101
|
Chen WY, Wang M, Zhang J, Barve SS, McClain CJ, Joshi-Barve S. Acrolein Disrupts Tight Junction Proteins and Causes Endoplasmic Reticulum Stress-Mediated Epithelial Cell Death Leading to Intestinal Barrier Dysfunction and Permeability. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2686-2697. [PMID: 28935573 PMCID: PMC5818631 DOI: 10.1016/j.ajpath.2017.08.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/20/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that environmental and dietary factors can affect intestinal epithelial integrity leading to gut permeability and bacterial translocation. Intestinal barrier dysfunction is a pathogenic process associated with many chronic disorders. Acrolein is an environmental and dietary pollutant and a lipid-derived endogenous metabolite. The impact of acrolein on the intestine has not been investigated before and is evaluated in this study, both in vitro and in vivo. Our data demonstrate that oral acrolein exposure in mice caused damage to the intestinal epithelial barrier, resulting in increased permeability and subsequently translocation of bacterial endotoxin-lipopolysaccharide into the blood. Similar results were seen in vitro using established Caco-2 cell monolayers wherein acrolein decreased barrier function and increased permeability. Acrolein also caused the down-regulation and/or redistribution of three representative tight junction proteins (ie, zonula occludens-1, Occludin, Claudin-1) that critically regulate epithelial paracellular permeability. In addition, acrolein induced endoplasmic reticulum stress-mediated death of epithelial cells, which is an important mechanism contributing to intestinal barrier damage/dysfunction, and gut permeability. Overall, we demonstrate that exposure to acrolein affects the intestinal epithelium by decrease/redistribution of tight junction proteins and endoplasmic reticulum stress-mediated epithelial cell death, thereby resulting in loss of barrier integrity and function. Our findings highlight the adverse consequences of environmental and dietary pollutants on intestinal barrier integrity/function with relevance to gut permeability and the development of disease.
Collapse
Affiliation(s)
- Wei-Yang Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky
| | - Min Wang
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky
| | - Jingwen Zhang
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky
| | - Shirish S Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky
| | - Craig J McClain
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky; Department of Medicine, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - Swati Joshi-Barve
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky; Alcohol Research Center, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky; Hepatobiology and Toxicology Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
102
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
103
|
Wohlfarth C, Schmitteckert S, Härtle JD, Houghton LA, Dweep H, Fortea M, Assadi G, Braun A, Mederer T, Pöhner S, Becker PP, Fischer C, Granzow M, Mönnikes H, Mayer EA, Sayuk G, Boeckxstaens G, Wouters MM, Simrén M, Lindberg G, Ohlsson B, Schmidt PT, Dlugosz A, Agreus L, Andreasson A, D'Amato M, Burwinkel B, Bermejo JL, Röth R, Lasitschka F, Vicario M, Metzger M, Santos J, Rappold GA, Martinez C, Niesler B. miR-16 and miR-103 impact 5-HT 4 receptor signalling and correlate with symptom profile in irritable bowel syndrome. Sci Rep 2017; 7:14680. [PMID: 29089619 PMCID: PMC5665867 DOI: 10.1038/s41598-017-13982-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a gut-brain disorder involving alterations in intestinal sensitivity and motility. Serotonin 5-HT4 receptors are promising candidates in IBS pathophysiology since they regulate gut motor function and stool consistency, and targeted 5-HT4R selective drug intervention has been proven beneficial in subgroups of patients. We identified a single nucleotide polymorphism (SNP) (rs201253747) c.*61 T > C within the 5-HT4 receptor gene HTR4 to be predominantly present in diarrhoea-IBS patients (IBS-D). It affects a binding site for the miR-16 family and miR-103/miR-107 within the isoforms HTR4b/i and putatively impairs HTR4 expression. Subsequent miRNA-profiling revealed downregulation of miR-16 and miR-103 in the jejunum of IBS-D patients correlating with symptoms. In vitro assays confirmed expression regulation via three 3'UTR binding sites. The novel isoform HTR4b_2 lacking two of the three miRNA binding sites escapes miR-16/103/107 regulation in SNP carriers. We provide the first evidence that HTR4 expression is fine-tuned by miRNAs, and that this regulation is impaired either by the SNP c.*61 T > C or by diminished levels of miR-16 and miR-103 suggesting that HTR4 might be involved in the development of IBS-D.
Collapse
Affiliation(s)
- Carolin Wohlfarth
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Stefanie Schmitteckert
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Janina D Härtle
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Lesley A Houghton
- University of Leeds, St. James's University Hospital, LS97TF, Leeds, UK
- Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Harsh Dweep
- Medical Research Centre, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, 68167, Germany
- Division of Bioinformatics and Biostatistics, National Centre for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, AR, 72079, USA
| | - Marina Fortea
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), 08035, Barcelona, Spain
| | - Ghazaleh Assadi
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Alexander Braun
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Tanja Mederer
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Sarina Pöhner
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Philip P Becker
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Christine Fischer
- Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | | | - Emeran A Mayer
- Oppenheimer Centre for Neurobiology of Stress, Division of Digestive Diseases, University of California, Los Angeles, CA 90095-7378, USA
| | - Gregory Sayuk
- Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Mira M Wouters
- TARGID, University Hospital Leuven, 3000, Leuven, Belgium
| | - Magnus Simrén
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Greger Lindberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska University Hospital, Karolinska Institutet, Huddinge, 17176, Stockholm, Sweden
| | - Bodil Ohlsson
- Department of Clinical Sciences, Division of Internal Medicine, Skåne University Hospital, Malmö, Lund University, 22241, Lund, Sweden
| | - Peter Thelin Schmidt
- Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska University Hospital, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Aldona Dlugosz
- Department of Medicine, Division of Gastroenterology and Hepatology, Karolinska University Hospital, Karolinska Institutet, Huddinge, 17176, Stockholm, Sweden
| | - Lars Agreus
- Division for Family Medicine and Primary Care, Karolinska Institutet, 14183, Huddinge, Sweden
| | - Anna Andreasson
- Department of Medicine, Solna, Karolinska Institutet, 171 76, Solna, Sweden
- Stress Research Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Mauro D'Amato
- Unit of Clinical Epidemiology, Department of Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
- BioDonostia Health Research Institute, San Sebastian and Ikerbasque, Basque Science Foundation, 48013, Bilbao, Spain
| | - Barbara Burwinkel
- Molecular Epidemiology Group, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Division of Molecular Biology of Breast Cancer, Department of Gynaecology and Obstetrics, University Women's Clinic, University of Heidelberg, 69120, Heidelberg, Germany
| | - Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Ralph Röth
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Maria Vicario
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), 08035, Barcelona, Spain
| | - Marco Metzger
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, 97082, Wuerzburg, Germany
- Translational Centre 'Regenerative Therapies for Oncology and Musculoskeletal Diseases' (TZKME), Branch of the Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB) Wuerzburg, 97082, Wuerzburg, Germany
| | - Javier Santos
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), 08035, Barcelona, Spain
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
| | - Cristina Martinez
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), 08035, Barcelona, Spain
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany.
- nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
104
|
Marlicz W, Yung DE, Skonieczna-Żydecka K, Loniewski I, van Hemert S, Loniewska B, Koulaouzidis A. From clinical uncertainties to precision medicine: the emerging role of the gut barrier and microbiome in small bowel functional diseases. Expert Rev Gastroenterol Hepatol 2017; 11:961-978. [PMID: 28618973 DOI: 10.1080/17474124.2017.1343664] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last decade, remarkable progress has been made in the understanding of disease pathophysiology. Many new theories expound on the importance of emerging factors such as microbiome influences, genomics/omics, stem cells, innate intestinal immunity or mucosal barrier complexities. This has introduced a further dimension of uncertainty into clinical decision-making, but equally, may shed some light on less well-understood and difficult to manage conditions. Areas covered: Comprehensive review of the literature on gut barrier and microbiome relevant to small bowel pathology. A PubMed/Medline search from 1990 to April 2017 was undertaken and papers from this range were included. Expert commentary: The scenario of clinical uncertainty is well-illustrated by functional gastrointestinal disorders (FGIDs). The movement towards achieving a better understanding of FGIDs is expressed in the Rome IV guidelines. Novel diagnostic and therapeutic protocols focused on the GB and SB microbiome can facilitate diagnosis, management and improve our understanding of the underlying pathological mechanisms in FGIDs.
Collapse
Affiliation(s)
- Wojciech Marlicz
- a Department of Gastroenterology , Pomeranian Medical University , Szczecin , Poland
| | - Diana E Yung
- b Centre for Liver and Digestive Disorders , Royal Infirmary of Edinburgh , Edinburgh , United Kingdom
| | | | - Igor Loniewski
- c Department of Biochemistry and Human Nutrition , Pomeranian Medical University , Szczecin , Poland.,d Sanprobi Sp. z o.o. Sp. K , Szczecin , Poland
| | | | - Beata Loniewska
- f Department of Neonatal Diseases , Pomeranian Medical University , Szczecin , Poland
| | - Anastasios Koulaouzidis
- g Centre for Liver and Digestive Disorders , Royal Infirmary of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
105
|
Chao G, Wang Y, Zhang S, Yang W, Ni Z, Zheng X. MicroRNA-29a increased the intestinal membrane permeability of colonic epithelial cells in irritable bowel syndrome rats. Oncotarget 2017; 8:85828-85837. [PMID: 29156760 PMCID: PMC5689650 DOI: 10.18632/oncotarget.20687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/26/2017] [Indexed: 01/28/2023] Open
Abstract
Background The whole pathogenesis of diarrhea-predominant irritable bowel syndrome(IBS-D) is poorly understood. Our goal was to evaluate the expression change of microRNA-29a(miR-29a) in colonic epithelial cells in IBS rats and clarify the mechanism of miR-29a increasing the intestinal membrane permeability through aquaporins(AQPs). Methods The IBS-D rats models were induced by rectal distention pressure combining with extremities constraint. The colonic epithelial cells were divided into four groups. A: normal group. B: IBS-D control group. C: IBS-D +miR-29a NC. D: IBS-D + miR-29a antagomir. The expression of miR-29a, the concentration of the K+ and Lactate Dehydrogenase(LDH) and the expression of AQPs were detected. Results The miR-29a expression increased in IBS-D control group(2.090±0.022) compared with the control group(1.00±0.031) (P<0.001) while it decreased in IBS-D+miR-29a antagomir group(1.403±0.042) compared with IBS-D control group(P<0.001). The K+ decreased in IBS-D control group(1.305±0.289) compared with the control group(2.171±0.204)(P<0.05) while it increased in IBS-D+miR-29a antagomir group(1.813±0.102)(P<0.05) compared with IBS-D control group. The LDH increased in IBS-D control group(4153.440±177.365) compared with the control group(1434.573±96.111)(P<0.001) while it decreased in IBS-D+miR-29a antagomir group(2700.473±275.414) compared with IBS-D control group (P<0.01). The expression of AQP1, AQP3 and AQP8 decreased in IBS-D control group(0.132±0.010,0.110±0.005,0.108±0.007) compared with the control group (P<0.001) while it increased in IBS-D+miR-29a antagomir group(0.197±0.005,0.182±0.011,0.194±0.003) compared with IBS-D control group(P<0.001). The IBS-D+miR-29a negative control(NC) group, a comparison with IBS-D+miR-29a antagomir group, each date showed the similar trend to the IBS-D control group. Conclusions MiR-29a increased the intestinal membrane permeability of colonic epithelial cells by reducing the AQPs expression in IBS-D rats.
Collapse
Affiliation(s)
- Guanqun Chao
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Yingying Wang
- Department of Family Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, China
| | - Shuo Zhang
- Department of Family Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, China
| | - Weilin Yang
- Department of Family Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, China
| | - Zheying Ni
- Department of Family Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, China
| | - Xuliang Zheng
- Department of Family Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Zhejiang, China
| |
Collapse
|
106
|
Martínez C, Rodiño-Janeiro BK, Lobo B, Stanifer ML, Klaus B, Granzow M, González-Castro AM, Salvo-Romero E, Alonso-Cotoner C, Pigrau M, Roeth R, Rappold G, Huber W, González-Silos R, Lorenzo J, de Torres I, Azpiroz F, Boulant S, Vicario M, Niesler B, Santos J. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of claudin-2 and cingulin expression in the jejunum in IBS with diarrhoea. Gut 2017; 66:1537-1538. [PMID: 28082316 PMCID: PMC5561373 DOI: 10.1136/gutjnl-2016-311477] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Micro-RNAs (miRNAs) play a crucial role in controlling intestinal epithelial barrier function partly by modulating the expression of tight junction (TJ) proteins. We have previously shown differential messenger RNA (mRNA) expression correlated with ultrastructural abnormalities of the epithelial barrier in patients with diarrhoea-predominant IBS (IBS-D). However, the participation of miRNAs in these differential mRNA-associated findings remains to be established. Our aims were (1) to identify miRNAs differentially expressed in the small bowel mucosa of patients with IBS-D and (2) to explore putative target genes specifically involved in epithelial barrier function that are controlled by specific dysregulated IBS-D miRNAs. DESIGN Healthy controls and patients meeting Rome III IBS-D criteria were studied. Intestinal tissue samples were analysed to identify potential candidates by: (a) miRNA-mRNA profiling; (b) miRNA-mRNA pairing analysis to assess the co-expression profile of miRNA-mRNA pairs; (c) pathway analysis and upstream regulator identification; (d) miRNA and target mRNA validation. Candidate miRNA-mRNA pairs were functionally assessed in intestinal epithelial cells. RESULTS IBS-D samples showed distinct miRNA and mRNA profiles compared with healthy controls. TJ signalling was associated with the IBS-D transcriptional profile. Further validation of selected genes showed consistent upregulation in 75% of genes involved in epithelial barrier function. Bioinformatic analysis of putative miRNA binding sites identified hsa-miR-125b-5p and hsa-miR-16 as regulating expression of the TJ genes CGN (cingulin) and CLDN2 (claudin-2), respectively. Consistently, protein expression of CGN and CLDN2 was upregulated in IBS-D, while the respective targeting miRNAs were downregulated. In addition, bowel dysfunction, perceived stress and depression and number of mast cells correlated with the expression of hsa-miR-125b-5p and hsa-miR-16 and their respective target proteins. CONCLUSIONS Modulation of the intestinal epithelial barrier function in IBS-D involves both transcriptional and post-transcriptional mechanisms. These molecular mechanisms include miRNAs as master regulators in controlling the expression of TJ proteins and are associated with major clinical symptoms.
Collapse
Affiliation(s)
- Cristina Martínez
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bruno K Rodiño-Janeiro
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Lobo
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Bernd Klaus
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | | | - Eloisa Salvo-Romero
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Marc Pigrau
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ralph Roeth
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Gudrun Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rosa González-Silos
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Justo Lorenzo
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Inés de Torres
- Department of Pathology, Facultat de Medicina, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Azpiroz
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany,Research Group ‘Cellular Polarity and Viral Infection’ (F140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María Vicario
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| | - Beate Niesler
- Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network,nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Javier Santos
- Digestive System Research Unit, Institut de Recerca Vall d'Hebron, Barcelona, Spain,Facultat de Medicina, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain,Centro deInvestigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain,COST Action BM1106 Genes in Irritable Bowel Syndrome (GENIEUR) European Research Network
| |
Collapse
|
107
|
Zhao LY, Tong DD, Xue M, Ma HL, Liu SY, Yang J, Liu YX, Guo B, Ni L, Liu LY, Qin YN, Wang LM, Zhao XG, Huang C. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis 2017; 6:e368. [PMID: 28759023 PMCID: PMC5541712 DOI: 10.1038/oncsis.2017.60] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 05/02/2017] [Accepted: 06/07/2017] [Indexed: 02/08/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is involved in the carcinogenesis and progression of multiple types of cancer. However, its precise role in gastric cancer (GC) and the relevant molecular mechanism remain unknown. In the present study, we found that miR-638 levels were lower in GC tissues and GC cell lines than in adjacent normal tissues and normal gastric epithelial cell lines, respectively. Low miR-638 levels were associated with poor tumor differentiation, tumor size and lymph node metastasis. MeCP2 expression levels were higher in GC tissues than in adjacent normal tissues. It was found that miR-638 inhibited GC cell proliferation, colony formation, G1–S transition and tumor growth, and induced cell apoptosis by directly targeting MeCP2. MeCP2 promoted GC cell proliferation, colony formation and G1–S cell-cycle transition, and suppressed apoptosis. Molecular mechanistic investigations were performed using an integrated approach with a combination of microarray analysis, chromatin immunoprecipitation sequencing and a reporter gene assay. The results showed that MeCP2 bound to the methylated CpG islands of G-protein-coupled receptor kinase-interacting protein 1 (GIT1) promoter and upregulated its expression, thereby activating the MEK1/2–ERK1/2 signaling pathway and promoting GC cell proliferation. Taken together, our study demonstrates that MeCP2, a target of miR-638, facilitates GC cell proliferation and induces cell-cycle progression through activation of the MEK1/2–ERK1/2 signaling pathway by upregulating GIT1. The findings suggest that MeCP2 plays a significant role in GC progression, and may serve as a potential target for GC therapy.
Collapse
Affiliation(s)
- L Y Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - D D Tong
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - M Xue
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - H L Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - S Y Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - J Yang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Y X Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - B Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L Ni
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L Y Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Y N Qin
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L M Wang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - X G Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - C Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Medical College of Yan'an University, Yan'an, Shaanxi, China
| |
Collapse
|
108
|
Nakata K, Sugi Y, Narabayashi H, Kobayakawa T, Nakanishi Y, Tsuda M, Hosono A, Kaminogawa S, Hanazawa S, Takahashi K. Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4. J Biol Chem 2017; 292:15426-15433. [PMID: 28760826 DOI: 10.1074/jbc.m117.788596] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/28/2017] [Indexed: 12/27/2022] Open
Abstract
The intestinal tract contains many commensal bacteria that modulate various physiological host functions. Dysbiosis of commensal bacteria triggers dysfunction of the intestinal epithelial barrier, leading to the induction or aggravation of intestinal inflammation. To elucidate whether microRNA plays a role in commensal microbiome-dependent intestinal epithelial barrier regulation, we compared transcripts in intestinal epithelial cells (IECs) from conventional and germ-free mice and found that commensal bacteria induced the expression of miR-21-5p in IECs. miR-21-5p increased intestinal epithelial permeability and up-regulated ADP ribosylation factor 4 (ARF4), a small GTPase, in the IEC line Caco-2. We also found that ARF4 expression was up-regulated upon suppression of phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4), which are known miR-21-5p targets, by RNAi. Furthermore, ARF4 expression in epithelial cells of the large intestine was higher in conventional mice than in germ-free mice. ARF4 suppression in the IEC line increased the expression of tight junction proteins and decreased intestinal epithelial permeability. These results indicate that commensal microbiome-dependent miR-21-5p expression in IECs regulates intestinal epithelial permeability via ARF4, which may therefore represent a target for preventing or managing dysfunction of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Kazuaki Nakata
- From the College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Yutaka Sugi
- From the College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Hikari Narabayashi
- From the College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Tetsuro Kobayakawa
- From the College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Yusuke Nakanishi
- From the College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Masato Tsuda
- From the College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Akira Hosono
- From the College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Shuichi Kaminogawa
- From the College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Shigemasa Hanazawa
- From the College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Kyoko Takahashi
- From the College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| |
Collapse
|
109
|
Sun LN, Xing C, Zhi Z, Liu Y, Chen LY, Shen T, Zhou Q, Liu YH, Gan WJ, Wang JR, Xu Y, Li JM. Dicer suppresses cytoskeleton remodeling and tumorigenesis of colorectal epithelium by miR-324-5p mediated suppression of HMGXB3 and WASF-2. Oncotarget 2017; 8:55776-55789. [PMID: 28915552 PMCID: PMC5593523 DOI: 10.18632/oncotarget.18218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/12/2017] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence indicates that microRNAs, a class of small and well-conserved noncoding RNAs, participate in many physiological and pathological processes. RNase III endonuclease DICER is one of the key enzymes for microRNA biogenesis. Here, we found that DICER was downregulated in tumor samples of colorectal cancer (CRC) patients at both mRNA and protein levels. Importantly, intestinal epithelial cell (IEC)-specific deletion of Dicer mice got more tumors after azoxymethane and dextran sulfate sodium (DSS) administration. Interestingly, IEC-specific deletion of Dicer led to severe chronic inflammation and epithelium layer remodeling in mice with or without DSS administration. Microarray analysis of 3 paired Dicer deletion CRC cell lines showed that miR-324-5p was one of the most significantly decreased miRNAs. In the intestinal epithelium of IEC-specific deletion of Dicer mice, miR-324-5p was also found to be markedly reduced. Mechanistically, miR-324-5p directly bound to the 3′untranslated regions (3′UTRs) of HMG-box containing 3 (HMGXB3) and WAS protein family member 2 (WASF-2), two key proteins participated in cell motility and cytoskeleton remodeling, to suppress their expressions. Intraperitoneal injection of miR-324-5p AgomiR (an agonist of miR-324-5p) curtailed chronic inflammation and cytoskeleton remodeling of colorectal epithelium and restored intestinal barrier function in IEC-specific deletion of Dicer mice induced by DSS. Therefore, our study reveals a key role of a DICER/miR-324-5p/HMGXB3/WASF-2 axis in tumorigenesis of CRC by regulation of cytoskeleton remodeling and maintaining integrity of intestinal barriers.
Collapse
Affiliation(s)
- Li Na Sun
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Cheng Xing
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Zheng Zhi
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Yao Liu
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Liang-Yan Chen
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Tong Shen
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Qun Zhou
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Yu Hong Liu
- Department of Pathology, Baoan Hospital, Southern Medical University, Shenzhen, People's Republic of China
| | - Wen Juan Gan
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Jing-Ru Wang
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| | - Yong Xu
- Department of Pathophysiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian Ming Li
- Department of Pathology and Pathophysiology, Soochow University Medical School, Suzhou, People's Republic of China
| |
Collapse
|
110
|
Zhu Y, Wang W, Yuan T, Fu L, Zhou L, Lin G, Zhao S, Zhou H, Wu G, Wang J. MicroRNA-29a mediates the impairment of intestinal epithelial integrity induced by intrauterine growth restriction in pig. Am J Physiol Gastrointest Liver Physiol 2017; 312:G434-G442. [PMID: 28280141 DOI: 10.1152/ajpgi.00020.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/22/2017] [Accepted: 03/06/2017] [Indexed: 01/31/2023]
Abstract
An important characteristic of intrauterine growth restricted (IUGR) neonate is the impaired intestinal barrier function. With the use of a pig model, this study was conducted to identify the responsible microRNA (miRNA) for the intestinal damage in IUGR neonates through comparing the miRNA profile of IUGR and normal porcine neonates and to investigate the regulation mechanism. Compared with the normal ones, we identified 83 upregulated and 76 downregulated miRNAs in the jejunum of IUGR pigs. Notably, IUGR is associated with profoundly increasesd miR-29 family and decreased expression of extracellular matrix (ECM) and tight junction (TJ) proteins in the jejunum. Furthermore, in vitro study using theporcine intestinal epithelial cell line (IPEC-1) showed that inhibition of miR-29a expression could improve the monolayer integrity by increasing cell proliferation and transepithelial resistance. Also, overexpression/inhibition of miR-29a in IPEC-1 cells can suppress/increase the expression of integrin-β1, collagen I, collagen IV, fibronectin, and claudin 1, both at transcriptional and translational levels. Subsequent luciferase reporter assay confirmed a direct interaction between miR-29a and the 3'-untranslated regions of these genes. In conclusion, this study reveals that IUGR-impaired intestinal barrier function is associated with downregulated ECM and TJ protein expression mediated by the upregulation of miR-29a.NEW & NOTEWORTHY Intrauterine growth restricted (IUGR) remains a major problem for both human health and animal production due to its association with high rates of preweaning morbidity and mortality. We have identified the abnormal expression of microRNA-29a (miR-29a) in the small intestine of IUGR neonates, as well as its targets and mechanisms. These results provide new information about biological characteristics of IUGR-affected intestinal dysfunction and can lead to the development of potentially solution for preventing and treating IUGR in the future.
Collapse
Affiliation(s)
- Yuhua Zhu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Taolin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Liangliang Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lian Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gang Lin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California; and
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China.,Department of Animal Science, Texas A&M University, College Station, Texas
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China, Agricultural University, Beijing, China;
| |
Collapse
|
111
|
He C, Yu T, Shi Y, Ma C, Yang W, Fang L, Sun M, Wu W, Xiao F, Guo F, Chen M, Yang H, Qian J, Cong Y, Liu Z. MicroRNA 301A Promotes Intestinal Inflammation and Colitis-Associated Cancer Development by Inhibiting BTG1. Gastroenterology 2017; 152:1434-1448.e15. [PMID: 28193514 DOI: 10.1053/j.gastro.2017.01.049] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/15/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Intestinal tissues from patients with inflammatory bowel disease (IBD) and colorectal cancer have increased expression of microRNA-301a (MIR301A) compared with tissues from patients without IBD. We studied the mechanisms of MIR301A in the progression of IBD in human tissues and mice. METHODS We isolated intestinal epithelial cells (IECs) from biopsy samples of the colon from 153 patients with different stages of IBD activity, 6 patients with colitis-associated cancer (CAC), and 35 healthy individuals (controls), enrolled in the study in Shanghai, China. We measured expression of MIR301A and BTG anti-proliferation factor 1 (BTG1) by IECs using quantitative reverse-transcription polymerase chain reaction. Human colon cancer cell lines (HCT-116 and SW480) were transfected with a lentivirus that expresses MIR301A; expression of cytokines and tight junction proteins were measured by quantitative reverse transcription polymerase chain reaction, flow cytometry, and immunofluorescence staining. We generated mice with disruption of the microRNA-301A gene (MIR301A-knockout mice), and also studied mice that express a transgene-encoding BTG1. Colitis was induced in knockout, transgenic, and control (C57BL/B6) mice by administration of dextran sulfate sodium (DSS), and mice were given azoxymethane to induce colorectal carcinogenesis. Colons were collected and analyzed histologically and by immunohistochemistry; tumor nodules were counted and tumor size was measured. SW480 cells expressing the MIR301A transgene were grown as xenograft tumors in nude mice. RESULTS Expression of MIR301A increased in IECs from patients with IBD and CAC compared with controls. MIR301A-knockout mice were resistant to the development of colitis following administration of DSS; their colon tissues expressed lower levels of interleukin 1β (IL1β), IL6, IL8, and tumor necrosis factor than colons of control mice. Colon tissues from MIR301A-knockout mice had increased epithelial barrier integrity and formed fewer tumors following administration of azoxymethane than control mice. Human IECs expressing transgenic MIR301A down-regulated expression of cadherin 1 (also called E-cadherin or CDH1). We identified BTG1 mRNA as a target of MIR301A; levels of BTG1 mRNA were reduced in inflamed mucosa from patients with active IBD compared with controls. There was an inverse correlation between levels of BTG1 mRNA and levels of MIR301A in inflamed mucosal tissues from patients with active IBD. Human colon cancer cell lines that expressed a MIR301A transgene increased proliferation; they had increased permeability and decreased expression of CDH1 compared with cells transfected with a control vector, indicating reduced intestinal barrier function. BTG1 transgenic mice developed less severe colitis than control mice following administration of DSS. SW480 cells expressing anti-MIR301A formed fewer xenograft tumors in nude mice than cells expressing a control vector. CONCLUSIONS Levels of MIR301A are increased in IECs from patients with active IBD. MIR301A reduces expression of BTG1 to reduce epithelial integrity and promote inflammation in mouse colon and promotes tumorigenesis. Strategies to decrease levels of MIR301A in colon tissues might be developed to treat patients with IBD and CAC.
Collapse
Affiliation(s)
- Chong He
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Tianming Yu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yan Shi
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Caiyun Ma
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wenjing Yang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Leilei Fang
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Mingming Sun
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Fei Xiao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, the Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Feifan Guo
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, the Graduate School of the Chinese Academy of Sciences, Shanghai, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaming Qian
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX.
| | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
112
|
Camilleri M, Halawi H, Oduyebo I. Biomarkers as a diagnostic tool for irritable bowel syndrome: where are we? Expert Rev Gastroenterol Hepatol 2017; 11:303-316. [PMID: 28128666 DOI: 10.1080/17474124.2017.1288096] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is a common condition in clinical practice. There are currently no objective tests to rule in the disease, but rather tests to rule out other diseases. Biomarkers in IBS may provide the tools needed for diagnosis, prognosis and therapy. These include identification of differences in microbial composition, immune activation, bile acid composition, colonic transit, and alteration in sensation in subgroups of IBS patients. Areas covered: Studies included in our review were chosen based on a PubMed search for 'biomarkers' and 'IBS'. We have reviewed the literature on biomarkers to appraise their accuracy, validity and whether they are actionable. We have not covered genetic associations as biomarkers in this review. Expert commentary: There is significant promise in the usefulness of biomarkers for IBS. The most promising actionable biomarkers are markers of changes in bile acid balance, such as elevated bile acid in the stool, and altered colonic transit. However, there is also potential for microbial studies and mucosal proteases as future actionable biomarkers.
Collapse
Affiliation(s)
- Michael Camilleri
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| | - Houssam Halawi
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| | - Ibironke Oduyebo
- a Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.) , Mayo Clinic , Rochester , MN, USA
| |
Collapse
|
113
|
Ho SC, Wu SM, Feng PH, Liu WT, Chen KY, Chuang HC, Chan YF, Kuo LW, Lee KY. Noncanonical NF-κB mediates the Suppressive Effect of Neutrophil Elastase on IL-8/CXCL8 by Inducing NKRF in Human Airway Smooth Muscle. Sci Rep 2017; 7:44930. [PMID: 28322300 PMCID: PMC5359717 DOI: 10.1038/srep44930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/16/2017] [Indexed: 01/06/2023] Open
Abstract
Neutrophil elastase (NE) suppresses IL-8/CXCL8 in human airway smooth muscle cells (hASM) while stimulating its production in respiratory epithelial cells. This differential effect is mediated by the selective induction of NKRF and dysregulation in chronic inflammatory diseases. We hypothesized that the differential activation of NF-κB subunits confer the opposite effect of NKRF on IL-8/CXCL8 in primary hASM and A549 cells stimulated with NE. The events occurring at the promoters of NKRF and IL-8/CXCL8 were observed by ChIP assays, and the functional role of RelB was confirmed by knockdown and overexpression. Although p65 was stimulated in both cell types, RelB was only activated in NE-treated hASM, as confirmed by NF-κB DNA binding ELISA, Western blotting and confocal microscopy. Knockdown of RelB abolished the induction of NKRF and converted the suppression of IL-8/CXCL8 to stimulation. The forced expression of RelB induced NKRF production in hASM and A549 cells. NE activated the NIK/IKK1/RelB non-canonical NF-κB pathway in hASM but not in A549. The nuclear-translocated RelB was recruited to the NKRF promoter around the putative κB site, accompanied by p52 and RNA polymerase II. In conclusion, NFRF is a novel RelB-response gene, and NE is a stimulator of the non-canonical RelB/NF-κB pathway in hASM.
Collapse
Affiliation(s)
- Shu-Chuan Ho
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yao-Fei Chan
- Division of Pulmonary Oncology and Interventional Bronchoscopy, Department of Thoracic Medicine, Chang-Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lu-Wei Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
114
|
Lechuga S, Ivanov AI. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1183-1194. [PMID: 28322932 DOI: 10.1016/j.bbamcr.2017.03.007] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
115
|
Ranganathan P, Ngankeu A, Zitzer NC, Leoncini P, Yu X, Casadei L, Challagundla K, Reichenbach DK, Garman S, Ruppert AS, Volinia S, Hofstetter J, Efebera YA, Devine SM, Blazar BR, Fabbri M, Garzon R. Serum miR-29a Is Upregulated in Acute Graft-versus-Host Disease and Activates Dendritic Cells through TLR Binding. THE JOURNAL OF IMMUNOLOGY 2017; 198:2500-2512. [PMID: 28159900 DOI: 10.4049/jimmunol.1601778] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Abstract
Acute graft-versus-host disease (aGVHD) continues to be a frequent and devastating complication of allogeneic hematopoietic stem cell transplantation (HSCT), posing as a significant barrier against the widespread use of HSCTs as a curative modality. Recent studies suggested serum/plasma microRNAs (miRs) may predict aGVHD onset. However, little is known about the functional role of circulating miRs in aGVHD. In this article, we show in two independent cohorts that miR-29a expression is significantly upregulated in the serum of allogeneic HSCT patients at aGVHD onset compared with non-aGVHD patients. Serum miR-29a is also elevated as early as 2 wk before time of diagnosis of aGVHD compared with time-matched control subjects. We demonstrate novel functional significance of serum miR-29a by showing that miR-29a binds and activates dendritic cells via TLR7 and TLR8, resulting in the activation of the NF-κB pathway and secretion of proinflammatory cytokines TNF-α and IL-6. Treatment with locked nucleic acid anti-miR-29a significantly improved survival in a mouse model of aGVHD while retaining graft-versus-leukemia effects, unveiling a novel therapeutic target in aGVHD treatment or prevention.
Collapse
Affiliation(s)
- Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Apollinaire Ngankeu
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - PierPaolo Leoncini
- Department of Oncohematology, Bambino Gesù Children's Hospital, Rome 00165, Italy
| | - Xueyan Yu
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Lucia Casadei
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210
| | - Kishore Challagundla
- Department of Pediatrics, University of Southern California-Keck School of Medicine, Norris Comprehensive Cancer Center, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027
| | - Dawn K Reichenbach
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and
| | - Sabrina Garman
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Amy S Ruppert
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Stefano Volinia
- Department of Anatomy, Surgery and Experimental Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Jessica Hofstetter
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Yvonne A Efebera
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Steven M Devine
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455; and
| | - Muller Fabbri
- Department of Pediatrics, University of Southern California-Keck School of Medicine, Norris Comprehensive Cancer Center, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, CA 90027
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210;
| |
Collapse
|
116
|
Li Y, Lai S, Wang R, Zhao Y, Qin H, Jiang L, Li N, Fu Q, Li C. RNA-Seq Analysis of the Antioxidant Status and Immune Response of Portunus trituberculatus Following Aerial Exposure. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:89-101. [PMID: 28138936 DOI: 10.1007/s10126-017-9731-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Desiccation tolerance has been long considered as an important trait for the life survival under acute environmental stress. One of the biggest problems for modern commercial crab farming is desiccation during transportation; high mortality could occur following the aerial exposure. In this regard, here, we utilized RNA-seq-based transcriptome profiling to characterize the molecular responses of swimming crab in response to aerial exposure. In present study, following aerial exposure, the gill samples were sequenced at 0, 6, 12, and 18 h. And the sequenced reads were assembled into 274,594 contigs, with average length of 735.59 bp and N50 size of 1262 bp. After differential expression analysis, a total of 1572 genes were captured significantly differentially expressed, and were categorized into antioxidant/oxidative stress response, chaperones/heat shock proteins, immune alteration, cell proliferation/apoptosis, and cytoskeletal. Our analysis revealed the dramatic tissue oxidant stress and the alteration of the tissue epithelial integrity, especially many genes that have not been reported in crab species. With the limited functional information in crab, further studies are needed and underway in our lab to further characterize the key cellular actors governing the crab tolerance to aerial exposure. Taken together, our results provide molecular resources for further identification of key genes for desiccation tolerance, and to facilitate the molecular selection and breeding of desiccation tolerant strain and family.
Collapse
Affiliation(s)
- Yuquan Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoumin Lai
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Renjie Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuchao Zhao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hao Qin
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lingxu Jiang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Na Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
117
|
Ren HX, Zhang FC, Luo HS, Zhang G, Liang LX. Role of mast cell-miR-490-5p in irritable bowel syndrome. World J Gastroenterol 2017; 23:93-102. [PMID: 28104984 PMCID: PMC5221290 DOI: 10.3748/wjg.v23.i1.93] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the functional role of miR-490-5p in mast cell proliferation and apoptosis, and in the mast cell tryptase/PAR-2 signal pathway.
METHODS The 3rd generation of lentivirus vector systems containing enhanced green fluorescent protein (EGFP) (Ruisai Inc., Shanghai, China), which acts as a reporter gene was used to construct the mmu-miR-490-5p lentivirus expression vector pEGFP-antagomiR-490-5p, and the lentivirus vector pEGFP-negative was used as a negative control. The stably transfected mast cell line p815 was then constructed. GFP positive cells were successfully transfected cells. We determined the expression of miR-490-5p in p815 mast cells before and after transfection using quantitative real-time PCR (qRT-PCR). In addition, after transduction with the lentivirus vectors, the role of miR-490-5p in mast cell proliferation and apoptosis was investigated using the CCK-8 assay and flow cytometry, respectively. The mRNA levels of tryptase and PAR-2 were detected by qRT-PCR and the protein levels were detected by Western blot.
RESULTS The inhibition of miR-490-5p expression promoted apoptosis and inhibited proliferation of p815 mast cells. The mRNA levels of tryptase and PAR-2 were significantly increased after transfection compared with the control group, tryptase (P = 0.721, normal vs null; P = 0.001, siRNA vs normal; P = 0.002, siRNA vs null) and PAR-2 (P = 0.027, siRNA vs null; P = 0.353, normal vs null; P = 0.105, siRNA vs normal). The protein levels of tryptase and PAR2 were slightly higher in the siRNA group than those in the control group, but the difference was not statistically significant (P > 0.05).
CONCLUSION miR-490-5p plays a vital role in the pathogenesis of irritable bowel syndrome by affecting mast cell proliferation and apoptosis; with down-regulation of miR-490-5p, the mRNA level of mast cell tryptase and PAR-2 increased, and the protein level increased, but the difference was not statistically significant.
Collapse
|
118
|
González-Castro AM, Martínez C, Salvo-Romero E, Fortea M, Pardo-Camacho C, Pérez-Berezo T, Alonso-Cotoner C, Santos J, Vicario M. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome. J Gastroenterol Hepatol 2017; 32:53-63. [PMID: 27087165 DOI: 10.1111/jgh.13417] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 12/16/2022]
Abstract
Irritable bowel syndrome (IBS) is one of the most prevalent gastrointestinal disorders in developed countries. Its etiology remains unknown; however, a common finding, regardless of IBS subtype, is the presence of altered intestinal barrier. In fact, signaling and location of cell-to-cell adhesion proteins, in connection with increased immune activity, seem abnormal in the intestinal epithelium of IBS patients. Despite that most research is performed on distal segments of the intestine, altered permeability has been reported in both, the small and the large bowel of all IBS subtypes. The small intestine carries out digestion and nutrient absorption and is also the site where the majority of immune responses to luminal antigens takes place. In fact, the upper intestine is more exposed to environmental antigens than the colon and is also a site of symptom generation. Recent studies have revealed small intestinal structural alterations of the epithelial barrier and mucosal immune activation in association with intestinal dysfunction, suggesting the commitment of the intestine as a whole in the pathogenesis of IBS. This review summarizes the most recent findings on mucosal barrier alterations and its relationship to symptoms arising from the small intestine in IBS, including epithelial structural abnormalities, mucosal immune activation, and microbial dysbiosis, further supporting the hypothesis of an organic origin of IBS.
Collapse
Affiliation(s)
- Ana M González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Human Molecular Genetics, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Eloísa Salvo-Romero
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina Fortea
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Pardo-Camacho
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Pérez-Berezo
- Inserm, U1043, Toulouse, France.,Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - María Vicario
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
119
|
Achamrah N, Déchelotte P, Coëffier M. Glutamine and the regulation of intestinal permeability: from bench to bedside. Curr Opin Clin Nutr Metab Care 2017; 20:86-91. [PMID: 27749689 DOI: 10.1097/mco.0000000000000339] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Glutamine is the most abundant amino acid in plasma and plays a key role in maintaining the integrity of intestinal barrier. RECENT FINDINGS Experimental studies showed that glutamine is able to modulate intestinal permeability and tight junction protein expression in several conditions. Recent articles underlined its putative beneficial role in gastrointestinal disorders such as irritable bowel syndrome. SUMMARY Glutamine is a major nutrient to maintain intestinal barrier function in animals and humans. Depletion of glutamine results in villus atrophy, decreased expression of tight junction proteins and increased intestinal permeability. Moreover, glutamine supplementation can improve gut barrier function in several experimental conditions of injury and in some clinical situations. Furthermore, preventive effects of glutamine in experimental models of intestinal injuries have been recently reported. Despite promising data in experimental models, further studies are needed to evaluate glutamine supplementation in clinical practice.
Collapse
Affiliation(s)
- Najate Achamrah
- aNormandie Univ bINSERM UMR 1073 'Nutrition, Inflammation and Dysfunction of Gut-brain Axis', University of Rouen cNutrition Department, Rouen University Hospital, Rouen, France
| | | | | |
Collapse
|
120
|
Reinhold AK, Rittner HL. Barrier function in the peripheral and central nervous system-a review. Pflugers Arch 2016; 469:123-134. [PMID: 27957611 DOI: 10.1007/s00424-016-1920-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 11/29/2022]
Abstract
The peripheral (PNS) and central nervous system (CNS) are delicate structures, highly sensitive to homeostatic changes-and crucial for basic vital functions. Thus, a selection of barriers ensures the protection of the nervous system from noxious blood-borne or surrounding stimuli. In this chapter, anatomy and functioning of the blood-nerve (BNB), the blood-brain (BBB), and the blood-spinal cord barriers (BSCB) are presented and the key tight junction (TJ) proteins described: claudin-1, claudin-3, claudin-5, claudin-11, claudin-12, claudin-19, occludin, Zona occludens-1 (ZO-1), and tricellulin are by now identified as relevant for nerval barriers. Different diseases can lead to or be accompanied by neural barrier disruption, and impairment of these barriers worsens pathology. Peripheral nerve injury and inflammatory polyneuropathy cause an increased permeability of BNB as well as BSCB, while, e.g., diseases of the CNS such as amyotrophic lateral sclerosis, multiple sclerosis, spinal cord injury, or Alzheimer's disease can progress and worsen through barrier dysfunction. Moreover, the complex role and regulation of the BBB after ischemic stroke is described. On the other side, PNS and CNS barriers hamper the delivery of drugs in diseases when the barrier is intact, e.g., in certain neurodegenerative diseases or inflammatory pain. Understanding of the barrier - regulating processes has already lead to the discovery of new molecules as drug enhancers. In summary, the knowledge of all of these mechanisms might ultimately lead to the invention of drugs to control barrier function to help ameliorating or curing neurological diseases.
Collapse
Affiliation(s)
- A K Reinhold
- Department of Anesthesiology, University Hospitals Wuerzburg, Oberduerrbacher Str. 6, 97080, Wuerzburg, Germany.
| | - H L Rittner
- Department of Anesthesiology, University Hospitals Wuerzburg, Oberduerrbacher Str. 6, 97080, Wuerzburg, Germany
| |
Collapse
|
121
|
Chumpitazi BP, Shulman RJ. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome. Mol Cell Pediatr 2016; 3:11. [PMID: 26883355 PMCID: PMC4755958 DOI: 10.1186/s40348-016-0036-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/04/2016] [Indexed: 12/17/2022] Open
Abstract
Irritable bowel syndrome (IBS) affects a large number of children throughout the world. The symptom expression of IBS is heterogeneous, and several factors which may be interrelated within the IBS biopsychosocial model play a role. These factors include visceral hyperalgesia, intestinal permeability, gut microbiota, psychosocial distress, gut inflammation, bile acids, food intolerance, colonic bacterial fermentation, and genetics. The molecular and cellular mechanisms of these factors are being actively investigated. In this mini-review, we present updates of these mechanisms and, where possible, relate the findings to childhood IBS. Mechanistic elucidation may lead to the identification of biomarkers as well as personalized childhood IBS therapies.
Collapse
Affiliation(s)
- Bruno P Chumpitazi
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, 77030, TX, USA.
- Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, 6621 Fannin Street, 77030, Houston, TX, USA.
| | - Robert J Shulman
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, 77030, TX, USA.
- Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, 6621 Fannin Street, 77030, Houston, TX, USA.
- Children's Nutrition Research Center, 1100 Bates Avenue, Houston, 77030, TX, USA.
| |
Collapse
|
122
|
Camilleri M, Oduyebo I, Halawi H. Chemical and molecular factors in irritable bowel syndrome: current knowledge, challenges, and unanswered questions. Am J Physiol Gastrointest Liver Physiol 2016; 311:G777-G784. [PMID: 27609770 PMCID: PMC5130552 DOI: 10.1152/ajpgi.00242.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/31/2016] [Indexed: 02/08/2023]
Abstract
Several chemical and molecular factors in the intestine are reported to be altered and to have a potentially significant role in irritable bowel syndrome (IBS), particularly in IBS with diarrhea. These include bile acids; short-chain fatty acids; mucosal barrier proteins; mast cell products such as histamine, proteases, and tryptase; enteroendocrine cell products; and mucosal mRNAs, proteins, and microRNAs. This article reviews the current knowledge and unanswered questions in the pathobiology of the chemical and molecular factors in IBS. Evidence continues to point to significant roles in pathogenesis of these chemical and molecular mechanisms, which may therefore constitute potential targets for future research and therapy. However, it is still necessary to address the interaction between these factors in the gut and to appraise how they may influence hypervigilance in the central nervous system in patients with IBS.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
123
|
Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease. Nutrients 2016; 8:nu8110684. [PMID: 27801835 PMCID: PMC5133072 DOI: 10.3390/nu8110684] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 12/15/2022] Open
Abstract
The composition of the gut microbiome reflects the overall health status of the host. In this study, stool samples representing the gut microbiomes from 6 gluten-sensitive (GS) captive juvenile rhesus macaques were compared with those from 6 healthy, age- and diet-matched peers. A total of 48 samples representing both groups were studied using V4 16S rRNA gene DNA analysis. Samples from GS macaques were further characterized based on type of diet administered: conventional monkey chow, i.e., wheat gluten-containing diet (GD), gluten-free diet (GFD), barley gluten-derived diet (BOMI) and reduced gluten barley-derived diet (RGB). It was hypothesized that the GD diet would lower the gut microbial diversity in GS macaques. This is the first report illustrating the reduction of gut microbial alpha-diversity (p < 0.05) following the consumption of dietary gluten in GS macaques. Selected bacterial families (e.g., Streptococcaceae and Lactobacillaceae) were enriched in GS macaques while Coriobacteriaceae was enriched in healthy animals. Within several weeks after the replacement of the GD by the GFD diet, the composition (beta-diversity) of gut microbiome in GS macaques started to change (p = 0.011) towards that of a normal macaque. Significance for alpha-diversity however, was not reached by the day 70 when the feeding experiment ended. Several inflammation-associated microRNAs (miR-203, -204, -23a, -23b and -29b) were upregulated (p < 0.05) in jejunum of 4 biopsied GS macaques fed GD with predicted binding sites on 16S ribosomal RNA of Lactobacillus reuteri (accession number: NR_025911), Prevotella stercorea (NR_041364) and Streptococcus luteciae (AJ297218) that were overrepresented in feces. Additionally, claudin-1, a validated tight junction protein target of miR-29b was significantly downregulated in jejunal epithelium of GS macaques. Taken together, we predict that with the introduction of effective treatments in future studies the diversity of gut microbiomes in GS macaques will approach those of healthy individuals. Further studies are needed to elucidate the regulatory pathways of inflammatory miRNAs in intestinal mucosa of GS macaques and to correlate their expression with gut dysbiosis.
Collapse
|
124
|
Tao W, Dong X, Kong G, Fang P, Huang X, Bo P. Elevated Circulating hsa-miR-106b, hsa-miR-26a, and hsa-miR-29b in Type 2 Diabetes Mellitus with Diarrhea-Predominant Irritable Bowel Syndrome. Gastroenterol Res Pract 2016; 2016:9256209. [PMID: 27635130 PMCID: PMC5011218 DOI: 10.1155/2016/9256209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Background and Aims. Although the differential expression of microRNA (miRNA) genes has been identified in many diseases, little information exists concerning the miRNA expression profile in type 2 diabetes mellitus (T2DM) with diarrhea-predominant irritable bowel syndrome (D-IBS). Therefore, the specific expression of miRNAs in diabetes with D-IBS is identified in the study. Materials and Methods. 201 patients with IBS and 220 matched healthy controls were included in the study. Microarray technology and real-time reverse transcriptase-polymerase chain reaction analysis (RT-PCR) were taken to examine the miRNA expression profiles of T2DM patients with diarrhea-predominant irritable bowel syndrome (D-IBS) compared with patients with T2DM, patients with D-IBS, and control subjects. Results. We have found that 35 miRNAs were differentially expressed in T2DM with D-IBS, in which three representative miRNAs, hsa-miR-106b, hsa-miR-26a, and hsa-miR-29b, were found to be significantly elevated in T2DM with D-IBS by RT-PCR. Conclusions. Our study has indicated that hsa-miR-106b, hsa-miR-26a, and hsa-miR-29b were elevated in T2DM with D-IBS, which may be the potential biomarkers of T2DM with D-IBS. To obtain a better understanding of the biological functions of these miRNAs in T2DM with D-IBS, functional annotation analysis suggested that the MAPK pathway may be responsible for T2DM with D-IBS.
Collapse
Affiliation(s)
- Wenhua Tao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical School of Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu 225001, China
| | - Xiaoyun Dong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical School of Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu 225001, China
| | - Guimei Kong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical School of Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu 225001, China
| | - Penghua Fang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical School of Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu 225001, China
| | - Xiaoli Huang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical School of Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu 225001, China
| | - Ping Bo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical School of Yangzhou University, No. 11 Huaihai Road, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
125
|
Ghouzali I, Lemaitre C, Bahlouli W, Azhar S, Bôle-Feysot C, Meleine M, Ducrotté P, Déchelotte P, Coëffier M. Targeting immunoproteasome and glutamine supplementation prevent intestinal hyperpermeability. Biochim Biophys Acta Gen Subj 2016; 1861:3278-3288. [PMID: 27544233 DOI: 10.1016/j.bbagen.2016.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 08/15/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal hyperpermeability has been reported in several intestinal and non-intestinal disorders. We aimed to investigate the role of the ubiquitin proteasome system in gut barrier regulation in two mice models: the water avoidance stress model (WAS) and a post-inflammatory model (post-TNBS). METHODS Both models were applied in C57BL/6 male mice (n=7-8/group); Proteasome was targeted by injection of a selective proteasome inhibitor or by using knock-out mice for β2i proteasome subunit. Finally, glutamine supplementation was evaluated. RESULTS In both models (WAS at day 10, post-TNBS at day 28), we observed an increase in proteasome trypsin-like activity and in inducible β2/constitutive β2 subunit protein expression ratio, associated with an increase in intestinal permeability. Moreover, intestinal hyperpermeability was blunted by intraperitoneal injection of selective proteasome inhibitor in WAS and post-TNBS mice. Of note, knock-out mice for the β2i subunit exhibited a significant decrease in intestinal permeability and fecal pellet output during WAS. Glutamine supplementation also improved colonic permeability in both models. CONCLUSIONS In conclusion, the proteasome system is altered in the colonic mucosa of WAS and post-TNBS mice with increased trypsin-like activity. Associated intestinal hyperpermeability was blunted by immunoproteasome inhibition.
Collapse
Affiliation(s)
- Ibtissem Ghouzali
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Caroline Lemaitre
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Wafa Bahlouli
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Saïda Azhar
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Christine Bôle-Feysot
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Mathieu Meleine
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Philippe Ducrotté
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Pierre Déchelotte
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Nutrition, Rouen University Hospital, Rouen, France
| | - Moïse Coëffier
- Normandie Univ, INSERM unit 1073, Nutrition, Inflammation and Gut-brain axis, Rouen, France; Rouen University, Institute for Research and Innovation in Biomedicine, Rouen, France; Department of Nutrition, Rouen University Hospital, Rouen, France.
| |
Collapse
|
126
|
Abstract
The gastrointestinal mucosal barrier plays an essential role in the separation of the inside of the body from the outside environment. Tight junctions (TJs) are the most important component for construction of a constitutive barrier of epithelial cells, and they regulate the permeability of the barrier by tightly sealing the cell-cell junctions. TJ proteins are represented by claudins, occludin, junctional adhesion molecules, and scaffold protein zonula occludens. Among these TJ proteins, claudins are the major components of TJs and are responsible for the barrier and the polarity of the epithelial cells. Gastrointestinal diseases including reflux esophagitis, inflammatory bowel disease, functional gastrointestinal disorders, and cancers may be regulated by these molecules, and disruption of their functions leads to chronic inflammatory conditions and chronic or progressive disease. Therefore, regulation of the barrier function of epithelial cells by regulating the expression and localization of TJ proteins is a potential new target for the treatment of these diseases. Treatment strategies for these diseases might thus be largely altered if symptom generation and/or immune dysfunction could be regulated through improvement of mucosal barrier function. Since TJ proteins may also modify tumor infiltration and metastasis, other important goals include finding a good TJ biomarker of cancer progression and patient prognosis, and developing TJ protein-targeted therapies that can modify patient prognosis. This review summarizes current understanding of gastrointestinal barrier function, TJ protein expression, and the mechanisms underlying epithelial barrier dysregulation in gastrointestinal diseases.
Collapse
|
127
|
Greenwood-Van Meerveld B, Moloney RD, Johnson AC, Vicario M. Mechanisms of Stress-Induced Visceral Pain: Implications in Irritable Bowel Syndrome. J Neuroendocrinol 2016; 28. [PMID: 26749172 DOI: 10.1111/jne.12361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
Visceral pain is a term describing pain originating from the internal organs of the body and is a common feature of many disorders, including irritable bowel syndrome (IBS). Stress is implicated in the development and exacerbation of many visceral pain disorders. Recent evidence suggests that stress and the gut microbiota can interact through complementary or opposing factors to influence visceral nociceptive behaviours. The Young Investigator Forum at the International Society of Psychoneuroendocrinology (ISPNE) annual meeting reported experimental evidence suggesting the gut microbiota can affect the stress response to affect visceral pain. Building upon human imaging data showing abnormalities in the central processing of visceral stimuli in patients with IBS and knowledge that the amygdala plays a pivotal role in facilitating the stress axis, the latest experimental evidence supporting amygdala-mediated mechanisms in stress-induced visceral pain was reviewed. The final part of the session at ISPNE reviewed experimental evidence suggesting that visceral pain in IBS may be a result, at least in part, of afferent nerve sensitisation following increases in epithelial permeability and mucosal immune activation.
Collapse
Affiliation(s)
- B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- V.A. Medical Center, Oklahoma City, OK, USA
| | - R D Moloney
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - A C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - M Vicario
- Department of Gastroenterology, Neuro-immuno-gastroenterology Laboratory, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron & Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
128
|
Bertrand J, Ghouzali I, Guérin C, Bôle-Feysot C, Gouteux M, Déchelotte P, Ducrotté P, Coëffier M. Glutamine Restores Tight Junction Protein Claudin-1 Expression in Colonic Mucosa of Patients With Diarrhea-Predominant Irritable Bowel Syndrome. JPEN J Parenter Enteral Nutr 2016; 40:1170-1176. [DOI: 10.1177/0148607115587330] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/21/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Julien Bertrand
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Ibtissem Ghouzali
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Charlène Guérin
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Christine Bôle-Feysot
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Mélodie Gouteux
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
| | - Pierre Déchelotte
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
- Department of Nutrition, Rouen University Hospital, Rouen, France
| | - Philippe Ducrotté
- INSERM UMR1073, University of Rouen, Rouen, France
- Department of Gastroenterology, Rouen University Hospital, Rouen, France
| | - Moïse Coëffier
- INSERM UMR1073, University of Rouen, Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, Rouen, France
- Department of Nutrition, Rouen University Hospital, Rouen, France
| |
Collapse
|
129
|
Zhang Y, Li Y, Hao Z, Li X, Bo P, Gong W. Association of the Serotonin Receptor 3E Gene as a Functional Variant in the MicroRNA-510 Target Site with Diarrhea Predominant Irritable Bowel Syndrome in Chinese Women. J Neurogastroenterol Motil 2016; 22:272-81. [PMID: 26787495 PMCID: PMC4819866 DOI: 10.5056/jnm15138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 12/12/2022] Open
Abstract
Background/Aims The functional variant (rs56109847) in the 3′-untranslated regions (3′-UTR) of the serotonin receptor 3E (HTR3E) gene is associated with female diarrhea predominant irritable bowel syndrome (IBS-D) in British populations. However, the relationship of the polymorphism both to HTR3E expression in the intestine and to the occurrence of Chinese functional gastrointestinal disorders has yet to be examined. Methods Polymerase chain reaction amplification and restriction fragment length polymorphism analyses were employed to detect polymorphisms among Chinese Han women, particularly 107 patients with IBS-D, 99 patients with functional dyspepsia (FD), 115 patients with mixed IBS and 69 patients with IBS-D + FD. We also assessed microRNA-510 (miR-510) and HTR3E expression in human colonic mucosal tissues with immunohistochemistry and other methods. Dual-luciferase reporter assays were conducted to examine the binding ability of miR-510 and HTR3E 3′-UTR. Results Genotyping data showed the variant rs56109847 was significantly associated with IBS-D, but not with FD, mixed-IBS, or FD + IBS-D. HTR3E was abundantly expressed around the colonic mucosal glands but less expressed in the stroma. miR-510 expression decreased, whereas HTR3E expression increased in the colonic mucosal tissue of patients with IBS-D compared with those in controls. HTR3E expression was significantly higher in patients with the GA genotype than that in patients with the GG genotype. The single-nucleotide polymorphisms disrupted the binding site of miR-510 and significantly upregulated luciferase expression in HEK293 and HT-29 cells. Conclusions The single-nucleotide polymorphisms rs56109847 led to reduced microRNA binding and overexpression of the target gene in intestinal cells, thereby increasing IBS-D risk in the Chinese Han population. The decreased expression of miR-510 might contribute to IBS-D.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China
| | - Yaoyao Li
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, China.,Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zhenfeng Hao
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Xiangming Li
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Ping Bo
- Department of Chinese and Western Integrative Medicine, Medical College of Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, China.,Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Department of Immunology, School of Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
130
|
Enck P, Aziz Q, Barbara G, Farmer AD, Fukudo S, Mayer EA, Niesler B, Quigley EMM, Rajilić-Stojanović M, Schemann M, Schwille-Kiuntke J, Simren M, Zipfel S, Spiller RC. Irritable bowel syndrome. Nat Rev Dis Primers 2016; 2:16014. [PMID: 27159638 PMCID: PMC5001845 DOI: 10.1038/nrdp.2016.14] [Citation(s) in RCA: 655] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disease with a high population prevalence. The disorder can be debilitating in some patients, whereas others may have mild or moderate symptoms. The most important single risk factors are female sex, younger age and preceding gastrointestinal infections. Clinical symptoms of IBS include abdominal pain or discomfort, stool irregularities and bloating, as well as other somatic, visceral and psychiatric comorbidities. Currently, the diagnosis of IBS is based on symptoms and the exclusion of other organic diseases, and therapy includes drug treatment of the predominant symptoms, nutrition and psychotherapy. Although the underlying pathogenesis is far from understood, aetiological factors include increased epithelial hyperpermeability, dysbiosis, inflammation, visceral hypersensitivity, epigenetics and genetics, and altered brain-gut interactions. IBS considerably affects quality of life and imposes a profound burden on patients, physicians and the health-care system. The past decade has seen remarkable progress in our understanding of functional bowel disorders such as IBS that will be summarized in this Primer.
Collapse
Affiliation(s)
- Paul Enck
- Department of Internal Medicine VI (Psychosomatic Medicine and Psychotherapy), University Hospital Tübingen, Tübingen, Germany
| | - Qasim Aziz
- Wingate Institute of Neurogastroenterology, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, St. Orsola-Malpighi Hospital, Bologna, Italy
| | - Adam D Farmer
- Wingate Institute of Neurogastroenterology, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shin Fukudo
- Department of Behavioural Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emeran A Mayer
- Oppenheimer Center for Neurobiology of Stress, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Beate Niesler
- Department of Human Molecular Genetics, University of Heidelberg, Heidelberg, Germany
| | - Eamonn M M Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital, Weill Cornell Medical College, Houston, Texas, USA
| | - Mirjana Rajilić-Stojanović
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Michael Schemann
- Department of Human Biology, Technical University Munich, Freising-Weihenstephan, Germany
| | - Juliane Schwille-Kiuntke
- Department of Internal Medicine VI (Psychosomatic Medicine and Psychotherapy), University Hospital Tübingen, Tübingen, Germany
| | - Magnus Simren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephan Zipfel
- Department of Internal Medicine VI (Psychosomatic Medicine and Psychotherapy), University Hospital Tübingen, Tübingen, Germany
| | - Robin C Spiller
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, UK
| |
Collapse
|
131
|
Yang S, Krug SM, Heitmann J, Hu L, Reinhold AK, Sauer S, Bosten J, Sommer C, Fromm M, Brack A, Rittner HL. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials 2016; 82:20-33. [DOI: 10.1016/j.biomaterials.2015.11.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/15/2015] [Accepted: 11/29/2015] [Indexed: 01/07/2023]
|
132
|
Abstract
PURPOSE OF REVIEW This article evaluates the current status of the gut barrier in gastrointestinal disorders. RECENT FINDINGS The gut barrier is a complex, multicomponent, interactive, and bidirectional entity that includes, but is not restricted to, the epithelial cell layer. Intestinal permeability, the phenomenon most readily and commonly studied, reflects just one (albeit an important one) function of the barrier that is intimately related to and interacts with luminal contents, including the microbiota. The mucosal immune response also influences barrier integrity; effects of inflammation per se must be accounted for in the interpretation of permeability studies in disease states. SUMMARY Although several aspects of barrier function can be assessed in man, one must be aware of exactly what a given test measures, as well as of its limitations. The temptation to employ results from a test of paracellular flux to imply a role for barrier dysfunction in disorders thought to be based on bacterial or macromolecular translocation must be resisted. Although changes in barrier function have been described in several gastrointestinal disorders, their primacy remains to be defined. At present, few studies support efficacy for an intervention that improves barrier function in altering the natural history of a disease process.
Collapse
|
133
|
Gazouli M, Wouters MM, Kapur-Pojskić L, Bengtson MB, Friedman E, Nikčević G, Demetriou CA, Mulak A, Santos J, Niesler B. Lessons learned--resolving the enigma of genetic factors in IBS. Nat Rev Gastroenterol Hepatol 2016; 13:77-87. [PMID: 26726033 DOI: 10.1038/nrgastro.2015.206] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IBS is the most prevalent functional gastrointestinal disorder and phenotypically characterized by chronic abdominal discomfort, pain and altered defecation patterns. The pathophysiology of IBS is multifactorial, albeit with a substantial genetic component. To date, studies using various methodologies, ranging from family and twin studies to candidate gene approaches and genome-wide association studies, have identified several genetic variants in the context of IBS. Yet, despite enlarged sample sizes, increased statistical power and meta-analyses in the past 7 years, positive associations are still scarce and/or have not been reproduced. In addition, epigenetic and pharmacogenetic approaches remain in their infancy. A major hurdle is the lack of large homogenized case-control cohorts recruited according to standardized and harmonized criteria. The COST Action BM1106 GENIEUR (GENes in Irritable Bowel Syndrome Research Network EURope) has been established to address these obstacles. In this Review, the (epi)genetic working group of GENIEUR reports on the current state-of-the-art in the field, highlights fundamental flaws and pitfalls in current IBS (epi)genetic research and provides a vision on how to address and improve (epi)genetic approaches in this complex disorder in the future.
Collapse
Affiliation(s)
- Maria Gazouli
- Department of Basic Sciences, Laboratory of Biology, School of Medicine, University of Athens, Michalakopoulou 176, 11527 Athens, Greece
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders (TARGID), University Hospital Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Lejla Kapur-Pojskić
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Kemalbegova 10, 71.000 Sarajevo, Bosnia and Herzegovina
| | - May-Bente Bengtson
- Vestfold Hospital Trust, Tønsberg, Department of Internal Medicine, Division of Gastroenterology, P.O. Box 2168, 3103 Tønsberg, Norway
| | - Eitan Friedman
- The Suzanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Centre, 52621 Tel-Hashomer, Israel
| | - Gordana Nikčević
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 23 11010 Belgrade, Serbia
| | - Christiana A Demetriou
- Department of Electron Microscopy / Molecular Pathology, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Javier Santos
- Neuro-immuno-gastroenterology Lab, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca. Department of Gastroenterology, Hospital Universitari Vall d'Hebron &Facultat de Medicina, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Paseo Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Beate Niesler
- Institute of Human Genetics, Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| |
Collapse
|
134
|
Xiao L, Rao JN, Cao S, Liu L, Chung HK, Zhang Y, Zhang J, Liu Y, Gorospe M, Wang JY. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins. Mol Biol Cell 2015; 27:617-26. [PMID: 26680741 PMCID: PMC4750922 DOI: 10.1091/mbc.e15-10-0703] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022] Open
Abstract
Epithelial cells line the intestinal mucosa and form an important barrier to a wide array of noxious substances in the lumen. Disruption of the barrier integrity occurs commonly in various pathologies. Long noncoding RNAs (lncRNAs) control diverse biological processes, but little is known about the role of lncRNAs in regulation of the gut permeability. Here we show that the lncRNA SPRY4-IT1 regulates the intestinal epithelial barrier function by altering expression of tight junction (TJ) proteins. SPRY4-IT1 silencing led to dysfunction of the epithelial barrier in cultured cells by decreasing the stability of mRNAs encoding TJ proteins claudin-1, claudin-3, occludin, and JAM-1 and repressing their translation. In contrast, increasing the levels of SPRY4-IT1 in the intestinal mucosa protected the gut barrier in mice exposed to septic stress by increasing the abundance of TJ proteins. SPRY4-IT1 directly interacted with TJ mRNAs, and this process was enhanced through the association with the RNA-binding protein HuR. Of interest, the intestinal mucosa from patients with increased gut permeability exhibited a decrease in the levels of SPRY4-IT1. These findings highlight a novel role for SPRY4-IT1 in controlling the intestinal epithelial barrier and define a mechanism by which SPRY4-IT1 modulates TJ expression by altering the stability and translation of TJ mRNAs.
Collapse
Affiliation(s)
- Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Shan Cao
- Department of -Gastroenterology, People's Hospital, Peking University, Beijing 100044, China
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Yun Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Jennifer Zhang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201
| | - Yulan Liu
- Department of -Gastroenterology, People's Hospital, Peking University, Beijing 100044, China
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201 Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
135
|
Rother S, Bartels M, Schweda AT, Resch K, Pallua N, Nourbakhsh M. NF‐κB‐repressing factor phosphorylation regulates transcription elongation
via
its interactions with 5'→3' exoribonuclease 2 and negative elongation factor. FASEB J 2015; 30:174-85. [DOI: 10.1096/fj.15-270256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/31/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Sascha Rother
- Institute of Pharmacology, Hannover Medical SchoolHannoverGermany
| | - Myriam Bartels
- Institute of Pharmacology, Hannover Medical SchoolHannoverGermany
| | | | - Klaus Resch
- Institute of Pharmacology, Hannover Medical SchoolHannoverGermany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery and Burn CenterRheinisch‐Westfälische Technische Hochschule (RWTH) Aachen University HospitalAachenGermany
| | - Mahtab Nourbakhsh
- Department of Plastic and Reconstructive Surgery, Hand Surgery and Burn CenterRheinisch‐Westfälische Technische Hochschule (RWTH) Aachen University HospitalAachenGermany
| |
Collapse
|
136
|
Gradual Rarefaction of Hematopoietic Precursors and Atrophy in a Depleted microRNA 29a, b and c Environment. PLoS One 2015; 10:e0131981. [PMID: 26147501 PMCID: PMC4492741 DOI: 10.1371/journal.pone.0131981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/09/2015] [Indexed: 01/20/2023] Open
Abstract
Background The self-renewing ability of HSCs is fundamental for the maintenance of a pool of bone marrow precursors throughout the life of an individual. The genetic mechanisms underlying such a complex process are still poorly understood. Results and Significance Here, we show that constitutive in vivo deletion of miR29ab1 leads to reduced number of HSCs and that miR29ab1 deficient bone marrow cannot repopulate the bone marrow of irradiated mice. An Affymetrix analysis of the miR29ab1 knockout mice identifies key proteins that could be responsible for this phenotype, as DNMT3a and b. Moreover, our findings reveal that whereas miR29b2c knockout mice do not exhibit any spontaneous abnormality, the double knock out – miR29ab1b2c – has marked generalized atrophy, raising the possibility that the two bi-cistrons might cooperate in order to maintain the stem cell number in general, not only limited to the bone marrow.
Collapse
|
137
|
Claudins and cancer: Fall of the soldiers entrusted to protect the gate and keep the barrier intact. Semin Cell Dev Biol 2015; 42:58-65. [PMID: 26025580 DOI: 10.1016/j.semcdb.2015.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022]
Abstract
The role of the tight junctions (TJ) in controlling paracellular traffic of ions and molecules, through the regulation of claudin proteins, is now established. However, it has also become increasingly evident that claudin proteins, as integral components of the TJs, play crucial role in maintaining the cell-cell integrity. In conformity, deregulation of claudin expression and cellular distribution in cancer tissues has been widely documented and correlated with cancer progression and metastasis. However, this correlation is not unidirectional and rather suggests tissue specific regulations. Irrespective, if the widely described correlations between altered claudin expression and cancer initiation/progression could be established, they may serve as important markers for prognostic purposes and potential therapeutic targets. In this review, we summarize data from screening of the cancer tissues, manipulation of claudin expression in cells and animals subjected to cancer models, and how claudins are regulated in cancer. The focus of this article remains analysis of the association between cancer and the claudins and to decipher clinical relevance.
Collapse
|
138
|
Affiliation(s)
- QIQI ZHOU
- Division of Gastroenterology & Hepatology, University of Texas Medical Branch, Galveston, Texas
| | - G. NICHOLAS VERNE
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
139
|
Coëffier M, Déchelotte P, Ducrotté P. Intestinal permeability in patients with diarrhea-predominant irritable bowel syndrome: is there a place for glutamine supplementation? Gastroenterology 2015; 148:1079-80. [PMID: 25824359 DOI: 10.1053/j.gastro.2015.02.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/13/2015] [Indexed: 02/08/2023]
Affiliation(s)
- Moïse Coëffier
- INSERM Unit 1073, Institute for Research and Innovation in Biomedicine, Rouen University, Rouen, France
| | | | - Philippe Ducrotté
- Gastroenterology Department, Rouen University Hospital, Rouen, France
| |
Collapse
|