101
|
Affiliation(s)
- Paul K H Tam
- Department of Surgery and Genome Research Centre, The University of Hong Kong, Queen Mary Hospital K15, Pokfulam, Hong Kong, P.R. China.
| | | |
Collapse
|
102
|
McCallion AS, Emison ES, Kashuk CS, Bush RT, Kenton M, Carrasquillo MM, Jones KW, Kennedy GC, Portnoy ME, Green ED, Chakravarti A. Genomic variation in multigenic traits: Hirschsprung disease. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:373-81. [PMID: 15338639 DOI: 10.1101/sqb.2003.68.373] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A S McCallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Affiliation(s)
- Cheryl E Gariepy
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
104
|
Gaultier C, Amiel J, Dauger S, Trang H, Lyonnet S, Gallego J, Simonneau M. Genetics and early disturbances of breathing control. Pediatr Res 2004; 55:729-33. [PMID: 14739359 DOI: 10.1203/01.pdr.0000115677.78759.c5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Early disturbances in breathing control, including apneas of prematurity and apparently life-threatening events, account for some cases of sudden infant death syndrome and for a rare disorder called congenital central hypoventilation syndrome (CCHS). Data suggesting a genetic basis for CCHS have been obtained. Recently, we found heterozygous de novo mutations of the PHOX2B gene in 18 of 29 individuals with CCHS. Most mutations consisted of five to nine alanine expansions within a 20-residue polyalanine tract, probably resulting from nonhomologous recombination. Other mutations, generally inherited from one of the parents, in the coding regions of genes involved in the endothelin and RET signaling pathways and in the brain-derived-neurotrophic factor (BDNF) gene have been found in a few CCHS patients. Interestingly, all these genes are involved in the development of neural crest cells. Targeted disruption of these genes in mice has provided information on the pathophysiological mechanisms underlying CCHS. Despite the identification of these genes involved in breathing control, none of the genetically engineered mice developed to date replicate the full human CCHS respiratory phenotype. Recent insights into the genetic basis for CCHS may shed light on the genetics of other early disturbances in breathing control, such as apnea of prematurity and sudden infant death syndrome.
Collapse
Affiliation(s)
- Claude Gaultier
- INSERM E9935, Réanimation Médicale Pédiatrique, Hôpital Robert Debré, 75019 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
105
|
Kapur RP, Gershon MD, Milla PJ, Pachnis V. The influence of Hox genes and three intercellular signalling pathways on enteric neuromuscular development. Neurogastroenterol Motil 2004; 16 Suppl 1:8-13. [PMID: 15065997 DOI: 10.1111/j.1743-3150.2004.00467.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Normal intestinal motility requires orderly development of the complex nerve plexuses and smooth muscular layers in the gut wall. Organization of these structures results, in part, from cell autonomous programmes directed by transcription factors, which orchestrate appropriate temporal and spatial expression of specific target genes. Hox proteins appear to function in combination to dictate regional codes that establish major structural landmarks in the gut such as sphincters and muscle layers. These codes are translated in part by intercellular signals, which allow populations of cells in the embryonic gut wall to alter the developmental fate of their neighbours. Some of the best characterized intercellular signalling pathways involved in enteric neurodevelopment are mediated by GDNF/GFRa1/RET, EDN3/ENDRB, and NETRINS/DCC. These signals affect enteric neural precursors as they colonize the gut, and perturbations of these molecules are associated with various types of intestinal neuropathology.
Collapse
Affiliation(s)
- R P Kapur
- Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, USA.
| | | | | | | |
Collapse
|
106
|
Barlow A, de Graaff E, Pachnis V. Enteric nervous system progenitors are coordinately controlled by the G protein-coupled receptor EDNRB and the receptor tyrosine kinase RET. Neuron 2004; 40:905-16. [PMID: 14659090 DOI: 10.1016/s0896-6273(03)00730-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The enteric nervous system (ENS) in vertebrates is derived mainly from vagal neural crest cells that enter the foregut and colonize the entire wall of the gastrointestinal tract. Failure to completely colonize the gut results in the absence of enteric ganglia (Hirschsprung's disease). Two signaling systems mediated by RET and EDNRB have been identified as critical players in enteric neurogenesis. We demonstrate that interaction between these signaling pathways controls ENS development throughout the intestine. Activation of EDNRB specifically enhances the effect of RET signaling on the proliferation of uncommitted ENS progenitors. In addition, we reveal novel antagonistic roles of these pathways on the migration of ENS progenitors. Protein kinase A is a key component of the molecular mechanisms that integrate signaling by the two receptors. Our data provide strong evidence that the coordinate and balanced interaction between receptor tyrosine kinases and G protein-coupled receptors controls the development of the nervous system in mammals.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Enteric Nervous System/cytology
- Enteric Nervous System/embryology
- Enteric Nervous System/metabolism
- Enteric Nervous System/physiology
- Gene Expression Regulation, Developmental/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-ret
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Endothelin B/biosynthesis
- Receptor, Endothelin B/genetics
- Receptor, Endothelin B/physiology
- Receptors, Endothelin/biosynthesis
- Receptors, Endothelin/genetics
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction/physiology
- Stem Cells/metabolism
- Stem Cells/physiology
Collapse
Affiliation(s)
- Amanda Barlow
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | |
Collapse
|
107
|
Kruger GM, Mosher JT, Tsai YH, Yeager KJ, Iwashita T, Gariepy CE, Morrison SJ. Temporally distinct requirements for endothelin receptor B in the generation and migration of gut neural crest stem cells. Neuron 2004; 40:917-29. [PMID: 14659091 DOI: 10.1016/s0896-6273(03)00727-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Loss of Endothelin-3/Endothelin receptor B (EDNRB) signaling leads to aganglionosis of the distal gut (Hirschsprung's disease), but it is unclear whether it is required primarily for neural crest progenitor maintenance or migration. Ednrb-deficient gut neural crest stem cells (NCSCs) were reduced to 40% of wild-type levels by embryonic day 12.5 (E12.5), but no further depletion of NCSCs was subsequently observed. Undifferentiated NCSCs persisted in the proximal guts of Ednrb-deficient rats throughout fetal and postnatal development but exhibited migration defects after E12.5 that prevented distal gut colonization. EDNRB signaling may be required to modulate the response of neural crest progenitors to migratory cues, such as glial cell line-derived neurotrophic factor (GDNF). This migratory defect could be bypassed by transplanting wild-type NCSCs directly into the aganglionic region of the Ednrb(sl/sl) gut, where they engrafted and formed neurons as efficiently as in the wild-type gut.
Collapse
Affiliation(s)
- Genevieve M Kruger
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Farlie PG, McKeown SJ, Newgreen DF. The neural crest: Basic biology and clinical relationships in the craniofacial and enteric nervous systems. ACTA ACUST UNITED AC 2004; 72:173-89. [PMID: 15269891 DOI: 10.1002/bdrc.20013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The highly migratory, mesenchymal neural crest cell population was discovered over 100 years ago. Proposals of these cells' origin within the neuroepithelium, and of the tissues they gave rise to, initiated decades-long heated debates, since these proposals challenged the powerful germ-layer theory. Having survived this storm, the neural crest is now regarded as a pluripotent stem cell population that makes vital contributions to an astounding array of both neural and non-neural organ systems. The earliest model systems for studying the neural crest were amphibian, and these pioneering contributions have been ably refined and extended by studies in the chick, mouse, and more recently the fish to provide detailed understanding of the cellular and molecular mechanisms regulating and regulated by the neural crest. The key questions regarding control of craniofacial morphogenesis and innervation of the gut illustrate the wide range of developmental contexts in which the neural crest plays an important role. These questions also focus attention on common issues such as the role of growth factor signaling in neural crest cell development and highlight the central role of the neural crest in human congenital disease.
Collapse
Affiliation(s)
- Peter G Farlie
- Embryology Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Australia
| | | | | |
Collapse
|
109
|
Abstract
AIM: To investigate the mutation of EDNRB gene and EDN-3 gene in sporadic Hirschsprung’s disease (HD) in Chinese population.
METHODS: Genomic DNA was extracted from bowel tissues of 34 unrelated HD patients which were removed by surgery. Exon 3, 4, 6 of EDNRB gene and Exon 1, 2 of EDN-3 gene were amplified by polymerase chain reaction (PCR) and analyzed by single strand conformation polymorphism (SSCP).
RESULTS: EDNRB mutations were detected in 2 of the 13 short-segment HD. One mutant was in the exon 3, the other was in the exon 6. EDN-3 mutation was detected in one of the 13 short-segment HD and in the exon 2. Both EDNRB and EDN-3 mutations were detected in one short-segment HD. No mutations were detected in the ordinary or long-segment HD.
CONCLUSION: The mutations of EDNRB gene and EDN-3 gene are found in the short-segment HD of sporadic Hirschsprung’s disease in Chinese population, which suggests that the EDNRB gene and EDN-3 gene play important roles in the pathogenesis of HD.
Collapse
Affiliation(s)
- Xiang-Long Duan
- Department of General Surgery, Second Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| | | | | |
Collapse
|
110
|
Affiliation(s)
- Robert O Heuckeroth
- Department of Pediatrics, Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
111
|
Garcia-Barceló MM, Lee WS, Sham MH, Lui VCH, Tam PKH. Is there a role for the IHH gene in Hirschsprung's disease? Neurogastroenterol Motil 2003; 15:663-8. [PMID: 14651602 DOI: 10.1046/j.1350-1925.2003.00447.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hirschsprung disease (HSCR) is characterized by the absence of ganglion cells along a variable length of the intestine. HSCR has a complex genetic aetiology with 50% of the patients unexplained by mutations in the major HSCR genes. The Ihh gene is involved in the development of the enteric nervous system (ENS) and Ihh mutant mice present with a phenotype reminiscent of HSCR. The requirement of Ihh signalling for the proper development of the ENS, together with the evidence presented by the Ihh murine model, prompted us to investigate the involvement of the human IHH gene in HSCR. Sequence analysis revealed seven single nucleotide polymorphisms, six of which were new. Allele and haplotype frequencies were compared between cases and controls, and, among the cases, between genders, between different phenotypes, and between patients with different mutation status in the main HSCR genes. Despite the involvement of IHH in the development of the ENS, IHH is not a major gene in HSCR. Nevertheless, as the manifestation of the HSCR phenotype is genetic background dependent, polymorphic loci should be tested simultaneously to characterize gene-gene interaction. The involvement of IHH in other intestinal anomalies should be investigated.
Collapse
Affiliation(s)
- M-M Garcia-Barceló
- Department of Surgery, Division of Paediatric Surgery, University of Hong Kong Medical Center, Queen Mary Hospital, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
112
|
Garcia-Barceló M, Sham MH, Lee WS, Lui VCH, Chen BLS, Wong KKY, Wong JSW, Tam PKH. Highly recurrent RET mutations and novel mutations in genes of the receptor tyrosine kinase and endothelin receptor B pathways in Chinese patients with sporadic Hirschsprung disease. Clin Chem 2003; 50:93-100. [PMID: 14633923 DOI: 10.1373/clinchem.2003.022061] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Hirschsprung disease (HSCR) is a congenital disorder characterized by an absence of ganglion cells in the nerve plexuses of the lower digestive tract. HSCR has a complex pattern of inheritance and is sometimes associated with mutations in genes of the receptor tyrosine kinase (RET) and endothelin receptor B (EDNRB) signaling pathways, which are crucial for development of the enteric nervous system. METHODS Using PCR amplification and direct sequencing, we screened for mutations and polymorphisms in the coding regions and intron/exon boundaries of the RET, GDNF, EDNRB, and EDN3 genes of 84 HSCR patients and 96 ethnically matched controls. RESULTS We identified 10 novel and 2 previously described mutations in RET, and 4 and 2 novel mutations in EDNRB and in EDN3, respectively. Potential disease-causing mutations were detected in 24% of the patients. The overall mutation rate was 41% in females and 19% in males (P = 0.06). RET mutations occurred in 19% of the patients. R114H in RET was the most prevalent mutation, representing 7% of the patients or 37% of the patients with RET mutations. To date, such a high frequency of a single mutation has never been reported in unrelated HSCR patients. Mutations in EDNRB, EDN3, and GDNF were found in four, two, and none of the patients, respectively. Two patients with mutations in genes of the EDNRB pathway also harbored a mutation in RET. Three novel and three reported polymorphisms were found in EDNRB, EDN3, and GDNF. CONCLUSION This study identifies additional HSCR disease-causing mutations, some peculiar to the Chinese population, and represents the first comprehensive genetic analysis of sporadic HSCR disease in Chinese.
Collapse
Affiliation(s)
- Mercè Garcia-Barceló
- Division of Paediatric Surgery, Department of Surgery, University of Hong Kong Medical Center, Queen Mary Hospital, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Parisi MA, Baldessari AE, Iida MHK, Clarke CM, Doggett B, Shirasawa S, Kapur RP. Genetic background modifies intestinal pseudo-obstruction and the expression of a reporter gene in Hox11L1-/- mice. Gastroenterology 2003; 125:1428-40. [PMID: 14598259 DOI: 10.1016/j.gastro.2003.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS The transcription factor Hox11L1 is expressed by enteric neurons. Two groups mutated murine Hox11L1, and reported lethal intestinal pseudo-obstruction and colonic hyperganglionosis in many, but not all, homozygous null mutants. We investigated the regulation of Hox11L1 and factors that influence the penetrance of pseudo-obstruction in Hox11L1-null mice. METHODS Expression of beta-galactosidase (lacZ), under control of putative Hox11L1 regulatory sequences, was assessed in transgenic mice wild-type, heterozygous, and null for native Hox11L1. Transgene expression and signs of pseudo-obstruction were compared in null mice with different genetic backgrounds. RESULTS In enteric neurons and other parts of the nervous system, the transgene was expressed in a pattern consistent with native Hox11L1. Enteric beta-galactosidase activity initiated in the proximal small intestine and spread cranially and caudally in a subset of postmitotic enteric neurons. Hox11L1-lacZ transgene expression persisted in Hox11L1-null animals, suggesting that Hox11L1 is not required cell autonomously for neuronal survival. Genetic background dramatically affected the phenotypes of Hox11L1-null animals, with complete penetrance of severe proximal colonic distention on a predominantly C57BL/6J (B6) background and very low penetrance of dysmotility on a 129SvJ (129) background. Coincidently, Hox11L1-lacZ expression by most enteric neurons, but not CNS neurons, was lost on a 129 background. CONCLUSIONS Cis-acting, 5' regulatory elements are sufficient to regulate site-specific expression of Hox11L1 in vivo. Expression of the transgene by enteric neurons and penetrance of pseudo-obstruction in Hox11L1-null animals are influenced by one or more modifier genes, counterparts of which may play a similar role in human disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn/growth & development
- Cell Line
- Embryonic and Fetal Development
- Enteric Nervous System/embryology
- Enteric Nervous System/metabolism
- Enteric Nervous System/pathology
- Gene Expression
- Genes, Reporter
- Intestinal Pseudo-Obstruction/genetics
- Intestine, Small/embryology
- Intestine, Small/metabolism
- Intestine, Small/pathology
- Mice/embryology
- Mice/genetics
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred Strains
- Mice, Knockout
- Mice, Transgenic
- Mitosis
- Neurons/metabolism
- Penetrance
- Tissue Distribution/genetics
- Umbilical Cord
Collapse
Affiliation(s)
- Melissa A Parisi
- Department of Pediatrics, University of Washington School of Medicine, Children's Hospital and Regional Medical Center, 4800 Sand Point Way NW, Seattle, WA 98105, USA
| | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) was originally identified as a survival factor for midbrain dopaminergic neurons. GDNF and related ligands, neurturin (NRTN), artemin (ARTN) and persephin (PSPN), maintain several neuronal populations in the central nervous systems, including midbrain dopamine neurons and motoneurons. In addition, GDNF, NRTN and ARTN support the survival and regulate the differentiation of many peripheral neurons, including sympathetic, parasympathetic, sensory and enteric neurons. GDNF has further critical roles outside the nervous system in the regulation of kidney morphogenesis and spermatogenesis. GDNF family ligands bind to specific GDNF family receptor alpha (GFRalpha) proteins, all of which form receptor complexes and signal through the RET receptor tyrosine kinase. The biology of GDNF signalling is much more complex than originally assumed. The neurotrophic effect of GDNF, except in motoneurons, requires the presence of transforming growth factor beta, which activates the transport of GFRalpha1 to the cell membrane. GDNF can also signal RET independently through GFR1alpha. Upon ligand binding, GDNF in complex with GFRalpha1 may interact with heparan sulphate glycosaminoglycans to activate the Met receptor tyrosine kinase through cytoplasmic Src-family kinases. GDNF family ligands also signal through the neural cell adhesion molecule NCAM. In cells lacking RET, GDNF binds with high affinity to the NCAM and GFRalpha1 complex, which activates Fyn and FAK.
Collapse
Affiliation(s)
- Hannu Sariola
- Institute of Biomedicine, University of Helsinki, PO Box 63 (Haartmaninkatu 8), FIN-00014, Finland.
| | | |
Collapse
|