101
|
Spangler R, Goddard NL, Avena NM, Hoebel BG, Leibowitz SF. Elevated D3 dopamine receptor mRNA in dopaminergic and dopaminoceptive regions of the rat brain in response to morphine. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 111:74-83. [PMID: 12654507 DOI: 10.1016/s0169-328x(02)00671-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As opiates increase dopamine transmission, we measured the effects of morphine on dopamine-related genes using a real-time optic PCR assay that reliably detects small differences in mRNA in discrete brain regions. Tissue from dopaminoceptive and dopaminergic brain regions was collected from rats injected twice daily for 7 days with saline or increasing doses of morphine. Tissues were assayed for D1, D2 and D3 dopamine receptor mRNAs (D1R, D2R and D3R), as well as for mRNAs for tyrosine hydroxylase (TH) and the dopamine transporter (DAT). The neuron-associated mRNAs for SNAP-25 and synaptophysin, as well as the glial-associated mRNA for S100-beta and three 'housekeeping' mRNAs, were also measured. As reported previously by others, there was no alteration in D1R mRNA and a 25% decrease in D2R mRNA in the caudate-putamen, 2 h after the final morphine injection. Importantly, in the same RNA extracts, D3R mRNA showed significant increases of 85% in the caudate-putamen and 165% in the ventral midbrain, including the substantia nigra and ventral tegmental area. There were no other significant morphine effects. Mapping of brain regions in saline control rats agreed with previous studies, including showing the presence of low abundance TH mRNA and the absence of DAT mRNA in the caudate-putamen. The finding that chronic, intermittent injections of morphine caused an increase in D3R mRNA extends our understanding of the ability of D3R agonists to reduce the effects of morphine.
Collapse
Affiliation(s)
- Rudolph Spangler
- Laboratory of Behavioral Neuroscience, The Rockefeller University, Box 278, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
102
|
Le Foll B, Diaz J, Sokoloff P. Increased dopamine D3 receptor expression accompanying behavioral sensitization to nicotine in rats. Synapse 2003; 47:176-83. [PMID: 12494400 DOI: 10.1002/syn.10170] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Behavioral sensitization to nicotine, which appears following repeated nicotine administration, has been suggested to take part in the development of smoking habit in humans. The mesolimbic dopaminergic system plays a role in this process and a hypersensitivity of postsynaptic neurons of the nucleus accumbens as been proposed as a mechanism, but changes in dopamine D(1) or D(2) receptors have not been demonstrated to date. A challenge administration of nicotine (0.5 mg/kg s.c.) produced a strong increase in locomotor activity in rats repeatedly pretreated with nicotine (0.5 mg/kg s.c.), but not saline, once a day for 5 days. This behavioral sensitization was accompanied by an increase in D(3) receptor binding and mRNA in the shell of nucleus accumbens. D(3) receptor expression was unchanged in the core of nucleus accumbens and dorsal striatum, as it was in the shell of nucleus accumbens after an acute administration of nicotine to naive rats. In contrast, no changes were noticed in D(1) and D(2) receptor expressions in any brain region examined after chronic or acute treatment with nicotine. In addition, nicotine challenge decreased preprodynorphin and preprotachykinin mRNA levels in naive rats, but only preprotachykinin mRNA levels in rats pretreated with nicotine. These biochemical changes resemble those occurring during behavioral sensitization to levodopa of dopamine-denervated rats, which had been causally related to the induction of D(3) receptor expression. We propose that a similar mechanism is responsible for behavioral sensitization to nicotine.
Collapse
Affiliation(s)
- Bernard Le Foll
- Unité de Neurobiologie et Pharmacologie Moléculaire (INSERM U 573), Centre Paul Broca, 75014 Paris, France
| | | | | |
Collapse
|
103
|
Abstract
Tobacco smoking is the first cause of preventable death in modern countries. Nicotine replacement therapy or sustained release bupropion helps smoking cessation, but relapse rates are still very high. Nicotine, like other drugs of abuse, activates the dopamine mesolimbic system, which originates in the ventral tegmental area and projects notably to the nucleus accumbens. Situations or environmental stimuli previously associated with cigarette smoking, for example, smell of cigarette smoke, can elicit craving in abstinent smokers and promote relapse. Reducing the effects of nicotine-associated cues might therefore have potential therapeutic utility for smoking cessation. Such an approach has been validated for cocaine in animals, by using the dopamine D(3) receptor-selective partial agonist BP 897, which inhibits cocaine cue-induced drug-seeking behavior. Here we show that rats repeatedly injected with nicotine in a particular environment develop nicotine-conditioned locomotor responses, accompanied by an increase in D(3) receptor expression in the nucleus accumbens. This conditioned behavior was inhibited by BP 897 or a selective D(3) receptor antagonist, suggesting that antagonizing dopamine selectively at the D(3) receptor disrupts nicotine-conditioned effects and might represent a novel therapeutic approach for smoking cessation.
Collapse
Affiliation(s)
- B Le Foll
- Unité de Neurobiologie et Pharmacologie Moléculaire (INSERM U 573), Centre Paul Broca, 2ter rue d'Alésia, 75014 Paris, France.
| | | | | |
Collapse
|
104
|
Tomiyama K, McNamara FN, Clifford JJ, Kinsella A, Drago J, Fuchs S, Grandy DK, Low MJ, Rubinstein M, Tighe O, Croke DT, Koshikawa N, Waddington JL. Comparative phenotypic resolution of spontaneous, D2-like and D1-like agonist-induced orofacial movement topographies in congenic mutants with dopamine D2 vs. D3 receptor ?knockout? Synapse 2003; 51:71-81. [PMID: 14579426 DOI: 10.1002/syn.10284] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using a novel system, the role of D2-like dopamine receptors in distinct topographies of orofacial movement was assessed in mutant mice with congenic D2 vs. D3 receptor knockout, and compared with findings in D1A mutants. Under spontaneous conditions, D2 mutants evidenced increased vertical jaw movements and unaltered horizontal jaw movements, with reductions in tongue protrusions and incisor chattering; in D3 mutants, only incisor chattering was reduced. Given previous evidence that D1A mutants show reduced horizontal but not vertical jaw movements, this indicates that apparent oppositional D1-like:D2-like interactions in the regulation of composited jaw movements may in fact reflect the independent actions of D2 receptors to inhibit vertical jaw movements and of D1A receptors to facilitate horizontal jaw movements. Effects of the D2-like agonist RU 24213 to exert greater reduction in horizontal than in vertical jaw movements were not altered prominently in either D2 or D3 mutants. The D1-like agonists A 68930 and SK&F 83959 induced vertical jaw movements, tongue protrusions, and incisor chattering; induction of tongue protrusions by A 68930 was reduced in D2 mutants. D2 receptors exert topographically specific regulation of orofacial movements in a manner distinct from their D1A counterparts, while D3 receptors exert only minor regulation of such movements.
Collapse
MESH Headings
- Animals
- Dopamine Agonists/pharmacology
- Face/physiology
- Female
- Male
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Knockout
- Movement/drug effects
- Movement/physiology
- Mutation
- Phenotype
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/deficiency
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/deficiency
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D3
Collapse
Affiliation(s)
- Katsunori Tomiyama
- Department of Clinical Pharmacology and Institute of Biopharmaceutical Sciences, Royal College of Surgeons in Ireland, St Stephen's Green, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Dall'Olio R, Gaggi R, Voltattorni M, Tanda O, Gandolfi O. Nafadotride administration increases D1 and D1/D2 dopamine receptor mediated behaviors. Behav Pharmacol 2002; 13:633-8. [PMID: 12478213 DOI: 10.1097/00008877-200212000-00004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The administration of nafadotride, given at doses known to block the D3 dopamine receptors (0.75, 1.5, 3 mg/kg i.p.) increased locomotor activity both in naive and habituated rats and counteracted the hypothermia but not the hypomotility induced by a low dose of the putative D3 dopamine agonist (+/-)-7-hydroxy-2-(di-N-propylamino)-tetralin (7-OH-DPAT; 0.04 mg/kg). Nafadotride did not antagonize either the motor effects induced by different doses of the D2 agonist quinpirole (0.05 and 0.3 mg/kg) or the hypermotility induced by 7-OH-DPAT given at a dose (0.32 mg/kg) stimulating D2 dopamine receptors. The same nafadotride doses potentiated the grooming behavior induced by the D1 dopamine agonist SKF 38393 (10 mg/kg i.p.) as well as the stereotyped response to the D1/D2 agonist apomorphine (0.5 mg/kg s.c.). Stereotyped behavior was also observed in rats concomitantly treated with nafadotride and the D2 agonist quinpirole. As the activation of D1 dopamine receptors plays an important role in the occurrence of stereotypies, the results suggest that the blockade of D3 receptors by nafadotride could have favored D1/D2 dopamine receptor-mediated behaviors by potentiating D1 receptor function.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Apomorphine/pharmacology
- Behavior, Animal/drug effects
- Body Temperature/drug effects
- Dopamine/physiology
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists
- Dose-Response Relationship, Drug
- Exploratory Behavior/drug effects
- Grooming/drug effects
- Male
- Motor Activity/drug effects
- Naphthalenes/pharmacology
- Pyrrolidines/pharmacology
- Quinpirole/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D3
- Stereotyped Behavior/drug effects
- Stimulation, Chemical
- Tetrahydronaphthalenes/pharmacology
Collapse
Affiliation(s)
- R Dall'Olio
- Department of Pharmacology, University of Bologna, Via Irnerio 48, I 40126, Bologna, Italy.
| | | | | | | | | |
Collapse
|
106
|
McNamara FN, Clifford JJ, Tighe O, Kinsella A, Drago J, Fuchs S, Croke DT, Waddington JL. Phenotypic, ethologically based resolution of spontaneous and D(2)-like vs D(1)-like agonist-induced behavioural topography in mice with congenic D(3) dopamine receptor "knockout". Synapse 2002; 46:19-31. [PMID: 12211095 DOI: 10.1002/syn.10108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Uncertainty as to the functional role of the D(3) dopamine receptor, due primarily to a paucity of selective agonists or antagonists, is being addressed in mice with targeted gene deletion ("knockout") thereof. This study describes, for the first time, the phenotype of congenic D(3)-null mice. Initially, 129/Sv x C57BL/6 D(3)-null mice were backcrossed 14 times onto C57BL/6; they were then assessed using an ethologically based approach which resolves all topographies of behaviour within the mouse repertoire. The ethogram of D(3)-null mice, on comparison with wildtypes, was characterised by no alteration in any topography of behaviour over an initial period of exploration; subsequent assessment over several hours revealed only increased rearing among females due to delayed habituation. Low doses of the selective D(2)-like agonist RU 24213 (0.016-0.25 mg/kg) inhibited topographies of exploratory behaviour; this effect was diminished in D(3)-null mice only when investigated following prolonged habituation, and then only for certain topographies of behaviour, primarily sniffing and rearing. High doses of RU 24213 (0.1-12.5 mg/kg) induced stereotyped sniffing and "ponderous" locomotion, while the selective D(1)-like agonist SK&F 83959 (0.016-2.0 mg/kg) promoted characteristic grooming syntax; these effects did not differ materially between the genotypes. When examined topographically on an essentially congenic C57BL/6 background (<0.005% 129/Sv), the resultant phenotype indicated essential conservation of the mouse ethogram, high-dose D(2)-like stimulatory effects, and D(1)-like stimulatory effects in the absence of D(3) receptors. A role for D(3) receptors in inhibitory processes appeared topographically circumscribed and only when baseline levels of behaviour were low.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Behavior, Animal/drug effects
- Dopamine Agonists/pharmacology
- Exploratory Behavior/drug effects
- Female
- Habituation, Psychophysiologic/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenethylamines/pharmacology
- Phenotype
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
Collapse
Affiliation(s)
- Fergal N McNamara
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Le Foll B, Francès H, Diaz J, Schwartz JC, Sokoloff P. Role of the dopamine D3 receptor in reactivity to cocaine-associated cues in mice. Eur J Neurosci 2002; 15:2016-26. [PMID: 12099907 DOI: 10.1046/j.1460-9568.2002.02049.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environmental stimuli previously associated with drug effects can acquire secondary reinforcing properties, able to maintain drug-seeking behaviour or induce relapse. We have used a classical Pavlovian conditioning procedure to assess the role of the dopamine D3 receptor (D3R) in the expression of drug-conditioned responses. Mice repeatedly receiving cocaine in a particular environment distinct from home-cages displayed hyperlocomotion after subsequent exposure to the drug-paired environment. Cocaine-conditioned hyperactivity was inhibited by BP 897 or SB-277011-A, D3R-selective partial agonist and antagonist, respectively. D3R gene-targeted mice showed a trend towards an increase in cocaine cue-conditioned hyperactivity. BP 897 had no effect on reactivity to neutral or aversive cues. Cocaine-conditioned mice had increased levels of D3R mRNA and binding in the nucleus accumbens (NAc), and transcripts of brain-derived neurotrophic factor (BDNF), a factor controlling D3R expression, in the ventral tegmental area (VTA). Cocaine had no effects on D3R or BDNF genes when administered in home-cages. Cocaine cue-conditioned c-fos expression was found in cortical areas, notably in the somatosensory cortex, where it was inhibited by BP 897, and in several regions belonging or linked to the limbic system. In conditioned mice, BP 897 inhibited c-fos expression in VTA and activated it in amygdala. These results demonstrate a modulation of reactivity to cocaine cues by the D3R, the expression of which is elevated in the NAc by the repeated association of drug effects with a particular context, through a BDNF-dependent mechanism. D3R-selective partial agonist or antagonist inhibit cocaine cue-conditioned activity possibly by normalizing exacerbated D3R function in the NAc, but our results also point to a possible participation of a pathway involving the VTA, amygdala and somatosensory cortex.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Brain-Derived Neurotrophic Factor/genetics
- Cocaine/pharmacology
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/physiopathology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Cues
- Dopamine Agonists/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine Uptake Inhibitors/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Gene Expression/physiology
- Genotype
- Hyperkinesis/chemically induced
- Hyperkinesis/genetics
- Hyperkinesis/metabolism
- Male
- Mice
- Mice, Knockout
- Piperazines/pharmacology
- Proto-Oncogene Proteins c-fos/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Dopamine D2/deficiency
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D3
- Reinforcement, Psychology
- Up-Regulation/drug effects
- Up-Regulation/physiology
Collapse
Affiliation(s)
- Bernard Le Foll
- Unité de Neurobiologie et Pharmacologie Moléculaire (INSERM U 573), Centre Paul Broca, 75014 Paris, France
| | | | | | | | | |
Collapse
|
108
|
Richtand NM, Goldsmith RJ, Nolan JE, Berger SP. The D3 dopamine receptor and substance dependence. J Addict Dis 2002; 20:19-32. [PMID: 11681590 DOI: 10.1300/j069v20n03_03] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Behavioral sensitization, the progressive and enduring enhancement of certain stimulant-induced behaviors following repetitive drug use, is mediated in part by dopaminergic pathways known to play a role in drug dependence. It has been theorized that sensitization underlies the development of drug craving and initiates addictive behaviors of drug dependence. We propose that down-regulation of D3 dopamine receptor function contributes to sensitization. Rodent locomotion is regulated by the opposing influence of dopamine receptor subtypes, with D3 stimulation inhibiting and concurrent D1/D2 receptor activation stimulating locomotion. The D3 receptor has greater occupancy than D1 or D2 receptors following stimulant drug administration. Sensitization may therefore result in part from greater accommodation of the inhibitory D3 receptor "brake" on locomotion, leading to progressive locomotion increase following repeated stimulant exposure. Further study is needed to test this proposed model, and to clarify the role of individual dopamine receptor subtypes in sensitization and drug dependence.
Collapse
Affiliation(s)
- N M Richtand
- Cincinnati Vetrans Affairs Medical Center, Psychiatry Service, OH 45220, USA.
| | | | | | | |
Collapse
|
109
|
Reiner A. Functional circuitry of the avian basal ganglia: implications for basal ganglia organization in stem amniotes. Brain Res Bull 2002; 57:513-28. [PMID: 11923021 DOI: 10.1016/s0361-9230(01)00667-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Histochemical, pathway tracing, and neuropeptide/neurotransmitter localization studies in birds, reptiles and mammals during the 1970s and 80s clearly showed that the telencephalon in all amniotes consists of a prominent ventrally situated subpallial region termed the basal ganglia, and a large overlying region involved in higher order information processing termed the pallium or cortex. These studies also showed that the basal ganglia in all extant amniote groups possessed neurochemically and hodologically distinct striatal and pallidal territories. More recently, studies of the localization of genes controlling regional brain development have confirmed the homology of the basal ganglia among amniotes. In our ongoing studies, we have identified several aspects of the functional organization of the basal ganglia that birds also share with mammals. These include: (1) an extensive glutamatergic "cortico"-striatal input and distinctive, cell-type specific localization of glutamate receptor subtypes; (2) an extensive, presumptively glutamatergic intralaminar thalamic input to striatal neurons; (3) an extensive dopaminergic input from the midbrain targeting both substance P (SP) type and enkephalin (ENK) type striatal projection neurons, with SP-type striatal neurons seemingly richer in the D-1 type dopamine receptor; and (4) SP+ and ENK+ striatal outputs giving rise to functionally distinct so-called direct and indirect motor output pathways, with the direct pathway having a pallido-thalamo-motor cortex loop and the indirect pathway relaying back to the direct circuit via the subthalamic nucleus. These findings suggest that the major aspects of the cellular organization and functional circuitry of the basal ganglia in stem amniotes were already as observed in living amniotes, as therefore presumably was its key role in movement control. Because the organization of the basal ganglia of anamniotes is clearly less elaborate than in amniotes, and because the basal ganglia and cortex in amniotes are clearly extensively interconnected structures, it seems likely that stem amniotes were characterized by a major step forward in the grade of telencephalic organization of both the basal ganglia and the pallium.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
110
|
Arnold JC, Topple AN, Mallet PE, Hunt GE, McGregor IS. The distribution of cannabinoid-induced Fos expression in rat brain: differences between the Lewis and Wistar strain. Brain Res 2001; 921:240-55. [PMID: 11720732 DOI: 10.1016/s0006-8993(01)03127-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have suggested that cannabis-like drugs produce mainly aversive and anxiogenic effects in Wistar strain rats, but rewarding effects in Lewis strain rats. In the present study we compared Fos expression, body temperature effects and behavioral effects elicited by the cannabinoid CB(1) receptor agonist CP 55,940 in Lewis and Wistar rats. Both a moderate (50 microg/kg) and a high (250 microg/kg) dose level were used. The 250 microg/kg dose caused locomotor suppression, hypothermia and catalepsy in both strains, but with a significantly greater effect in Wistar rats. The 50 microg/kg dose provoked moderate hypothermia and locomotor suppression but in Wistar rats only. CP 55,940 caused significant Fos immunoreactivity in 24 out of 33 brain regions examined. The most dense expression was seen in the paraventricular nucleus of the hypothalamus, the islands of Calleja, the lateral septum (ventral), the central nucleus of the amygdala, the bed nucleus of the stria terminalis (lateral division) and the ventrolateral periaqueductal gray. Despite having a similar distribution of CP 55,940-induced Fos expression, Lewis rats showed less overall Fos expression than Wistars in nearly every brain region counted. This held equally true for anxiety-related brain structures (e.g. central nucleus of the amygdala, periaqueductal gray and the paraventricular nucleus of the hypothalamus) and reward-related sites (nucleus accumbens and pedunculopontine tegmental nucleus). In a further experiment, Wistar rats and Lewis rats did not differ in the amount of Fos immunoreactivity produced by cocaine (15 mg/kg). These results indicate that Lewis rats are less sensitive to the behavioral, physiological and neural effects of cannabinoids. The exact mechanism underlying this subsensitivity requires further investigation.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Body Temperature/drug effects
- Body Temperature/physiology
- Brain/drug effects
- Brain/metabolism
- Cannabinoids/pharmacology
- Catalepsy/chemically induced
- Catalepsy/metabolism
- Catalepsy/physiopathology
- Cell Count
- Cyclohexanols/pharmacology
- Dose-Response Relationship, Drug
- Immunohistochemistry
- Marijuana Abuse/metabolism
- Marijuana Abuse/physiopathology
- Motor Activity/drug effects
- Motor Activity/physiology
- Neurons/drug effects
- Neurons/metabolism
- Proto-Oncogene Proteins c-fos/metabolism
- Rats
- Rats, Inbred Lew/anatomy & histology
- Rats, Inbred Lew/metabolism
- Rats, Wistar/anatomy & histology
- Rats, Wistar/metabolism
- Receptors, Cannabinoid
- Receptors, Drug/drug effects
- Receptors, Drug/metabolism
Collapse
Affiliation(s)
- J C Arnold
- Department of Psychology, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | |
Collapse
|
111
|
Sokoloff P, Le Foll B, Perachon S, Bordet R, Ridray S, Schwartz JC. The dopamine D3 receptor and drug addiction. Neurotox Res 2001; 3:433-41. [PMID: 14715457 DOI: 10.1007/bf03033202] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hedonic and reinforcing properties of drugs of abuse are closely related to brain dopamine neuron activity. All these drugs increase dopamine release in the shell of the nucleus accumbens, a brain region in which neurons co-express the D1 (D1R) and D3 (D3R) dopamine receptor subtypes, that converging pharmacological, human post-mortem and genetic studies suggest to be implicated in drug addiction. The D3R through a cross-talk with the D1R, is involved in induction and expression of behavioral sensitization to levodopa in rats bearing unilateral lesions of dopamine neurons. Behavioral sensitization, a cardinal feature of addiction arises from repeated administration of drugs of abuse thought to play a role in intensification of reinforcing efficacy of these drugs observed under certain conditions. Stimulation of the D3R also appears to enhance the reinforcing effect of cocaine in rats. By interacting with these processes, D3R agents have potential therapeutic applications for treating drug addiction. BP 897 (N-[4-(4-(2-methoxyphenyl)piperazin-1-yl) butyl] naphtalen 2-carboxamide dichlorhydrate), a partial and highly selective D3R agonist in vitro, behaves as an agonist or an antagonist in vivo depending on the response considered. BP 897 has the unprecedented property to reduce cocaine-seeking behavior induced by presentation of a cocaine-associated cue, without having any intrinsic reinforcing effect. As drug-associated cues maintain drug-seeking in animals and elicit craving and relapse in humans, D3R agents like BP 897 may represent new medications for drug addiction, with minimal liability to maintaining dependence.
Collapse
Affiliation(s)
- P Sokoloff
- Unité de Neurobiologie et Pharmacologie Moléculaire de l'INSERM, Centre Paul Broca, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
112
|
Richtand NM, Woods SC, Berger SP, Strakowski SM. D3 dopamine receptor, behavioral sensitization, and psychosis. Neurosci Biobehav Rev 2001; 25:427-43. [PMID: 11566480 DOI: 10.1016/s0149-7634(01)00023-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Behavioral sensitization is a progressive, enduring enhancement of behaviors that develops following repeated stimulant administration. It is mediated in part by dopaminergic pathways that also modulate a number of psychiatric conditions including the development of psychosis. We propose that down-regulation of D3 dopamine receptor function in critical brain regions contributes to sensitization. Rodent locomotion, a sensitizable behavior, is regulated by the opposing influence of dopamine receptor subtypes, with D3 stimulation opposing concurrent D1 and D2 receptor activation. The D3 dopamine receptor has a 70-fold greater affinity for dopamine than D1 or D2 dopamine receptors. This imbalance in ligand affinity dictates greater occupancy for D3 than D1 or D2 receptors at typical dopamine concentrations following stimulant drug administration, resulting in differences in the relative tolerance at D3 vs D1 and D2 receptors. Sensitization may therefore result in part from accommodation of the inhibitory D3 receptor 'brake' on D1/D2 mediated behaviors, leading to a progressive locomotion increase following repeated stimulant exposure. The requirement for differential tolerance at D3 vs D1 and D2 receptors may explain the observed development of sensitization following application of cocaine, but not amphetamine, directly into nucleus accumbens. If correct, the 'D3 Dopamine Receptor Hypothesis' suggests D3 antagonists could prevent sensitization, and may interrupt the development of psychosis when administered during the prodromal phase of psychotic illness. Additional study is needed to clarify the role of the D3 dopamine receptor in sensitization and psychosis.
Collapse
Affiliation(s)
- N M Richtand
- Department of Psychiatry, V-116A, Cincinnati Veterans Affairs Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA.
| | | | | | | |
Collapse
|
113
|
Joyce JN. D2 but not D3 receptors are elevated after 9 or 11 months chronic haloperidol treatment: influence of withdrawal period. Synapse 2001; 40:137-44. [PMID: 11252025 DOI: 10.1002/syn.1035] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous postmortem studies have identified divergent alterations in D2 and D3 receptors in schizophrenia but those results cannot be interpreted without further understanding of whether antipsychotic regulation of the D3 receptor is different from that of the D2 receptor. Depot parenteral administration of haloperidol decanoate was utilized to achieve consistent high levels in rat brain for 9 months with 2-month withdrawal or 11 months with 48-h withdrawal and compared to vehicle control and acute haloperidol (48-h) treatment groups. Autoradiographic means for measuring levels of D2 ([(3)H]-spiperone) and D3 receptors ([(125)I]trans 7-OH-PIPAT) and of D3 mRNA by in situ hybridization histochemistry in rat caudate-putamen, nucleus accumbens, islands of Calleja, and olfactory tubercle determined that there were significant group differences for regulation of D2 receptor. Chronic haloperidol for 9 or 11 months elevated D2 but not D3 receptors or D3 mRNA in all regions measured. Acute haloperidol treatment had no significant effects for any measure. Treatment for 9 months with a 2-month withdrawal resulted in a persistent increase in D2 receptors that was greater than that observed in the 11 months with 48-h withdrawal. This effect was most noticeable in the olfactory tubercle. These data confirm previous findings that short- or long-term haloperidol treatment leads to elevations in D2 but not D3 receptors or D3 mRNA, and long-term withdrawal from chronic haloperidol does not lead to elevations in D3 receptors or D3 mRNA. This suggests that an elevation in D3 receptors identified at postmortem in schizophrenics withdrawn from antipsychotics is not the result of the previous drug history [Gurevich et al. (1997) Arch Gen Psychiatry 54:225-232].
Collapse
Affiliation(s)
- J N Joyce
- Thomas H. Christopher Center for Parkinson's Disease Research, Sun Health Research Institute, Sun City, AZ 85351, USA.
| |
Collapse
|
114
|
Abstract
The cloning of the gene for the D3 receptor and subsequent identification of its distribution in brain and pharmacology allowed for serious consideration of the possibility that it might be a target for drugs used to treat schizophrenia and Parkinson's disease (PD). That is because it is highly expressed in limbic regions of the brain, exhibits low expression in motor divisions, and has pharmacologic similarity to the D2 receptor. Thus, antipsychotics that were presumed to block D2 receptors also had high affinity for the D3 receptor. Dopamine agonists used to treat the clinical symptoms of PD also have high affinity for the D3 receptor, and two D3 receptor-preferring agonists were found to be effective for treatment of PD. Many compounds achieving high potency and selectivity are now available, but few have reached clinical testing. Recent findings with respect to the anatomy of this receptor in human brain, altered expression in schizophrenia and PD, and biological models to study its function support the proposal that it is a target for development of drugs to alleviate symptoms in neuropsychiatric and neurologic disorders. Because of distinct aspects of regulation of the D3 receptor, it represents a unique target for therapeutic intervention in schizophrenia without high potential for unintended side effects such as tardive dyskinesia. It may also be that D3 receptor agonists can provide neuroprotective effects in PD and can modify clinical symptoms that D2 receptor-preferring agonists cannot provide.
Collapse
Affiliation(s)
- J N Joyce
- Thomas H. Christopher Center for Parkinson's Disease Research, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351, USA.
| |
Collapse
|
115
|
Waddington JL, Clifford JJ, McNamara FN, Tomiyama K, Koshikawa N, Croke DT. The psychopharmacology-molecular biology interface: exploring the behavioural roles of dopamine receptor subtypes using targeted gene deletion ('knockout'). Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:925-64. [PMID: 11383985 DOI: 10.1016/s0278-5846(01)00152-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the absence of selective agonists and antagonists able to discriminate between individual members of the D1-like and D2-like families of dopamine receptor subtypes, functional parcellation has remained problematic. 'Knockout' of these subtypes by targeted gene deletion offers a new approach to evaluating their roles in the regulation of behaviour. Like any new technique, 'knockout' has associated with it a number of methodological limitations that are now being addressed in a systematic manner. Studies on the phenotype of D1(A/1), D(1B/5), D2, D3 and D4 'knockouts' at the level of spontaneous and agonist/antagonist-induced behaviour are reviewed, in terms of methodological issues, neuronal implications and potential clinical relevance. Dopamine receptor subtype 'knockout' is a nascent technology that is now beginning to fulfil its potential. It is being complemented by more systematic phenotypic characterisation at the level of behaviour and additional, molecular biologically-based approaches.
Collapse
Affiliation(s)
- J L Waddington
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin
| | | | | | | | | | | |
Collapse
|
116
|
Kovács KJ, Csejtei M, Laszlovszky I. Double activity imaging reveals distinct cellular targets of haloperidol, clozapine and dopamine D(3) receptor selective RGH-1756. Neuropharmacology 2001; 40:383-93. [PMID: 11166331 DOI: 10.1016/s0028-3908(00)00163-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Acute administration of typical (haloperidol) and atypical (clozapine) antipsychotics results in distinct and overlapping regions of immediate-early gene expression in the rat brain. RGH-1756 is a recently developed atypical antipsychotic with high affinity to dopamine D(3) receptors that results in a unique pattern of c-Fos induction. A single injection of either antipsychotic results in c-fos mRNA expression that peaks around 30 min after drug administration, while the maximum of c-Fos protein induction is seen 2 h after challenge. The transient and distinct temporal inducibility of c-fos mRNA and c-Fos protein was exploited to reveal and compare cellular targets of different antipsychotic drugs by concomitant localization of c-fos mRNA and c-Fos immunoreactivity in brain sections of rats that were timely challenged with two different antipsychotics. Double activity imaging revealed that haloperidol, clozapine and RGH-1756 share cellular targets in the nucleus accumbens, where 40% of all labeled neurons displayed both c-fos mRNA and c-Fos protein. Haloperidol activates cells in the caudate putamen, while clozapine-responsive, single labeled neurons were dominant in the prefrontal cortex and major island of Calleja. RGH-1756 targets haloperidol-sensitive cells in the caudate putamen, but cells that are activated by clozapine and RGH-1756 in the major island of Calleja are different.
Collapse
Affiliation(s)
- K J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | | | | |
Collapse
|
117
|
Betancur C, Lépée-Lorgeoux I, Cazillis M, Accili D, Fuchs S, Rostène W. Neurotensin gene expression and behavioral responses following administration of psychostimulants and antipsychotic drugs in dopamine D(3) receptor deficient mice. Neuropsychopharmacology 2001; 24:170-82. [PMID: 11120399 PMCID: PMC2556380 DOI: 10.1016/s0893-133x(00)00179-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure to psychostimulants and antipsychotics increases neurotensin (NT) gene expression in the striatum and nucleus accumbens. To investigate the contribution of D(3) receptors to these effects we used mice with targeted disruption of the D(3) receptor gene. Basal NT mRNA expression was similar in D(3) receptor mutant mice and wild-type animals. Acute administration of haloperidol increased NT gene expression in the striatum in D(3)+/+, D(3)+/- and D(3)-/- mice. Similarly, acute cocaine and amphetamine induced NT mRNA expression in the nucleus accumbens shell and olfactory tubercle to a comparable extent in D(3) mutants and wild-type mice. Daily injection of cocaine for seven days increased NT mRNA in a restricted population of neurons in the dorsomedial caudal striatum of D(3)+/+ mice, but not in D(3)-/- and D(3)+/- animals. No differences were observed between D(3) receptor mutant mice and wild-type littermates in the locomotor activity and stereotyped behaviors induced by repeated cocaine administration. These findings demonstrate that dopamine D(3) receptors are not necessary for the acute NT mRNA response to drugs of abuse and antipsychotics but appear to play a role in the regulation of NT gene induction in striatal neurons after repeated cocaine. In addition, our results indicate that the acute locomotor response to cocaine and development of psychostimulant-induced behavioral sensitization do not require functional D(3) receptors.
Collapse
Affiliation(s)
- Catalina Betancur
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Hôpital Saint-Antoine
184 rue du Faubourg Saint-Antoine
75571 Paris Cedex 12,FR
- * Correspondence should be adressed to: Catalina Betancur
| | - Isabelle Lépée-Lorgeoux
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Hôpital Saint-Antoine
184 rue du Faubourg Saint-Antoine
75571 Paris Cedex 12,FR
| | - Michèle Cazillis
- Croissance, différenciation et processus tumoraux
INSERM : U515Université Pierre et Marie Curie - Paris VIHôpital Saint-Antoine
184, Rue du Faubourg Saint-Antoine
75571 PARIS CEDEX 12,FR
| | - Domenico Accili
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases
NIHBethesda, MD 20892,US
| | - Sara Fuchs
- Department of Immunology
Weizmann Institute of ScienceRehovot 76100,IL
| | - William Rostène
- Imagerie cellulaire des neurorécepteurs et physiopathologie neuroendocrinienne
INSERM : U339Hôpital Saint-Antoine
184 rue du Faubourg Saint-Antoine
75571 Paris Cedex 12,FR
| |
Collapse
|
118
|
Sun Z, Reiner A. Localization of dopamine D1A and D1B receptor mRNAs in the forebrain and midbrain of the domestic chick. J Chem Neuroanat 2000; 19:211-24. [PMID: 11036238 DOI: 10.1016/s0891-0618(00)00069-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The distribution and cellular localization of dopamine D1A and D1B receptor mRNAs in the forebrain and midbrain of the domestic chick were examined using in situ hybridization histochemistry with 35[S]-dATP labeled oligonucleotide probes, visualized with film and emulsion autoradiography. Labeling for D1A receptor mRNA was intense in the medial and lateral striatum, and moderately abundant in the pallial regions termed the archistriatum and the neostriatum, in the hypothalamic paraventricular nucleus region, and in the superficial gray layer of optic tectum of the midbrain. D1B receptor mRNA was abundant in the medial and lateral striatum, and in the pallial region termed the hyperstriatum ventrale, and moderately abundant in the intralaminar dorsal and posterior thalamus and in the superficial gray of the optic tectum. At the cellular level, about 75% of neurons in the medial striatum and 59% of neurons in the lateral striatum were labeled for D1A receptor mRNA, whereas about 39% of the neurons in the medial striatum and 21% in the lateral striatum were labeled for D1B receptor mRNA. Large striatal neurons were not labeled for D1A or D1B receptor mRNA. The data suggest that while both D1A and D1B receptors mediate dopaminergic responses in many neurons of the avian striatum, primarily D1A receptors mediate dopaminergic responses in the archistriatum and the neostriatum, while primarily D1B receptors mediate dopaminergic responses in the hyperstriatum ventrale and the thalamus.
Collapse
Affiliation(s)
- Z Sun
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee-Memphis, The Health Sciences Center, 855 Monroe Avenue, Memphis, TN 38163, USA
| | | |
Collapse
|
119
|
Karasinska JM, George SR, El-Ghundi M, Fletcher PJ, O'Dowd BF. Modification of dopamine D(1) receptor knockout phenotype in mice lacking both dopamine D(1) and D(3) receptors. Eur J Pharmacol 2000; 399:171-81. [PMID: 10884517 DOI: 10.1016/s0014-2999(00)00347-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Experimental evidence suggests that dopamine D(1) and D(3) receptors may interact in an opposing or synergistic fashion. To investigate interactions between both receptors in behaviour, we have used dopamine D(1) and D(3) receptor knockout mice to generate mice lacking both receptors. D(1)(-/-)D(3)(-/-) mice were viable, fertile and showed no gross morphological abnormalities. In an open field, they exhibited lower activity than wild-type, D(1)(-/-) and D(3)(-/-) mice. D(1)(-/-)D(3)(-/-) mice performed equally poorly in the rotarod and Morris water maze tasks as their D(1)(-/-) littermates. Basal locomotor activity and anxiety-like behaviour were normal in D(1)(-/-)D(3)(-/-) mice. Combined deletion of both receptors abolished the exploratory hyperactivity and anxiolytic-like behaviour of dopamine D(3) receptor mutant phenotype and further attenuated the low exploratory phenotype of D(1)(-/-) mice. These results imply an interaction of both receptors in the expression of exploratory behaviour in a novel environment, and the need for the presence of intact dopamine D(1) receptor for the expression of certain behaviours manifested in dopamine D(3) receptor mutant phenotype. In addition, dopamine D(1) receptor, but not dopamine D(3) receptor, is involved in the ability to perform on the rotarod and spatial learning.
Collapse
Affiliation(s)
- J M Karasinska
- Department of Pharmacology, University of Toronto, Medical Science Building, 1 King's College Circle, M5S 1A8, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
120
|
Lammers CH, Diaz J, Schwartz JC, Sokoloff P. Selective increase of dopamine D3 receptor gene expression as a common effect of chronic antidepressant treatments. Mol Psychiatry 2000; 5:378-88. [PMID: 10889548 DOI: 10.1038/sj.mp.4000754] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mesolimbic dopaminergic system is a neuroanatomical key structure for reward and motivation upon which previous studies indicated that antidepressant drugs exert a stimulatory influence, via still unknown neurobiological mechanisms. Here we examined the effects of chronic administration of antidepressants of several classes (amitriptyline, desipramine, imipramine, fluoxetine and tranylcypromine) and repeated electroconvulsive shock treatments (ECT) on dopamine D3 receptor expression in the shell of the nucleus accumbens, a major projection area of the mesolimbic dopaminergic system. Short-term drug treatments had variable effects on D3 receptor mRNA expression. In contrast, treatments for 21 days (with all drugs except fluoxetine) significantly increased D3 receptor mRNA expression in the shell of nucleus accumbens; D3 receptor binding was also significantly increased by amitriptyline or fluoxetine after a 42-day treatment. ECT for 10 days increased D3 receptor mRNA and binding in the shell of nucleus accumbens. D1 receptor and D2 receptor mRNAs were increased by imipramine and amitriptyline, but not by the other treatments. The time-course of altered D3 receptor expression, in line with the delayed clinical efficiency of antidepressant treatment, and the fact that various antidepressant drugs and ECT treatments eventually produced the same effects, suggest that increased expression of the D3 receptor in the shell of nucleus accumbens is a common neurobiological mechanism of antidepressant treatments, resulting in enhanced responsiveness to the mesolimbic dopaminergic system.
Collapse
Affiliation(s)
- C H Lammers
- Laboratoire de Physiologie, Université René Descartes, 4 Avenue de l'Observatoire, 75006 Paris, France
| | | | | | | |
Collapse
|
121
|
Bordet R, Ridray S, Schwartz JC, Sokoloff P. Involvement of the direct striatonigral pathway in levodopa-induced sensitization in 6-hydroxydopamine-lesioned rats. Eur J Neurosci 2000; 12:2117-23. [PMID: 10886351 DOI: 10.1046/j.1460-9568.2000.00089.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Induction of dopamine D3 receptor gene expression in 6-hydroxydopamine-lesioned rats by repeated administration of levodopa had been suggested to be responsible for behavioural sensitization developing in these animals. Using double in situ hybridization techniques, we show that D3 receptor mRNA induction after repeated administration of levodopa took place mainly in dynorphin/substance P-expressing neurons of the direct striatonigral pathway. In agreement, induction of D3 receptor binding sites was evidenced, using 7-[3H]hydroxy-N,N-di-propyl-2-aminotetralin ([3H]7-OH-DPAT), in substantia nigra pars reticulata, the projection area of the direct nigrostriatonigral pathway. Changes in D3 receptor binding and behavioural sensitization during intermittent administration of levodopa paralleled changes in prodynorphin/preprotachykinin rather than preproenkephalin/prodynorphin and preproenkephalin/preprotachykinin mRNA ratios. Behavioural sensitization, induction of D3 receptor binding and changes in prodynorphin/preprotachykinin ratio were all prevented together when levodopa was continuously delivered or intermittently delivered in combination with R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine (SCH 23390), a selective D1 receptor antagonist. Our results indicate that functional changes of the direct striatal output pathway, possibly through an interaction between D1 and D3 receptors at the level of terminals in the substantia nigra pars reticulata, are important for the development of behavioural sensitization.
Collapse
Affiliation(s)
- R Bordet
- Unité de Neurobiologie et Pharmacologie Moléculaire (INSERM U 109), Centre Paul Broca, 2ter rue d'Alésia, 75014, Paris, France
| | | | | | | |
Collapse
|
122
|
Gurevich EV, Joyce JN. Dopamine D(3) receptor is selectively and transiently expressed in the developing whisker barrel cortex of the rat. J Comp Neurol 2000; 420:35-51. [PMID: 10745218 DOI: 10.1002/(sici)1096-9861(20000424)420:1<35::aid-cne3>3.0.co;2-k] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The rodent primary somatosensory cortex (SI) contains a map of the body surface, the most conspicuous part of which are "barrels," neuronal aggregates in layer IV that receive somatotopic projections from whiskers on the rodent's snout. We report that the D(3) dopamine receptor (D(3)R) is selectively and transiently expressed in SI during the first 2 weeks of postnatal development. D(3)R binding sites and mRNA overlap completely and are limited to layer IV of SI. D(3)R/mRNA are organized in a pattern corresponding to somatotopic representations of the body (e.g., whiskers, jaws, paws, etc.) with the highest expression in the barrel field. D(3) mRNA is first detected at postnatal day (P)4, increases rapidly until P7-10, and sharply decreases after P14. D(3)R binding sites are detectable at P6, peak at P14, and decline afterwards. D(1), D(2), D(4), or D(5) mRNAs display dissimilar expression pattern. D(1) mRNA is mostly confined to infragranular layers throughout the cortex. D(4) mRNA expression in layer IV rises by 4 weeks postnatal, when D(3)R expression is virtually undetectable. Quantitative analysis of D(3) mRNA expression demonstrates that the proportion of D(3) mRNA-positive cells decreases between P7 and P14, whereas mRNA concentration per cell remains stable. Moreover, D(3)R number continues to rise, whereas mRNA levels begin to decline. Thus, a process limiting D(3)R expression to fewer cells may occur that also induces changes in post-transcriptional regulation of D(3)R expression in remaining cells. These findings indicate that dopamine acting via D(3)R may play an important role in the development or function of the SI.
Collapse
Affiliation(s)
- E V Gurevich
- Thomas H. Christopher Center for Parkinson's Disease Research, Sun Health Research Institute, Sun City, Arizona 85351, USA
| | | |
Collapse
|
123
|
Le Foll B, Schwartz JC, Sokoloff P. Dopamine D3 receptor agents as potential new medications for drug addiction. Eur Psychiatry 2000; 15:140-6. [PMID: 10881212 DOI: 10.1016/s0924-9338(00)00219-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
All drugs abused by humans increase dopamine in the shell of nucleus accumbens, which implicate the neurons of this structure in their hedonic and reinforcing properties. Among the various dopamine receptor subtypes, the D(1) (D(1)R) and D(3) (D(3)R) receptors co-localise in accumbal shell neurons. Synergistic D(1)R/D(3)R interactions at this level were found on gene expression and during induction and expression of behavioral sensitisation to levodopa in rats bearing unilateral lesions of dopamine neurons. Behavioral sensitisation to abused drugs is a component of their long-term effects. Converging pharmacologic, human postmortem and genetic studies suggest the involvement of the D(3)R in reinforcing effects of drugs; D(3)R agonists reduced cocaine self-administration in rats, without disrupting the maintenance of self-administration. These data suggest the use of D(3)R agonists as partial substitutes to treat cocaine dependence, by affecting its reward component. However, substitution therapies maintain dependence and may be inefficient on drug craving and relapse, which are the unsolved and critical problems in the treatment of drug addiction. Recently, a highly selective and partial D(3)R agonist was shown to reduce cocaine-associated cue-controlled behaviour in rats, without having any primary intrinsic effects. As drug-associated cues maintain drug-seeking in animals and elicit craving and relapse in humans, such D(3)R agents have potential therapeutic applications.
Collapse
Affiliation(s)
- B Le Foll
- Unit¿e de neurobiologie et pharmacologie mol¿eculaire de l'Inserm, Centre Paul Broca, 75014 Paris, France
| | | | | |
Collapse
|
124
|
Fauchey V, Jaber M, Caron MG, Bloch B, Le Moine C. Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter. Eur J Neurosci 2000; 12:19-26. [PMID: 10651856 DOI: 10.1046/j.1460-9568.2000.00876.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice with a genetic disruption of the dopamine transporter (DAT-/-) exhibit locomotor hyperactivity and profound alterations in the homeostasis of the nigrostriatal system, e.g. a dramatic increase in the extracellular dopamine level. Here, we investigated the adaptive changes in dopamine D1, D2 and D3 receptor gene expression in the caudate putamen and nucleus accumbens of DAT-/- mice. We used quantitative in situ hybridization and found that the constitutive hyperdopaminergia results in opposite regulations in the gene expression for the dopamine receptors. In DAT-/- mice, we observed increased mRNA levels encoding the D3 receptor (caudate putamen, +60-85%; nucleus accumbens, +40-107%), and decreased mRNA levels for both D1 (caudate putamen, -34%; nucleus accumbens, -45%) and D2 receptors (caudate putamen, -36%; nucleus accumbens, -33%). Furthermore, we assessed the phenotypical organization of the striatal efferent neurons by using double in situ hybridization. Our results show that in DAT+/+ mice, D1 and D2 receptor mRNAs are segregated in two different main populations corresponding to substance P and preproenkephalin A mRNA-containing neurons, respectively. The phenotype of D1 or D2 mRNA-containing neurons was unchanged in both the caudate putamen and nucleus accumbens of DAT-/- mice. Interestingly, we found an increased density of preproenkephalin A-negative neurons that express the D3 receptor mRNA in the nucleus accumbens (core, +35%; shell, +46%) of DAT-/- mice. Our data further support the critical role for the D3 receptor in the regulation of D1-D2 interactions, an action being restricted to neurons coexpressing D1 and D3 receptors in the nucleus accumbens.
Collapse
Affiliation(s)
- V Fauchey
- UMR CNRS 5541, Laboratoire d'Histologie Embryologie, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
125
|
Pilla M, Perachon S, Sautel F, Garrido F, Mann A, Wermuth CG, Schwartz JC, Everitt BJ, Sokoloff P. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 1999; 400:371-5. [PMID: 10432116 DOI: 10.1038/22560] [Citation(s) in RCA: 471] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Environmental stimuli that are reliably associated with the effects of many abused drugs, especially stimulants such as cocaine, can produce craving and relapse in abstinent human substance abusers. In animals, such cues can induce and maintain drug-seeking behaviour and also reinstate drug-seeking after extinction. Reducing the motivational effects of drug-related cues might therefore be useful in the treatment of addiction. Converging pharmacological, human post-mortem and genetic studies implicate the dopamine D3 receptor in drug addiction. Here we have designed BP 897, the first D3-receptor-selective agonist, as assessed in vitro with recombinant receptors and in vivo with mice bearing disrupted D3-receptor genes. BP 897 is a partial agonist in vitro and acts in vivo as either an agonist or an antagonist. We show that BP 897 inhibits cocaine-seeking behaviour that depends upon the presentation of drug-associated cues, without having any intrinsic, primary rewarding effects. Our data indicate that compounds like BP 897 could be used for reducing the drug craving and vulnerability to relapse that are elicited by drug-associated environmental stimuli.
Collapse
MESH Headings
- Animals
- Behavior, Addictive
- CHO Cells
- Cell Line
- Cocaine-Related Disorders/drug therapy
- Cocaine-Related Disorders/metabolism
- Cocaine-Related Disorders/psychology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Cricetinae
- Dopamine Agonists/pharmacology
- Genes, fos
- Humans
- Male
- Mice
- Piperazines/pharmacology
- Rats
- Rats, Wistar
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/antagonists & inhibitors
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Recombinant Proteins/metabolism
- Reinforcement, Psychology
- Self Administration
Collapse
Affiliation(s)
- M Pilla
- Department of Experimental Psychology, University of Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Perachon S, Schwartz JC, Sokoloff P. Functional potencies of new antiparkinsonian drugs at recombinant human dopamine D1, D2 and D3 receptors. Eur J Pharmacol 1999; 366:293-300. [PMID: 10082211 DOI: 10.1016/s0014-2999(98)00896-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We measured the affinities of bromocriptine, pramipexole, pergolide and ropinirole at human recombinant dopamine D1, D2 and D3 receptors in binding and functional tests. All four compounds bound with high affinity at the dopamine D3 receptor; bromocriptine and pergolide also had high affinity for the dopamine D2 receptor, while only pergolide had significant, although moderate, affinity for the dopamine D1 receptor. Only pergolide had high potency and intrinsic activity at the dopamine D1 receptor for stimulating cyclic AMP accumulation. In addition, the potencies and efficacies of pergolide and bromocriptine, as well as that of dopamine, at the dopamine D1 receptor were increased in the presence of forskolin, an adenylate cyclase activator. All four compounds were highly potent agonists at dopamine D2 and D3 receptors, as measured in a mitogenesis assay. Bromocriptine was ten times more potent and pramipexole and ropinirole ten times less potent at the dopamine D2 than at the dopamine D3 receptor, whereas pergolide was equipotent at the two receptors. These results suggest that the activity of recently developed antiparkinsonian drugs at either the dopamine D1 or the dopamine D3 and not only the dopamine D2 receptors should be taken into account in analyses of their mechanisms of action in therapeutics.
Collapse
Affiliation(s)
- S Perachon
- Unité de Neurobiologie et Pharmacologie Moléculaire, Centre Paul Broca de l'INSERM, Paris, France
| | | | | |
Collapse
|