101
|
Nayak KB, Kuila N, Das Mohapatra A, Panda AK, Chakraborty S. EVI1 targets ΔNp63 and upregulates the cyclin dependent kinase inhibitor p21 independent of p53 to delay cell cycle progression and cell proliferation in colon cancer cells. Int J Biochem Cell Biol 2013; 45:1568-76. [PMID: 23665236 DOI: 10.1016/j.biocel.2013.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/15/2013] [Accepted: 04/29/2013] [Indexed: 01/02/2023]
Abstract
Several lines of evidence suggest that specific transcriptional events are involved in cell cycle, proliferation and differentiation processes; however, their deregulation by proto-oncogenes are involved in the development of leukemia and tumors. One such proto-oncogene is ecotropic viral integration site I which can differentially effect cell cycle progression and proliferation, in cell types of different origin. Our data for the first time shows that ecotropic viral integration site I binds to ΔNp63 promoter element directly and down regulates its expression. Down regulation of ΔNp63 induces the expression of p21 in HT-29 cells and also in colon carcinoma cells that do not express p53 including patient samples expressing low level of p53, that eventually delay cell cycle progression at G0/G1 phase. Concomitant silencing of ecotropic viral integration site I from the cells or introduction of ΔNp63 to the cells significantly rescued this phenotype, indicating the growth defect induced by ΔNp63 deficiency to be, at least in part, attributable to ecotropic viral integration site I function. The mutual regulation between ecotropic viral integration site I and ΔNp63 may constitute a novel axis which might affect the downstream pathways in cells that do not express functional p53.
Collapse
Affiliation(s)
- Kasturi Bala Nayak
- Department of Gene Function and Regulation, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | | | | | | | | |
Collapse
|
102
|
Delineating Molecular Mechanisms of Squamous Tissue Homeostasis and Neoplasia: Focus on p63. J Skin Cancer 2013; 2013:632028. [PMID: 23710361 PMCID: PMC3655637 DOI: 10.1155/2013/632028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 11/18/2022] Open
Abstract
Mouse models have informed us that p63 is critical for normal epidermal development and homeostasis. The p53/p63/p73 family is expressed as multiple protein isoforms due to a combination of alternative promoter usage and C-terminal alternative splicing. These isoforms can mimic or interfere with one another, and their balance ultimately determines biological outcome in a context-dependent manner. While not frequently mutated, p63, and in particular the ΔNp63 subclass, is commonly overexpressed in human squamous cell cancers. In vitro keratinocytes and murine transgenic and transplantation models have been invaluable in elucidating the contribution of altered p63 levels to cancer development, and studies have identified the roles for ΔNp63 isoforms in keratinocyte survival and malignant progression, likely due in part to their transcriptional regulatory function. These findings can be extended to human cancers; for example, the novel recognition of NFκB/c-Rel as a downstream effector of p63 has identified a role for NFκB/c-Rel in human squamous cell cancers. These models will be critical in enhancing the understanding of the specific molecular mechanisms of cancer development and progression.
Collapse
|
103
|
Watanabe T, Tahira M, Morino S, Horie T, Adachi K, Tsutsumi R, Yamada N, Yoshida Y, Yamamoto O. Novel morphological study of solar lentigines by immunohistochemical and electron microscopic evaluation. J Dermatol 2013; 40:528-32. [DOI: 10.1111/1346-8138.12165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/26/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Tessin Watanabe
- Division of Dermatology; Department of Medicine of Sensory and Motor Organs; Tottori University; Yonago; Japan
| | - Makoto Tahira
- Division of Dermatology; Department of Medicine of Sensory and Motor Organs; Tottori University; Yonago; Japan
| | - Shinichi Morino
- Laboratory of Electron Microscopy; Faculty of Medicine; Tottori University; Yonago; Japan
| | - Takashi Horie
- Laboratory of Electron Microscopy; Faculty of Medicine; Tottori University; Yonago; Japan
| | - Koji Adachi
- Division of Dermatology; Department of Medicine of Sensory and Motor Organs; Tottori University; Yonago; Japan
| | - Reiko Tsutsumi
- Division of Dermatology; Department of Medicine of Sensory and Motor Organs; Tottori University; Yonago; Japan
| | - Nanako Yamada
- Division of Dermatology; Department of Medicine of Sensory and Motor Organs; Tottori University; Yonago; Japan
| | - Yuich Yoshida
- Division of Dermatology; Department of Medicine of Sensory and Motor Organs; Tottori University; Yonago; Japan
| | - Osamu Yamamoto
- Division of Dermatology; Department of Medicine of Sensory and Motor Organs; Tottori University; Yonago; Japan
| |
Collapse
|
104
|
Schmitt JV, Miot HA. Actinic keratosis: a clinical and epidemiological revision. An Bras Dermatol 2013; 87:425-34. [PMID: 22714759 DOI: 10.1590/s0365-05962012000300012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/25/2011] [Indexed: 11/21/2022] Open
Abstract
Actinic keratoses are benign intraepithelial skin neoplasms constituted by atypical proliferation of keratinocytes that may evolve to squamous cell carcinoma. They develop in photoexposed skin areas; they are induced mainly by ultraviolet radiation and are considered cutaneous markers of chronic exposure to sunlight. They develop mainly in adults and older, fair skinned individuals, and are the fourth most common cause of dermatologic consultation in Brazil. Damage to the apoptosis pathway in photoexposed epithelium favors cellular proliferation and the permanence of the lesions. In this revision, the authors assemble the main epidemiological data regarding this disease and suggest that strategies to identify risky phenotypes, early diagnosis, adequate treatment, clinical follow-up, stimulus to skin self examination, photoeducation and photoprotection should be promoted with the aim of avoiding the progression to malignancy and also the prevention and the diagnose of concomitant neoplasms also induced by ultraviolet radiation.
Collapse
|
105
|
Gallant-Behm CL, Espinosa JM. ΔNp63α utilizes multiple mechanisms to repress transcription in squamous cell carcinoma cells. Cell Cycle 2013; 12:409-16. [PMID: 23324337 PMCID: PMC3587441 DOI: 10.4161/cc.23593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ΔNp63α is a potent oncogene in squamous cell carcinomas (SCCs) and a pro-proliferative factor expressed by basal epithelial cells. ΔNp63α functions both as a transcriptional repressor and activator, but it is not clear how these activities contribute to its oncogenic potential. ΔNp63α was proposed to function as a dominant negative of the related factor p53. Additionally, ΔNp63α was shown to inactivate its family member TAp73 and mediate recruitment of repressive histone deacetylase (HDAC) complexes to chromatin. Recently, we identified a new mechanism of repression involving recruitment of histone H2A/H2A.Z exchange complexes and H2A.Z deposition at ΔNp63α target genes. Here, we aimed to define the possible co-occurrence of the various repressive mechanisms. In lung SCC cells expressing ΔNp63α, p53 and TAp73, we found that ΔNp63α exerts its pro-proliferative and transcriptional repressive effects in a manner independent of p53, TAp73 and histone H3 and H4 deacetylation. Instead, ΔNp63α target genes are differentiated from non-target genes within the p53 network by incorporation and accumulation of acetylated H2A.Z. These results indicate that ΔNp63α utilizes multiple mechanisms of repression in diverse epithelial and SCC cells.
Collapse
Affiliation(s)
- Corrie L Gallant-Behm
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA
| | | |
Collapse
|
106
|
Forni MF, Loureiro RR, Cristovam PC, Bonatti JA, Sogayar MC, Gomes JÁP. Comparison Between Different Biomaterial Scaffolds for Limbal-Derived Stem Cells Growth and Enrichment. Curr Eye Res 2012; 38:27-34. [DOI: 10.3109/02713683.2012.733053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
107
|
Albert R, Veréb Z, Csomós K, Moe MC, Johnsen EO, Olstad OK, Nicolaissen B, Rajnavölgyi É, Fésüs L, Berta A, Petrovski G. Cultivation and characterization of cornea limbal epithelial stem cells on lens capsule in animal material-free medium. PLoS One 2012; 7:e47187. [PMID: 23056608 PMCID: PMC3467238 DOI: 10.1371/journal.pone.0047187] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 09/12/2012] [Indexed: 12/13/2022] Open
Abstract
A simple, reproducible, animal-material free method for cultivating and characterizing cornea limbal epithelial stem cells (LESCs) on human lens capsule (LC) was developed for future clinical transplantation. The limbal tissue explants (2×2×0.25 mm) were harvested from 77 cadavers and expanded ex vivo on either cell culture plates or LC in medium containing human serum as the only growth supplement. Cell outgrowth at the edge of the explants was observed within 24 hours of cultivation and achieved viable outgrowth (>97% viability as measured by MTT assay and flow cytometry) within two weeks. The outgrowing cells were examined by genome-wide microarray including markers of stemness (p63α, ABCG2, CK19, Vimentin and Integrin α9), proliferation (Ki-67), limbal epithelial cells (CK 8/18 and 14) and differentiated cornea epithelial cells (CK 3 and 12). Immunostaining revealed the non-hematopoietic, -endothelial and -mesenchymal stem cell phenotype of the LESCs and the localization of specific markers in situ. Cell adhesion molecules, integrins and lectin-based surface carbohydrate profiling showed a specific pattern on these cells, while colony-formation assay confirmed their clonal potency. The LESCs expressed a specific surface marker fingerprint (CD117/c-kit, CXCR4, CD144/VE-Cadherin, CD146/MCAM, CD166/ALCAM, and surface carbohydrates: WGA, ConA, RCA, PNA and AIL) which can be used for better localization of the limbal stem cell niche. In summary, we report a novel method combining the use of a medium with human serum as the only growth supplement with LC for cultivating, characterizing and expanding cornea LESCs from cadavers or alternatively from autologous donors for possible treatment of LESC deficiency.
Collapse
Affiliation(s)
- Réka Albert
- Department of Ophthalmology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Zoltán Veréb
- Department of Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Krisztián Csomós
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Morten C. Moe
- Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Erik O. Johnsen
- Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ole Kristoffer Olstad
- Department of Medical Biochemistry, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bjørn Nicolaissen
- Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Éva Rajnavölgyi
- Department of Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - András Berta
- Department of Ophthalmology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Goran Petrovski
- Department of Ophthalmology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
- Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
108
|
Capturing epidermal stemness for regenerative medicine. Semin Cell Dev Biol 2012; 23:937-44. [PMID: 23036530 DOI: 10.1016/j.semcdb.2012.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 12/17/2022]
Abstract
The skin is privileged because several skin-derived stem cells (epithelial stem cells from epidermis and its appendages, mesenchymal stem cells from dermis and subcutis, melanocyte stem cells) can be efficiently captured for therapeutic use. Main indications remain the permanent coverage of extensive third degree burns and healing of chronic cutaneous wounds, but recent advances in gene therapy technology open the door to the treatment of disabling inherited skin diseases with genetically corrected keratinocyte stem cells. Therapeutic skin stem cells that were initially cultured in research or hospital laboratories must be produced according strict regulatory guidelines, which ensure patients and medical teams that the medicinal cell products are safe, of constant quality and manufactured according to state-of-the art technology. Nonetheless, it does not warrant clinical efficacy and permanent engraftment of autologous stem cells remains variable. There are many challenges ahead to improve efficacy among which to keep telomere-dependent senescence and telomere-independent senescence (clonal conversion) to a minimum in cell culture and to understand the cellular and molecular mechanisms implicated in engraftment. Finally, medicinal stem cells are expansive to produce and reimbursement of costs by health insurances is a major concern in many countries.
Collapse
|
109
|
Gallant-Behm CL, Ramsey MR, Bensard CL, Nojek I, Tran J, Liu M, Ellisen LW, Espinosa JM. ΔNp63α represses anti-proliferative genes via H2A.Z deposition. Genes Dev 2012; 26:2325-36. [PMID: 23019126 DOI: 10.1101/gad.198069.112] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ΔNp63α is a member of the p53 family of transcription factors that functions as an oncogene in squamous cell carcinomas (SCCs). Because ΔNp63α and p53 bind virtually identical DNA sequence motifs, it has been proposed that ΔNp63α functions as a dominant-negative inhibitor of p53 to promote proliferation and block apoptosis. However, most SCCs concurrently overexpress ΔNp63α and inactivate p53, suggesting the autonomous action of these oncogenic events. Here we report the discovery of a novel mechanism of transcriptional repression by ΔNp63α that reconciles these observations. We found that although both proteins bind the same genomic sites, they regulate largely nonoverlapping gene sets. Upon activation, p53 binds all enhancers regardless of ΔNp63α status but fails to transactivate genes repressed by ΔNp63α. We found that ΔNp63α associates with the SRCAP chromatin regulatory complex involved in H2A/H2A.Z exchange and mediates H2A.Z deposition at its target loci. Interestingly, knockdown of SRCAP subunits or H2A.Z leads to specific induction of ΔNp63α-repressed genes. We identified SAMD9L as a key anti-proliferative gene repressed by ΔNp63α and H2A.Z whose depletion suffices to reverse the arrest phenotype caused by ΔNp63α knockdown. Collectively, these results illuminate a molecular pathway contributing to the autonomous oncogenic effects of ΔNp63α.
Collapse
|
110
|
He YF, Tian DY, Yi ZJ, Yin ZK, Luo CL, Tang W, Wu XH. Upregulation of cell adhesion through delta Np63 silencing in human 5637 bladder cancer cells. Asian J Androl 2012; 14:788-92. [PMID: 22902906 DOI: 10.1038/aja.2012.42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Some researchs have demonstrated that the loss of delta Np63 is associated with aggressive phenotypes and poor prognosis. However, other research indicates that delta Np63 is considered to have oncogenic properties. Delta Np63 overexpression is often observed in association with the oncogenic growth of squamous cell carcinomas and bladder cancer. In this study, we investigated the oncogenic role of delta Np63 in regulating cell adhesion in transitional cell carcinoma of the bladder (TCCB). The cells were stably transfected with the delta Np63 short hairpin RNA (shRNA) plasmid. Immunocytochemistry was performed to determine the knockdown efficiency. Tumour cells were studied for their ability to adhere to vascular endothelial cells. Confocal microscopy was used to analyse the changes in cytoskeletal F-actin. F-actin expression was measured by flow cytometry. Cell invasion ability was assessed using transwell chambers. The delta Np63-silenced tumour cells were shown to adhere more tightly than controls to vascular endothelial cells (P<0.05). The content of F-actin in the delta Np63-silenced cells was enhanced (P<0.05). The Matrigel invasion assays showed that human 5637 bladder cancer cells had a lower degree of motility when transfected with pdelta Np63-shRNA (P<0.05). In conclusion, silencing of the delta Np63 expression can enhance the adhesiveness of 5637 cells by inducing F-actin cytoskeleton production, and it will possibly inhibit the TCCB invasion and metastasis.
Collapse
Affiliation(s)
- Yun-Feng He
- Department of Urology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | |
Collapse
|
111
|
Mii S, Murakumo Y, Asai N, Jijiwa M, Hagiwara S, Kato T, Asai M, Enomoto A, Ushida K, Sobue S, Ichihara M, Takahashi M. Epidermal hyperplasia and appendage abnormalities in mice lacking CD109. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1180-9. [PMID: 22846721 DOI: 10.1016/j.ajpath.2012.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 06/01/2012] [Accepted: 06/12/2012] [Indexed: 02/07/2023]
Abstract
CD109, a glycosylphosphatidylinositol-anchored glycoprotein, is highly expressed in several types of human cancer tissues, in particular, squamous cell carcinomas. In normal human tissues, human CD109 expression is limited to certain cell types including myoepithelial cells of the mammary, lacrimal, salivary, and bronchial glands and basal cells of the prostate and bronchial epithelium. Although CD109 has been reported to negatively regulate transforming growth factor-β signaling in keratinocytes in vitro, its physiologic role in vivo remains largely unknown. To investigate the function of CD109 in vivo, we generated CD109-deficient (CD109(-/-)) mice. Although CD109(-/-) mice were born normally, transient impairment of hair growth was observed. At histologic analysis, kinked hair shafts, ectatic hair follicles with an accumulation of sebum, and persistent hyperplasia of the epidermis and sebaceous glands were observed in CD109(-/-) mice. Immunohistochemical analysis revealed thickening of the basal and suprabasal layers in the epidermis of CD109(-/-) mice, which is where endogenous CD109 is expressed in wild-type mice. Although CD109 was reported to negatively regulate transforming growth factor-β signaling, no significant difference in levels of Smad2 phosphorylation was observed in the epidermis between wild-type and CD109(-/-) mice. Instead, Stat3 phosphorylation levels were significantly elevated in the epidermis of CD109(-/-) mice compared with wild-type mice. These results suggest that CD109 regulates differentiation of keratinocytes via a signaling pathway involving Stat3.
Collapse
Affiliation(s)
- Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Di Costanzo A, Troiano A, di Martino O, Cacace A, Natale CF, Ventre M, Netti P, Caserta S, Pollice A, La Mantia G, Calabrò V. The p63 protein isoform ΔNp63α modulates Y-box binding protein 1 in its subcellular distribution and regulation of cell survival and motility genes. J Biol Chem 2012; 287:30170-80. [PMID: 22787154 DOI: 10.1074/jbc.m112.349951] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Y-box binding protein 1 (YB-1) belongs to the cold-shock domain protein superfamily, one of the most evolutionarily conserved nucleic acid-binding proteins currently known. YB-1 performs a wide variety of cellular functions, including transcriptional and translational regulation, DNA repair, drug resistance, and stress responses to extracellular signals. Inasmuch as the level of YB-1 drastically increases in tumor cells, this protein is considered to be one of the most indicative markers of malignant tumors. Here, we present evidence that ΔNp63α, the predominant p63 protein isoform in squamous epithelia and YB-1, can physically interact. Into the nucleus, ΔNp63α and YB-1 cooperate in PI3KCA gene promoter activation. Moreover, ΔNp63α promotes YB-1 nuclear accumulation thereby reducing the amount of YB-1 bound to its target transcripts such as that encoding the SNAIL1 protein. Accordingly, ΔNp63α enforced expression was associated with a reduction of the level of SNAIL1, a potent inducer of epithelial to mesenchymal transition. Furthermore, ΔNp63α depletion causes morphological change and enhanced formation of actin stress fibers in squamous cancer cells. Mechanistic studies indicate that ΔNp63α affects cell movement and can reverse the increase of cell motility induced by YB-1 overexpression. These data thus suggest that ΔNp63α provides inhibitory signals for cell motility. Deficiency of ΔNp63α gene expression promotes cell mobilization, at least partially, through a YB-1-dependent mechanism.
Collapse
Affiliation(s)
- Antonella Di Costanzo
- Department of Structural and Molecular Biology, Istituto Italiano di Tecnologia and Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples 80126, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Cell density-dependent acetylation of ΔNp63α is associated with p53-dependent cell cycle arrest. FEBS Lett 2012; 586:1128-34. [DOI: 10.1016/j.febslet.2012.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022]
|
114
|
Rendal-Vázquez ME, San-Luis-Verdes A, Yebra-Pimentel-Vilar MT, López-Rodríguez I, Domenech-García N, Andión-Núñez C, Blanco-García F. Culture of limbal stem cells on human amniotic membrane. Cell Tissue Bank 2012; 13:513-9. [DOI: 10.1007/s10561-012-9300-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
115
|
Calretinin staining facilitates differentiation of olfactory neuroblastoma from other small round blue cell tumors in the sinonasal tract. Am J Surg Pathol 2012; 35:1786-93. [PMID: 22020045 DOI: 10.1097/pas.0b013e3182363b78] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Olfactory neuroblastoma (ONB) is an uncommon malignant tumor of the sinonasal tract and has a wide histologic differential diagnosis that includes other small round blue cell tumors (SRBCTs). Even with the use of immunohistochemistry (IHC), the correct diagnosis may be difficult, especially in small biopsies. The purpose of this study is to determine the usefulness of calretinin and p63 as an aid to distinguish ONB from other sinonasal SRBCTs. METHODS IHC staining for calretinin and p63 was performed on 21 specimens diagnosed as ONB and on 42 other sinonasal SRBCTs. Specimens were retrieved from the files of the QEII HSC, Halifax and UHN, Toronto. RESULTS All but 1 ONB (20 of 21) showed calretinin staining, with 15 of 21 showing staining in >75% of the tumor area and 18 of 21 showing moderate-to-strong staining intensity. Only pituitary adenomas (3 of 3) and a single case of small cell carcinoma, neuroendocrine type (1 of 2), showed a similar staining pattern. None of the ONBs showed staining for p63. P63 was positive in all cases of nonkeratinizing squamous cell carcinoma (2 of 2) and in single cases of mantle cell lymphoma (1 of 1) and poorly differentiated neuroendocrine carcinoma (1 of 1); however, it inconsistently stained diffuse large B-cell lymphoma (4 of 5), extranodal NK/T-cell lymphoma, nasal type (1 of 4), sinonasal undifferentiated carcinoma (1 of 6), and Ewing sarcoma/primitive neuroectodermal tumor (2 of 6). CONCLUSIONS Calretinin appears to be a useful marker to distinguish ONBs from other SRBCTs of the sinonasal tract, particularly when staining is moderate/strong and extensive. The calretinin-positive, p63-negative phenotype is fairly specific for ONB. The addition of these 2 IHC stains may aid in the diagnosis of sinonasal SRBCTs that are poorly differentiated, have inconclusive conventional IHC, or are found in small biopsies.
Collapse
|
116
|
Mort RL, Douvaras P, Morley SD, Dorà N, Hill RE, Collinson JM, West JD. Stem cells and corneal epithelial maintenance: insights from the mouse and other animal models. Results Probl Cell Differ 2012; 55:357-94. [PMID: 22918816 PMCID: PMC3471528 DOI: 10.1007/978-3-642-30406-4_19] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of the corneal epithelium is essential for vision and is a dynamic process incorporating constant cell production, movement and loss. Although cell-based therapies involving the transplantation of putative stem cells are well advanced for the treatment of human corneal defects, the scientific understanding of these interventions is poor. No definitive marker that discriminates stem cells that maintain the corneal epithelium from the surrounding tissue has been discovered and the identity of these elusive cells is, therefore, hotly debated. The key elements of corneal epithelial maintenance have long been recognised but it is still not known how this dynamic balance is co-ordinated during normal homeostasis to ensure the corneal epithelium is maintained at a uniform thickness. Most indirect experimental evidence supports the limbal epithelial stem cell (LESC) hypothesis, which proposes that the adult corneal epithelium is maintained by stem cells located in the limbus at the corneal periphery. However, this has been challenged recently by the corneal epithelial stem cell (CESC) hypothesis, which proposes that during normal homeostasis the mouse corneal epithelium is maintained by stem cells located throughout the basal corneal epithelium with LESCs only contributing during wound healing. In this chapter we review experimental studies, mostly based on animal work, that provide insights into how stem cells maintain the normal corneal epithelium and consider the merits of the alternative LESC and CESC hypotheses. Finally, we highlight some recent research on other stem cell systems and consider how this could influence future research directions for identifying the stem cells that maintain the corneal epithelium.
Collapse
|
117
|
Peramo A, Feinberg SE, Marcelo CL. A putative in vitro organotypic model of molting with human skin explants. Arch Dermatol Res 2011; 304:145-53. [DOI: 10.1007/s00403-011-1187-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/10/2011] [Accepted: 10/13/2011] [Indexed: 12/28/2022]
|
118
|
Pallier K, Cazes A, El Khattabi L, Lecchi C, Desroches M, Danel C, Riquet M, Fabre-Guillevin E, Laurent-Puig P, Blons H. DeltaN TP63 reactivation, epithelial phenotype maintenance, and survival in lung squamous cell carcinoma. Tumour Biol 2011; 33:41-51. [PMID: 21986963 DOI: 10.1007/s13277-011-0239-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/09/2011] [Indexed: 11/28/2022] Open
Abstract
Genes, active during normal development, are frequently reactivated during neoplastic transformation and may be related to progression. One of them, the transcription factor TP63, is crucial for pulmonary epithelial development and a possible target of the recurrent 3q amplifications in lung squamous cell carcinoma (SCC). Here, we explored whether TP63 reactivation could be associated to cancer progression in lung SCC through an epithelial to mesenchymal transition. We studied TP63 amplification and TP63 expression at RNA and protein levels and we analyzed the ΔNTP63/TATP63 ratio that quantifies the proportion of the isoform lacking the transactivation domain/the isoform containing the transactivation domain. We correlated TP63 status to survival and to the expression of epithelial (E-cadherin and plakoglobin) and mesenchymal (N-cadherin, vimentin, TWIST1, and SNAIL) markers. We found that high ΔN/TA TP63 ratio was related to high E-cadherin and plakoglobin mRNA levels (P < 0.05) and that E-cadherin mRNA level was the only marker related to survival. Kaplan-Meier survival curves stratified according to the expression level of E-cadherin showed, as already reported in breast cancer, that patients with low (first quartile) or high (last quartile) E-cadherin expression had a worse survival with respect to patients with intermediate E-cadherin expression. Altogether, our results indicate that a reactivation of ΔNTP63 is linked to the maintenance of epithelial markers and suggest that E-cadherin has a dual role in lung SCC.
Collapse
Affiliation(s)
- Karine Pallier
- UMR-S775, INSERM, 45 Rue des Saints Pères, Paris 75006, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Li Q, Sambandam SAT, Lu HJ, Thomson A, Kim SH, Lu H, Xin Y, Lu Q. 14-3-3σ and p63 play opposing roles in epidermal tumorigenesis. Carcinogenesis 2011; 32:1782-8. [PMID: 21926108 DOI: 10.1093/carcin/bgr207] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
14-3-3σ plays a regulatory role in epidermal epithelial differentiation and loss of 14-3-3σ leads to increased proliferation and impaired differentiation. A tumor suppressor function for 14-3-3σ has been proposed based on the fact that some epithelial-derived tumors lose 14-3-3σ expression. p63, a p53 family member, is a master regulator of epidermal epithelial proliferation and differentiation and is necessary for the epidermal development. The function of p63 in tumorigenesis is still controversial and poorly defined as multiple isoforms have been found to play either collaborative or opposing roles. By using 'repeated epilation' heterozygous (Er/+) mice containing a dominant-negative 14-3-3σ mutation, the functional relationship of p63 with 14-3-3σ in epidermal proliferation, differentiation and tumorigenesis was investigated. It was found that p63, particularly the ΔNp63α isoform, was strongly expressed in 14-3-3σ-deficient keratinocytes and knockdown of p63 remarkably inhibited proliferation in these cells. To study the functional roles of 14-3-3σ and p63 in epidermal tumorigenesis, we adopted a 7,12-dimethylbenzanthracene/12-O-tetradecanoyl-phorbol-13-acetate (DMBA/TPA) two-stage tumorigenesis procedure to induce formation of skin papillomas and squamous cell carcinomas in Er/+ mice and identified strong p63 expression in resultant tumors. The loss of one allele of p63 caused by the generation of Er/+/p63(+/-) double compound mice decreased the sensitivity to DMBA-/TPA-induced tumorigenesis as compared with Er/+ mice. This study shows that p63 and 14-3-3σ play opposing roles in the development of skin tumors and that the accumulation of p63 is essential for Ras/14-3-3σ mutation-induced papilloma formation and squamous cell carcinoma carcinogenesis.
Collapse
Affiliation(s)
- Qiutang Li
- James Graham Brown Cancer Center, University of Louisville School of Medicine, 301 East Muhammad Ali Boulevard, Louisville, KY 40202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Ravindran G, Devaraj H. Aberrant expression of β-catenin and its association with ΔNp63, Notch-1, and clinicopathological factors in oral squamous cell carcinoma. Clin Oral Investig 2011; 16:1275-88. [DOI: 10.1007/s00784-011-0605-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 08/04/2011] [Indexed: 11/25/2022]
|
121
|
ΔNp63α regulates keratinocyte proliferation by controlling PTEN expression and localization. Cell Death Differ 2011; 18:1924-33. [PMID: 21637289 DOI: 10.1038/cdd.2011.73] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ΔNp63α, implicated as an oncogene, is upregulated by activated Akt, part of a well-known cell survival pathway. Inhibition of Akt activation by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and the presence of putative p63-binding sites in the pten promoter led us to investigate whether ΔNp63α regulates PTEN expression. Knockdown of ΔNp63α led to increases in PTEN levels and loss of activated Akt, while overexpression of ΔNp63α decreased PTEN levels and elevated active Akt. The repression of PTEN by ΔNp63α occurs independently of p53 status, as loss of ΔNp63α increases PTEN expression in cell lines with and without functional p53. In addition, decreased levels of ΔNp63α resulted in an increase in nuclear PTEN. Conversely, in vivo nuclear PTEN was absent in the proliferative basal layer of the epidermis where ΔNp63α expression is highest. Additionally, we show that in keratinocytes a balance between ΔNp63α and PTEN regulates Akt activation and maintains normal proliferation rates. This balance is disrupted in non-melanoma skin cancers through increased ΔNp63α levels, and could enhance proliferation and subsequent neoplastic development. Our studies show that ΔNp63α negatively regulates PTEN, thereby providing a feedback loop between PTEN, Akt and ΔNp63α, which has an integral role in skin cancer development.
Collapse
|
122
|
Lazzari C, Prodosmo A, Siepi F, Rinaldo C, Galli F, Gentileschi M, Bartolazzi A, Costanzo A, Sacchi A, Guerrini L, Soddu S. HIPK2 phosphorylates ΔNp63α and promotes its degradation in response to DNA damage. Oncogene 2011; 30:4802-13. [PMID: 21602882 DOI: 10.1038/onc.2011.182] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is an emerging player in cell response to genotoxic agents that senses damage intensity and contributes to the cell's choice between cell cycle arrest and apoptosis. Phosphorylation of p53 at S46, an apoptosis-specific p53 posttranslational modification, is the most characterized HIPK2 function in response to lethal doses of ultraviolet (UV), ionizing radiation or different anticancer drugs, such as cisplatin, roscovitine and doxorubicin (DOX). Indeed, like p53, HIPK2 has been shown to contribute to the effectiveness of these treatments. Interestingly, p53-independent mechanisms of HIPK2-induced apoptosis were described for UV and tumor growth factor-β treatments; however, it is unknown whether these mechanisms are relevant for the responses to anticancer drugs. Because of the importance of the so-called 'p53-independent apoptosis and drug response' in human cancer chemotherapy, we asked whether p53-independent factor(s) might be involved in HIPK2-mediated chemosensitivity. Here, we show that HIPK2 depletion by RNA interference induces resistance to different anticancer drugs even in p53-null cells, suggesting the involvement of HIPK2 targets other than p53 in response to chemotherapy. In particular, we found that HIPK2 phosphorylates and promotes proteasomal degradation of ΔNp63α, a prosurvival ΔN isoform of the p53 family member, p63. Indeed, effective cell response to different genotoxic agents was shown to require phosphorylation-induced proteasomal degradation of ΔNp63α. In DOX-treated cells, we show that HIPK2 depletion interferes with ΔNp63α degradation, and expression of a HIPK2-resistant ΔNp63α-Δ390 mutant induces chemoresistance. We identify T397 as the ΔNp63α residue phosphorylated by HIPK2, and show that the non-phosphorylatable ΔNp63α-T397A mutant is not degraded in the face of either HIPK2 overexpression or DOX treatment. These results indicate ΔNp63α as a novel target of HIPK2 in response to genotoxic drugs.
Collapse
Affiliation(s)
- C Lazzari
- Molecular Oncogenesis Laboratory, Department of Experimental Oncology, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Di Costanzo A, Festa L, Roscigno G, Vivo M, Pollice A, Morasso M, La Mantia G, Calabrò V. A dominant mutation etiologic for human tricho-dento-osseous syndrome impairs the ability of DLX3 to downregulate ΔNp63α. J Cell Physiol 2011; 226:2189-97. [DOI: 10.1002/jcp.22553] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
124
|
Nam H, Kim J, Park J, Park JC, Kim JW, Seo BM, Lee JC, Lee G. Expression profile of the stem cell markers in human Hertwig's epithelial root sheath/Epithelial rests of Malassez cells. Mol Cells 2011; 31:355-60. [PMID: 21359676 PMCID: PMC3933961 DOI: 10.1007/s10059-011-0045-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/14/2011] [Accepted: 01/14/2011] [Indexed: 12/12/2022] Open
Abstract
Hertwig's epithelial root sheath/Epithelial rests of Malassez (HERS/ERM) cells are unique epithelial cells in the periodontal ligament. They remain in periodontal tissues through-out the adult life, and it is expected that their functional role is to maintain the homeostasis of the periodontium through reciprocal interactions with other periodontal cells. In this study, we investigated whether HERS/ERM cells have primitive stem cell characteristics: those of embryonic stem cells as well as of epithelial stem cells. Primary HERS/ERM cells had typical epithelial cell morphology and characteristics and they maintained for more than five passages. They expressed epithelial stem cell-related genes: ABCG2, ANp63, p75, EpCAM, and Bmi-1. Moreover, the expression of embryonic stem cell markers such as Oct-4, Nanog, and SSEA-4 were detected. Next, we investigated whether the expression of these stem cell markers was maintained during the sub-culture process. HERS/ERM cells showed different expression levels of these stemness genes at each passage, but their expression was maintained throughout the passages. Taken together, our data suggest that a primary culture of HERS/ERM cells contains a population of primitive stem cells that express epithelial stem cell markers and embryonic stem cell markers. Furthermore, these cell populations were maintained during the sub-culturing process in our culture conditions. Therefore, our findings suggest that there is a strong possibility of accomplishing cementum tissue engineering with HERS/ERM cells.
Collapse
Affiliation(s)
| | | | | | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Jung-Wook Kim
- Department of Pediatric Dentistry, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Byoung-Moo Seo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Jae Cheoun Lee
- Children’s Dental Center and CDC Baby Tooth Stem Cell Bank, Seoul 135-953, Korea
| | | |
Collapse
|
125
|
CARTER RA, ENGILES JB, MEGEE SO, SENOO M, GALANTINO-HOMER HL. Decreased expression of p63, a regulator of epidermal stem cells, in the chronic laminitic equine hoof. Equine Vet J 2011; 43:543-51. [DOI: 10.1111/j.2042-3306.2010.00325.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
126
|
Vision from the right stem. Trends Mol Med 2011; 17:1-7. [PMID: 21075055 DOI: 10.1016/j.molmed.2010.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/21/2022]
|
127
|
Krishnan S, Sudha B, Krishnakumar S. Isoforms of p63 in corneal stem cells cultured on human amniotic membrane. Biologicals 2010; 38:570-6. [DOI: 10.1016/j.biologicals.2010.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022] Open
|
128
|
D’Addario I, Abbruzzese C, Lo Iacono M, Teson M, Golisano O, Barone V. Overexpression of YAP1 induces immortalization of normal human keratinocytes by blocking clonal evolution. Histochem Cell Biol 2010; 134:265-76. [DOI: 10.1007/s00418-010-0728-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2010] [Indexed: 11/30/2022]
|
129
|
Jadali A, Ghazizadeh S. Protein kinase D is implicated in the reversible commitment to differentiation in primary cultures of mouse keratinocytes. J Biol Chem 2010; 285:23387-97. [PMID: 20463010 DOI: 10.1074/jbc.m110.105619] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although commitment to epidermal differentiation is generally considered to be irreversible, differentiated keratinocytes (KCs) have been shown to maintain a regenerative potential and to reform skin epithelia when placed in a suitable environment. To obtain insights into the mechanism of reinitiation of this proliferative response in differentiated KCs, we examined the reversibility of commitment to Ca(2+)-induced differentiation. Lowering Ca(2+) concentration to micromolar levels triggered culture-wide morphological and biochemical changes, as indicated by derepression of cyclin D1, reinitiation of DNA synthesis, and acquisition of basal cell-like characteristics. These responses were inhibited by Goedecke 6976, an inhibitor of protein kinase D (PKD) and PKCalpha, but not with GF109203X, a general inhibitor of PKCs, suggesting PKD activation by a PKC-independent mechanism. PKD activation followed complex kinetics with a biphasic early transient phosphorylation within the first 6 h, followed by a sustained and progressive phosphorylation beginning at 24 h. The second phase of PKD activation was followed by prolonged ERK1/2 signaling and progression to DNA synthesis in response to the low Ca(2+) switch. Specific knockdown of PKD-1 by RNA interference or expression of a dominant negative form of PKD-1 did not have a significant effect on normal KC proliferation and differentiation but did inhibit Ca(2+)-mediated reinitiation of proliferation and reversion in differentiated cultures. The present study identifies PKD as a major regulator of a proliferative response in differentiated KCs, probably through sustained activation of the ERK-MAPK pathway, and provides new insights into the process of epidermal regeneration and wound healing.
Collapse
Affiliation(s)
- Azadeh Jadali
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | | |
Collapse
|
130
|
Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C. Transcriptional Repression of miR-34 Family Contributes to p63-Mediated Cell Cycle Progression in Epidermal Cells. J Invest Dermatol 2010; 130:1249-57. [DOI: 10.1038/jid.2009.438] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
131
|
p63 Immunohistochemistry Is a Useful Adjunct in Distinguishing Sclerosing Cutaneous Tumors. Am J Dermatopathol 2010; 32:257-261. [DOI: 10.1097/dad.0b013e3181b7fc76] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
132
|
Antagonistic roles of Notch and p63 in controlling mammary epithelial cell fates. Cell Death Differ 2010; 17:1600-12. [DOI: 10.1038/cdd.2010.37] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
133
|
Hsu HC, Ho CY, Chen CH, Yang CH, Hong HS, Chuang YH. Aggressive digital papillary adenocarcinoma: a review. Clin Exp Dermatol 2010; 35:113-9. [DOI: 10.1111/j.1365-2230.2009.03490.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
134
|
Osada M, Jardine L, Misir R, Andl T, Millar SE, Pezzano M. DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration. PLoS One 2010; 5:e9062. [PMID: 20161711 PMCID: PMC2817005 DOI: 10.1371/journal.pone.0009062] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/07/2010] [Indexed: 11/24/2022] Open
Abstract
Background Thymic epithelial cell (TEC) microenvironments are essential for the
recruitment of T cell precursors from the bone marrow, as well as the
subsequent expansion and selection of thymocytes resulting in a mature
self-tolerant T cell repertoire. The molecular mechanisms, which control
both the initial development and subsequent maintenance of these critical
microenvironments, are poorly defined. Wnt signaling has been shown to be
important to the development of several epithelial tissues and organs.
Regulation of Wnt signaling has also been shown to impact both early
thymocyte and thymic epithelial development. However, early blocks in thymic
organogenesis or death of the mice have prevented analysis of a role of
canonical Wnt signaling in the maintenance of TECs in the postnatal
thymus. Methodology/Principal Findings Here we demonstrate that tetracycline-regulated expression of the canonical
Wnt inhibitor DKK1 in TECs localized in both the cortex and medulla of adult
mice, results in rapid thymic degeneration characterized by a loss of
ΔNP63+ Foxn1+ and
Aire+ TECs, loss of K5K8DP TECs thought to represent
or contain an immature TEC progenitor, decreased TEC proliferation and the
development of cystic structures, similar to an aged thymus. Removal of DKK1
from DKK1-involuted mice results in full recovery, suggesting that canonical
Wnt signaling is required for the differentiation or proliferation of TEC
populations needed for maintenance of properly organized adult thymic
epithelial microenvironments. Conclusions/Significance Taken together, the results of this study demonstrate that canonical Wnt
signaling within TECs is required for the maintenance of epithelial
microenvironments in the postnatal thymus, possibly through effects on TEC
progenitor/stem cell populations. Downstream targets of Wnt signaling, which
are responsible for maintenance of these TEC progenitors may provide useful
targets for therapies aimed at counteracting age associated thymic
involution or the premature thymic degeneration associated with cancer
therapy and bone marrow transplants.
Collapse
Affiliation(s)
- Masako Osada
- Department of Biology, The City College of New York, New York, New York,
United States of America
| | - Logan Jardine
- Department of Biology, The City College of New York, New York, New York,
United States of America
| | - Ruth Misir
- Department of Biology, The City College of New York, New York, New York,
United States of America
| | - Thomas Andl
- Vanderbilt University Medical Center, Nashville, Tennessee, United States
of America
| | - Sarah E. Millar
- Departments of Dermatology and Cell and Developmental Biology, University
of Pennsylvania, Philadelphia, Pennsylvania, United States of
America
| | - Mark Pezzano
- Department of Biology, The City College of New York, New York, New York,
United States of America
- * E-mail:
| |
Collapse
|
135
|
Amoresano A, Di Costanzo A, Leo G, Di Cunto F, La Mantia G, Guerrini L, Calabrò V. Identification of ΔNp63α Protein Interactions by Mass Spectrometry. J Proteome Res 2010; 9:2042-8. [DOI: 10.1021/pr9011156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Angela Amoresano
- Dipartimento di Chimica Organica e Biologica, Università Federico II, Napoli, Italy, Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli, Federico II, Italy, Centro di Biotecnologie Molecolari, Università di Torino, Torino, Italy, and Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Italy
| | - Antonella Di Costanzo
- Dipartimento di Chimica Organica e Biologica, Università Federico II, Napoli, Italy, Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli, Federico II, Italy, Centro di Biotecnologie Molecolari, Università di Torino, Torino, Italy, and Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Italy
| | - Gabriella Leo
- Dipartimento di Chimica Organica e Biologica, Università Federico II, Napoli, Italy, Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli, Federico II, Italy, Centro di Biotecnologie Molecolari, Università di Torino, Torino, Italy, and Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Italy
| | - Ferdinando Di Cunto
- Dipartimento di Chimica Organica e Biologica, Università Federico II, Napoli, Italy, Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli, Federico II, Italy, Centro di Biotecnologie Molecolari, Università di Torino, Torino, Italy, and Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Italy
| | - Girolama La Mantia
- Dipartimento di Chimica Organica e Biologica, Università Federico II, Napoli, Italy, Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli, Federico II, Italy, Centro di Biotecnologie Molecolari, Università di Torino, Torino, Italy, and Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Italy
| | - Luisa Guerrini
- Dipartimento di Chimica Organica e Biologica, Università Federico II, Napoli, Italy, Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli, Federico II, Italy, Centro di Biotecnologie Molecolari, Università di Torino, Torino, Italy, and Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Italy
| | - Viola Calabrò
- Dipartimento di Chimica Organica e Biologica, Università Federico II, Napoli, Italy, Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli, Federico II, Italy, Centro di Biotecnologie Molecolari, Università di Torino, Torino, Italy, and Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Italy
| |
Collapse
|
136
|
Zutterman N, Maes H, Claerhout S, Agostinis P, Garmyn M. Deregulation of cell-death pathways as the cornerstone of skin diseases. Clin Exp Dermatol 2009; 35:569-75. [PMID: 19874372 DOI: 10.1111/j.1365-2230.2009.03614.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Deregulation of cell-death pathways plays a key role in the pathogenesis of various skin diseases. The different types of cell death are mainly defined by morphological criteria, and include apoptosis, autophagic cell death, and necrosis. The process of apoptosis is well characterized at the molecular level and involves the activation of two main pathways, the intrinsic and extrinsic pathways, converging into the execution of apoptosis by intracellular cysteine proteases, called caspases. The relevance and implication of these apoptotic pathways in the pathophysiology of skin diseases, such as toxic epidermal necrolysis, graft-versus-host disease and skin cancer, has been extensively studied. The role of autophagic cell death in progression of skin tumours and response to cytotoxic drugs is only beginning to be elucidated.
Collapse
Affiliation(s)
- N Zutterman
- Laboratory of Dermatology, Catholic University of Leuven, Herestraat 49, Bus 724, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
137
|
Sakiz D, Turkmenoglu TT, Kabukcuoglu F. The expression of p63 and p53 in keratoacanthoma and intraepidermal and invasive neoplasms of the skin. Pathol Res Pract 2009; 205:589-94. [PMID: 19577853 DOI: 10.1016/j.prp.2009.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 01/16/2009] [Accepted: 01/21/2009] [Indexed: 01/10/2023]
Abstract
p53 is a well-known tumor suppressor gene, and its mutation is a common event in intraepidermal and invasive neoplasms of the skin. p63 is a homologue of the tumor suppressor gene p53, which is expressed in human basal squamous epithelium, and despite its homology to p53, it is considered to act as an oncogene. We evaluated p63 and p53 expression in usual skin cancers, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), keratoacanthoma (KA), and intraepidermal neoplasms, including Bowen's disease (BD), actinic keratosis (AK), malignant melanoma in situ (MM in situ), and Paget's disease (PD) to clarify the putative role of p63 and p53 in the development and differential diagnosis of these lesions. Seventeen SCC, 23 BCC, 16 KA, 26 AK, 22 BD, 7 MM in situ, and 6 PD were included in this study. We determined decreasing p63 staining in BD, AK, BCC, SCC, and KA, respectively. None of the MM in situ and PD was positive for p63. The mean p53 staining was highest in BD, followed by AK, SCC, PD, KA, BCC, and normal skin. There was no correlation between the groups in terms of p63 and p53 staining. Based on our findings, analysis of p63 expression may be helpful in the differential diagnosis of BD and AK versus MM in situ and PD, particularly in small biopsies.
Collapse
Affiliation(s)
- Damlanur Sakiz
- Sisli Etfal Education and Research Hospital, Department of Pathology, Istanbul, Turkey.
| | | | | |
Collapse
|
138
|
Xavier FCA, Takiya CM, Reis SRA, Ramalho LMP. p63 Immunoexpression in lip carcinogenesis. J Mol Histol 2009; 40:131-7. [DOI: 10.1007/s10735-009-9223-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
|
139
|
Sabbisetti V, Di Napoli A, Seeley A, Amato AM, O'Regan E, Ghebremichael M, Loda M, Signoretti S. p63 promotes cell survival through fatty acid synthase. PLoS One 2009; 4:e5877. [PMID: 19517019 PMCID: PMC2691576 DOI: 10.1371/journal.pone.0005877] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/05/2009] [Indexed: 11/25/2022] Open
Abstract
There is increasing evidence that p63, and specifically ΔNp63, plays a central role in both development and tumorigenesis by promoting epithelial cell survival. However, few studies have addressed the molecular mechanisms through which such important function is exerted. Fatty acid synthase (FASN), a key enzyme that synthesizes long-chain fatty acids and is involved in both embryogenesis and cancer, has been recently proposed as a direct target of p53 family members, including p63 and p73. Here we show that knockdown of either total or ΔN-specific p63 isoforms in squamous cell carcinoma (SCC9) or immortalized prostate epithelial (iPrEC) cells caused a decrease in cell viability by inducing apoptosis without affecting the cell cycle. p63 silencing significantly reduced both the expression and the activity of FASN. Importantly, stable overexpression of either FASN or myristoylated AKT (myr-AKT) was able to partially rescue cells from cell death induced by p63 silencing. FASN induced AKT phosphorylation and a significant reduction in cell viability was observed when FASN-overexpressing SCC9 cells were treated with an AKT inhibitor after p63 knockdown, indicating that AKT plays a major role in FASN-mediated survival. Activated AKT did not cause any alteration in the FASN protein levels but induced its activity, suggesting that the rescue from apoptosis documented in the p63-silenced cells expressing myr-AKT cells may be partially mediated by FASN. Finally, we demonstrated that p63 and FASN expression are positively associated in clinical squamous cell carcinoma samples as well as in the developing prostate. Taken together, our findings demonstrate that FASN is a functionally relevant target of p63 and is required for mediating its pro-survival effects.
Collapse
Affiliation(s)
- Venkata Sabbisetti
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Arianna Di Napoli
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Apryle Seeley
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angela M. Amato
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Musie Ghebremichael
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Massimo Loda
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
140
|
Nam H, Lee G. Identification of novel epithelial stem cell-like cells in human deciduous dental pulp. Biochem Biophys Res Commun 2009; 386:135-9. [PMID: 19501569 DOI: 10.1016/j.bbrc.2009.05.141] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 05/30/2009] [Indexed: 01/09/2023]
Abstract
It is well known that interactions between epithelial components and mesenchymal components are essential for tooth development. Therefore, it has been postulated that both types of stem cells might be involved in the regeneration of dental hard tissues. Recently, mesenchymal dental pulp stem cells that have odontogenic potential were identified from human dental pulp. However, the existence of epithelial cells has never been reported in human dental pulp. In the present study, we isolated and characterized epithelial cell-like cells from human deciduous dental pulp. They had characteristic epithelial morphology and expressed epithelial markers. Moreover, they expressed epithelial stem cell-related genes such as ABCG2, Bmi-1, DeltaNp63, and p75. Taken together, our findings suggest that epithelial stem cell-like cells might exist in human deciduous dental pulp and might play a role as an epithelial component for the repair or regeneration of teeth.
Collapse
Affiliation(s)
- Hyun Nam
- Laboratory of Molecular Genetics and Stem Cell Differentiation, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | | |
Collapse
|
141
|
Population of Rh123dim human keratinocytes form holoclones. Open Life Sci 2009. [DOI: 10.2478/s11535-009-0008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe aim of our studies was to develop an efficient strategy to isolate human early epidermal progenitors for experimental and potential clinical purposes. We employed fluorescence-activated cell sorting (FACS) to isolate cells that poorly accumulate metabolic Rhodamin123 (Rh123) dye. We noticed that similarly to a population of β1-integrin bright (β1bright) cells, a population of Rh123 dull (Rh123dim) cells is highly enriched for cells growing holoclones, colonies composed of the most primitive keratinocytes. Furthermore, Rh123dim cells express several morphological features of primitive undifferentiated cells and are also highly motile. We postulate that these cells could become an important source of epidermal progenitors to expand keratinocytes for clinical purposes.
Collapse
|
142
|
Pozzi S, Boergesen M, Sinha S, Mandrup S, Mantovani R. Peroxisome proliferator-activated receptor-alpha is a functional target of p63 in adult human keratinocytes. J Invest Dermatol 2009; 129:2376-85. [PMID: 19458633 DOI: 10.1038/jid.2009.92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p63 is a master switch in the complex network of signaling pathways controlling the establishment and maintenance of stratified epithelia. We provide evidence that peroxisome proliferator-activated receptor-alpha (PPARalpha), a ligand-activated nuclear receptor that participates in the skin wound healing process, is a target of p63 in human keratinocytes. Silencing of p63 by RNA interference and transient transfections showed that p63 represses PPARalpha through a functional region of promoter B. Chromatin immunoprecipitation analyses indicate that p63 is bound to this region, in the absence of a recognizable p63-binding motif, suggesting that it acts through interactions with other transcription factors (TFs). Distinct PPARalpha transcripts are differentially regulated by p63, indicating a bimodal action in promoter and/or transcription start specification. PPARalpha repression is consistent with lack of expression in the interfollicular epidermis under physiological conditions. Furthermore, we show that PPARalpha is a negative regulator of DeltaNp63alpha levels and that it also binds to a functional region of the DeltaNp63 promoter that lacks PPRE motifs. Therefore, the reciprocal regulation is exerted either through binding to non-consensus sites or through interactions with other DNA-bound TFs. In conclusion, our data establish a link between two TFs intimately involved in the maintenance of skin homeostatic conditions.
Collapse
Affiliation(s)
- Silvia Pozzi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, Milano, Italy
| | | | | | | | | |
Collapse
|
143
|
Mills J, Zarlenga D, Dyer R. Bovine coronary region keratinocyte colony formation is supported by epidermal-dermal interactions. J Dairy Sci 2009; 92:1913-23. [DOI: 10.3168/jds.2008-1422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
144
|
Toscani M, Rotolo S, Ceccarelli S, Morrone S, Micali G, Scuderi N, Frati L, Angeloni A, Marchese C. Hair regeneration from transected follicles in duplicative surgery: rate of success and cell populations involved. Dermatol Surg 2009; 35:1119-25. [PMID: 19438685 DOI: 10.1111/j.1524-4725.2009.01197.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The use of bisected hair follicles in hair transplantation has been previously reported, but the capacity of each half to regenerate the entire hair has not been clarified. OBJECTIVE To evaluate duplicative surgery rate of success and to analyze the cell populations involved in hair regeneration. METHODS We screened 28 patients undergoing duplicative surgery. Approximately 100 hair follicles from each patient were horizontally bisected and implanted. Upper and lower portions were stained for the known epithelial stem cell markers CD200, p63, beta1-integrin, CD34, and K19. RESULTS Similar percentages of hair regrowth after 12 months were observed when implanting the upper (72.7 +/- 0.4%) and lower (69.2 +/- 1.1%) portions. Expression of CD200, p63, and beta1-integrin was detected in both portions, whereas K19 and CD34 stained different cell populations in the upper and lower fragment, respectively. CONCLUSION Duplicative surgery might represent a successful alternative for hair transplantation, because both portions are capable of regenerating a healthy hair. Moreover, our results suggest the possible presence of stem cells in both halves of the follicle.
Collapse
Affiliation(s)
- Marco Toscani
- Department of Skin-Venereal Disease and Reconstructive and Plastic Surgery, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Pellegrini G, Rama P, Mavilio F, De Luca M. Epithelial stem cells in corneal regeneration and epidermal gene therapy. J Pathol 2009; 217:217-28. [PMID: 18855878 DOI: 10.1002/path.2441] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regenerative medicine refers to innovative therapies aimed at the permanent restoration of diseased tissues and organs. Regeneration of self-renewing tissues requires specific adult stem cells, which need to be genetically modified to correct inherited genetic diseases. Cultures of epithelial stem cells permanently restore severe skin and mucosal defects, and genetically corrected epidermal stem cells regenerate a normal epidermis in patients carrying junctional epidermolysis bullosa. The keratinocyte stem cell is therefore the only cultured stem cell used both in cell therapy and gene therapy clinical protocols. Epithelial stem cell identification, fate and molecular phenotype have been extensively reviewed, but not in relation to tissue regeneration. In this paper we focus on the localization and molecular characterization of human limbal stem cells in relation to corneal regeneration, and the gene therapy of genetic skin diseases by means of genetically modified epidermal stem cells.
Collapse
Affiliation(s)
- G Pellegrini
- Centre for Regenerative Medicine, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | |
Collapse
|
146
|
Takács L, Tóth E, Berta A, Vereb G. Stem cells of the adult cornea: from cytometric markers to therapeutic applications. Cytometry A 2009; 75:54-66. [PMID: 19051301 DOI: 10.1002/cyto.a.20671] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cornea is a major protective shield of the interior of the eye and represents two thirds of its refractive power. It is made up of three tissue layers that have different developmental origins: the outer, epithelial layer develops from the ectoderm overlying the lens vesicle, whereas the stroma and the endothelium have mesenchymal origin. In the adult organism, the outermost corneal epithelium is the most exposed to environmental damage, and its constant renewal is assured by the epithelial stem cells that reside in the limbus, the circular border of the cornea. Cell turnover in the stromal layer is very slow and the endothelial cells probably do not reproduce in the adult organism. However, recent experimental evidence indicates that stem cells may be found in these layers. Damage to any of the corneal layers leads to loss of transparency and low vision. Corneal limbal stem cell deficiency results in severe ocular surface disease and its treatment by transplantating ex vivo expanded limbal epithelial cells is becoming widely accepted today. Stromal and endothelial stem cells are potential tools of tissue engineering and regenerative therapies of corneal ulcers and endothelial cell loss. In the past few years, intensive research has focused on corneal stem cells aiming to improve the outcomes of the current corneal stem cell transplantation techniques. This review summarizes the current state of knowledge on corneal epithelial, stromal and endothelial stem cells. Special emphasis is placed on the molecular markers that may help to identify these cells, and the recently revealed mechanisms that could maintain their "stemness" or drive their differentiation. The techniques for isolating and culturing/expanding these cells are also described.
Collapse
Affiliation(s)
- Lili Takács
- Department of Ophthalmology, Medical and Health Science Center, University of Debrecen, Hungary
| | | | | | | |
Collapse
|
147
|
Bertagnolli AC, Cassali GD, Genelhu MCLS, Costa FA, Oliveira JFC, Gonçalves PBD. Immunohistochemical Expression of p63 and ΔNp63 in Mixed Tumors of Canine Mammary Glands and Its Relation with p53 Expression. Vet Pathol 2009; 46:407-15. [DOI: 10.1354/vp.08-vp-0128-c-fl] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The immunohistochemical expression of p63, ΔNp63, and p53 was studied in mixed tumors of canine mammary glands (13 benign mixed tumors and 19 carcinomas arising from benign mixed tumors) to determine the role of p63 and its isoform ΔNp63 in the development of mixed tumors, as well as to assess its relation with p53. P63 was expressed in myoepithelial cells of all benign mixed tumors and in 18 of 19 carcinomas in mixed tumors. The p63-negative carcinoma in mixed tumors was invasive, and a loss of p63 was detected in the other malignant tumors showing a discontinuous p63-stained myoepithelial layer. ΔNp63 was expressed in all benign mixed tumors but only in p63-positive carcinomas in mixed tumors. Despite its positive correlation with p63 expression in carcinomas in mixed tumors ( r = 0.8323, P < .00001), ΔNp63 expression showed a decrease in benign tumors. Positivity for p53 was detected in 2 of 13 and 1 of 19 benign mixed tumors and carcinomas in mixed tumors, respectively. There was no correlation between p63 or ΔNp63 and p53 expression. Our data support the notion that the decrease of p63 expression, in particular of its isoform ΔNp63, seems to be an important factor in the development of carcinomas in mixed tumors.
Collapse
Affiliation(s)
- A. C. Bertagnolli
- Laboratory of Biotechnology and Animal Reproduction, Federal University of Santa Maria, RS, Brazil
| | - G. D. Cassali
- Laboratory of Comparative Pathology, Federal University of Minas Gerais, MG, Brazil
| | - M. C. L. S. Genelhu
- Immunology Research Laboratory, Vale do Rio Doce University, Governador Valadares, Minas Gerais, Brazil
| | - F. A. Costa
- Laboratory of Comparative Pathology, Federal University of Minas Gerais, MG, Brazil
| | - J. F. C. Oliveira
- Laboratory of Biotechnology and Animal Reproduction, Federal University of Santa Maria, RS, Brazil
| | - P. B. D. Gonçalves
- Laboratory of Biotechnology and Animal Reproduction, Federal University of Santa Maria, RS, Brazil
| |
Collapse
|
148
|
Nagarajan P, Parikh N, Garrett-Sinha LA, Sinha S. Ets1 induces dysplastic changes when expressed in terminally-differentiating squamous epidermal cells. PLoS One 2009; 4:e4179. [PMID: 19142229 PMCID: PMC2615206 DOI: 10.1371/journal.pone.0004179] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 11/28/2008] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ets1 is an oncogene that functions as a transcription factor and regulates the activity of many genes potentially important for tumor initiation and progression. Interestingly, the Ets1 oncogene is over-expressed in many human squamous cell cancers and over-expression is highly correlated with invasion and metastasis. Thus, Ets1 is believed to mainly play a role in later stages of the oncogenic process, but not early events. METHODOLOGY/PRINCIPAL FINDINGS To better define the role of Ets1 in squamous cell carcinogenesis, we generated a transgenic mouse model in which expression of the Ets1 oncogene could be temporally and spatially regulated. Upon Ets1 induction in differentiating cells of stratified squamous epithelium, these mice exhibited dramatic changes in epithelial organization including increased proliferation and blocked terminal differentiation. The phenotype was completely reversed when Ets1 expression was suppressed. In mice where Ets1 expression was re-induced at a later age, the phenotype was more localized and the lesions that developed were more invasive. Many potential Ets1 targets were upregulated in the skin of these mice with the most dramatic being the metalloprotease MMP13, which we demonstrate to be a direct transcriptional target of Ets1. CONCLUSIONS/SIGNIFICANCE Collectively, our data reveal that upregulation of Ets1 can be an early event that promotes pre-neoplastic changes in epidermal tissues via its regulation of key genes driving growth and invasion. Thus, the Ets1 oncogene may be important for oncogenic processes in both early and late stages of tumor development.
Collapse
Affiliation(s)
- Priyadharsini Nagarajan
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Neha Parikh
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
- * E-mail: (LAG-S); (SS)
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Center for Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
- * E-mail: (LAG-S); (SS)
| |
Collapse
|
149
|
Utility of a Comprehensive Immunohistochemical Panel in the Differential Diagnosis of Spindle Cell Lesions of the Urinary Bladder. Am J Surg Pathol 2009; 33:99-105. [PMID: 18941404 DOI: 10.1097/pas.0b013e318180c899] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
150
|
Chen SY, Takeuchi S, Urabe K, Hayashida S, Kido M, Tomoeda H, Uchi H, Dainichi T, Takahara M, Shibata S, Tu YT, Furue M, Moroi Y. Overexpression of phosphorylated-ATF2 and STAT3 in cutaneous angiosarcoma and pyogenic granuloma. J Cutan Pathol 2008; 35:722-30. [PMID: 18700251 DOI: 10.1111/j.1600-0560.2007.00887.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Activating transcription factor-2/Activator protein-1 (AP-1), Signal transducer and activator of transcription-3 and p53 are important regulators of cellular proliferation, apoptosis, differentiation in the pathogenesis of many human tumors, but the expression of phosphorylated (p)-activating transcription factor-2 (p-ATF2), phosphorylated (p)-signal transducer and activator of transcription-3 (p-STAT3) and p53 family (p63 and p73) has not been investigated in cutaneous angiosarcoma (CAS) and pyogenic granuloma (PG) so far. OBJECTIVES To investigate the expression of p-ATF2, p-STAT3 and p53 and its family in cutaneous vascular tumors (CAS and PG). METHODS Paraffin-embedded specimens of 14 CAS and 19 PG were subjected to immunohistochemical staining for p-ATF2, p-STAT3, p53, p63 and p73. RESULTS P-ATF2 was expressed in 13 out of 14 CAS and in all of 19 PG. P-STAT3 was expressed in all of 14 CAS and 19 PG. P53 was expressed in all of 14 CAS and 19 PG, while both p63 and p73 were negative in CAS and PG. The p-ATF2-, p-STAT3- and p53 expression (% positive cells) in CAS and PG were significantly higher than in normal dermal vessels, but none of these transcription factors distinguished malignant (CAS)- from benign (PG) vascular tumor. CONCLUSIONS The present study suggests that overexpression of p-ATF2, p-STAT3 and possibly p53, but not p63 or p73, may contribute to the tumorigenesis of cutaneous vascular tumors.
Collapse
Affiliation(s)
- Si-Yuan Chen
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|