101
|
Neves D. Advanced glycation end-products: a common pathway in diabetes and age-related erectile dysfunction. Free Radic Res 2013; 47 Suppl 1:49-69. [PMID: 23822116 DOI: 10.3109/10715762.2013.821701] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive derivatives of non-enzymatic glucose-protein condensation reactions integrate a heterogeneous group of irreversible adducts called advanced glycation end-products (AGEs). Numerous studies have investigated the role of the AGEs in cardiovascular system; however, its contribution to erectile dysfunction (ED) that is an early manifestation of cardiovascular disease has been less intensively investigated. This review summarizes the most recent advances concerning AGEs effects in the cavernous tissue of the penis and in ED onset, particularly on diabetes and aging, conditions that not only favor AGEs formation, but also increase risk of developing ED. The specific contribution of AGE on intra- and extracellular deposition of insoluble complexes, interference in activity of endothelial nitric oxide (NO) synthase, NO bioavailability, endothelial-dependent vasodilatation, as well as molecular pathways activated by receptor of AGEs are presented. Finally, the interventional actions that prevent AGEs formation, accumulation or activity in the cavernous tissue and that include nutritional pattern modulation, nutraceuticals, exercise, therapeutic strategies (statins, anti-diabetics, inhibitors of phosphodiesterase-5, anti-hypertensive drugs) and inhibitors of AGEs formation and crosslink breakers, are discussed. From this review, we conclude that despite the experiments conducted in animal models pointing to the AGE/RAGE axis as a potential interventional target with respect to ED associated with diabetes and aging, the clinical data have been very disappointing and, until now, did not provide evidence of benefits of treatments directed to AGE inactivation.
Collapse
Affiliation(s)
- D Neves
- Department of Experimental Biology, Faculty of Medicine and IBMC of Universidade do Porto, Al. Prof Hernani Monteiro, Porto, Portugal.
| |
Collapse
|
102
|
Sakata K, Hayakawa M, Yano Y, Tamaki N, Yokota N, Eto T, Watanabe R, Hirayama N, Matsuo T, Kuroki K, Sagara S, Mishima O, Koga M, Nagata N, Nishino Y, Kitamura K, Kario K, Takeuchi M, Yamagishi SI. Efficacy of alogliptin, a dipeptidyl peptidase-4 inhibitor, on glucose parameters, the activity of the advanced glycation end product (AGE) - receptor for AGE (RAGE) axis and albuminuria in Japanese type 2 diabetes. Diabetes Metab Res Rev 2013; 29:624-30. [PMID: 23861159 DOI: 10.1002/dmrr.2437] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 07/03/2013] [Accepted: 07/11/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND To examine the effects of alogliptin, a dipeptidyl peptidase-4 inhibitor, on glucose parameters, the advanced glycation end product (AGE)-receptor for AGE (RAGE) axis and albuminuria in Japanese type 2 diabetes patients. METHODS Sixty-one patients whose HbAlc ≥ 6.1% (mean age 64.7 years; 67% men; mean HbAlc 7.4%; 57% were pharmacologically treated) underwent blood and urine sampling and analysis before and after 12 weeks of treatment with alogliptin (25 mg once daily). RESULTS Alogliptin treatment significantly reduced fasting glucose (160.3 mg/dL at baseline versus 138.0 mg/dL at 12 weeks), glycoalbumin (21.1% at baseline versus 18.9% at 12 weeks), HbAlc (7.4% at baseline versus 6.9% at 12 weeks), circulating soluble form of RAGE concentrations (847.3 pg/mL at baseline versus 791.4 pg/mL at 12 weeks) and urine albumin to creatinine ratio (31.6 mg/g Cr at baseline versus 26.5 mg/g Cr at 12 weeks), whereas 1,5-anhydroglucitol concentrations were significantly increased (7.5 µg/mL at baseline versus 11.6 µg/mL at 12 weeks; all P < 0.05). Circulating AGEs concentrations were reduced only in patients with baseline AGEs ≥7 U/mL (n = 33, from 8.2 U/mL to 7.2U /mL; p < 0.01) after alogliptin treatment. The treatment-induced change of soluble form of sRAGE concentrations was associated with changes of 1,5-anhydroglucitol and HbAlc concentrations (rho = -0.32 and 0.29, respectively). Meanwhile, the treatment-induced change of urine albumin to creatinine ratio was associated with a change in the fasting glucose concentration (rho = 0.25; all p < 0.05). During the intervention, alogliptin treatment was well tolerated without any hypoglycemia or side effects. CONCLUSION Alogliptin treatment improved the AGE-RAGE axis and reduced albuminuria in Japanese type 2 diabetes patients.
Collapse
Affiliation(s)
- Koji Sakata
- Circulatory and Body Fluid Regulation, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies. Future Med Chem 2013; 5:1089-108. [PMID: 23795967 DOI: 10.4155/fmc.13.90] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies.
Collapse
|
104
|
Huang SM, Chang YH, Chao YC, Lin JA, Wu CH, Lai CY, Chan KC, Tseng ST, Yen GC. EGCG-rich green tea extract stimulates sRAGE secretion to inhibit S100A12-RAGE axis through ADAM10-mediated ectodomain shedding of extracellular RAGE in type 2 diabetes. Mol Nutr Food Res 2013; 57:2264-8. [PMID: 23901023 DOI: 10.1002/mnfr.201300275] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 11/06/2022]
Abstract
The receptor for advanced glycation of end products (RAGE) plays a critical role in the progression of type 2 diabetes (T2D). Soluble RAGE (sRAGE) is one of the RAGE variants, which acts as a decoy domain receptor and competes with RAGE, thus contributing to prevention of T2D. In this study, we conducted clinical trials of (-)-epigallocatechin-3-gallate (EGCG) rich green tea extract (300-900 mg/day) to investigate the effect of EGCG on relationship between S100A12 RAGE ligand and diverse sRAGE in T2D. Moreover, mechanism of sRAGE production also confirmed in vitro. Our data indicated that EGCG could stimulate sRAGE circulation but inhibited RAGE ligand in T2D, and ADAM10-mediated ectodomain shedding of extracellular RAGE was mainly involved in EGCG-stimulated sRAGE circulation. The present evidence indicates that EGCG has a potential to block S100A12-RAGE axis by stimulating sRAGE production through ADAM10-mediated ectodomain shedding of extracellular RAGE. Therefore, EGCG contributes to nutritional strategies for diabetes, not only because of its efficient antioxidant activity to scavenge free radicals, but also because of its ability stimulating sRAGE release in the circulation. Additionally, ADAM10-induced ectodomain shedding of extracellular RAGE leading to sRAGE circulation should be a potential of passive mechanism of sRAGE production to block S100A12-RAGE axis-related pathogenesis of proinflammation and diabetes.
Collapse
Affiliation(s)
- Shang-Ming Huang
- Deaprtment of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Shi L, Yu X, Yang H, Wu X. Advanced glycation end products induce human corneal epithelial cells apoptosis through generation of reactive oxygen species and activation of JNK and p38 MAPK pathways. PLoS One 2013; 8:e66781. [PMID: 23776698 PMCID: PMC3680386 DOI: 10.1371/journal.pone.0066781] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023] Open
Abstract
Advanced Glycation End Products (AGEs) has been implicated in the progression of diabetic keratopathy. However, details regarding their function are not well understood. In the present study, we investigated the effects of intracellular reactive oxygen species (ROS) and JNK, p38 MAPK on AGE-modified bovine serum albumin (BSA) induced Human telomerase-immortalized corneal epithelial cells (HUCLs) apoptosis. We found that AGE-BSA induced HUCLs apoptosis and increased Bax protein expression, decreased Bcl-2 protein expression. AGE-BSA also induced the expression of receptor for advanced glycation end product (RAGE). AGE-BSA-RAGE interaction induced intracellular ROS generation through activated NADPH oxidase and increased the phosphorylation of p47phox. AGE-BSA induced HUCLs apoptosis was inhibited by pretreatment with NADPH oxidase inhibitors, ROS quencher N-acetylcysteine (NAC) or neutralizing anti-RAGE antibodies. We also found that AGE-BSA induced JNK and p38 MAPK phosphorylation. JNK and p38 MAPK inhibitor effectively blocked AGE-BSA-induced HUCLs apoptosis. In addition, NAC completely blocked phosphorylation of JNK and p38 MAPK induced by AGE-BSA. Our results indicate that AGE-BSA induced HUCLs apoptosis through generation of intracellular ROS and activation of JNK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Long Shi
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoming Yu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital of Shandong University, Jinan, China
| | - Hongling Yang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
106
|
C-Peptide and Its Career from Innocent Bystander to Active Player in Diabetic Atherogenesis. Curr Atheroscler Rep 2013; 15:339. [DOI: 10.1007/s11883-013-0339-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
107
|
Lam JKY, Wang Y, Shiu SWM, Wong Y, Betteridge DJ, Tan KCB. Effect of insulin on the soluble receptor for advanced glycation end products (RAGE). Diabet Med 2013; 30:702-9. [PMID: 23432638 DOI: 10.1111/dme.12166] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/17/2022]
Abstract
AIMS The receptor for advanced glycation end products (RAGE) plays an important role in the pathogenesis of diabetic complications. RAGE transcript splicing generates a number of isoforms, including a full-length membrane-bound receptor and a soluble isoform, endogenous secretory RAGE (esRAGE). Soluble forms of the receptor (sRAGE) can also be formed by ectodomain shedding of the membrane-associated receptor. We have evaluated serum levels of sRAGE and esRAGE in Chinese patients with Type 1 diabetes and investigated the effect of insulin on the generation of esRAGE and sRAGE in vitro. METHODS Serum sRAGE and esRAGE were measured by ELISA. The in vitro effect of insulin was investigated by incubating THP-1 macrophages with insulin and RAGE isoforms in cell lysate and conditioned media determined. RESULTS In patients with diabetes, both serum esRAGE and sRAGE were significantly higher than in age-matched healthy subjects without diabetes. In vitro, insulin increased esRAGE and total RAGE isoform expression in cell lysate on a western blot, and reverse transcription-polymerase chain reaction showed an increase in esRAGE and full-length RAGE mRNA. This was accompanied by an increase in esRAGE and sRAGE in cell conditioned media. Pretreatment of THP-1 cells with a general metalloproteinase inhibitor GM6001 significantly reduced the production of sRAGE, suggesting that insulin also increased the cleavage of full-length cell surface RAGE to form sRAGE. CONCLUSIONS Chinese patients with Type 1 diabetes have higher serum levels of esRAGE and sRAGE. In vitro, insulin not only increases both full-length RAGE and esRAGE expression, but can also stimulate the shedding of sRAGE from the membrane-bound receptor.
Collapse
Affiliation(s)
- J K Y Lam
- Department of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
108
|
Vistoli G, De Maddis D, Straniero V, Pedretti A, Pallavicini M, Valoti E, Carini M, Testa B, Aldini G. Exploring the space of histidine containing dipeptides in search of novel efficient RCS sequestering agents. Eur J Med Chem 2013; 66:153-60. [PMID: 23792353 DOI: 10.1016/j.ejmech.2013.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/25/2013] [Accepted: 05/10/2013] [Indexed: 11/16/2022]
Abstract
The study reports a set of forty proteinogenic histidine-containing dipeptides as potential carbonyl quenchers. The peptides were chosen to cover as exhaustively as possible the accessible chemical space, and their quenching activities toward 4-hydroxy-2-nonenal (HNE) and pyridoxal were evaluated by HPLC analyses. The peptides were capped at the C-terminus as methyl esters or amides to favor their resistance to proteolysis and diastereoisomeric pairs were considered to reveal the influence of configuration on quenching. On average, the examined dipeptides are less active than the parent compound carnosine (βAla + His) thus emphasizing the unfavorable effect of the shortening of the βAla residue as confirmed by the control dipeptide Gly-His. Nevertheless, some peptides show promising activities toward HNE combined with a remarkable selectivity. The results emphasize the beneficial role of aromatic and positively charged residues, while negatively charged and H-bonding side chains show a detrimental effect on quenching. As a trend, ester derivatives are slightly more active than amides while heterochiral peptides are more active than their homochiral diastereoisomer. Overall, the results reveal that quenching activity strongly depends on conformational effects and vicinal residues (as evidenced by the reported QSAR analysis), offering insightful clues for the design of improved carbonyl quenchers and to rationalize the specific reactivity of histidine residues within proteins.
Collapse
Affiliation(s)
- Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Quan HY, Kim DY, Chung SH. Korean red ginseng extract alleviates advanced glycation end product-mediated renal injury. J Ginseng Res 2013; 37:187-93. [PMID: 23717171 PMCID: PMC3659634 DOI: 10.5142/jgr.2013.37.187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 11/24/2022] Open
Abstract
The effect of Korean red ginseng (KRG) on diabetic renal damage was investigated using streptozotocin (STZ)-induced diabetic rats. The diabetic rats showed loss of body weight gain, and increases in kidney weight and urine volume, whereas the oral administration of KRG at a dose of 100 or 250 mg/kg of body weight per day for 28 d prevented these diabetes-induced physiological abnormalities. Among the kidney function parameters, elevated plasma levels of urea nitrogen and creatinine in diabetic control rats tended to be lowered in KRG-treated rats. In addition, administration of KRG at a dose of 100 mg/kg body weight in the diabetic rats showed significant decreases in serum glucose and tumor necrosis factor-α (TNF-α), implying that KRG might prevent the pathogenesis of diabetic complications caused by impaired glucose metabolism and oxidative stress. KRG also significantly reduced advanced glycation end product (AGE) formation and secretion from kidney of diabetic rats. Furthermore, KRG decreased the levels of N-(carboxymethyl) lysine and expression of AGE receptor. KRG also reduced the overexpression of cyclooxygenase-2 and inducible nitric oxide synthase in the kidney via deactivation of nuclear factor-kappa B. We also found that KRG prevented STZ-induced destruction of glomerular structure and significantly suppressed high glucose-induced fibronectin production. Taken together, KRG ameliorates abnormalities associated with diabetic nephropathy through suppression of inflammatory pathways activated by TNF-α and AGEs. These findings indicate that KRG has a beneficial effect on pathological conditions associated with diabetic nephropathy.
Collapse
Affiliation(s)
- Hai Yan Quan
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | | | | |
Collapse
|
110
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Gudiño Gomezjurado A, Chediak Terán MC. Insulin resistance and generation of advanced glycation end products. Medwave 2013. [DOI: 10.5867/medwave.2013.03.5657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
112
|
Dai H, Yu Z, Fan X, Liu N, Yan M, Chen Z, Lo EH, Hajjar KA, Wang X. Dysfunction of annexin A2 contributes to hyperglycaemia-induced loss of human endothelial cell surface fibrinolytic activity. Thromb Haemost 2013; 109:1070-8. [PMID: 23572070 DOI: 10.1160/th12-12-0944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/05/2013] [Indexed: 12/30/2022]
Abstract
Hyperglycaemia impairs fibrinolytic activity on the surface of endothelial cells, but the underlying mechanisms are not fully understood. In this study, we tested the hypothesis that hyperglycaemia causes dysfunction of the endothelial membrane protein annexin A2, thereby leading to an overall reduction of fibrinolytic activity. Hyperglycaemia for 7 days significantly reduced cell surface fibrinolytic activity in human brain microvascular endothelial cells (HBMEC). Hyperglycaemia also decreased tissue type plasminogen activator (t-PA), plasminogen, and annexin A2 mRNA and protein expression, while increasing plasminogen activator inhibitor-1 (PAI-1). No changes in p11 mRNA or protein expression were detected. Hyperglycaemia significantly increased AGE-modified forms of total cellular and membrane annexin A2. The hyperglycemia-associated reduction in fibrinolytic activity was fully restored upon incubation with recombinant annexin A2 (rA2), but not AGE-modified annexin A2 or exogenous t-PA. Hyperglycaemia decreased t-PA, upregulated PAI-1 and induced AGE-related disruption of annexin A2 function, all of which contributed to the overall reduction in endothelial cell surface fibrinolytic activity. Further investigations to elucidate the underlying molecular mechanisms and pathophysiological implications of A2 derivatisation might ultimately lead to a better understanding of mechanisms of impaired vascular fibrinolysis, and to development of new interventional strategies for the thrombotic vascular complications in diabetes.
Collapse
Affiliation(s)
- Haibin Dai
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Juranek JK, Geddis MS, Song F, Zhang J, Garcia J, Rosario R, Yan SF, Brannagan TH, Schmidt AM. RAGE deficiency improves postinjury sciatic nerve regeneration in type 1 diabetic mice. Diabetes 2013; 62:931-43. [PMID: 23172920 PMCID: PMC3581233 DOI: 10.2337/db12-0632] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral neuropathy and insensate limbs and digits cause significant morbidity in diabetic individuals. Previous studies showed that deletion of the receptor for advanced end-glycation products (RAGE) in mice was protective in long-term diabetic neuropathy. Here, we tested the hypothesis that RAGE suppresses effective axonal regeneration in superimposed acute peripheral nerve injury attributable to tissue-damaging inflammatory responses. We report that deletion of RAGE, particularly in diabetic mice, resulted in significantly higher myelinated fiber densities and conduction velocities consequent to acute sciatic nerve crush compared with wild-type control animals. Consistent with key roles for RAGE-dependent inflammation, reconstitution of diabetic wild-type mice with RAGE-null versus wild-type bone marrow resulted in significantly improved axonal regeneration and restoration of function. Diabetic RAGE-null mice displayed higher numbers of invading macrophages in the nerve segments postcrush compared with wild-type animals, and these macrophages in diabetic RAGE-null mice displayed greater M2 polarization. In vitro, treatment of wild-type bone marrow-derived macrophages with advanced glycation end products (AGEs), which accumulate in diabetic nerve tissue, increased M1 and decreased M2 gene expression in a RAGE-dependent manner. Blockade of RAGE may be beneficial in the acute complications of diabetic neuropathy, at least in part, via upregulation of regeneration signals.
Collapse
Affiliation(s)
- Judyta K. Juranek
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
- Corresponding author: Ann Marie Schmidt, , or Judyta Juranek,
| | - Matthew S. Geddis
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
- Department of Science, Borough of Manhattan Community College–City University of New York, New York, New York
| | - Fei Song
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Jinghua Zhang
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Jose Garcia
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Rosa Rosario
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Shi Fang Yan
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Thomas H. Brannagan
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Langone Medical Center, New York, New York
- Corresponding author: Ann Marie Schmidt, , or Judyta Juranek,
| |
Collapse
|
114
|
Engelfriet PM, Jansen EHJM, Picavet HSJ, Dollé MET. Biochemical markers of aging for longitudinal studies in humans. Epidemiol Rev 2013; 35:132-51. [PMID: 23382477 PMCID: PMC4707878 DOI: 10.1093/epirev/mxs011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
Much progress has been made in the past decades in unraveling the mechanisms that are responsible for aging. The discovery that particular gene mutations in experimental species such as yeast, flies, and nematodes are associated with longevity has led to many important insights into pathways that regulate aging processes. However, extrapolating laboratory findings in experimental species to knowledge that is valid for the complexity of human physiology remains a major challenge. Apart from the restricted experimental possibilities, studying aging in humans is further complicated by the development of various age-related diseases. The availability of a set of biomarkers that really reflect underlying aging processes would be of much value in disentangling age-associated pathology from specific aging mechanisms. In this review, we survey the literature to identify promising biochemical markers of aging, with a particular focus on using them in longitudinal studies of aging in humans that entail repeated measurements on easily obtainable material, such as blood samples. Our search strategy was a 2-pronged approach, one focused on general mechanisms of aging and one including studies on clinical biomarkers of age-related diseases.
Collapse
Affiliation(s)
- Peter M. Engelfriet
- Correspondence to Dr. Peter M. Engelfriet, National Institute for Public Health and the Environment (RIVM), Centre for Prevention and Health Services Research, P.O. Box 1, 3720 BA Bilthoven, The Netherlands (e-mail: )
| | | | | | | |
Collapse
|
115
|
Hayakawa K, Pham LDD, Arai K, Lo EH. High-mobility group box 1: an amplifier of stem and progenitor cell activity after stroke. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 118:31-8. [PMID: 23564100 PMCID: PMC3985720 DOI: 10.1007/978-3-7091-1434-6_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Stroke induces a highly complex web of pathophysiology that usually leads to serious long-term -disability. Molecules from the damage-associated molecular pattern (DAMP) family immediately increase after stroke. DAMPs are known to cause massive inflammation and brain damage. Thus, they may be targets for neuroprotection. However, emerging data now suggest that DAMPs may not always be detrimental. The high-mobility group box1 (HMGB1) protein is discussed as an example of this idea. During the acute phase after stroke, HMGB1 amplifies neuroinflammation. But during the brain remodeling phase of stroke recovery, HMGB1 can mediate beneficial plasticity and enhance stem and progenitor cell recruitment, proliferation, and differentiation within damaged brain. These emerging findings support the hypothesis that HMGB1 might be an important molecule for regulating stem and progenitor cell therapies in stroke patients.
Collapse
Affiliation(s)
- Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Harvard Medical School, Massachusetts General Hospital East, 149-2401, Charlestown, MA 02129, USA
| | - Loc-Duyen D. Pham
- Neuroprotection Research Laboratory, Harvard Medical School, Massachusetts General Hospital East, 149-2401, Charlestown, MA 02129, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Harvard Medical School, Massachusetts General Hospital East, 149-2401, Charlestown, MA 02129, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Harvard Medical School, Massachusetts General Hospital East, 149-2401, Charlestown, MA 02129, USA
| |
Collapse
|
116
|
Wang J, Toba H, Morita Y, Nakashima K, Noda K, Tian W, Kobara M, Nakata T. Endothelial Dysfunction, Macrophage Infiltration and NADPH Oxidase-Dependent Superoxide Production Were Attenuated by Erythropoietin in Streptozotocin-Induced Diabetic Rat Aorta. Pharmacology 2013; 91:48-58. [DOI: 10.1159/000343963] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/05/2012] [Indexed: 11/19/2022]
|
117
|
Olsson S, Jood K. Genetic variation in the receptor for advanced glycation end-products (RAGE) gene and ischaemic stroke. Eur J Neurol 2012; 20:991-3. [PMID: 23252485 DOI: 10.1111/ene.12041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 10/15/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE The multi-ligand receptor for advanced glycation end-products (RAGE, alias AGER) is suggested to contribute to the pathogenesis of vascular disease, but its potential role in stroke is unclear. The aim of this study was to investigate whether genetic variation in RAGE gene is associated with ischaemic stroke (IS). METHODS The Sahlgrenska Academy Study on Ischaemic Stroke comprises 844 Caucasian patients with first ever (n = 732) and recurrent (n = 112) IS, and 668 Caucasian controls. Three tagSNPs were selected to capture genetic variation in the RAGE gene. IS subtypes were determined using TOAST criteria. RESULTS One SNP, rs1035798, showed significant association with the subtype of small-vessel disease (SVD) after correction for multiple testing (OR 1.56, 95% CI 1.16-2.09), adjusted P-value < 0.05). This association was independent of hypertension, diabetes and smoking. None of the SNPs was associated with overall IS. CONCLUSION In this sample of patients with IS, genetic variation in RAGE is associated with the IS subtype SVD, but not overall IS.
Collapse
Affiliation(s)
- S Olsson
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
118
|
Okuda LS, Castilho G, Rocco DD, Nakandakare ER, Catanozi S, Passarelli M. Advanced glycated albumin impairs HDL anti-inflammatory activity and primes macrophages for inflammatory response that reduces reverse cholesterol transport. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1485-92. [DOI: 10.1016/j.bbalip.2012.08.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 08/03/2012] [Accepted: 08/15/2012] [Indexed: 12/12/2022]
|
119
|
Diastolic dysfunction of aging is independent of myocardial structure but associated with plasma advanced glycation end-product levels. PLoS One 2012. [PMID: 23189164 PMCID: PMC3506639 DOI: 10.1371/journal.pone.0049813] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background Heart failure is associated with abnormalities of myocardial structure, and plasma levels of the advanced glycation end-product (AGE) Nε-(carboxymethyl)lysine (CML) correlate with the severity and prognosis of heart failure. Aging is associated with diastolic dysfunction and increased risk of heart failure, and we investigated the hypothesis that diastolic dysfunction of aging humans is associated with altered myocardial structure and plasma AGE levels. Methods We performed histological analysis of non-ischemic left ventricular myocardial biopsies and measured plasma levels of the AGEs CML and low molecular weight fluorophores (LMWFs) in 26 men undergoing coronary artery bypass graft surgery who had transthoracic echocardiography before surgery. None had previous cardiac surgery, myocardial infarction, atrial fibrillation, or heart failure. Results The patients were aged 43–78 years and increasing age was associated with echocardiographic indices of diastolic dysfunction, with higher mitral Doppler flow velocity A wave (r = 0.50, P = 0.02), lower mitral E/A wave ratio (r = 0.64, P = 0.001), longer mitral valve deceleration time (r = 0.42, P = 0.03) and lower early diastolic peak velocity of the mitral septal annulus, e’ (r = 0.55, P = 0.008). However, neither mitral E/A ratio nor mitral septal e’ was correlated with myocardial total, interstitial or perivascular fibrosis (picrosirius red), immunostaining for collagens I and III, CML, and receptor for AGEs (RAGE), cardiomyocyte width, capillary length density, diffusion radius or arteriolar dimensions. Plasma AGE levels were not associated with age. However, plasma CML levels were associated with E/A ratio (r = 0.44, P = 0.04) and e’ (r = 0.51, P = 0.02) and LMWF levels were associated with E/A ratio (r = 0.49, P = 0.02). Moreover, the mitral E/A ratio remained correlated with plasma LMWF levels in all patients (P = 0.04) and the mitral septal e’ remained correlated with plasma CML levels in non-diabetic patients (P = 0.007) when age was a covariate. Conclusions Diastolic dysfunction of aging was independent of myocardial structure but was associated with plasma AGE levels.
Collapse
|
120
|
Zitman-Gal T, Golan E, Green J, Bernheim J, Benchetrit S. Vitamin D receptor activation in a diabetic-like environment: potential role in the activity of the endothelial pro-inflammatory and thioredoxin pathways. J Steroid Biochem Mol Biol 2012; 132:1-7. [PMID: 22531461 DOI: 10.1016/j.jsbmb.2012.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/27/2012] [Accepted: 04/06/2012] [Indexed: 11/16/2022]
Abstract
High blood and tissue concentrations of glucose and advanced glycation end products (AGEs) are thought to play an important role in the development of diabetic vascular complications. Thioredoxin interacting protein (TXNIP) is up-regulated in response to high levels of glucose and is an endogenous inhibitor of thioredoxin (TRX), and may play a contributory role in the occurrence of diabetic-related vascular diseases. Vitamin D inhibits endothelial proliferation and is a cardiovascular protective agent. The present study evaluated the impact of paricalcitol and calcitriol on the endothelial inflammatory and TXNIP pathways in cultured endothelial cells exposed to a diabetic-like environment. Fresh human umbilical vein cord endothelial cells (HUVEC) were treated for 24h with 200 μg/ml AGE-HSA and 250 mg/dl glucose concentrations, with paricalcitol or calcitriol. IL6, IL8, NFκB (p50/p65), receptor of AGE (RAGE), TXNIP, and TRX expressions were evaluated at the levels of mRNA, protein, and TRX activity. Calcitriol and paricalcitol significantly down-regulated the markers involved in the inflammatory responses. Only paricalcitol induced a significant decrease in TXNIP mRNA and protein expressions. Neither paricalcitol nor calcitriol affected TRX reductase activity or TRX mRNA and protein expressions. Our findings indicate that in an endothelial diabetic-like environment, paricalcitol and calcitriol significantly decreased the expression of genes involved in the inflammatory pathway. In this in vitro study, it seems that the TRX antioxidant system was not involved. The different effects found between paricalcitol and calcitriol might reflect the selectivity of vitamin D receptor (VDR) activation.
Collapse
Affiliation(s)
- T Zitman-Gal
- Renal Physiology Laboratory, Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel.
| | | | | | | | | |
Collapse
|
121
|
Nesbit JB, Hurlburt BK, Schein CH, Cheng H, Wei H, Maleki SJ. Ara h 1 structure is retained after roasting and is important for enhanced binding to IgE. Mol Nutr Food Res 2012; 56:1739-47. [PMID: 22996799 DOI: 10.1002/mnfr.201100815] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 07/18/2012] [Accepted: 08/06/2012] [Indexed: 12/22/2022]
Abstract
SCOPE Ara h 1 from roasted peanut binds higher levels of serum immunoglobulin E than raw peanuts and this is likely due to the Maillard reaction. While Ara h 1 linear IgE epitopes have been mapped, the presence and importance of structural epitopes is not clear. METHODS AND RESULTS Mass spectrometry, immunoblot, ELISA, circular dichroism (CD), and structural analysis were used to compare structural and subsequent IgE-binding differences in Ara h 1 purified from raw (N) and roasted peanuts (R) and denatured Ara h 1 (D). Although N and R had similar CD spectra, the latter bound significantly more IgE. Decreased IgE binding was seen with the loss of secondary structure. This same IgE-binding pattern [R > N > D] was seen for the sera of ten peanut allergic patients. While the majority of linear epitopes are located on surface and structured regions of Ara h 1, our study shows that conformational epitopes of Ara h 1 bind better to IgE than linear epitopes. CONCLUSION Enhanced IgE binding to roasted Ara h 1 could be due to alterations such as chemical modifications to individual amino acids or increased epitope exposure. IgE binding is significantly reduced with loss of structure.
Collapse
Affiliation(s)
- Jacqueline B Nesbit
- US Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| | | | | | | | | | | |
Collapse
|
122
|
Lee JE, Yi CO, Jeon BT, Shin HJ, Kim SK, Jung TS, Choi JY, Roh GS. α-Lipoic acid attenuates cardiac fibrosis in Otsuka Long-Evans Tokushima Fatty rats. Cardiovasc Diabetol 2012; 11:111. [PMID: 22992429 PMCID: PMC3558371 DOI: 10.1186/1475-2840-11-111] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 02/06/2023] Open
Abstract
Background Hyperglycemia leads to cardiac oxidative stress and an imbalance in glucose homeostasis. Diabetic cardiomyopathy is characterised by cardiac hypertrophy and fibrosis. However, the underlying mechanisms of diabetic cardiomyopathy are not fully understood. This study aimed to investigate the effects of alpha-lipoic acid (ALA) on cardiac energy metabolism, antioxidant effect, and fibrosis in the hearts of Otsuka Long-Evans Tokushima fatty (OLETF) rats. Methods Animals were separated into non-diabetic Long-Evans Tokushima Otsuka (LETO) rats and diabetes-prone OLETF rats with or without ALA (200 mg/kg/day) administration for 16 weeks. Diabetic cardiomyopathy was assessed by staining with Sirius Red. The effect of ALA on AMPK signalling, antioxidant enzymes, and fibrosis-related genes in the heart of OLETF rats were performed by Western blot analysis or immunohistochemistry. Results Western blot analysis showed that cardiac adenosine monophosphate-activated kinase (AMPK) signalling was lower in OLETF rats than in LETO rats, and that ALA treatment increased the signalling in OLETF rats. Furthermore, the low antioxidant activity in OLETF rats was increased by ALA treatment. In addition to increased Sirius red staining of collagen deposits, transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) were expressed at higher levels in OLETF rat hearts than in LETO rat hearts, and the levels of these factors were decreased by ALA. Conclusions ALA enhances AMPK signalling, antioxidant, and antifibrogenic effect. Theses findings suggest that ALA may have beneficial effects in the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jung Eun Lee
- Department of Anatomy, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongnam, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Abderrahim F, Huanatico E, Repo-Carrasco-Valencia R, Arribas S, Gonzalez M, Condezo-Hoyos L. Effect of germination on total phenolic compounds, total antioxidant capacity, Maillard reaction products and oxidative stress markers in canihua (Chenopodium pallidicaule). J Cereal Sci 2012. [DOI: 10.1016/j.jcs.2012.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
124
|
Serum soluble receptor for advanced glycation end products levels and aortic augmentation index in early rheumatoid arthritis--a prospective study. Semin Arthritis Rheum 2012; 42:333-45. [PMID: 22920235 DOI: 10.1016/j.semarthrit.2012.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/11/2012] [Accepted: 07/12/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We assessed whether a serum soluble receptor for advanced glycation end product (sRAGE) levels were associated with a progression of carotid atherosclerosis and arterial stiffness indexes in a cohort of early rheumatoid arthritis (RA) patients. METHODS RA patients with symptoms onset <2 years were recruited. Vascular assessments and serum sRAGE levels were measured at baseline and 1 year later. Arterial stiffness was determined by pulse wave velocity and aortic augmentation index (AIx). Carotid intima-media thickness was measured using high-resolution ultrasound. RESULTS Ninety-four patients completed the 1-year study. Fifty-three (56.4%) achieved disease remission [28-joint disease activity score (DAS28 < 2.6)] at 12 months. Improvement in arterial stiffness was observed as reflected by the significant reductions in AIx and pulse wave velocity. At 12 months, the sRAGE levels increased significantly compared with baseline (939.8 ± 517.7 pg/ml to 1272.1 ± 567.3 pg/ml, P < 0.001). Changes in sRAGE levels were significantly higher in men compared to women (768 ± 510 pg/ml versus 271 ± 490 pg/ml, P < 0.05) and was negatively associated with the change in AIx (r = -0.259, P = 0.023). Changes in sRAGE level were not associated with other demographic, clinical, cardiovascular risk factors or treatment. Using multivariate analysis, the change in sRAGE levels and baseline high-density lipoprotein were independent predictors associated with the change in AIx. CONCLUSIONS Arterial stiffness improved significantly in patients with early RA after effective control of inflammation. Increase in sRAGE level was associated with a decrease in AIx, suggesting that sRAGE may play an important role in the ligand-soluble receptor for advanced glycation end product interaction propagated inflammation and vascular stiffness in these patients.
Collapse
|
125
|
Abstract
The study of diabetic cardiomyopathy is an area of significant interest given the strong association between diabetes and the risk of heart failure. Many unanswered questions remain regarding the clinical definition and pathogenesis of this metabolic cardiomyopathy. This article reviews the current understanding of diabetic cardiomyopathy with a particular emphasis on the unresolved issues that have limited translation of scientific discovery to patient bedside.
Collapse
Affiliation(s)
- Joel D Schilling
- Diabetic Cardiovascular Disease Center, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
126
|
Shannahan JH, Kodavanti UP, Brown JM. Manufactured and airborne nanoparticle cardiopulmonary interactions: a review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 2012; 24:320-39. [PMID: 22486349 DOI: 10.3109/08958378.2012.668229] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human inhalation exposures to manufactured nanoparticles (NP) and airborne ultrafine particles (UFP) continues to increase in both occupational and environmental settings. UFP exposures have been associated with increased cardiovascular mortality and morbidity, while ongoing research supports adverse systemic and cardiovascular health effects after NP exposures. Adverse cardiovascular health effects include alterations in heart rate variability, hypertension, thrombosis, arrhythmias, increased myocardial infarction, and atherosclerosis. Exactly how UFP and NP cause these negative cardiovascular effects is poorly understood, however a variety of mediators and mechanisms have been proposed. UFP and NP, as well as their soluble components, are known to systemically translocate from the lung. Translocated particles could mediate cardiovascular toxicity through direct interactions with the vasculature, blood, and heart. Recent study suggests that sensory nerve stimulation within the lung may also contribute to UFP- and NP-induced acute cardiovascular alterations. Activation of sensory nerves, such as C-fibers, within the lung may result in altered cardiac rhythm and function. Lastly, release of pulmonary-derived mediators into systemic circulation has been proposed to facilitate cardiovascular effects. In general, these proposed pulmonary-derived mediators include proinflammatory cytokines, oxidatively modified macromolecules, vasoactive proteins, and prothrombotic factors. These pulmonary-derived mediators have been postulated to contribute to the subsequent prothrombotic, atherogenic, and inflammatory effects after exposure. This review will evaluate the potential contribution of individual mediators and mechanisms in facilitating cardiopulmonary toxicity following inhalation of UFP and NP. Lastly, we will appraise the literature and propose a hypothesis regarding the possible role of mast cells in contributing to these systemic effects.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | |
Collapse
|
127
|
Han YT, Choi GI, Son D, Kim NJ, Yun H, Lee S, Chang DJ, Hong HS, Kim H, Ha HJ, Kim YH, Park HJ, Lee J, Suh YG. Ligand-based design, synthesis, and biological evaluation of 2-aminopyrimidines, a novel series of receptor for advanced glycation end products (RAGE) inhibitors. J Med Chem 2012; 55:9120-35. [PMID: 22742537 DOI: 10.1021/jm300172z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using the approach of ligand-based drug design, we discovered a novel series of 4,6-disubstituted 2-aminopyrimidines as RAGE inhibitors. In transgenic mouse models of AD, one of the 4,6-bis(4-chlorophenyl)pyrimidine analogs, 59, significantly lowered the concentration of toxic soluble Aβ in the brain and improved cognitive function. SPR analysis confirmed the direct binding of 59 with RAGE, which should contribute to its biological activities via inhibition of the RAGE-Aβ interaction. We also predicted the binding mode of the 4,6-bis(4-chlorophenyl)pyrimidine analogs to the RAGE V-domain through flexible docking study.
Collapse
Affiliation(s)
- Young Taek Han
- College of Pharmacy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Vistoli G, Carini M, Aldini G. Transforming dietary peptides in promising lead compounds: the case of bioavailable carnosine analogs. Amino Acids 2012; 43:111-26. [PMID: 22286834 DOI: 10.1007/s00726-012-1224-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/12/2012] [Indexed: 01/12/2023]
Abstract
The ability of carnosine to prevent advanced glycoxidation end products (AGEs) and advanced lipoxidation end products (ALEs) formation, on the one hand, and the convincing evidence that these compounds act as pathogenetic factors, on the other hand, strongly support carnosine as a promising therapeutic agent for oxidative-based diseases. The mechanism/s by which carnosine inhibits AGEs and ALEs is still under investigation but an emerging hypothesis is that carnosine acts by deactivating the AGEs and ALEs precursors and in particular the reactive carbonyl species (RCS) generated by both lipid and sugar oxidation. The ability of carnosine to inhibit AGEs and ALEs formation and the corresponding biological effects has been demonstrated in several in vitro studies and in some animal models. However, such effects are in line of principle, limited in humans, due to the effect of serum carnosinase (absent in rodents), which catalyzes the carnosine hydrolysis to its constitutive amino acids. Such a limitation has prompted a great interest in the design of carnosine derivatives, which maintaining (or improving) the reactivity with RCS, are more resistant to carnosinase. The present paper intends to critically review the most recent studies oriented to obtaining carnosine derivatives, optimized in terms of reactivity with RCS, selectivity (no reaction with physiological aldehydes) and the pharmacokinetic profile (mainly through an enhanced resistance to carnosinase hydrolysis). The review also includes a brief description of AGEs and ALEs as drug targets and the evidence so far reported regarding the ability of carnosine as inhibitor of AGEs and ALEs formation and the proposed reaction mechanisms.
Collapse
Affiliation(s)
- Giulio Vistoli
- Department of Pharmaceutical Sciences Pietro Pratesi, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | | | | |
Collapse
|
129
|
Il'yasova D, Scarbrough P, Spasojevic I. Urinary biomarkers of oxidative status. Clin Chim Acta 2012; 413:1446-53. [PMID: 22683781 DOI: 10.1016/j.cca.2012.06.012] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/03/2012] [Indexed: 02/07/2023]
Abstract
Oxidative damage produced by reactive oxygen species (ROS) has been implicated in the etiology and pathology of many health conditions, including a large number of chronic diseases. Urinary biomarkers of oxidative status present a great opportunity to study redox balance in human populations. With urinary biomarkers, specimen collection is non-invasive and the organic/metal content is low, which minimizes the artifactual formation of oxidative damage to molecules in specimens. Also, urinary levels of the biomarkers present intergraded indices of redox balance over a longer period of time compared to blood levels. This review summarizes the criteria for evaluation of biomarkers applicable to epidemiological studies and evaluation of several classes of biomarkers that are formed non-enzymatically: oxidative damage to lipids, proteins, DNA, and allantoin, an oxidative product of uric acid. The review considers formation, metabolism, and exertion of each biomarker, available data on validation in animal and clinical models of oxidative stress, analytical approaches, and their intra- and inter-individual variation. The recommended biomarkers for monitoring oxidative status over time are F₂-isoprostanes and 8-oxodG. For inter-individual comparisons, F₂-isoprostanes are recommended, whereas urinary 8-oxodG levels may be confounded by differences in the DNA repair capacity. Promising urinary biomarkers include allantoin, acrolein-lysine, and dityrosine.
Collapse
Affiliation(s)
- Dora Il'yasova
- Duke Cancer Institute, Duke University Medical Center, Box 2715, Durham, NC 27710, USA.
| | | | | |
Collapse
|
130
|
Slevin M, Ahmed N, Wang Q, McDowell G, Badimon L. Unique vascular protective properties of natural products: supplements or future main-line drugs with significant anti-atherosclerotic potential? Vasc Cell 2012; 4:9. [PMID: 22546170 PMCID: PMC3508621 DOI: 10.1186/2045-824x-4-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/30/2012] [Indexed: 01/07/2023] Open
Abstract
Natural health products (NHP) which include minerals, vitamins and herbal remedies are not generally considered by medical practitioners as conventional medicines and as such are not frequently prescribed by health centre's as either main-line or supplemental treatments. In the field of cardiovascular medicine, studies have shown that typically, less than half of patients suffering from coronary syndromes chose to take any form of NHP supplement and these products are rarely recommended by their medical practitioner. Vascular/endothelial cell damage is a key instigator of coronary arterial plaque development which often culminates in thrombosis and myocardial infarction (MI). Current treatment for patients known to be at risk of primary or secondary (MI) includes lipid lowering statins, anti-clotting agents (e.g. tissue plasminogen activator; tPA) and drugs for stabilization of blood pressure such as beta-blockers. However, evidence has been building which suggests that components of at least several NHP (e.g. aged garlic extract (AGExt), resveratrol and green tea extracts (GTE)) may have significant vascular protective effects through reduction of oxidative stress, lowering of blood pressure, reduction in platelet aggregation, vasodilation and inhibition of abnormal angiogenesis. Therefore, in this review we will discuss in detail the potential of these substances (chosen on the basis of their potency and complimentarity) as anti-atherosclerotic agents and the justification for their consideration as main-line additional supplements or prescriptions.
Collapse
Affiliation(s)
- Mark Slevin
- Centro de Investigación Cardiovascular CSIC-ICCC Hospital de la Santa Creu i Sant Pau, Pavelló del Convent Sant Antoni Maria Claret, 167 08025, Barcelona, Spain
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Nessar Ahmed
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Qiuyu Wang
- School of Healthcare Science, John Dalton Building, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Garry McDowell
- Faculty of Health, Edge Hill University, Ormskirk, L39 4QP, UK
| | - Lina Badimon
- Centro de Investigación Cardiovascular CSIC-ICCC Hospital de la Santa Creu i Sant Pau, Pavelló del Convent Sant Antoni Maria Claret, 167 08025, Barcelona, Spain
| |
Collapse
|
131
|
Jialal I, Kaur H. The Role of Toll-Like Receptors in Diabetes-Induced Inflammation: Implications for Vascular Complications. Curr Diab Rep 2012; 12:172-179. [PMID: 22314791 DOI: 10.1007/s11892-012-0258-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diabetes confers an increased risk for both microvascular and macrovascular complications. Numerous studies have reported increased levels of biomarkers of inflammation that could predispose to vascular complications. The pattern recognition receptors of the innate immune response, such as Toll-like receptors (TLRs), especially TLR2 and TLR4, have been incriminated in both atherosclerosis and insulin resistance. Studies have reported increased expression and activity of these receptors in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus. Most recently, knockout of TLR2 has been shown to attenuate the proinflammatory state of T1DM and the progression of diabetic nephropathy. The increased activity of TLRs in diabetes could be the result of a conspiracy of both endogenous and exogenous ligands. Biomediators of increased TLR2 and TLR4 activity include tumor necrosis factor-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1, and type 1 interferons. Modulating these TLRs could be beneficial in forestalling diabetic complications given the pivotal role of inflammation in both microvascular and macrovascular complications.
Collapse
Affiliation(s)
- Ishwarlal Jialal
- Laboratory of Atherosclerosis and Metabolic Research, UC Davis Medical Center, Sacramento, CA, 95817, USA,
| | | |
Collapse
|
132
|
Hu P, Lai D, Lu P, Gao J, He H. ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells. Int J Mol Med 2012; 29:613-8. [PMID: 22293957 PMCID: PMC3573741 DOI: 10.3892/ijmm.2012.891] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 12/29/2011] [Indexed: 12/14/2022] Open
Abstract
Advanced glycation end products (AGEs) play an important role in the proliferation of vascular smooth muscle cells (VSMCs) and accelerate atherosclerosis in diabetic patients. Autophagy, a life-sustaining process, is stimulated in atherosclerotic plaques by oxidized lipids, inflammation and metabolic stress conditions. In our studies, we utilized MTT assays to show that autophagy is involved in AGE-induced proliferation of VSMCs. Furthermore, treatment with AGEs (100 μg/ml) could induce autophagy in a time- and dose-dependent manner in rat aortic VSMCs. These results were further substantiated by electron microscopy and immunofluorescence imaging. Treatment with AGEs activated ERK, JNK and p38/MAPK, but inhibited Akt. Pretreatment with an ERK inhibitor and an Akt activator inhibited AGE-induced autophagy, demonstrating that AGEs induce autophagy in VSMCs through the ERK and Akt signaling pathways. In addition, RNA interference of RAGE decreased autophagy, indicating that RAGE is pivotal in the process of AGE-induced autophagy. Therefore, AGE-induced autophagy contributes to the process of AGE-induced proliferation of VSMCs, which is related to atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Pengfei Hu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang Province, PR China
| | | | | | | | | |
Collapse
|
133
|
Calabrese V, Cornelius C, Leso V, Trovato-Salinaro A, Ventimiglia B, Cavallaro M, Scuto M, Rizza S, Zanoli L, Neri S, Castellino P. Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes. Biochim Biophys Acta Mol Basis Dis 2011; 1822:729-36. [PMID: 22186191 DOI: 10.1016/j.bbadis.2011.12.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 01/08/2023]
Abstract
Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status a cellular adaptive response occurs requiring functional chaperones, antioxidant production and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring plasma reduced and oxidized glutathione, as well as pentosidine, protein carbonyls lipid oxidation products 4-hydroxy-2-nonenal and F2-isoprostanes in plasma, and lymphocytes, whereas the lymphocyte levels of the heat shock proteins (HSP) HO-1, Hsp72, Sirtuin-1, Sirtuin-2 and thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. Plasma GSH/GSSG showed a significant decrease in type 2 diabetes as compared to control group, associated with increased pentosidine, F2-isoprostanes, carbonyls and HNE levels. In addition, lymphocyte levels of HO-1, Hsp70, Trx and TrxR-1 (P<0.05 and P<0.01) in diabetic patients were higher than in normal subjects, while sirtuin-1 and sirtuin-2 protein was significantly decreased (p<0.05). In conclusion, patients affected by type 2 diabetes are under condition of systemic oxidative stress and, although the relevance of downregulation in sirtuin signal has to be fully understood, however induction of HSPs and thioredoxin protein system represent a maintained response in counteracting systemic pro-oxidant status. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- V Calabrese
- Department of Chemistry, Faculty of Medicine, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Averill MM, Kerkhoff C, Bornfeldt KE. S100A8 and S100A9 in cardiovascular biology and disease. Arterioscler Thromb Vasc Biol 2011; 32:223-9. [PMID: 22095980 DOI: 10.1161/atvbaha.111.236927] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is recent and widespread interest in the damage-associated molecular pattern molecules S100A8 and S100A9 in cardiovascular science. These proteins have a number of interesting features and functions. For example, S100A8 and S100A9 (S100A8/A9) have both intracellular and extracellular actions, they are abundantly expressed in inflammatory and autoimmune states, primarily by myeloid cells but also by other vascular cells, and they modulate inflammatory processes, in part through Toll-like receptor 4 and the receptor for advanced glycation end products. S100A8/A9 also have anti-inflammatory and immune regulatory actions. Furthermore, increased plasma levels of S100A8/A9 predict cardiovascular events in humans, and deletion of these proteins partly protects Apoe(-)(/)(-) mice from atherosclerosis. Understanding the roles of S100A8 and S100A9 in vascular cell types and the mechanisms whereby these proteins mediate their biological effects may offer new therapeutic strategies to prevent, treat, and predict cardiovascular diseases.
Collapse
Affiliation(s)
- Michelle M Averill
- Department of Pathology, Diabetes and Obesity Center of Excellence, 815 Mercer St, University of Washington, Seattle, WA 98109-8055, USA
| | | | | |
Collapse
|
135
|
Regulation of RAGE for attenuating progression of diabetic vascular complications. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:894605. [PMID: 22110482 PMCID: PMC3205669 DOI: 10.1155/2012/894605] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 08/08/2011] [Accepted: 08/16/2011] [Indexed: 12/16/2022]
Abstract
Diabetic angiopathy including micro- and macroangiopathy is concerned with high rate of morbidity and mortality in patients with long-standing diabetes. Receptor for advanced glycation end products (RAGE) and its ligands have been considered as important pathogenic triggers for the progression of the vascular injuries in diabetes. The deleterious link between RAGE and diabetic angiopathy has been demonstrated in animal studies. Preventive and therapeutic strategies focusing on RAGE and its ligand axis may be of great importance in relieving diabetic vascular complications and reducing the burden of disease.
Collapse
|
136
|
van den Heuvel M, Sorop O, Koopmans SJ, Dekker R, de Vries R, van Beusekom HMM, Eringa EC, Duncker DJ, Danser AHJ, van der Giessen WJ. Coronary microvascular dysfunction in a porcine model of early atherosclerosis and diabetes. Am J Physiol Heart Circ Physiol 2011; 302:H85-94. [PMID: 21984550 DOI: 10.1152/ajpheart.00311.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Detailed evaluation of coronary function early in diabetes mellitus (DM)-associated coronary artery disease (CAD) development is difficult in patients. Therefore, we investigated coronary conduit and small artery function in a preatherosclerotic DM porcine model with type 2 characteristics. Streptozotocin-induced DM pigs on a saturated fat/cholesterol (SFC) diet (SFC + DM) were compared with control pigs on SFC and standard (control) diets. SFC + DM pigs showed DM-associated metabolic alterations and early atherosclerosis development in the aorta. Endothelium-dependent vasodilation to bradykinin (BK), with or without blockade of nitric oxide (NO) synthase, endothelium-independent vasodilation to an exogenous NO-donor (S-nitroso-N-acetylpenicillamine), and vasoconstriction to endothelin (ET)-1 with blockade of receptor subtypes, were assessed in vitro. Small coronary arteries, but not conduit vessels, showed functional alterations including impaired BK-induced vasodilatation due to loss of NO (P < 0.01 vs. SFC and control) and reduced vasoconstriction to ET-1 (P < 0.01 vs. SFC and control), due to a decreased ET(A) receptor dominance. Other vasomotor responses were unaltered. In conclusion, this model demonstrates specific coronary microvascular alterations with regard to NO and ET-1 systems in the process of early atherosclerosis in DM. In particular, the altered ET-1 system correlated with hyperglycemia in atherogenic conditions, emphasizing the importance of this system in DM-associated CAD development.
Collapse
Affiliation(s)
- Mieke van den Heuvel
- Department of Cardiology, Division of Pharmacology, Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Campbell DJ, Somaratne JB, Jenkins AJ, Prior DL, Yii M, Kenny JF, Newcomb AE, Schalkwijk CG, Black MJ, Kelly DJ. Impact of type 2 diabetes and the metabolic syndrome on myocardial structure and microvasculature of men with coronary artery disease. Cardiovasc Diabetol 2011; 10:80. [PMID: 21929744 PMCID: PMC3182888 DOI: 10.1186/1475-2840-10-80] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 09/19/2011] [Indexed: 12/14/2022] Open
Abstract
Background Type 2 diabetes and the metabolic syndrome are associated with impaired diastolic function and increased heart failure risk. Animal models and autopsy studies of diabetic patients implicate myocardial fibrosis, cardiomyocyte hypertrophy, altered myocardial microvascular structure and advanced glycation end-products (AGEs) in the pathogenesis of diabetic cardiomyopathy. We investigated whether type 2 diabetes and the metabolic syndrome are associated with altered myocardial structure, microvasculature, and expression of AGEs and receptor for AGEs (RAGE) in men with coronary artery disease. Methods We performed histological analysis of left ventricular biopsies from 13 control, 10 diabetic and 23 metabolic syndrome men undergoing coronary artery bypass graft surgery who did not have heart failure or atrial fibrillation, had not received loop diuretic therapy, and did not have evidence of previous myocardial infarction. Results All three patient groups had similar extent of coronary artery disease and clinical characteristics, apart from differences in metabolic parameters. Diabetic and metabolic syndrome patients had higher pulmonary capillary wedge pressure than controls, and diabetic patients had reduced mitral diastolic peak velocity of the septal mitral annulus (E'), consistent with impaired diastolic function. Neither diabetic nor metabolic syndrome patients had increased myocardial interstitial fibrosis (picrosirius red), or increased immunostaining for collagen I and III, the AGE Nε-(carboxymethyl)lysine, or RAGE. Cardiomyocyte width, capillary length density, diffusion radius, and arteriolar dimensions did not differ between the three patient groups, whereas diabetic and metabolic syndrome patients had reduced perivascular fibrosis. Conclusions Impaired diastolic function of type 2 diabetic and metabolic syndrome patients was not dependent on increased myocardial fibrosis, cardiomyocyte hypertrophy, alteration of the myocardial microvascular structure, or increased myocardial expression of Nε-(carboxymethyl)lysine or RAGE. These findings suggest that the increased myocardial fibrosis and AGE expression, cardiomyocyte hypertrophy, and altered microvasculature structure described in diabetic heart disease were a consequence, rather than an initiating cause, of cardiac dysfunction.
Collapse
Affiliation(s)
- Duncan J Campbell
- Department of Molecular Cardiology, St. Vincent's Institute of Medical Research, Fitzroy, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|