101
|
High-resolution elemental mapping of human placental chorionic villi using synchrotron X-ray fluorescence spectroscopy. Anal Bioanal Chem 2015; 407:6839-50. [PMID: 26138895 DOI: 10.1007/s00216-015-8861-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/05/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
The placenta is the organ that mediates transport of nutrients and waste materials between mother and fetus. Synchrotron X-ray fluorescence (SXRF) microanalysis is a tool for imaging the distribution and quantity of elements in biological tissue, which can be used to study metal transport across biological membranes. Our aims were to pilot placental biopsy specimen preparation techniques that could be integrated into an ongoing epidemiology birth cohort study without harming rates of sample acquisition. We studied the effects of fixative (formalin or glutaraldehyde) and storage duration (30 days or immediate processing) on metal distribution and abundance and investigated a thaw-fixation protocol for archived specimens stored at -80 °C. We measured fixative elemental composition with and without a placental biopsy via inductively coupled plasma mass spectrometry (ICP-MS) to quantify fixative-induced elemental changes. Formalin-fixed specimens showed hemolysis of erythrocytes. The glutaraldehyde-paraformaldehyde solution in HEPES buffer (GTA-HEPES) had superior anatomical preservation, avoided hemolysis, and minimized elemental loss, although some cross-linking of exogenous Zn was evident. Elemental loss from tissue stored in fixative for 1 month showed variable losses (≈40 % with GTA-HEPES), suggesting storage duration be controlled for. Thawing of tissue held at -80 °C in a GTA-HEPES solution provided high-quality visual images and elemental images.
Collapse
|
102
|
Abstract
Nuclear pore complexes (NPCs) perforate the nuclear envelope and allow the exchange of macromolecules between the nucleus and the cytoplasm. To acquire a deeper understanding of this transport mechanism, we analyse the structure of the NPC scaffold and permeability barrier, by reconstructing the Xenopus laevis oocyte NPC from native nuclear envelopes up to 20 Å resolution by cryo-electron tomography in conjunction with subtomogram averaging. In addition to resolving individual protein domains of the NPC constituents, we propose a model for the architecture of the molecular gate at its central channel. Furthermore, we compare and contrast this native NPC structure to one that exhibits reduced transport activity and unveil the spatial properties of the NPC gate. Nuclear pore complexes (NPCs) are large macromolecular assemblies that mediate the exchange of molecules between the nucleus and cytoplasm. Here the authors present a ∼20 Å cryo-EM structure of the X. laevis NPC in different states of transport to propose a model for the architecture of the NPC's molecular gate within its central channel.
Collapse
|
103
|
Fukuda Y, Laugks U, Lučić V, Baumeister W, Danev R. Electron cryotomography of vitrified cells with a Volta phase plate. J Struct Biol 2015; 190:143-54. [DOI: 10.1016/j.jsb.2015.03.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 01/22/2023]
|
104
|
Skruzny M, Desfosses A, Prinz S, Dodonova S, Gieras A, Uetrecht C, Jakobi A, Abella M, Hagen W, Schulz J, Meijers R, Rybin V, Briggs J, Sachse C, Kaksonen M. An Organized Co-assembly of Clathrin Adaptors Is Essential for Endocytosis. Dev Cell 2015; 33:150-62. [DOI: 10.1016/j.devcel.2015.02.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/29/2014] [Accepted: 02/25/2015] [Indexed: 10/23/2022]
|
105
|
Finney LA, Jin Q. Preparing adherent cells for X-ray fluorescence imaging by chemical fixation. J Vis Exp 2015:52370. [PMID: 25867691 PMCID: PMC4401319 DOI: 10.3791/52370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
X-ray fluorescence imaging allows us to non-destructively measure the spatial distribution and concentration of multiple elements simultaneously over large or small sample areas. It has been applied in many areas of science, including materials science, geoscience, studying works of cultural heritage, and in chemical biology. In the case of chemical biology, for example, visualizing the metal distributions within cells allows us to study both naturally-occurring metal ions in the cells, as well as exogenously-introduced metals such as drugs and nanoparticles. Due to the fully hydrated nature of nearly all biological samples, cryo-fixation followed by imaging under cryogenic temperature represents the ideal imaging modality currently available. However, under the circumstances that such a combination is not easily accessible or practical, aldehyde based chemical fixation remains useful and sometimes inevitable. This article describes in as much detail as possible in the preparation of adherent mammalian cells by chemical fixation for X-ray fluorescent imaging.
Collapse
Affiliation(s)
- Lydia A Finney
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory;
| | - Qiaoling Jin
- Department of Physics and Astronomy, Northwestern University
| |
Collapse
|
106
|
Asano S, Fukuda Y, Beck F, Aufderheide A, Förster F, Danev R, Baumeister W. Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 2015; 347:439-42. [PMID: 25613890 DOI: 10.1126/science.1261197] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The 26S proteasome is a key player in eukaryotic protein quality control and in the regulation of numerous cellular processes. Here, we describe quantitative in situ structural studies of this highly dynamic molecular machine in intact hippocampal neurons. We used electron cryotomography with the Volta phase plate, which allowed high fidelity and nanometer precision localization of 26S proteasomes. We undertook a molecular census of single- and double-capped proteasomes and assessed the conformational states of individual complexes. Under the conditions of the experiment—that is, in the absence of proteotoxic stress—only 20% of the 26S proteasomes were engaged in substrate processing. The remainder was in the substrate-accepting ground state. These findings suggest that in the absence of stress, the capacity of the proteasome system is not fully used.
Collapse
Affiliation(s)
- Shoh Asano
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Yoshiyuki Fukuda
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Florian Beck
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Antje Aufderheide
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Radostin Danev
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
107
|
Pfeffer S, Woellhaf MW, Herrmann JM, Förster F. Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography. Nat Commun 2015; 6:6019. [PMID: 25609543 DOI: 10.1038/ncomms7019] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 12/02/2014] [Indexed: 11/09/2022] Open
Abstract
Whereas the structure and function of cytosolic ribosomes have been studied in great detail, we know surprisingly little about the structural basis of mitochondrial protein synthesis. Here we used cryoelectron tomography and subtomogram analysis to visualize mitoribosomes in isolated yeast mitochondria, avoiding perturbations during ribosomal purification. Most mitoribosomes reside in immediate proximity to the inner mitochondrial membrane, in line with their specialization in the synthesis of hydrophobic membrane proteins. The subtomogram average of membrane-associated mitoribosomes reveals two distinct membrane contact sites, formed by the 21S rRNA expansion segment 96-ES1 and the inner membrane protein Mba1. On the basis of our data, we further hypothesize that Mba1 is not just a passive mitoribosome receptor on the inner membrane, but that it spatially aligns mitoribosomes with the membrane insertion machinery. This study reveals detailed insights into the supramolecular organization of the mitochondrial translation machinery and its association with the inner membrane in translation-competent mitochondria.
Collapse
Affiliation(s)
- Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Michael W Woellhaf
- Cell Biology, University of Kaiserslautern, Erwin-Schrodinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrodinger-Strasse 13, 67663 Kaiserslautern, Germany
| | - Friedrich Förster
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
108
|
Schur FKM, Hagen WJH, Rumlová M, Ruml T, Müller B, Kräusslich HG, Briggs JAG. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution. Nature 2014; 517:505-8. [PMID: 25363765 DOI: 10.1038/nature13838] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.
Collapse
Affiliation(s)
- Florian K M Schur
- 1] Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany [2] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany
| | - Wim J H Hagen
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Michaela Rumlová
- 1] Institute of Organic Chemistry and Biochemistry (IOCB), Academy of Sciences of the Czech Republic, v.v.i., IOCB &Gilead Research Center, Flemingovo nám. 2, 166 10 Prague, Czech Republic [2] Department of Biotechnology, Institute of Chemical Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, Institute of Chemical Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Barbara Müller
- 1] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany [2] Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- 1] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany [2] Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - John A G Briggs
- 1] Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany [2] Molecular Medicine Partnership Unit, European Molecular Biology Laboratory/Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
109
|
Zeev-Ben-Mordehai T, Vasishtan D, Siebert CA, Whittle C, Grünewald K. Extracellular vesicles: a platform for the structure determination of membrane proteins by Cryo-EM. Structure 2014; 22:1687-92. [PMID: 25438672 PMCID: PMC4229021 DOI: 10.1016/j.str.2014.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/09/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023]
Abstract
Membrane protein-enriched extracellular vesicles (MPEEVs) provide a platform for studying intact membrane proteins natively anchored with the correct topology in genuine biological membranes. This approach circumvents the need to conduct tedious detergent screens for solubilization, purification, and reconstitution required in classical membrane protein studies. We have applied this method to three integral type I membrane proteins, namely the Caenorhabditis elegans cell-cell fusion proteins AFF-1 and EFF-1 and the glycoprotein B (gB) from Herpes simplex virus type 1 (HSV1). Electron cryotomography followed by subvolume averaging allowed the 3D reconstruction of EFF-1 and HSV1 gB in the membrane as well as an analysis of the spatial distribution and interprotein interactions on the membrane. MPEEVs have many applications beyond structural/functional investigations, such as facilitating the raising of antibodies, for protein-protein interaction assays or for diagnostics use, as biomarkers, and possibly therapeutics. Intact membrane proteins with correct topology in genuine biological membranes Display system circumvents need for detergent solubilization and reconstitution 3D reconstruction of proteins in the membrane by subvolume averaging Mapping spatial distribution and relationships between proteins on the membrane
Collapse
Affiliation(s)
- Tzviya Zeev-Ben-Mordehai
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daven Vasishtan
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - C Alistair Siebert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Cathy Whittle
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
110
|
Chen Y, Pfeffer S, Fernández J, Sorzano C, Förster F. Autofocused 3D Classification of Cryoelectron Subtomograms. Structure 2014; 22:1528-37. [DOI: 10.1016/j.str.2014.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/03/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
|
111
|
Zeev-Ben-Mordehai T, Vasishtan D, Siebert CA, Grünewald K. The full-length cell-cell fusogen EFF-1 is monomeric and upright on the membrane. Nat Commun 2014; 5:3912. [PMID: 24867324 PMCID: PMC4050280 DOI: 10.1038/ncomms4912] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/17/2014] [Indexed: 01/04/2023] Open
Abstract
Fusogens are membrane proteins that remodel lipid bilayers to facilitate membrane merging. Although several fusogen ectodomain structures have been solved, structural information on full-length, natively membrane-anchored fusogens is scarce. Here we present the electron cryo microscopy three-dimensional reconstruction of the Caenorhabditis elegans epithelial fusion failure 1 (EFF-1) protein natively anchored in cell-derived membrane vesicles. This reveals a membrane protruding, asymmetric, elongated monomer. Flexible fitting of a protomer of the EFF-1 crystal structure, which is homologous to viral class-II fusion proteins, shows that EFF-1 has a hairpin monomeric conformation before fusion. These structural insights, when combined with our observations of membrane-merging intermediates between vesicles, enable us to propose a model for EFF-1 mediated fusion. This process, involving identical proteins on both membranes to be fused, follows a mechanism that shares features of SNARE-mediated fusion while using the structural building blocks of the unilaterally acting class-II viral fusion proteins. Cell–cell fusion in Caenorhabditis elegans is mediated by EFF-1 and AFF-1 proteins. Here, the authors present an electron cryomicroscopy 3D reconstruction of EFF-1 in the membrane, and combine snapshots of membrane fusion in vitro with a recently reported crystal structure to propose a mechanism for the fusion process.
Collapse
Affiliation(s)
- Tzviya Zeev-Ben-Mordehai
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Daven Vasishtan
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - C Alistair Siebert
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kay Grünewald
- Oxford Particle Imaging Centre, Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
112
|
Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proc Natl Acad Sci U S A 2014; 111:8233-8. [PMID: 24843179 DOI: 10.1073/pnas.1401455111] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The assembly of HIV-1 is mediated by oligomerization of the major structural polyprotein, Gag, into a hexameric protein lattice at the plasma membrane of the infected cell. This leads to budding and release of progeny immature virus particles. Subsequent proteolytic cleavage of Gag triggers rearrangement of the particles to form mature infectious virions. Obtaining a structural model of the assembled lattice of Gag within immature virus particles is necessary to understand the interactions that mediate assembly of HIV-1 particles in the infected cell, and to describe the substrate that is subsequently cleaved by the viral protease. An 8-Å resolution structure of an immature virus-like tubular array assembled from a Gag-derived protein of the related retrovirus Mason-Pfizer monkey virus (M-PMV) has previously been reported, and a model for the arrangement of the HIV-1 capsid (CA) domains has been generated based on homology to this structure. Here we have assembled tubular arrays of a HIV-1 Gag-derived protein with an immature-like arrangement of the C-terminal CA domains and have solved their structure by using hybrid cryo-EM and tomography analysis. The structure reveals the arrangement of the C-terminal domain of CA within an immature-like HIV-1 Gag lattice, and provides, to our knowledge, the first high-resolution view of the region immediately downstream of CA, which is essential for assembly, and is significantly different from the respective region in M-PMV. Our results reveal a hollow column of density for this region in HIV-1 that is compatible with the presence of a six-helix bundle at this position.
Collapse
|
113
|
van den Ent F, Izoré T, Bharat TA, Johnson CM, Löwe J. Bacterial actin MreB forms antiparallel double filaments. eLife 2014; 3:e02634. [PMID: 24843005 PMCID: PMC4051119 DOI: 10.7554/elife.02634] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/02/2014] [Indexed: 12/30/2022] Open
Abstract
Filaments of all actin-like proteins known to date are assembled from pairs of protofilaments that are arranged in a parallel fashion, generating polarity. In this study, we show that the prokaryotic actin homologue MreB forms pairs of protofilaments that adopt an antiparallel arrangement in vitro and in vivo. We provide an atomic view of antiparallel protofilaments of Caulobacter MreB as apparent from crystal structures. We show that a protofilament doublet is essential for MreB's function in cell shape maintenance and demonstrate by in vivo site-specific cross-linking the antiparallel orientation of MreB protofilaments in E. coli. 3D cryo-EM shows that pairs of protofilaments of Caulobacter MreB tightly bind to membranes. Crystal structures of different nucleotide and polymerisation states of Caulobacter MreB reveal conserved conformational changes accompanying antiparallel filament formation. Finally, the antimicrobial agents A22/MP265 are shown to bind close to the bound nucleotide of MreB, presumably preventing nucleotide hydrolysis and destabilising double protofilaments.DOI: http://dx.doi.org/10.7554/eLife.02634.001.
Collapse
Affiliation(s)
- Fusinita van den Ent
- Structural Studies Division, Medical Research Council - Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Thierry Izoré
- Structural Studies Division, Medical Research Council - Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Tanmay Am Bharat
- Structural Studies Division, Medical Research Council - Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Christopher M Johnson
- Protein and Nucleic Acid Chemistry Division, Medical Research Council - Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Jan Löwe
- Structural Studies Division, Medical Research Council - Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
114
|
Furin cleavage of the Moloney murine leukemia virus Env precursor reorganizes the spike structure. Proc Natl Acad Sci U S A 2014; 111:6034-9. [PMID: 24711391 DOI: 10.1073/pnas.1317972111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trimeric Moloney murine leukemia virus Env protein matures by two proteolytic cleavages. First, furin cleaves the Env precursor into the surface (SU) and transmembrane (TM) subunits in the cell and then the viral protease cleaves the R-peptide from TM in new virus. Here we analyzed the structure of the furin precursor, by cryoelectron microscopy. We transfected 293T cells with a furin cleavage site provirus mutant, R466G/K468G, and produced the virus in the presence of amprenavir to also inhibit the R-peptide cleavage. Although Env incorporation into particles was inhibited, enough precursor could be isolated and analyzed by cryoelectron microscopy to yield a 3D structure at 22 Å resolution. This showed an open cage-like structure like that of the R-peptide precursor and the mature Env described before. However, the middle protrusion of the protomeric unit, so prominently pointing out from the side of the more mature forms of the Env, was absent. Instead, there was extra density in the top protrusion. This suggested that the C-terminal SU domain was associated alongside the receptor binding N-terminal SU domain in the furin precursor. This was supported by mapping with a SU C-terminal domain-specific antigen binding fragment. We concluded that furin cleavage not only separates the subunits and liberates the fusion peptide at the end of TM but also allows the C-terminal domain to relocate into a peripheral position. This conformational change might explain how the C-terminal domain of SU gains the potential to undergo disulfide isomerization, an event that facilitates membrane fusion.
Collapse
|
115
|
Thalassinos K, Pandurangan AP, Xu M, Alber F, Topf M. Conformational States of macromolecular assemblies explored by integrative structure calculation. Structure 2014; 21:1500-8. [PMID: 24010709 PMCID: PMC3988990 DOI: 10.1016/j.str.2013.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022]
Abstract
A detailed description of macromolecular assemblies in multiple conformational states can be very valuable for understanding cellular processes. At present, structural determination of most assemblies in different biologically relevant conformations cannot be achieved by a single technique and thus requires an integrative approach that combines information from multiple sources. Different techniques require different computational methods to allow efficient and accurate data processing and analysis. Here, we summarize the latest advances and future challenges in computational methods that help the interpretation of data from two techniques—mass spectrometry and three-dimensional cryo-electron microscopy (with focus on alignment and classification of heterogeneous subtomograms from cryo-electron tomography). We evaluate how new developments in these two broad fields will lead to further integration with atomic structures to broaden our picture of the dynamic behavior of assemblies in their native environment.
Collapse
Affiliation(s)
- Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
116
|
Harapin J, Eibauer M, Medalia O. Structural analysis of supramolecular assemblies by cryo-electron tomography. Structure 2014; 21:1522-30. [PMID: 24010711 DOI: 10.1016/j.str.2013.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/29/2022]
Abstract
Structural analysis of macromolecular assemblies in their physiological environment is a challenging task that is instrumental in answering fundamental questions in cellular and molecular structural biology. The continuous development of computational and analytical tools for cryo-electron tomography (cryo-ET) enables the study of these assemblies at a resolution of a few nanometers. Through the implementation of thinning procedures, cryo-ET can now be applied to the reconstruction of macromolecular structures located inside thick regions of vitrified cells and tissues, thus becoming a central tool for structural determinations in various biological disciplines. Here, we focus on the successful in situ applications of cryo-ET to reveal structures of macromolecular complexes within eukaryotic cells.
Collapse
Affiliation(s)
- Jan Harapin
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
117
|
Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, Bock T, Hagen W, Andrés-Pons A, Glavy JS, Beck M. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 2014; 155:1233-43. [PMID: 24315095 DOI: 10.1016/j.cell.2013.10.055] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/22/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Abstract
The nuclear pore complex (NPC) is a fundamental component of all eukaryotic cells that facilitates nucleocytoplasmic exchange of macromolecules. It is assembled from multiple copies of about 30 nucleoporins. Due to its size and complex composition, determining the structure of the NPC is an enormous challenge, and the overall architecture of the NPC scaffold remains elusive. In this study, we have used an integrated approach based on electron tomography, single-particle electron microscopy, and crosslinking mass spectrometry to determine the structure of a major scaffold motif of the human NPC, the Nup107 subcomplex, in both isolation and integrated into the NPC. We show that 32 copies of the Nup107 subcomplex assemble into two reticulated rings, one each at the cytoplasmic and nuclear face of the NPC. This arrangement may explain how changes of the diameter are realized that would accommodate transport of huge cargoes.
Collapse
Affiliation(s)
- Khanh Huy Bui
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Kováčik L, Kereïche S, Kerïeche S, Höög JL, Jůda P, Matula P, Raška I. A simple Fourier filter for suppression of the missing wedge ray artefacts in single-axis electron tomographic reconstructions. J Struct Biol 2014; 186:141-52. [PMID: 24556578 PMCID: PMC3991334 DOI: 10.1016/j.jsb.2014.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 10/31/2022]
Abstract
The limited specimen tilting range that is typically available in electron tomography gives rise to a region in the Fourier space of the reconstructed object where experimental data are unavailable - the missing wedge. Since this region is sharply delimited from the area of available data, the reconstructed signal is typically hampered by convolution with its impulse response, which gives rise to the well-known missing wedge artefacts in 3D reconstructions. Despite the recent progress in the field of reconstruction and regularization techniques, the missing wedge artefacts remain untreated in most current reconstruction workflows in structural biology. Therefore we have designed a simple Fourier angular filter that effectively suppresses the ray artefacts in the single-axis tilting projection acquisition scheme, making single-axis tomographic reconstructions easier to interpret in particular at low signal-to-noise ratio in acquired projections. The proposed filter can be easily incorporated into current electron tomographic reconstruction schemes.
Collapse
Affiliation(s)
- Lubomír Kováčik
- Charles University in Prague, First Faculty of Medicine, Institute of Cellular Biology and Pathology, Albertov 4, 128 01 Prague 2, Czech Republic.
| | | | - Sami Kerïeche
- Charles University in Prague, First Faculty of Medicine, Institute of Cellular Biology and Pathology, Albertov 4, 128 01 Prague 2, Czech Republic
| | - Johanna L Höög
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; MPI-CBG, Photenhauerstr. 108, 01307 Dresden, Germany
| | - Pavel Jůda
- Charles University in Prague, First Faculty of Medicine, Institute of Cellular Biology and Pathology, Albertov 4, 128 01 Prague 2, Czech Republic
| | - Pavel Matula
- Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic
| | - Ivan Raška
- Charles University in Prague, First Faculty of Medicine, Institute of Cellular Biology and Pathology, Albertov 4, 128 01 Prague 2, Czech Republic
| |
Collapse
|
119
|
Huber G, Bánki Z, Kunert R, Stoiber H. Novel bifunctional single-chain variable antibody fragments to enhance virolysis by complement: generation and proof-of-concept. BIOMED RESEARCH INTERNATIONAL 2014; 2014:971345. [PMID: 24524088 PMCID: PMC3913500 DOI: 10.1155/2014/971345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Abstract
When bound to the envelope of viruses, factor H (FH), a soluble regulator of complement activation, contributes to the protection against a potent immune defense mechanism, the complement-mediated lysis (CML). Thus, removing FH from the surface renders viruses, such as HIV, susceptible to CML. For a proof of concept, we developed a construct consisting of recombinant bifunctional single-chain variable fragment (scFv) based on a monoclonal antibody against Friend murine leukemia virus (F-MuLV) envelope protein gp70, which was coupled to specific binding domains (short consensus repeats 19-20; SCR1920) of FH. We used Pichia pastoris as expression system in common shake flasks and optimized expression in high density bench top fermentation. Specific binding of recombinant scFv was proven by flow cytometry. The recombinant scFv-SCR significantly enhanced CML of F-MuLV in vitro implying that FH binding to the viral surface was impaired by the scFv-SCR. This novel concept to enhance virolysis may provide a new approach for antiviral treatment.
Collapse
Affiliation(s)
- Georg Huber
- Division of Virology, Innsbruck Medical University, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Innsbruck Medical University, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria
| | - Renate Kunert
- Department of Biotechnology, VIBT, BOKU-University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Heribert Stoiber
- Division of Virology, Innsbruck Medical University, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria
| |
Collapse
|
120
|
Determination of protein structure at 8.5Å resolution using cryo-electron tomography and sub-tomogram averaging. J Struct Biol 2013; 184:394-400. [DOI: 10.1016/j.jsb.2013.10.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 11/19/2022]
|
121
|
Lučič V, Rigort A, Baumeister W. Cryo-electron tomography: the challenge of doing structural biology in situ. ACTA ACUST UNITED AC 2013; 202:407-19. [PMID: 23918936 PMCID: PMC3734081 DOI: 10.1083/jcb.201304193] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Electron microscopy played a key role in establishing cell biology as a discipline, by producing fundamental insights into cellular organization and ultrastructure. Many seminal discoveries were made possible by the development of new sample preparation methods and imaging modalities. Recent technical advances include sample vitrification that faithfully preserves molecular structures, three-dimensional imaging by electron tomography, and improved image-processing methods. These new techniques have enabled the extraction of high fidelity structural information and are beginning to reveal the macromolecular organization of unperturbed cellular environments.
Collapse
Affiliation(s)
- Vladan Lučič
- Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | |
Collapse
|
122
|
Crystal structures of beta- and gammaretrovirus fusion proteins reveal a role for electrostatic stapling in viral entry. J Virol 2013; 88:143-53. [PMID: 24131724 DOI: 10.1128/jvi.02023-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Membrane fusion is a key step in the life cycle of all envelope viruses, but this process is energetically unfavorable; the transmembrane fusion subunit (TM) of the virion-attached glycoprotein actively catalyzes the membrane merger process. Retroviral glycoproteins are the prototypical system to study pH-independent viral entry. In this study, we determined crystal structures of extramembrane regions of the TMs from Mason-Pfizer monkey virus (MPMV) and xenotropic murine leukemia virus-related virus (XMRV) at 1.7-Å and 2.2-Å resolution, respectively. The structures are comprised of a trimer of hairpins that is characteristic of class I viral fusion proteins and now completes a structural library of retroviral fusion proteins. Our results allowed us to identify a series of intra- and interchain electrostatic interactions in the heptad repeat and chain reversal regions. Mutagenesis reveals that charge-neutralizing salt bridge mutations significantly destabilize the postfusion six-helix bundle and abrogate retroviral infection, demonstrating that electrostatic stapling of the fusion subunit is essential for viral entry. Our data indicate that salt bridges are a major stabilizing force on the MPMV and XMRV retroviral TMs and likely provide the key energetics for viral and host membrane fusion.
Collapse
|
123
|
Zanetti G, Prinz S, Daum S, Meister A, Schekman R, Bacia K, Briggs JAG. The structure of the COPII transport-vesicle coat assembled on membranes. eLife 2013; 2:e00951. [PMID: 24062940 PMCID: PMC3778437 DOI: 10.7554/elife.00951] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/06/2013] [Indexed: 01/08/2023] Open
Abstract
Coat protein complex II (COPII) mediates formation of the membrane vesicles that export newly synthesised proteins from the endoplasmic reticulum. The inner COPII proteins bind to cargo and membrane, linking them to the outer COPII components that form a cage around the vesicle. Regulated flexibility in coat architecture is essential for transport of a variety of differently sized cargoes, but structural data on the assembled coat has not been available. We have used cryo-electron tomography and subtomogram averaging to determine the structure of the complete, membrane-assembled COPII coat. We describe a novel arrangement of the outer coat and find that the inner coat can assemble into regular lattices. The data reveal how coat subunits interact with one another and with the membrane, suggesting how coordinated assembly of inner and outer coats can mediate and regulate packaging of vesicles ranging from small spheres to large tubular carriers. DOI:http://dx.doi.org/10.7554/eLife.00951.001.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Molecular and Cell Biology , University of California, Berkeley , Berkeley , United States
| | | | | | | | | | | | | |
Collapse
|
124
|
Kudryashev M, Stenta M, Schmelz S, Amstutz M, Wiesand U, Castaño-Díez D, Degiacomi MT, Münnich S, Bleck CK, Kowal J, Diepold A, Heinz DW, Dal Peraro M, Cornelis GR, Stahlberg H. In situ structural analysis of the Yersinia enterocolitica injectisome. eLife 2013; 2:e00792. [PMID: 23908767 PMCID: PMC3728920 DOI: 10.7554/elife.00792] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022] Open
Abstract
Injectisomes are multi-protein transmembrane machines allowing pathogenic bacteria to
inject effector proteins into eukaryotic host cells, a process called type III
secretion. Here we present the first three-dimensional structure of Yersinia
enterocolitica and Shigella flexneri injectisomes in
situ and the first structural analysis of the Yersinia injectisome.
Unexpectedly, basal bodies of injectisomes inside the bacterial cells showed length
variations of 20%. The in situ structures of the Y. enterocolitica
and S. flexneri injectisomes had similar dimensions and were
significantly longer than the isolated structures of related injectisomes. The
crystal structure of the inner membrane injectisome component YscD appeared elongated
compared to a homologous protein, and molecular dynamics simulations documented its
elongation elasticity. The ring-shaped secretin YscC at the outer membrane was
stretched by 30–40% in situ, compared to its isolated liposome-embedded
conformation. We suggest that elasticity is critical for some two-membrane spanning
protein complexes to cope with variations in the intermembrane distance. DOI:http://dx.doi.org/10.7554/eLife.00792.001 Humans and other animals can use the five senses—touch, taste, sight, smell,
and hearing—to interpret the world around them. Single-celled organisms,
however, must rely on molecular cues to understand their immediate surroundings. In
particular, bacteria gather information about external conditions, including
potential hosts nearby, by secreting protein sensors that can relay messages back to
the cell. Bacteria export these sensors via secretion systems that enable the organism both to
receive information about the environment and to invade a host cell. A total of seven
separate secretion systems, known as types I–VII, have been identified. These
different secretion systems handle distinct cargoes, allowing the bacterial cell to
respond to a range of feedback from the external milieu. The type III secretion system, also known as the ‘injectisome’, is
found in bacterial species that are enclosed by two membranes separated by a
periplasmic space. The injectisome comprises different components that combine to
form the basal body, which spans the inner and outer membranes, and a projection from
the basal body, called the hollow needle, that mediates the export of cargo from a
bacterium to its host or the local environment. The distance between the inner and outer membranes may vary across species or
according to environmental conditions, so the basal body must be able to accommodate
these changes. However, no mechanism has yet been established that might introduce
such elasticity into the injectisome. Now, Kudryashev et al. have generated
three-dimensional structures for the injectisomes of two species of bacteria,
Shigella flexneri and Yersinia enterocolitica,
and shown that the size of the basal body can fluctuate by up to 20%. Kudryashev et al. imaged whole injectisomes in these two species and found that the
height of the basal body was proportional to the distance between the inner and outer
membranes. To probe how this could occur, the properties of two proteins that are
important components of the basal body were studied in greater detail. YscD, a
protein that extends across the periplasmic space, was crystallized and its structure
was then determined and used to develop a computer model to assess its
compressibility: this model indicated that YscD could stretch or contract by up to
50% of its total length. The outer membrane component YscC also appeared elastic:
when the protein was isolated and introduced into synthetic membranes, its length was
reduced 30–40% relative to that observed in intact bacterial membranes. A further experiment confirmed the adaptability of the basal body: when the
separation of the membranes was deliberately increased by placing bacteria in a
high-salt medium, the basal body extended approximately 10% in length. Cumulatively,
therefore, these experiments suggest that the in-built flexibility of the basal body
of the injectisome allows bacteria to adjust to environmental changes while
maintaining their sensory abilities and host-invasion potential. DOI:http://dx.doi.org/10.7554/eLife.00792.002
Collapse
Affiliation(s)
- Mikhail Kudryashev
- Center for Cellular Imaging and NanoAnalytics (C-CINA) , Biozentrum, University of Basel , Basel , Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Functional complementation of a model target to study Vpu sensitivity. PLoS One 2013; 8:e68507. [PMID: 23840857 PMCID: PMC3695915 DOI: 10.1371/journal.pone.0068507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/03/2013] [Indexed: 11/25/2022] Open
Abstract
HIV-1 forms infectious particles with Murine Leukemia virus (MLV) Env, but not with the closely related Gibbon ape Leukemia Virus (GaLV) Env. We have determined that the incompatibility between HIV-1 and GaLV Env is primarily caused by the HIV-1 accessory protein Vpu, which prevents GaLV Env from being incorporated into particles. We have characterized the ‘Vpu sensitivity sequence’ in the cytoplasmic tail domain (CTD) of GaLV Env using a chimeric MLV Env with the GaLV Env CTD (MLV/GaLV Env). Vpu sensitivity is dependent on an alpha helix with a positively charged face containing at least one Lysine. In the present study, we utilized functional complementation to address whether all the three helices in the CTD of an Env trimer have to contain the Vpu sensitivity motif for the trimer to be modulated by Vpu. Taking advantage of the functional complementation of the binding defective (D84K) and fusion defective (L493V) MLV and MLV/GaLV Env mutants, we were able to assay the activity of mixed trimers containing both MLV and GaLV CTDs. Mixed trimers containing both MLV and GaLV CTDs were functionally active and remained sensitive to Vpu. However, trimers containing an Env with the GaLV CTD and an Env with no CTD remained functional but were resistant to Vpu. Together these data suggest that the presence of at least one GaLV CTD is sufficient to make an Env trimer sensitive to Vpu, but only if it is part of a trimeric CTD complex.
Collapse
|
126
|
Abstract
Major conceptual roadblocks impede the development of an HIV-1 vaccine that can stimulate a potent neutralizing antibody response. Animal models that support HIV-1 replication and allow for host genetic manipulation would be an ideal platform for testing various immunological hypotheses, but progress on this research front has been slow and disappointing. In contrast, many valuable concepts emerged from more than 50 years of studying the Friend retrovirus model. This was recently exemplified by the identification of an innate restriction gene, Apobec3, that could promote the retrovirus-specific neutralizing antibody response. Here we review both classical and recent data on humoral immunity against Friend retrovirus infection, and highlight the potential of this model for unraveling novel aspects of the retrovirus-specific antibody response that may guide HIV-1 vaccine development efforts.
Collapse
|
127
|
Barrow E, Nicola AV, Liu J. Multiscale perspectives of virus entry via endocytosis. Virol J 2013; 10:177. [PMID: 23734580 PMCID: PMC3679726 DOI: 10.1186/1743-422x-10-177] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/24/2013] [Indexed: 01/01/2023] Open
Abstract
Most viruses take advantage of endocytic pathways to gain entry into host cells and initiate infections. Understanding of virus entry via endocytosis is critically important for the design of antiviral strategies. Virus entry via endocytosis is a complex process involving hundreds of cellular proteins. The entire process is dictated by events occurring at multiple time and length scales. In this review, we discuss and evaluate the available means to investigate virus endocytic entry, from both experimental and theoretical/numerical modeling fronts, and highlight the importance of multiscale features. The complexity of the process requires investigations at a systems biology level, which involves the combination of different experimental approaches, the collaboration of experimentalists and theorists across different disciplines, and the development of novel multiscale models.
Collapse
Affiliation(s)
- Eric Barrow
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | | | | |
Collapse
|
128
|
Fast and accurate reference-free alignment of subtomograms. J Struct Biol 2013; 182:235-45. [DOI: 10.1016/j.jsb.2013.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/06/2013] [Accepted: 03/11/2013] [Indexed: 11/17/2022]
|
129
|
Andersen KB. The retrovirus MA and PreTM proteins follow immature MLV cores. Virus Res 2013; 175:134-42. [PMID: 23643491 DOI: 10.1016/j.virusres.2013.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
We have used mild detergent to analyze the core of Moloney Murine Leukemia Virus (MoMLV) and core-like complexes in infected cells. The immature core consists of the Gag polyprotein (PrGag) and viral RNA (vRNA). It is known to be detergent-resistant, in contrast to the mature Gag core. The core matures by cleavage of PrGag into MA (matrix), p12, CA (capsid) and NC (nucleocapsid) protein. We found that mature Gag proteins were bound to the PrGag cores. The degree of binding differed widely. No (<0.1%) p12 bound, low amount of CA (3-5%), and higher amount of MA (13-20%) bound. Varying NC was bound (5-15%). NC could be released by RNase A in agreement with its binding to viral RNA. The TM (transmembrane) protein was also examined. A low amount of TM was bound to the PrGag core (approximately 5%), whereas a very high amount (65%) of the PreTM (TM with the cytoplasmic R peptide tail) bound. The binding in the PrGag core appears to occur by direct protein-protein interactions as only minute amounts of lipids including raft lipids were observed after detergent treatment.
Collapse
Affiliation(s)
- Klaus B Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK2100 Copenhagen, Denmark.
| |
Collapse
|
130
|
Qi M, Williams JA, Chu H, Chen X, Wang JJ, Ding L, Akhirome E, Wen X, Lapierre LA, Goldenring JR, Spearman P. Rab11-FIP1C and Rab14 direct plasma membrane sorting and particle incorporation of the HIV-1 envelope glycoprotein complex. PLoS Pathog 2013; 9:e1003278. [PMID: 23592992 PMCID: PMC3616983 DOI: 10.1371/journal.ppat.1003278] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/12/2013] [Indexed: 11/19/2022] Open
Abstract
The incorporation of the envelope glycoprotein complex (Env) onto the developing particle is a crucial step in the HIV-1 lifecycle. The long cytoplasmic tail (CT) of Env is required for the incorporation of Env onto HIV particles in T cells and macrophages. Here we identify the Rab11a-FIP1C/RCP protein as an essential cofactor for HIV-1 Env incorporation onto particles in relevant human cells. Depletion of FIP1C reduced Env incorporation in a cytoplasmic tail-dependent manner, and was rescued by replenishment of FIP1C. FIP1C was redistributed out of the endosomal recycling complex to the plasma membrane by wild type Env protein but not by CT-truncated Env. Rab14 was required for HIV-1 Env incorporation, and FIP1C mutants incapable of binding Rab14 failed to rescue Env incorporation. Expression of FIP1C and Rab14 led to an enhancement of Env incorporation, indicating that these trafficking factors are normally limiting for CT-dependent Env incorporation onto particles. These findings support a model for HIV-1 Env incorporation in which specific targeting to the particle assembly microdomain on the plasma membrane is mediated by FIP1C and Rab14. Enveloped viruses must develop strategies to ensure that a sufficient quantity of their receptor-binding envelope proteins are incorporated onto the surface of viruses as they form. The HIV envelope glycoprotein is specifically incorporated onto assembling virions in relevant cells such as T lymphocytes in a manner that requires its long cytoplasmic tail. The mechanism underlying this specific incorporation has remained unknown. Here, we identify a cellular trafficking pathway that is required for the incorporation of HIV envelope onto virions. A combination of the adaptor protein Rab11-FIP1C and Rab14 directs the envelope protein onto assembling virions, and loss of either of these host factors results in the production of virus particles lacking envelope. We also found that FIP1C was required for replication in T cell lines. This study identifies a trafficking complex required for HIV envelope incorporation and for the formation of infectious HIV particles.
Collapse
Affiliation(s)
- Mingli Qi
- Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Janice A. Williams
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Hin Chu
- Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xuemin Chen
- Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jaang-Jiun Wang
- Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lingmei Ding
- Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ehiole Akhirome
- Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xiaoyun Wen
- Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lynne A. Lapierre
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - James R. Goldenring
- Departments of Surgery and Cell and Developmental Biology, Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail: (JRG); (PS)
| | - Paul Spearman
- Department of Pediatrics, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (JRG); (PS)
| |
Collapse
|
131
|
Abstract
The nuclear pore complex (NPC) is the sole gateway between the nucleus and the cytoplasm. NPCs fuse the inner and outer nuclear membranes to form aqueous translocation channels that allow the free diffusion of small molecules and ions, as well as receptor-mediated transport of large macromolecules. The NPC regulates nucleocytoplasmic transport of macromolecules, utilizing soluble receptors that identify and present cargo to the NPC, in a highly selective manner to maintain cellular functions. The NPC is composed of multiple copies of approximately 30 different proteins, termed nucleoporins, which assemble to form one of the largest multiprotein assemblies in the cell. In this review, we address structural and functional aspects of this fundamental cellular machinery.
Collapse
Affiliation(s)
- Einat Grossman
- Department of Life Sciences, Ben Gurion University, Beersheva 84105, Israel
| | | | | |
Collapse
|
132
|
Winkler H, Taylor KA. Marker-free dual-axis tilt series alignment. J Struct Biol 2013; 182:117-24. [PMID: 23435123 DOI: 10.1016/j.jsb.2013.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/01/2013] [Accepted: 02/02/2013] [Indexed: 11/15/2022]
Abstract
Dual-axis tilt series in electron tomography are collected by successively tilting the object about two approximately orthogonal tilt axes. Here we report on the extension of marker-free image registration based on cross-correlation techniques to dual-axis tilt series. A simultaneous geometry refinement yields accurate parameters for the computation of the final reconstruction. Both, image registration and 3D-reconstruction operate on the combined data from the paired single axis series rather than computing individual single axis tomograms followed by a separate combination step. We show that with simultaneous registration and reconstruction of dual-axis tilt series, tomograms with higher resolution are obtained than by merging separately computed tomograms.
Collapse
Affiliation(s)
- Hanspeter Winkler
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306, USA.
| | | |
Collapse
|
133
|
Abstract
Viral particles consist essentially of a proteinaceous capsid protecting a genome and involved also in many functions during the virus life cycle. In simple viruses, the capsid consists of a number of copies of the same, or a few different proteins organized into a symmetric oligomer. Structurally complex viruses present a larger variety of components in their capsids than simple viruses. They may contain accessory proteins with specific architectural or functional roles; or incorporate non-proteic elements such as lipids. They present a range of geometrical variability, from slight deviations from the icosahedral symmetry to complete asymmetry or even pleomorphism. Putting together the many different elements in the virion requires an extra effort to achieve correct assembly, and thus complex viruses require sophisticated mechanisms to regulate morphogenesis. This chapter provides a general view of the structure and assembly of complex viruses.
Collapse
Affiliation(s)
- Mauricio G. Mateu
- "Severo Ochoa" (CSIC_UAM), And Dept. of Molecular Biology, Centro de Biología Molecular, Cantoblanco, Madrid, 28049 Madrid Spain
| |
Collapse
|
134
|
Abstract
Paracrystalline arrays possess specific types of disorder that reduce the structural information as well as resolution when spatially averaged over repeating motifs. Electron tomography combined with motif classification and averaging can solve the heterogeneity problem and provide information on the structural elements that give rise to the disorder. This chapter describes procedures that would be used in a typical tomography application to identify and characterize a paracrystalline specimen. Particular emphasis is given to actively contracting insect flight muscle, a specimen with particularly difficult to characterize structural heterogeneity and 2D paracrystalline arrays of myosin-V, from which a particularly high resolution motif average was obtained. All aspects of the study are described including data collection, merging of micrographs to produce the tomogram, alignment to an invariant structural element, classification and averaging of heterogeneous structures, and reassembly of focused class averages into high signal-to-noise ratio representations of the original raw repeats. Particular emphasis is placed on limitations of the various processes to produce the final class averages.
Collapse
|
135
|
Yang S, Huang FK, Huang J, Chen S, Jakoncic J, Leo-Macias A, Diaz-Avalos R, Chen L, Zhang JJ, Huang XY. Molecular mechanism of fascin function in filopodial formation. J Biol Chem 2012. [PMID: 23184945 DOI: 10.1074/jbc.m112.427971] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Filopodia are cell surface protrusions that are essential for cell migration. This finger-like structure is supported by rigid tightly bundled actin filaments. The protein responsible for actin bundling in filopodia is fascin. However, the mechanism by which fascin functions in filopodial formation is not clear. Here we provide biochemical, cryo-electron tomographic, and x-ray crystal structural data demonstrating the unique structural characteristics of fascin. Systematic mutagenesis studies on 100 mutants of fascin indicate that there are two major actin-binding sites on fascin. Crystal structures of four fascin mutants reveal concerted conformational changes in fascin from inactive to active states in the process of actin bundling. Mutations in any one of the actin-binding sites impair the cellular function of fascin in filopodial formation. Altogether, our data reveal the molecular mechanism of fascin function in filopodial formation.
Collapse
Affiliation(s)
- Shengyu Yang
- Department of Physiology, Cornell University Weill Medical College, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Mateu MG. Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 2012; 531:65-79. [PMID: 23142681 DOI: 10.1016/j.abb.2012.10.015] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 10/28/2012] [Indexed: 12/13/2022]
Abstract
Most viruses use a hollow protein shell, the capsid, to enclose the viral genome. Virus capsids are large, symmetric oligomers made of many copies of one or a few types of protein subunits. Self-assembly of a viral capsid is a complex oligomerization process that proceeds along a pathway regulated by ordered interactions between the participating protein subunits, and that involves a series of (usually transient) assembly intermediates. Assembly of many virus capsids requires the assistance of scaffolding proteins or the viral nucleic acid, which interact with the capsid subunits to promote and direct the process. Once assembled, many capsids undergo a maturation reaction that involves covalent modification and/or conformational rearrangements, which may increase the stability of the particle. The final, mature capsid is a relatively robust protein complex able to protect the viral genome from physicochemical aggressions; however, it is also a metastable, dynamic structure poised to undergo controlled conformational transitions required to perform biologically critical functions during virus entry into cells, intracellular trafficking, and viral genome uncoating. This article provides an updated general overview on structural, biophysical and biochemical aspects of the assembly, stability and dynamics of virus capsids.
Collapse
Affiliation(s)
- Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
137
|
Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 2012; 48:179-88. [PMID: 22001604 PMCID: PMC3293995 DOI: 10.1016/j.nbd.2011.09.014] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/17/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022] Open
Abstract
The potential benefits of gene therapy for neurological diseases such as Parkinson's, Amyotrophic Lateral Sclerosis (ALS), Epilepsy, and Alzheimer's are enormous. Even a delay in the onset of severe symptoms would be invaluable to patients suffering from these and other diseases. Significant effort has been placed in developing vectors capable of delivering therapeutic genes to the CNS in order to treat neurological disorders. At the forefront of potential vectors, viral systems have evolved to efficiently deliver their genetic material to a cell. The biology of different viruses offers unique solutions to the challenges of gene therapy, such as cell targeting, transgene expression and vector production. It is important to consider the natural biology of a vector when deciding whether it will be the most effective for a specific therapeutic function. In this review, we outline desired features of the ideal vector for gene delivery to the CNS and discuss how well available viral vectors compare to this model. Adeno-associated virus, retrovirus, adenovirus and herpesvirus vectors are covered. Focus is placed on features of the natural biology that have made these viruses effective tools for gene delivery with emphasis on their application in the CNS. Our goal is to provide insight into features of the optimal vector and which viral vectors can provide these features.
Collapse
Affiliation(s)
- Thomas B. Lentz
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J. Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
138
|
Advances in tomography: probing the molecular architecture of cells. Nat Rev Mol Cell Biol 2012; 13:736-42. [DOI: 10.1038/nrm3453] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
139
|
Fernandez JJ. Computational methods for electron tomography. Micron 2012; 43:1010-30. [DOI: 10.1016/j.micron.2012.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/13/2023]
|
140
|
Eibauer M, Hoffmann C, Plitzko JM, Baumeister W, Nickell S, Engelhardt H. Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography. J Struct Biol 2012; 180:488-96. [PMID: 23000705 DOI: 10.1016/j.jsb.2012.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 01/05/2023]
Abstract
Cryo-electron tomography in combination with subtomogram averaging allows to investigate the structure of protein assemblies in their natural environment in a close to live state. To make full use of the structural information contained in tomograms it is necessary to analyze the contrast transfer function (CTF) of projections and to restore the phases of higher spatial frequencies. CTF correction is however hampered by the difficulty of determining the actual defocus values from tilt series data, which is due to the low signal-to-noise ratio of electron micrographs. In this study, an extended acquisition scheme is introduced that enables an independent CTF determination. Two high-dose images are recorded along the tilt axis on both sides of each projection, which allow an accurate determination of the defocus values of these images. These values are used to calculate the CTF for each image of the tilt series. We applied this scheme to the mycobacterial outer membrane protein MspA reconstituted in lipid vesicles and tested several variants of CTF estimation in combination with subtomogram averaging and correction of the modulation transfer function (MTF). The 3D electron density map of MspA was compared with a structure previously determined by X-ray crystallography. We were able to demonstrate that structural information up to a resolution of 16.8Å can be recovered using our CTF correction approach, whereas the uncorrected 3D map had a resolution of only 26.2Å.
Collapse
|
141
|
Mateu MG. Mechanical properties of viruses analyzed by atomic force microscopy: A virological perspective. Virus Res 2012; 168:1-22. [DOI: 10.1016/j.virusres.2012.06.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/05/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
142
|
Pfeffer S, Brandt F, Hrabe T, Lang S, Eibauer M, Zimmermann R, Förster F. Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes. Structure 2012; 20:1508-18. [PMID: 22819217 DOI: 10.1016/j.str.2012.06.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/14/2012] [Accepted: 06/11/2012] [Indexed: 12/22/2022]
Abstract
In eukaryotic cells, cotranslational protein translocation across the endoplasmic reticulum (ER) membrane requires an elaborate macromolecular machinery. While structural details of ribosomes bound to purified and solubilized constituents of the translocon have been elucidated in recent years, little structural knowledge of ribosomes bound to the complete ER protein translocation machinery in a native membrane environment exists. Here, we used cryoelectron tomography to provide a three-dimensional reconstruction of 80S ribosomes attached to functional canine pancreatic ER microsomes in situ. In the resulting subtomogram average at 31 Å resolution, we observe direct contact of ribosomal expansion segment ES27L and the membrane and distinguish several membrane-embedded and lumenal complexes, including Sec61, the TRAP complex and another large complex protruding 90 Å into the lumen. Membrane-associated ribosomes adopt a preferred three-dimensional arrangement that is likely specific for ER-associated polyribosomes and may explain the high translation efficiency of ER-associated ribosomes compared to their cytosolic counterparts.
Collapse
Affiliation(s)
- Stefan Pfeffer
- Department of Molecular Structural Biology, Max-Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
143
|
Xu M, Alber F. High precision alignment of cryo-electron subtomograms through gradient-based parallel optimization. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 1:S18. [PMID: 23046491 PMCID: PMC3403359 DOI: 10.1186/1752-0509-6-s1-s18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cryo-electron tomography emerges as an important component for structural system biology. It not only allows the structural characterization of macromolecular complexes, but also the detection of their cellular localizations in near living conditions. However, the method is hampered by low resolution, missing data and low signal-to-noise ratio (SNR). To overcome some of these difficulties and enhance the nominal resolution one can align and average a large set of subtomograms. Existing methods for obtaining the optimal alignments are mostly based on an exhaustive scanning of all but discrete relative rigid transformations (i.e. rotations and translations) of one subtomogram with respect to the other. RESULTS In this paper, we propose gradient-guided alignment methods based on two popular subtomogram similarity measures, a real space as well as a Fourier-space constrained score. We also propose a stochastic parallel refinement method that increases significantly the efficiency for the simultaneous refinement of a set of alignment candidates. We estimate that our stochastic parallel refinement is on average about 20 to 40 fold faster in comparison to the standard independent refinement approach. Results on simulated data of model complexes and experimental structures of protein complexes show that even for highly distorted subtomograms and with only a small number of very sparsely distributed initial alignment seeds, our combined methods can accurately recover true transformations with a substantially higher precision than the scanning based alignment methods. CONCLUSIONS Our methods increase significantly the efficiency and accuracy for subtomogram alignments, which is a key factor for the systematic classification of macromolecular complexes in cryo-electron tomograms of whole cells.
Collapse
Affiliation(s)
- Min Xu
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
144
|
Maimon T, Medalia O. Perspective on the metazoan nuclear pore complex. Nucleus 2012; 1:383-6. [PMID: 21326819 DOI: 10.4161/nucl.1.5.12332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 12/23/2022] Open
Abstract
Fusing the inner and outer membranes of the nucleus, the nuclear pore complex (NPC) forms a selective portal which serves as the sole gateway of the nucleus. These aqueous translocation channels allow free diffusion of small molecules and ions, as well as receptor-mediated transport of large macromolecules. Over the last several years major progress has been made in both structural determination of individual nucleopurins (Nups) and their complexes by X-ray crystallography and in structural analysis of the entire assembly by means of cryo-electron tomography. By combining cryo-electron tomography with advanced image processing techniques, the metazoan NPC structure from Xenopus oocytes was resolved to medium resolution, revealing novel details. Here, we discuss new features of the Xenopus NPC and consider future perspectives that will eventually allow resolution of the structure and function of NPCs with high accuracy.
Collapse
Affiliation(s)
- Tal Maimon
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, Israel
| | | |
Collapse
|
145
|
Retroviral env glycoprotein trafficking and incorporation into virions. Mol Biol Int 2012; 2012:682850. [PMID: 22811910 PMCID: PMC3395148 DOI: 10.1155/2012/682850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/08/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
Together with the Gag protein, the Env glycoprotein is a major retroviral structural protein and is essential for forming infectious virus particles. Env is synthesized, processed, and transported to certain microdomains at the plasma membrane and takes advantage of the same host machinery for its trafficking as that used by cellular glycoproteins. Incorporation of Env into progeny virions is probably mediated by the interaction between Env and Gag, in some cases with the additional involvement of certain host factors. Although several general models have been proposed to explain the incorporation of retroviral Env glycoproteins into virions, the actual mechanism for this process is still unclear, partly because structural data on the Env protein cytoplasmic tail is lacking. This paper presents the current understanding of the synthesis, trafficking, and virion incorporation of retroviral Env proteins.
Collapse
|
146
|
Maimon T, Elad N, Dahan I, Medalia O. The human nuclear pore complex as revealed by cryo-electron tomography. Structure 2012; 20:998-1006. [PMID: 22632834 DOI: 10.1016/j.str.2012.03.025] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
Abstract
Nuclear pore complexes (NPCs) are the sole passage through the nuclear envelope, connecting the cytoplasm to the nucleoplasm. These gigantic molecular machines, over 100 MDa in molecular weight, allow free diffusion of small molecules and ions while mediating selective energy-dependent nucleocytoplasmic transport of large macromolecules. Here, we applied cryo-electron tomography to human fibroblast cells, reconstructing their nuclear envelopes without applying any purification steps. From these reconstructions, we extracted subtomograms containing individual NPCs and utilized in silico subtomogram averaging procedures to determine the structure of the mammalian pore complex at a resolution of ∼6.6 nm. Beyond revealing the canonical features of the human NPC, our analysis identified inner lateral channels and fusing bridge-like structures, suggesting alternative routes of peripheral nuclear passage. Finally, we concluded from our structural analysis that the human NPC is structurally distinct from that of lower eukaryotes in terms of dimension and organization but resembles its amphibian (frog) counterpart.
Collapse
Affiliation(s)
- Tal Maimon
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | | | | | | |
Collapse
|
147
|
Faini M, Prinz S, Beck R, Schorb M, Riches JD, Bacia K, Brügger B, Wieland FT, Briggs JAG. The structures of COPI-coated vesicles reveal alternate coatomer conformations and interactions. Science 2012; 336:1451-4. [PMID: 22628556 DOI: 10.1126/science.1221443] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transport between compartments of eukaryotic cells is mediated by coated vesicles. The archetypal protein coats COPI, COPII, and clathrin are conserved from yeast to human. Structural studies of COPII and clathrin coats assembled in vitro without membranes suggest that coat components assemble regular cages with the same set of interactions between components. Detailed three-dimensional structures of coated membrane vesicles have not been obtained. Here, we solved the structures of individual COPI-coated membrane vesicles by cryoelectron tomography and subtomogram averaging of in vitro reconstituted budding reactions. The coat protein complex, coatomer, was observed to adopt alternative conformations to change the number of other coatomers with which it interacts and to form vesicles with variable sizes and shapes. This represents a fundamentally different basis for vesicle coat assembly.
Collapse
Affiliation(s)
- Marco Faini
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci U S A 2012; 109:E1481-8. [PMID: 22556268 DOI: 10.1073/pnas.1200781109] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The chemoreceptors of Escherichia coli localize to the cell poles and form a highly ordered array in concert with the CheA kinase and the CheW coupling factor. However, a high-resolution structure of the array has been lacking, and the molecular basis of array assembly has thus remained elusive. Here, we use cryoelectron tomography of flagellated E. coli minicells to derive a 3D map of the intact array. Docking of high-resolution structures into the 3D map provides a model of the core signaling complex, in which a CheA/CheW dimer bridges two adjacent receptor trimers via multiple hydrophobic interactions. A further, hitherto unknown, hydrophobic interaction between CheW and the homologous P5 domain of CheA in an adjacent core complex connects the complexes into an extended array. This architecture provides a structural basis for array formation and could explain the high sensitivity and cooperativity of chemotaxis signaling in E. coli.
Collapse
|
149
|
Kudryashev M, Stahlberg H, Castaño-Díez D. Assessing the benefits of focal pair cryo-electron tomography. J Struct Biol 2012; 178:88-97. [DOI: 10.1016/j.jsb.2011.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/12/2011] [Accepted: 10/19/2011] [Indexed: 01/28/2023]
|
150
|
Maturation cleavage of the murine leukemia virus Env precursor separates the transmembrane subunits to prime it for receptor triggering. Proc Natl Acad Sci U S A 2012; 109:7735-40. [PMID: 22547812 DOI: 10.1073/pnas.1118125109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Env protein of murine leukemia virus matures by two cleavage events. First, cellular furin separates the receptor binding surface (SU) subunit from the fusion-active transmembrane (TM) subunit and then, in the newly assembled particle, the viral protease removes a 16-residue peptide, the R-peptide from the endodomain of the TM. Both cleavage events are required to prime the Env for receptor-triggered activation. Cryoelectron microscopy (cryo-EM) analyses have shown that the mature Env forms an open cage-like structure composed of three SU-TM complexes, where the TM subunits formed separated Env legs. Here we have studied the structure of the R-peptide precursor Env by cryo-EM. TM cleavage in Moloney murine leukemia virus was inhibited by amprenavir, and the Envs were solubilized in Triton X-100 and isolated by sedimentation in a sucrose gradient. We found that the legs of the R-peptide Env were held together by trimeric interactions at the very bottom of the Env. This suggested that the R-peptide ties the TM legs together and that this prevents the activation of the TM for fusion. The model was supported by further cryo-EM studies using an R-peptide Env mutant that was fusion-competent despite an uncleaved R-peptide. The Env legs of this mutant were found to be separated, like in the mature Env. This shows that it is the TM leg separation, normally caused by R-peptide cleavage, that primes the Env for receptor triggering.
Collapse
|