covalent organic frameworks (COFs) can be largely increased by incorporating multiple types of monomers with different topologies or sizes. However, an increase in the number of monomer types significantly complicates the COF formation process. Accordingly, much remains unclear regarding the viability of monomer combinations for ternary or higher-arity COFs. Herein, we show that, through an extensive examination of 12 two-nodes-one-linker ([2 + 1]) combinations, monomer-set viability is determined primarily by the conformational strain originating from disordered monomer arrangements, rather than other factors such as the difference in COF formation kinetics between monomers. When monomers cannot accommodate the strain associated with the formation of a locally disordered, yet crystalline framework, the corresponding [2 + 1] condensation yields a mixture of different COFs or an amorphous polymer. We also demonstrate that a node-linker pair that does not form a binary COF can be integrated to generate a single-phase framework upon addition of a small amount of the third component. These results will clarify the factors behind the successful formation of multicomponent COFs and refine their design by enabling accurate differentiation between allowed and disallowed monomer combinations.
Collapse
Affiliation(s)
- Mitsuharu Suzuki
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Miura
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Enzo Ohkubo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haru Karimata
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Naoya Aizawa
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroko Yamada
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ken-Ichi Nakayama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
146
|
He L, Li B, Ma Z, Chen L, Gong S, Zhang M, Bai Y, Guo Q, Wu F, Zhao F, Li J, Zhang D, Sheng D, Dai X, Chen L, Shu J, Chai Z, Wang S. Synergy of first- and second-sphere interactions in a covalent organic framework boosts highly selective platinum uptake. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1484-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
147
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
148
|
Liu T, Zhao Y, Song M, Pang X, Shi X, Jia J, Chi L, Lu G. Ordered Macro-Microporous Single Crystals of Covalent Organic Frameworks with Efficient Sorption of Iodine. J Am Chem Soc 2023; 145:2544-2552. [PMID: 36661080 DOI: 10.1021/jacs.2c12284] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fashioning microporous covalent organic frameworks (COFs) into single crystals with ordered macropores allows for an effective reduction of the mass transfer resistance and the maximum preservation of their intrinsic properties but remains unexplored. Here, we report the first synthesis of three-dimensional (3D) ordered macroporous single crystals of the imine-linked 3D microporous COFs (COF-300 and COF-303) via a template-assisted modulated strategy. In this strategy, COFs crystallized within the sacrificial colloidal crystal template, assembled from monodisperse polystyrene microspheres, and underwent an aniline-modulated amorphous-to-crystalline transformation to form large single crystals with 3D interconnected macropores. The effects of the introduced macroporous structure on the sorption performances of COF-300 single crystals were further probed by iodine. Our results indicate that iodine adsorption occurred in micropores of COF-300 but not in the introduced macropores. Accordingly, the iodine adsorption capacity of COF single crystals was governed by their micropore accessibility. The relatively long diffusion path in the non-macroporous COF-300 single crystals resulted in a limited micropore accessibility (48.4%) and thus a low capacity in iodine adsorption (1.48 g·g-1). The introduction of 3D ordered macropores can greatly shorten the microporous diffusion path in COF-300 single crystals and thus render all their micropores fully accessible in iodine adsorption with a capacity (3.15 g·g-1) that coincides well with the theoretical one.
Collapse
Affiliation(s)
- Tong Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Yi Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Min Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xinghan Pang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xiaofei Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingjing Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Guang Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
149
|
Gao L, Li W, Tang H, Qin J, Lu S, Zhang M, Yang K, Jiao Y. A fully π-conjugated triazine-based 2D covalent organic framework used as metal-free yellow phosphors in white light-emitting diodes. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
150
|
Kouhdareh J, Keypour H, Alavinia S, Maryamabadi A. Pd(II)-immobilized on a novel covalent imine framework (COF-BASU1) as an efficient catalyst for asymmetric Suzuki coupling. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|