101
|
SCRAPPER regulates the thresholds of long-term potentiation/depression, the bidirectional synaptic plasticity in hippocampal CA3-CA1 synapses. Neural Plast 2012; 2012:352829. [PMID: 23316391 PMCID: PMC3539422 DOI: 10.1155/2012/352829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022] Open
Abstract
SCRAPPER, which is an F-box protein encoded by FBXL20, regulates the frequency of the miniature excitatory synaptic current through the ubiquitination of Rab3-interacting molecule 1. Here, we recorded the induction of long-term potentiation/depression (LTP/LTD) in CA3-CA1 synapses in E3 ubiquitin ligase SCRAPPER-deficient hippocampal slices. Compared to wild-type mice, Scrapper-knockout mice exhibited LTDs with smaller magnitudes after induction with low-frequency stimulation and LTPs with larger magnitudes after induction with tetanus stimulation. These findings suggest that SCRAPPER regulates the threshold of bidirectional synaptic plasticity and, therefore, metaplasticity.
Collapse
|
102
|
Wu HY, Wang T, Li L, Correia K, Morgan JI. A structural and functional analysis of Nna1 in Purkinje cell degeneration (pcd) mice. FASEB J 2012; 26:4468-80. [PMID: 22835831 DOI: 10.1096/fj.12-205047] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The axotomy-inducible enzyme Nna1 defines a subfamily of M14 metallocarboxypeptidases, and its mutation underlies the Purkinje cell degeneration (pcd) mouse. However, the relationship among its catalytic activity, substrate specificities, and the critical processes of neurodegeneration/axon regeneration is incompletely understood. Here we used a transgenic rescue strategy targeting expression of modified forms of Nna1 to Purkinje cells in pcd mice to determine structure-activity relationships for neuronal survival and in parallel characterized the enzymatic properties of purified recombinant Nna1. The Nna1 subfamily uniquely shares conserved substrate-determining residues with aspartoacylase that, when mutated, cause Canavan disease. Homologous mutations (D1007E and R1078E) inactivate Nna1 in vivo, as does mutation of its catalytic glutamate (E1094A), which implies that metabolism of acidic substrates is essential for neuronal survival. Consistent with reports that Nna1 is a tubulin glutamylase, recombinant Nna1-but not the catalytic mutants-removes glutamate from tubulin. Recombinant Nna1 metabolizes synthetic substrates with 2 or more C-terminal glutamate (but not aspartate) residues (V(max) for 3 glutamates is ∼7-fold higher than 2 glutamates although K(M) is similar). Catalysis is not ATP/GTP dependent, and mutating the ATP/GTP binding site of Nna1 has no effect in vivo. Nna1 is a monomeric enzyme essential for neuronal survival through hydrolysis of polyglutamate-containing substrates.
Collapse
Affiliation(s)
- Hui-Yuan Wu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis,Tennessee 38105-3678, USA
| | | | | | | | | |
Collapse
|
103
|
Garnham CP, Roll-Mecak A. The chemical complexity of cellular microtubules: tubulin post-translational modification enzymes and their roles in tuning microtubule functions. Cytoskeleton (Hoboken) 2012; 69:442-63. [PMID: 22422711 PMCID: PMC3459347 DOI: 10.1002/cm.21027] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 02/28/2012] [Accepted: 03/07/2012] [Indexed: 01/20/2023]
Abstract
Cellular microtubules are marked by abundant and evolutionarily conserved post-translational modifications that have the potential to tune their functions. This review focuses on the astonishing chemical complexity introduced in the tubulin heterodimer at the post-translational level and summarizes the recent advances in identifying the enzymes responsible for these modifications and deciphering the consequences of tubulin's chemical diversity on the function of molecular motors and microtubule associated proteins.
Collapse
Affiliation(s)
- Christopher P. Garnham
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, U.S.A
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, U.S.A
- National Heart, Lung and Blood Institute, Bethesda, MD 20892, U.S.A
| |
Collapse
|
104
|
Seidel C, Zekert N, Fischer R. The Aspergillus nidulans kinesin-3 tail is necessary and sufficient to recognize modified microtubules. PLoS One 2012; 7:e30976. [PMID: 22363525 PMCID: PMC3282709 DOI: 10.1371/journal.pone.0030976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/30/2011] [Indexed: 12/28/2022] Open
Abstract
Posttranslational microtubule modifications (PTMs) are numerous; however, the biochemical and cell biological roles of those modifications remain mostly an enigma. The Aspergillus nidulans kinesin-3 UncA uses preferably modified microtubules (MTs) as tracks for vesicle transportation. Here, we show that a positively charged region in the tail of UncA (amino acids 1316 to 1402) is necessary for the recognition of modified MTs. Chimeric proteins composed of the kinesin-1 motor domain and the UncA tail displayed the same specificity as UncA, suggesting that the UncA tail is sufficient to establish specificity. Interaction between the UncA tail and alpha-tubulin was shown using a yeast two-hybrid assay and in A. nidulans by bimolecular fluorescence complementation. This is the first demonstration of how a kinesin-3 motor protein distinguishes among different MT populations in fungal cells, and how specificity determination depends on the tail rather than the motor domain, as has been demonstrated for kinesin 1 in neuronal cells.
Collapse
Affiliation(s)
- Constanze Seidel
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Nadine Zekert
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
105
|
Taira S, Osaka I, Shimma S, Kaneko D, Hiroki T, Kawamura-Konishi Y, Ichiyanagi Y. Oligonucleotide analysis by nanoparticle-assisted laser desorption/ionization mass spectrometry. Analyst 2012; 137:2006-10. [PMID: 22337326 DOI: 10.1039/c2an16237g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We analyzed oligonucleotides by nanoparticle-assisted laser desorption/ionization (nano-PALDI) mass spectrometry (MS). To this end, we prepared several kinds of nanoparticles (Cr-, Fe-, Mn-, Co-based) and optimized the nano-PALDI MS method to analyze the oligonucleotides. Iron oxide nanoparticles with diammonium hydrogen citrate were found to serve as an effective ionization-assisting reagent in MS. The mass spectra showed both [M - H](-) and [M + xMe(2+)- H](-) (Me: transition metal) peaks. The number of metal-adducted ion signals depended on the length of the oligonucleotide. This phenomenon was only observed using bivalent metal core nanoparticles, not with any other valency metal core nanoparticles. Our pilot study demonstrated that iron oxide nanoparticles could easily ionize samples such as chemical drugs and peptides as well as oligonucleotides without the aid of an oligonucleotide-specific chemical matrix (e.g., 3-hydroxypicolinic acid) used in conventional MS methods. These results suggested that iron-based nanoparticles may serve as the assisting material of ionization for genes and other biomolecules.
Collapse
Affiliation(s)
- Shu Taira
- Japan Advanced Institute of Science and Technology, School of Material Science, 1-1 Asahidai, Nomi City, Ishikawa 923-1292, Japan.
| | | | | | | | | | | | | |
Collapse
|
106
|
Segal M, Soifer I, Petzold H, Howard J, Elbaum M, Reiner O. Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon. Biol Open 2012; 1:220-31. [PMID: 23213412 PMCID: PMC3507287 DOI: 10.1242/bio.2012307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate non-vesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.
Collapse
Affiliation(s)
- Michal Segal
- Department of Molecular Genetics, The Weizmann Institute of Science , Rehovot 76100 , Israel
| | | | | | | | | | | |
Collapse
|
107
|
Konno A, Setou M, Ikegami K. Ciliary and flagellar structure and function--their regulations by posttranslational modifications of axonemal tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:133-70. [PMID: 22364873 DOI: 10.1016/b978-0-12-394305-7.00003-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved microtubule-based organelles protruding from the cell surface. They perform dynein-driven beating which contributes to cell locomotion or flow generation. They also play important roles in sensing as cellular antennae, which allows cells to respond to various external stimuli. The main components of cilia and flagella, α- and β-tubulins, are known to undergo various posttranslational modifications (PTMs), including phosphorylation, palmitoylation, tyrosination/detyrosination, Δ2 modification, acetylation, glutamylation, and glycylation. Recent identification of tubulin-modifying enzymes, especially tubulin tyrosine ligase-like proteins which perform tubulin glutamylation and glycylation, has demonstrated the importance of tubulin modifications for the assembly and functions of cilia and flagella. In this chapter, we review recent work on PTMs of ciliary and flagellar tubulins in conjunction with discussing the basic knowledge.
Collapse
Affiliation(s)
- Alu Konno
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | |
Collapse
|
108
|
Asakawa H, Ikegami K, Setou M, Watanabe N, Tsukada M, Fukuma T. Submolecular-scale imaging of α-helices and C-terminal domains of tubulins by frequency modulation atomic force microscopy in liquid. Biophys J 2011; 101:1270-6. [PMID: 21889465 DOI: 10.1016/j.bpj.2011.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022] Open
Abstract
In this study, we directly imaged subnanometer-scale structures of tubulins by performing frequency modulation atomic force microscopy (FM-AFM) in liquid. Individual α-helices at the surface of a tubulin protofilament were imaged as periodic corrugations with a spacing of 0.53 nm, which corresponds to the common pitch of an α-helix backbone (0.54 nm). The identification of individual α-helices allowed us to determine the orientation of the deposited tubulin protofilament. As a result, C-terminal domains of tubulins were identified as protrusions with a height of 0.4 nm from the surface of the tubulin. The imaging mechanism for the observed subnanometer-scale contrasts is discussed in relation to the possible structures of the C-terminal domains. Because the C-terminal domains are chemically modified to regulate the interactions between tubulins and other biomolecules (e.g., motor proteins and microtubule-associated proteins), detailed structural information on individual C-terminal domains is valuable for understanding such regulation mechanisms. The results obtained in this study demonstrate that FM-AFM is capable of visualizing the structural variation of tubulins with subnanometer resolution. This is an important first step toward using FM-AFM to analyze the functions of tubulins.
Collapse
Affiliation(s)
- Hitoshi Asakawa
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
109
|
Berezniuk I, Vu HT, Lyons PJ, Sironi JJ, Xiao H, Burd B, Setou M, Angeletti RH, Ikegami K, Fricker LD. Cytosolic carboxypeptidase 1 is involved in processing α- and β-tubulin. J Biol Chem 2011; 287:6503-17. [PMID: 22170066 DOI: 10.1074/jbc.m111.309138] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Purkinje cell degeneration (pcd) mouse has a disruption in the gene encoding cytosolic carboxypeptidase 1 (CCP1). This study tested two proposed functions of CCP1: degradation of intracellular peptides and processing of tubulin. Overexpression (2-3-fold) or knockdown (80-90%) of CCP1 in human embryonic kidney 293T cells (HEK293T) did not affect the levels of most intracellular peptides but altered the levels of α-tubulin lacking two C-terminal amino acids (delta2-tubulin) ≥ 5-fold, suggesting that tubulin processing is the primary function of CCP1, not peptide degradation. Purified CCP1 produced delta2-tubulin from purified porcine brain α-tubulin or polymerized HEK293T microtubules. In addition, CCP1 removed Glu residues from the polyglutamyl side chains of porcine brain α- and β-tubulin and also generated a form of α-tubulin with two C-terminal Glu residues removed (delta3-tubulin). Consistent with this, pcd mouse brain showed hyperglutamylation of both α- and β-tubulin. The hyperglutamylation of α- and β-tubulin and subsequent death of Purkinje cells in pcd mice was counteracted by the knock-out of the gene encoding tubulin tyrosine ligase-like-1, indicating that this enzyme hyperglutamylates α- and β-tubulin. Taken together, these results demonstrate a role for CCP1 in the processing of Glu residues from β- as well as α-tubulin in vitro and in vivo.
Collapse
Affiliation(s)
- Iryna Berezniuk
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Janke C, Bulinski JC. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011; 12:773-86. [PMID: 22086369 DOI: 10.1038/nrm3227] [Citation(s) in RCA: 650] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Half a century of biochemical and biophysical experiments has provided attractive models that may explain the diverse functions of microtubules within cells and organisms. However, the notion of functionally distinct microtubule types has not been explored with similar intensity, mostly because mechanisms for generating divergent microtubule species were not yet known. Cells generate distinct microtubule subtypes through expression of different tubulin isotypes and through post-translational modifications, such as detyrosination and further cleavage to Δ2-tubulin, acetylation, polyglutamylation and polyglycylation. The recent discovery of enzymes responsible for many tubulin post-translational modifications has enabled functional studies demonstrating that these post-translational modifications may regulate microtubule functions through an amazing range of mechanisms.
Collapse
Affiliation(s)
- Carsten Janke
- Department of Signalling, Neurobiology and Cancer, Institut Curie, Bât. 110, Centre Universitaire, 91405 Orsay Cedex, France.
| | | |
Collapse
|
111
|
The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans. Curr Biol 2011; 21:1685-94. [PMID: 21982591 DOI: 10.1016/j.cub.2011.08.049] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/01/2011] [Accepted: 08/19/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Posttranslational modifications (PTMs) such as acetylation, detyrosination, and polyglutamylation have long been considered markers of stable microtubules and have recently been proposed to guide molecular motors to specific subcellular destinations. Microtubules can be deglutamylated by the cytosolic carboxypeptidase CCP1. Loss of CCP1 in mice causes cerebellar Purkinje cell degeneration. Cilia, which are conserved organelles that play important diverse roles in animal development and sensation, contain axonemes comprising microtubules that are especially prone to PTMs. RESULTS Here, we report that a CCP1 homolog, CCPP-1, regulates the ciliary localization of the kinesin-3 KLP-6 and the polycystin PKD-2 in male-specific sensory neurons in C. elegans. In male-specific CEM (cephalic sensilla, male) cilia, ccpp-1 also controls the velocity of the kinesin-2 OSM-3/KIF17 without affecting the transport of kinesin-II cargo. In the core ciliated nervous system of both males and hermaphrodites, loss of ccpp-1 causes progressive defects in amphid and phasmid sensory cilia, suggesting that CCPP-1 activity is required for ciliary maintenance but not ciliogenesis. Affected cilia exhibit defective B-tubules. Loss of TTLL-4, a polyglutamylating enzyme of the tubulin tyrosine ligase-like family, suppresses progressive ciliary defects in ccpp-1 mutants. CONCLUSIONS Our studies suggest that CCPP-1 acts as a tubulin deglutamylase that regulates the localization and velocity of kinesin motors and the structural integrity of microtubules in sensory cilia of a multicellular, living animal. We propose that the neuronal degeneration caused by loss of CCP1 in mammals may represent a novel ciliopathy in which cilia are formed but not maintained, depriving the cell of cilia-based signal transduction.
Collapse
|
112
|
Abstract
Long-distance transport in eukaryotic cells is driven by molecular motors that move along microtubule tracks. Molecular motors of the kinesin superfamily contain a kinesin motor domain attached to family-specific sequences for cargo binding, regulation, and oligomerization. The biochemical and biophysical properties of the kinesin motor domain have been widely studied, yet little is known about how kinesin motors work in the complex cellular environment. We discuss recent studies on the three major families involved in intracellular transport (kinesin-1, kinesin-2, and kinesin-3) that have begun to bridge the gap in knowledge between the in vitro and in vivo behaviors of kinesin motors. These studies have increased our understanding of how kinesin subunits assemble to produce a functional motor, how kinesin motors are affected by biochemical cues and obstacles present on cellular microtubules, and how multiple motors on a cargo surface can work collectively for increased force production and travel distance.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
113
|
Chandramouli KH, Soo L, Qian PY. Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I. Proteome Sci 2011; 9:51. [PMID: 21888661 PMCID: PMC3180302 DOI: 10.1186/1477-5956-9-51] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spontaneous metamorphosis of the polychaete Capitella sp. I larvae into juveniles requires minor morphological changes, including segment formation, body elongation, and loss of cilia. In this study, we investigated changes in the expression patterns of both proteins and phosphoproteins during the transition from larvae to juveniles in this species. We used two-dimensional gel electrophoresis (2-DE) followed by multiplex fluorescent staining and MALDI-TOF mass spectrometry analysis to identify the differentially expressed proteins as well as the protein and phosphoprotein profiles of both competent larvae and juveniles. RESULTS Twenty-three differentially expressed proteins were identified in the two developmental stages. Expression patterns of two of those proteins were examined at the protein level by Western blot analysis while seven were further studied at the mRNA level by real-time PCR. Results showed that proteins related to cell division, cell migration, energy storage and oxidative stress were plentifully expressed in the competent larvae; in contrast, proteins involved in oxidative metabolism and transcriptional regulation were abundantly expressed in the juveniles. CONCLUSION It is likely that these differentially expressed proteins are involved in regulating the larval metamorphosis process and can be used as protein markers for studying molecular mechanisms associated with larval metamorphosis in polychaetes.
Collapse
Affiliation(s)
- Kondethimmanahalli H Chandramouli
- KAUST Global Collaborative Research, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | | | | |
Collapse
|
114
|
Valenzuela JI, Jaureguiberry-Bravo M, Couve A. Neuronal protein trafficking: emerging consequences of endoplasmic reticulum dynamics. Mol Cell Neurosci 2011; 48:269-77. [PMID: 21782949 DOI: 10.1016/j.mcn.2011.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/23/2011] [Accepted: 07/07/2011] [Indexed: 01/16/2023] Open
Abstract
The highly polarized morphology and complex geometry of neurons is determined to a great extent by the structural and functional organization of the secretory pathway. It is intuitive to propose that the spatial arrangement of secretory organelles and their dynamic behavior impinge on protein trafficking and neuronal function, but these phenomena and their consequences are not well delineated. Here we analyze the architecture and motility of the archetypal endoplasmic reticulum (ER), and their relationship to the microtubule cytoskeleton and post-translational modifications of tubulin. We also review the dynamics of the ER in axons, dendrites and spines, and discuss the role of ER dynamics on protein mobility and trafficking in neurons.
Collapse
Affiliation(s)
- José Ignacio Valenzuela
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
115
|
Abstract
Cortical malformations associated with defects in neuronal migration result in severe developmental consequences including intractable epilepsy and intellectual disability. Genetic causes of migration defects have been identified with the advent and widespread use of high-resolution MRI and genetic techniques. Thus, the full phenotypic range of these genetic disorders is becoming apparent. Genes that cause lissencephaly, pachygyria, subcortical band heterotopia, and periventricular nodular heterotopias have been defined. Many of these genes are involved in cytoskeletal regulation including the function of microtubules (LIS1, TUBA1A,TUBB3, and DCX) and of actin (FilaminA). Thus, the molecular pathways regulating neuronal migration including the cytoskeletal pathways appear to be defined by human mutation syndromes. Basic science, including cell biology and animal models of these disorders, has informed our understanding of the pathogenesis of neuronal migration disorders and further progress depends on the continued integration of the clinical and basic sciences.
Collapse
|
116
|
Fullston T, Gabb B, Callen D, Ullmann R, Woollatt E, Bain S, Ropers HH, Cooper M, Chandler D, Carter K, Jablensky A, Kalaydjieva L, Gecz J. Inherited balanced translocation t(9;17)(q33.2;q25.3) concomitant with a 16p13.1 duplication in a patient with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156:204-14. [PMID: 21302349 DOI: 10.1002/ajmg.b.31157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/30/2010] [Indexed: 11/08/2022]
Abstract
We report two rare genetic aberrations in a schizophrenia patient that may act together to confer disease susceptibility. A previously unreported balanced t(9;17)(q33.2;q25.3) translocation was observed in two schizophrenia-affected members of a small family with diverse psychiatric disorders. The proband also carried a 1.5 Mbp microduplication at 16p13.1 that could not be investigated in other family members. The duplication has been reported to predispose to schizophrenia, autism and mental retardation, with incomplete penetrance and variable expressivity. The t(9;17) (q33.2;q25.3) translocation breakpoint occurs within the open reading frames of KIAA1618 on 17q25.3, and TTLL11 (tyrosine tubulin ligase like 11) on 9q33.2, causing no change in the expression level of KIAA1618 but leading to loss of expression of one TTLL11 allele. TTLL11 belongs to a family of enzymes catalyzing polyglutamylation, an unusual neuron-specific post-translational modification of microtubule proteins, which modulates microtubule development and dynamics. The 16p13.1 duplication resulted in increased expression of NDE1, encoding a DISC1 protein partner mediating DISC1 functions in microtubule dynamics. We hypothesize that concomitant TTLL11-NDE1 deregulation may increase mutation load, among others, also on the DISC1 pathway, which could contribute to disease pathogenesis through multiple effects on neuronal development, synaptic plasticity, and neurotransmission. Our data illustrate the difficulties in interpreting the contribution of multiple potentially pathogenic changes likely to emerge in future next-generation sequencing studies, where access to extended families will be increasingly important.
Collapse
Affiliation(s)
- Tod Fullston
- SA Pathology, Women's and Children's Hospital, Adelaide, South Australia 5006, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Sharma N, Kosan ZA, Stallworth JE, Berbari NF, Yoder BK. Soluble levels of cytosolic tubulin regulate ciliary length control. Mol Biol Cell 2011; 22:806-16. [PMID: 21270438 PMCID: PMC3057705 DOI: 10.1091/mbc.e10-03-0269] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We show that manipulation of either the microtubule or the actin cytoskeleton has unexpected influences on cilia length control. The primary cilium is an evolutionarily conserved dynamic organelle important for regulating numerous signaling pathways, and, as such, mutations disrupting ciliogenesis result in a variety of developmental abnormalities and postnatal disorders. The length of the cilium is regulated by the cell through largely unknown mechanisms. Normal cilia length is important, as either shortened or elongated cilia have been associated with disease and developmental defects. Here we explore the importance of cytoskeletal dynamics in regulating cilia length. Using pharmacological approaches in different cell types, we demonstrate that actin depolymerization or stabilization and protein kinase A activation result in a rapid elongation of the primary cilium. The effects of pharmacological agents on cilia length are associated with a subsequent increase in soluble tubulin levels and can be impaired by depletion of soluble tubulin with taxol. In addition, subtle nocodazole treatment was able to induce ciliogenesis under conditions in which cilia are not normally formed and also increases cilia length on cells that have already established cilia. Together these data indicate that cilia length can be regulated through changes in either the actin or microtubule network and implicate a possible role for soluble tubulin levels in cilia length control.
Collapse
Affiliation(s)
- Neeraj Sharma
- Department of Cell Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
118
|
Wloga D, Gaertig J. Post-translational modifications of microtubules. J Cell Sci 2011; 123:3447-55. [PMID: 20930140 DOI: 10.1242/jcs.063727] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microtubules--polymers of tubulin--perform essential functions, including regulation of cell shape, intracellular transport and cell motility. How microtubules are adapted to perform multiple diverse functions is not well understood. Post-translational modifications of tubulin subunits diversify the outer and luminal surfaces of microtubules and provide a potential mechanism for their functional specialization. Recent identification of a number of tubulin-modifying and -demodifying enzymes has revealed key roles of tubulin modifications in the regulation of motors and factors that affect the organization and dynamics of microtubules.
Collapse
Affiliation(s)
- Dorota Wloga
- Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | | |
Collapse
|
119
|
Pathak N, Austin CA, Drummond IA. Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility. J Biol Chem 2011; 286:11685-95. [PMID: 21262966 DOI: 10.1074/jbc.m110.209817] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tubulin post-translational modifications generate microtubule heterogeneity and modulate microtubule function, and are catalyzed by tubulin tyrosine ligase-like (TTLL) proteins. Using antibodies specific to monoglycylated, polyglycylated, and glutamylated tubulin in whole mount immunostaining of zebrafish embryos, we observed distinct, tissue-specific patterns of tubulin modifications. Tubulin modification patterns in cilia correlated with the expression of ttll3 and ttll6 in ciliated cells. Expression screening of all zebrafish tubulin tyrosine ligase-like genes revealed additional tissue-specific expression of ttll1 in brain neurons, ttll4 in muscle, and ttll7 in otic placodes. Knockdown of ttll3 eliminated cilia tubulin glycylation but had surprisingly mild effects on cilia structure and motility. Similarly, knockdown of ttll6 strongly reduced cilia tubulin glutamylation but only partially affected cilia structure and motility. Combined loss of function of ttll3 and ttll6 caused near complete loss of cilia motility and induced a variety of axonemal ultrastructural defects similar to defects previously observed in zebrafish fleer mutants, which were shown to lack tubulin glutamylation. Consistently, we find that fleer mutants also lack tubulin glycylation. These results indicate that tubulin glycylation and glutamylation have overlapping functions in maintaining cilia structure and motility and that the fleer/dyf-1 TPR protein is required for both types of tubulin post-translational modification.
Collapse
Affiliation(s)
- Narendra Pathak
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
120
|
Xue Y, O'Mara ML, Surawski PPT, Trau M, Mark AE. Effect of poly(ethylene glycol) (PEG) spacers on the conformational properties of small peptides: a molecular dynamics study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:296-303. [PMID: 21121595 DOI: 10.1021/la103800h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Poly(ethylene glycol) (PEG) is used as an inert spacer in a wide range of biotechnological applications such as to display peptides and proteins on surfaces for diagnostic purposes. In such applications it is critical that the peptide is accessible to solvent and that the PEG does not affect the conformational properties of the peptide to which it is attached. Using molecular dynamics (MD) simulation techniques, we have investigated the influence of a commonly used PEG spacer on the conformation properties of a series of five peptides with differing physical-chemical properties (YGSLPQ, VFVVFV, GSGGSG, EEGEEG, and KKGKKG). The conformational properties of the peptides were compared (a) free in solution, (b) attached to a PEG-11 spacer in solution, and (c) constrained to a two-dimensional lattice via a (PEG-11)(3) spacer, mimicking a peptide displayed on a surface as used in microarray techniques. The simulations suggest that the PEG spacer has little effect on the conformational properties of small neutral peptides but has a significant effect on the conformational properties of small highly charged peptides. When constrained to a two-dimensional surface at peptide densities similar to those used experimentally, it was found that the peptides, in particular the polar and nonpolar peptides, aggregated strongly. The peptides also partitioned into the PEG layer. Potentially, this means that at high packing densities only a small fraction of the peptide attached to the surface would in fact be accessible to a potential interaction partner.
Collapse
Affiliation(s)
- Ying Xue
- School of Chemistry and Molecular Biosciences, and the Institute for Molecular Biosciences, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | |
Collapse
|
121
|
Yang HJ, Ishizaki I, Sanada N, Zaima N, Sugiura Y, Yao I, Ikegami K, Setou M. Detection of characteristic distributions of phospholipid head groups and fatty acids on neurite surface by time-of-flight secondary ion mass spectrometry. Med Mol Morphol 2010; 43:158-64. [PMID: 20857264 DOI: 10.1007/s00795-009-0487-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 11/26/2009] [Indexed: 12/27/2022]
Abstract
Neurons have a large surface because of their long and thin neurites. This surface is composed of a lipid bilayer. Lipids have not been actively investigated so far because of some technical difficulties, although evidence from cell biology is emerging that lipids contain valuable information about their roles in the central nervous system. Recent progress in techniques, e.g., mass spectrometry, opens a new epoch of lipid research. We show herein the characteristic localization of phospholipid components in neurites by means of time-of-flight secondary ion mass spectrometry. We used explant cultures of mouse superior cervical ganglia, which are widely used by neurite investigation research. In a positive-ion detection mode, phospholipid head group molecules were predominantly detected. The ions of m/z 206.1 [phosphocholine, a common component of phosphatidylcholine (PC) and sphingomyelin (SM)] were evenly distributed throughout the neurites, whereas the ions of m/z 224.1, 246.1 (glycerophosphocholine, a part of PC, but not SM) showed relatively strong intensity on neurites adjacent to soma. In a negative-ion detection mode, fatty acids such as oleic and palmitic acids were mainly detected, showing high intensity on neurites adjacent to soma. Our results suggest that lipid components on the neuritic surface show characteristic distributions depending on neurite region.
Collapse
Affiliation(s)
- Hyun-Jeong Yang
- Department of Bioscience and Biotechnology, Tokyo Institute of Technology, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Jaulin F, Kreitzer G. KIF17 stabilizes microtubules and contributes to epithelial morphogenesis by acting at MT plus ends with EB1 and APC. ACTA ACUST UNITED AC 2010; 190:443-60. [PMID: 20696710 PMCID: PMC2922650 DOI: 10.1083/jcb.201006044] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial polarization is associated with selective stabilization and reorganization of microtubule (MT) arrays. However, upstream events and downstream consequences of MT stabilization during epithelial morphogenesis are still unclear. We show that the anterograde kinesin KIF17 localizes to MT plus ends, stabilizes MTs, and affects epithelial architecture. Targeting of KIF17 to plus ends of growing MTs requires kinesin motor activity and interaction with EB1. In turn, KIF17 participates in localizing adenomatous polyposis coli (APC) to the plus ends of a subset of MTs. We found that KIF17 affects MT dynamics, polymerization rates, and MT plus end stabilization to generate posttranslationally acetylated MTs. Depletion of KIF17 from cells growing in three-dimensional matrices results in aberrant epithelial cysts that fail to generate a single central lumen and to polarize apical markers. These findings implicate KIF17 in MT stabilization events that contribute to epithelial polarization and morphogenesis.
Collapse
Affiliation(s)
- Fanny Jaulin
- Department of Cell and Developmental Biology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
123
|
Akieda-Asai S, Zaima N, Ikegami K, Kahyo T, Yao I, Hatanaka T, Iemura SI, Sugiyama R, Yokozeki T, Eishi Y, Koike M, Ikeda K, Chiba T, Yamaza H, Shimokawa I, Song SY, Matsuno A, Mizutani A, Sawabe M, Chao MV, Tanaka M, Kanaho Y, Natsume T, Sugimura H, Date Y, McBurney MW, Guarente L, Setou M. SIRT1 Regulates Thyroid-Stimulating Hormone Release by Enhancing PIP5Kgamma Activity through Deacetylation of Specific Lysine Residues in Mammals. PLoS One 2010; 5:e11755. [PMID: 20668706 PMCID: PMC2909264 DOI: 10.1371/journal.pone.0011755] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/29/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SIRT1, a NAD-dependent deacetylase, has diverse roles in a variety of organs such as regulation of endocrine function and metabolism. However, it remains to be addressed how it regulates hormone release there. METHODOLOGY/PRINCIPAL FINDINGS Here, we report that SIRT1 is abundantly expressed in pituitary thyrotropes and regulates thyroid hormone secretion. Manipulation of SIRT1 level revealed that SIRT1 positively regulated the exocytosis of TSH-containing granules. Using LC/MS-based interactomics, phosphatidylinositol-4-phosphate 5-kinase (PIP5K)gamma was identified as a SIRT1 binding partner and deacetylation substrate. SIRT1 deacetylated two specific lysine residues (K265/K268) in PIP5Kgamma and enhanced PIP5Kgamma enzyme activity. SIRT1-mediated TSH secretion was abolished by PIP5Kgamma knockdown. SIRT1 knockdown decreased the levels of deacetylated PIP5Kgamma, PI(4,5)P(2), and reduced the secretion of TSH from pituitary cells. These results were also observed in SIRT1-knockout mice. CONCLUSIONS/SIGNIFICANCE Our findings indicated that the control of TSH release by the SIRT1-PIP5Kgamma pathway is important for regulating the metabolism of the whole body.
Collapse
Affiliation(s)
- Sayaka Akieda-Asai
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
| | - Nobuhiro Zaima
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Koji Ikegami
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoaki Kahyo
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ikuko Yao
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Medical Chemistry, Kansai Medical University, Osaka, Japan
| | | | - Shun-ichiro Iemura
- National Institute of Advanced Industrial Science and Technology, Biomedicinal Information Research Center, Tokyo, Japan
| | - Rika Sugiyama
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takeaki Yokozeki
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshinobu Eishi
- Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morio Koike
- Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kyoji Ikeda
- Department of Bone and Joint Disease, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Takuya Chiba
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruyoshi Yamaza
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Section of Pediatric Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Isao Shimokawa
- Department of Investigative Pathology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Si-Young Song
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
| | - Akira Matsuno
- Department of Neurosurgery, Teikyo University Chica Medical Center, Chiba, Japan
| | - Akiko Mizutani
- Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoji Sawabe
- Department of Pathology and Bioresource Center for Geriatric Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Moses V. Chao
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, United States of America
| | - Masashi Tanaka
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tohru Natsume
- National Institute of Advanced Industrial Science and Technology, Biomedicinal Information Research Center, Tokyo, Japan
| | - Haruhiko Sugimura
- Department of Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yukari Date
- Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Michael W. McBurney
- Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Leonard Guarente
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mitsutoshi Setou
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Tokyo, Japan
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
124
|
Affiliation(s)
- Narendra H Pathak
- Department of Medicine and Genetics, Harvard Medical School and Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|
125
|
Zhang L, Gavin T, DeCaprio AP, LoPachin RM. Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons. Toxicol Sci 2010; 117:180-9. [PMID: 20554699 DOI: 10.1093/toxsci/kfq176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of alpha- or beta-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45-80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high-molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of gamma-diketone axonopathy.
Collapse
Affiliation(s)
- Lihai Zhang
- Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York 10467-2490, USA
| | | | | | | |
Collapse
|
126
|
Janke C, Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci 2010; 33:362-72. [PMID: 20541813 DOI: 10.1016/j.tins.2010.05.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/20/2022]
Abstract
In the past decades, a range of post-translational modifications has been discovered on tubulins, the major constituents of microtubules. Pioneering studies have described the occurrence and dynamics of these modifications and provided first insights into their potential functions in regulating the microtubule cytoskeleton. By contrast, several tubulin-modifying enzymes were only discovered in the last few years, and studies on molecular mechanisms and cellular functions of tubulin modifications are just beginning to emerge. This review highlights the roles of tubulin modifications in neurons. Recent studies are also discussed in relation to how the combinatorial use of tubulin modifications could generate a dynamic microtubule code, and how such a code might regulate basic as well as higher-order neuronal functions.
Collapse
Affiliation(s)
- Carsten Janke
- Institut Curie, Bâtiment 110, Centre Universitaire, F-91405 Orsay Cedex, France.
| | | |
Collapse
|
127
|
Kimura Y, Kurabe N, Ikegami K, Tsutsumi K, Konishi Y, Kaplan OI, Kunitomo H, Iino Y, Blacque OE, Setou M. Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs). J Biol Chem 2010; 285:22936-41. [PMID: 20519502 DOI: 10.1074/jbc.c110.128280] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tubulin polyglutamylation is a reversible post-translational modification, serving important roles in microtubule (MT)-related processes. Polyglutamylases of the tubulin tyrosine ligase-like (TTLL) family add glutamate moieties to specific tubulin glutamate residues, whereas as yet unknown deglutamylases shorten polyglutamate chains. First we investigated regulatory machinery of tubulin glutamylation in MT-based sensory cilia of the roundworm Caenorhabditis elegans. We found that ciliary MTs were polyglutamylated by a process requiring ttll-4. Conversely, loss of ccpp-6 gene function, which encodes one of two cytosolic carboxypeptidases (CCPs), resulted in elevated levels of ciliary MT polyglutamylation. Consistent with a deglutamylase function for ccpp-6, overexpression of this gene in ciliated cells decreased polyglutamylation signals. Similarly, we confirmed that overexpression of murine CCP5, one of two sequence orthologs of nematode ccpp-6, caused a dramatic loss of MT polyglutamylation in cultured mammalian cells. Finally, using an in vitro assay for tubulin glutamylation, we found that recombinantly expressed Myc-tagged CCP5 exhibited deglutamylase biochemical activities. Together, these data from two evolutionarily divergent systems identify C. elegans CCPP-6 and its mammalian ortholog CCP5 as a tubulin deglutamylase.
Collapse
Affiliation(s)
- Yoshishige Kimura
- Department of Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka 431-3192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Sudo H, Baas PW. Acetylation of microtubules influences their sensitivity to severing by katanin in neurons and fibroblasts. J Neurosci 2010; 30:7215-26. [PMID: 20505088 PMCID: PMC2891103 DOI: 10.1523/jneurosci.0048-10.2010] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 01/16/2023] Open
Abstract
Here we investigated whether the sensitivity of microtubules to severing by katanin is regulated by acetylation of the microtubules. During interphase, fibroblasts display long microtubules with discrete regions rich in acetylated tubulin. Overexpression of katanin for short periods of time produced breaks preferentially in these regions. In fibroblasts with experimentally enhanced or diminished microtubule acetylation, the sensitivity of the microtubules to severing by katanin was increased or decreased, respectively. In neurons, microtubules are notably more acetylated in axons than in dendrites. Experimental manipulation of microtubule acetylation in neurons yielded similar results on dendrites as observed on fibroblasts. However, under these experimental conditions, axonal microtubules were not appreciably altered with regard to their sensitivity to katanin. We hypothesized that this may be attributable to the effects of tau on the axonal microtubules, and this was validated by studies in which overexpression of tau caused microtubules in dendrites and fibroblasts to be more resistant to severing by katanin in a manner that was not dependent on the acetylation state of the microtubules. Interestingly, none of these various findings apply to spastin, because the severing of microtubules by spastin does not appear to be strongly influenced by either the acetylation state of the microtubules or tau. We conclude that sensitivity to microtubule severing by katanin is regulated by a balance of factors, including the acetylation state of the microtubules and the binding of tau to the microtubules. In the neuron, this contributes to regional differences in the microtubule arrays of axons and dendrites.
Collapse
Affiliation(s)
- Haruka Sudo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| | - Peter W. Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
129
|
Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc Natl Acad Sci U S A 2010; 107:10490-5. [PMID: 20498047 DOI: 10.1073/pnas.1002128107] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Airway epithelial cilia protect the mammalian respiratory system from harmful inhaled materials by providing the force necessary for effective mucociliary clearance. Ciliary beating is asymmetric, composed of clearly distinguished effective and recovery strokes. Neither the importance of nor the essential components responsible for the beating asymmetry has been directly elucidated. We report here that the beating asymmetry is crucial for ciliary function and requires tubulin glutamylation, a unique posttranslational modification that is highly abundant in cilia. WT murine tracheal cilia have an axoneme-intrinsic structural curvature that points in the direction of effective strokes. The axonemal curvature was lost in tracheal cilia from mice with knockout of a tubulin glutamylation-performing enzyme, tubulin tyrosine ligase-like protein 1. Along with the loss of axonemal curvature, the axonemes and tracheal epithelial cilia from these knockout (KO) mice lost beating asymmetry. The loss of beating asymmetry resulted in a reduction of cilia-generated fluid flow in trachea from the KO mice. The KO mice displayed a significant accumulation of mucus in the nasal cavity, and also emitted frequent coughing- or sneezing-like noises. Thus, the beating asymmetry is important for airway ciliary function. Our findings provide evidence that tubulin glutamylation is essential for ciliary function through the regulation of beating asymmetry, and provides insight into the molecular basis underlying the beating asymmetry.
Collapse
|
130
|
Kashiwaya K, Nakagawa H, Hosokawa M, Mochizuki Y, Ueda K, Piao L, Chung S, Hamamoto R, Eguchi H, Ohigashi H, Ishikawa O, Janke C, Shinomura Y, Nakamura Y. Involvement of the tubulin tyrosine ligase-like family member 4 polyglutamylase in PELP1 polyglutamylation and chromatin remodeling in pancreatic cancer cells. Cancer Res 2010; 70:4024-33. [PMID: 20442285 DOI: 10.1158/0008-5472.can-09-4444] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyglutamylation is a new class of posttranslational modification in which glutamate side chains are formed in proteins, although its biological significance is not well known. Through our genome-wide gene expression profile analyses of pancreatic ductal adenocarcinoma (PDAC) cells, we identified the overexpression of tubulin tyrosine ligase-like family member 4 (TTLL4) in PDAC cells. Subsequent reverse transcription-PCR and Northern blot analyses confirmed its upregulation in several PDACs. TTLL4 belongs to the TTLL family which was reported to have polyglutamylase activity. Knockdown of TTLL4 by short hairpin RNA in PDAC cells attenuated the growth of PDAC cells and exogenous introduction of TTLL4 enhanced cell growth. We also found that TTLL4 expression was correlated with polyglutamylation levels of a glutamate stretch region of the proline, glutamate, and leucine-rich protein 1 (PELP1) that was shown to interact with various proteins such as histone H3, and was involved in several signaling pathways through its function as a scaffold protein. PELP1 polyglutamylation could influence its interaction with histone H3 and affect histone H3 acetylation. We also identified the interaction of PELP1 with LAS1L and SENP3, components of the MLL1-WDR5 supercomplex involving chromatin remodeling. Our findings imply that TTLL4 could play important roles in pancreatic carcinogenesis through its polyglutamylase activity and subsequent coordination of chromatin remodeling, and might be a good molecular candidate for the development of new therapeutic strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Kotoe Kashiwaya
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Tischfield MA, Engle EC. Distinct alpha- and beta-tubulin isotypes are required for the positioning, differentiation and survival of neurons: new support for the 'multi-tubulin' hypothesis. Biosci Rep 2010; 30:319-30. [PMID: 20406197 PMCID: PMC3319081 DOI: 10.1042/bsr20100025] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The many functions of the microtubule cytoskeleton are essential for shaping the development and maintaining the operation of the nervous system. With the recent discovery of congenital neurological disorders that result from mutations in genes that encode different alpha- and beta-tubulin isotypes (TUBA1A, TUBB2B, TUBA8 and TUBB3), scientists have a novel paradigm to assess how select perturbations in microtubule function affect a range of cellular processes in humans. Moreover, important phenotypic distinctions found among the syndromes suggest that different tubulin isotypes can be utilized for distinct cellular functions during nervous system development. In the present review, we discuss: (i) the spectrum of congenital nervous system diseases that result from mutations in tubulin and MAPs (microtubule-associated proteins); (ii) the known or putative roles of these proteins during nervous system development; (iii) how the findings collectively support the 'multi-tubulin' hypothesis, which postulates that different tubulin isotypes may be required for specialized microtubule functions.
Collapse
Affiliation(s)
- Max A Tischfield
- Department of Neurology and Ophthalmology, Manten Center for Orphan Disease Research, Children's Hospital Boston, Harvard Medical School, MA, USA. <>
| | | |
Collapse
|
132
|
Developments and applications of mass microscopy. Med Mol Morphol 2010; 43:1-5. [PMID: 20339999 DOI: 10.1007/s00795-009-0489-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 10/19/2022]
Abstract
We have developed a mass microscopy technique, i.e., a microscope combined with high-resolution matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS), which is a powerful tool for investigating the spatial distribution of biomolecules without any time-consuming extraction, purification, and separation procedures for biological tissue sections. Mass microscopy provides clear images about the distribution of hundreds of biomolecules in a single measurement and also helps in understanding the cellular profile of the biological system. The sample preparation and the spatial resolution and speed of the technique are all important steps that affect the identification of biomolecules in mass microscopy. In this Award Lecture Review, we focus on some of the recent developments in clinical applications to show how mass microscopy can be employed to assess medical molecular morphology.
Collapse
|
133
|
Abstract
The beating of cilia and flagella depends on microtubule sliding generated by dynein motors, but the interaction of these motors with their tracks is still under investigation. New evidence suggests that some dynein motors will not function properly unless their track has been modified by a specific post-translational modification.
Collapse
Affiliation(s)
- David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA. <>
| |
Collapse
|
134
|
Ikegami K, Setou M. Unique post-translational modifications in specialized microtubule architecture. Cell Struct Funct 2010; 35:15-22. [PMID: 20190462 DOI: 10.1247/csf.09027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubules (MTs) play specialized roles in a wide variety of cellular events, e.g. molecular transport, cell motility, and cell division. Specialized MT architectures, such as bundles, axonemes, and centrioles, underlie the function. The specialized function and highly organized structure depend on interactions with MT-binding proteins. MT-associated proteins (e.g. MAP1, MAP2, and tau), molecular motors (kinesin and dynein), plus-end tracking proteins (e.g. CLIP-170), and MT-severing proteins (e.g. katanin) interact with MTs. How can the MT-binding proteins know temporospatial information to associate with MTs and to properly play their roles? Post-translational modifications (PTMs) including detyrosination, polyglutamylation, and polyglycylation can provide molecular landmarks for the proteins. Recent efforts to identify modification-regulating enzymes (TTL, carboxypeptidase, polyglutamylase, polyglycylase) and to generate genetically manipulated animals enable us to understand the roles of the modifications. In this review, we present recent advances in understanding regulation of MT function, structure, and stability by PTMs.
Collapse
Affiliation(s)
- Koji Ikegami
- Department of Molecular Anatomy, Molecular Imaging Advanced Research Center, Hamamatsu University School of Medicine, Japan
| | | |
Collapse
|
135
|
Dumoulin A, Triller A, Kneussel M. Cellular transport and membrane dynamics of the glycine receptor. Front Mol Neurosci 2010; 2:28. [PMID: 20161805 PMCID: PMC2820378 DOI: 10.3389/neuro.02.028.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/19/2009] [Indexed: 01/04/2023] Open
Abstract
Regulation of synaptic transmission is essential to tune individual-to-network neuronal activity. One way to modulate synaptic strength is to regulate neurotransmitter receptor numbers at postsynaptic sites. This can be achieved either through plasma membrane insertion of receptors derived from intracellular vesicle pools, a process depending on active cytoskeleton transport, or through surface membrane removal via endocytosis. In parallel, lateral diffusion events along the plasma membrane allow the exchange of receptor molecules between synaptic and extrasynaptic compartments, contributing to synaptic strength regulation. In recent years, results obtained from several groups studying glycine receptor (GlyR) trafficking and dynamics shed light on the regulation of synaptic GlyR density. Here, we review (i) proteins and mechanisms involved in GlyR cytoskeletal transport, (ii) the diffusion dynamics of GlyR and of its scaffolding protein gephyrin that control receptor numbers, and its relationship with synaptic plasticity, and (iii) adaptative changes in GlyR diffusion in response to global activity modifications, as a homeostatic mechanism.
Collapse
Affiliation(s)
- Andrea Dumoulin
- Biologie Cellulaire de la Synapse, Ecole Normale Superieure Paris, France
| | | | | |
Collapse
|
136
|
Hammond JW, Huang CF, Kaech S, Jacobson C, Banker G, Verhey KJ. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol Biol Cell 2009; 21:572-83. [PMID: 20032309 PMCID: PMC2820422 DOI: 10.1091/mbc.e09-01-0044] [Citation(s) in RCA: 227] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During the development of neuronal polarity, the Kinesin-1 motor translocates preferentially to the axon. We show that Kinesin-1 selectivity does not depend on differences between axons and dendrites in microtubule stability or tubulin acetylation, but is likely specified by other tubulin posttranslational modifications. Polarized transport by microtubule-based motors is critical for neuronal development and function. Selective translocation of the Kinesin-1 motor domain is the earliest known marker of axonal identity, occurring before morphological differentiation. Thus, Kinesin-1–mediated transport may contribute to axonal specification. We tested whether posttranslational modifications of tubulin influence the ability of Kinesin-1 motors to distinguish microtubule tracks during neuronal development. We detected no difference in microtubule stability between axons and minor neurites in polarized stage 3 hippocampal neurons. In contrast, microtubule modifications were enriched in a subset of neurites in unpolarized stage 2 cells and the developing axon in polarized stage 3 cells. This enrichment correlated with the selective accumulation of constitutively active Kinesin-1 motors. Increasing tubulin acetylation, without altering the levels of other tubulin modifications, did not alter the selectivity of Kinesin-1 accumulation in polarized cells. However, globally enhancing tubulin acetylation, detyrosination, and polyglutamylation by Taxol treatment or inhibition of glycogen synthase kinase 3β decreased the selectivity of Kinesin-1 translocation and led to the formation of multiple axons. Although microtubule acetylation enhances the motility of Kinesin-1, the preferential translocation of Kinesin-1 on axonal microtubules in polarized neuronal cells is not determined by acetylation alone but is probably specified by a combination of tubulin modifications.
Collapse
Affiliation(s)
- Jennetta W Hammond
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
137
|
Etienne-Manneville S. From signaling pathways to microtubule dynamics: the key players. Curr Opin Cell Biol 2009; 22:104-11. [PMID: 20031384 DOI: 10.1016/j.ceb.2009.11.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 11/13/2009] [Accepted: 11/20/2009] [Indexed: 01/15/2023]
Abstract
Microtubules are highly dynamic structures whose regulation is crucial for cell division, cell polarity, cell migration, or neuronal differentiation. Because they contribute to most cellular functions, they must be regulated in response to extracellular and intracellular signals. The parameters of microtubule dynamics are numerous and complex and the connection between signaling pathways and regulation of microtubule dynamics remain obscure. Recent observations reveal key players that can both integrate the diversity of signaling cascades and directly influence microtubule dynamics. I review here how modifications of the tubulin dimer, tubulin modifying enzymes, and microtubule-associated proteins are directly involved in the regulation of microtubule behavior and functions.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur, Cell Polarity and Migration Group and CNRS URA 2582, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
138
|
Verhey KJ, Hammond JW. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 2009; 10:765-77. [PMID: 19851335 DOI: 10.1038/nrm2782] [Citation(s) in RCA: 398] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kinesins are a family of molecular motors that use the energy of ATP hydrolysis to move along the surface of, or destabilize, microtubule filaments. Much progress has been made in understanding the mechanics and functions of the kinesin motors that play important parts in cell division, cell motility, intracellular trafficking and ciliary function. How kinesins are regulated in cells to ensure the temporal and spatial fidelity of their microtubule-based activities is less well understood. Recent work has revealed molecular mechanisms that control kinesin autoinhibition and subsequent activation, binding to cargos and microtubule tracks, and localization at specific sites of action.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.
| | | |
Collapse
|
139
|
Cai D, McEwen DP, Martens JR, Meyhofer E, Verhey KJ. Single molecule imaging reveals differences in microtubule track selection between Kinesin motors. PLoS Biol 2009; 7:e1000216. [PMID: 19823565 PMCID: PMC2749942 DOI: 10.1371/journal.pbio.1000216] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/01/2009] [Indexed: 11/23/2022] Open
Abstract
Molecular motors differentially recognize and move cargo along discrete microtubule subpopulations in cells, resulting in preferential transport and targeting of subcellular cargoes. Cells generate diverse microtubule populations by polymerization of a common α/β-tubulin building block. How microtubule associated proteins translate microtubule heterogeneity into specific cellular functions is not clear. We evaluated the ability of kinesin motors involved in vesicle transport to read microtubule heterogeneity by using single molecule imaging in live cells. We show that individual Kinesin-1 motors move preferentially on a subset of microtubules in COS cells, identified as the stable microtubules marked by post-translational modifications. In contrast, individual Kinesin-2 (KIF17) and Kinesin-3 (KIF1A) motors do not select subsets of microtubules. Surprisingly, KIF17 and KIF1A motors that overtake the plus ends of growing microtubules do not fall off but rather track with the growing tip. Selection of microtubule tracks restricts Kinesin-1 transport of VSVG vesicles to stable microtubules in COS cells whereas KIF17 transport of Kv1.5 vesicles is not restricted to specific microtubules in HL-1 myocytes. These results indicate that kinesin families can be distinguished by their ability to recognize microtubule heterogeneity. Furthermore, this property enables kinesin motors to segregate membrane trafficking events between stable and dynamic microtubule populations. Eukaryotic cells assemble a variety of cytoskeletal structures from a set of highly conserved building blocks. For example, all microtubules are generated by the polymerization of a common α/β-tubulin subunit, yet cells can contain diverse, discrete populations of microtubule structures such as axonemes, spindles, and radial arrays. This diversity must be read and translated by cellular components in order to carry out population-specific functions. We use single-molecule imaging to study how molecular motors navigate the heterogeneous microtubule populations present in interphase cells. We show that different kinesin motors select different subpopulations of microtubules for transport. This selectivity, based solely on the motor-microtubule interface, may enable kinesin motors to segregate transport events to distinct microtubule populations and thus to target cargoes to specific subcellular destinations.
Collapse
Affiliation(s)
- Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Biophysics Research Division, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dyke P. McEwen
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeffery R. Martens
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Edgar Meyhofer
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Biophysics Research Division, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kristen J. Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Biophysics Research Division, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
140
|
Medical molecular morphology with imaging mass spectrometry. Med Mol Morphol 2009; 42:133-7. [DOI: 10.1007/s00795-009-0458-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
|
141
|
Murayama C, Kimura Y, Setou M. Imaging mass spectrometry: principle and application. Biophys Rev 2009; 1:131. [PMID: 28509996 DOI: 10.1007/s12551-009-0015-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/07/2009] [Indexed: 01/27/2023] Open
Abstract
Imaging mass spectrometry (IMS) is two-dimensional mass spectrometry to visualize the spatial distribution of biomolecules, which does not need either separation or purification of target molecules, and enables us to monitor not only the identification of unknown molecules but also the localization of numerous molecules simultaneously. Among the ionization techniques, matrix assisted laser desorption/ionization (MALDI) is one of the most generally used for IMS, which allows the analysis of numerous biomolecules ranging over wide molecular weights. Proper selection and preparation of matrix is essential for successful imaging using IMS. Tandem mass spectrometry, which is referred to MSn, enables the structural analysis of a molecule detected by the first step of IMS. Applications of IMS were initially developed for studying proteins or peptides. At present, however, targets of IMS research have expanded to the imaging of small endogenous metabolites such as lipids, exogenous drug pharmacokinetics, exploring new disease markers, and other new scientific fields. We hope that this new technology will open a new era for biophysics.
Collapse
Affiliation(s)
- Chihiro Murayama
- Department of Molecular Anatomy, Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, 431-3192, Hamamatsu, Shizuoka, Japan
| | - Yoshishige Kimura
- Department of Molecular Anatomy, Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, 431-3192, Hamamatsu, Shizuoka, Japan.
| | - Mitsutoshi Setou
- Department of Molecular Anatomy, Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, 431-3192, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
142
|
Zilberman Y, Ballestrem C, Carramusa L, Mazitschek R, Khochbin S, Bershadsky A. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci 2009; 122:3531-41. [PMID: 19737819 DOI: 10.1242/jcs.046813] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We studied the role of a class II histone deacetylase, HDAC6, known to function as a potent alpha-tubulin deacetylase, in the regulation of microtubule dynamics. Treatment of cells with the class I and II histone deacetylase inhibitor TSA, as well as the selective HDAC6 inhibitor tubacin, increased microtubule acetylation and significantly reduced velocities of microtubule growth and shrinkage. siRNA-mediated knockdown of HDAC6 also increased microtubule acetylation but, surprisingly, had no effect on microtubule growth velocity. At the same time, HDAC6 knockdown abolished the effect of tubacin on microtubule growth, demonstrating that tubacin influences microtubule dynamics via specific inhibition of HDAC6. Thus, the physical presence of HDAC6 with impaired catalytic activity, rather than tubulin acetylation per se, is the factor responsible for the alteration of microtubule growth velocity in HDAC6 inhibitor-treated cells. In support of this notion, HDAC6 mutants bearing inactivating point mutations in either of the two catalytic domains mimicked the effect of HDAC6 inhibitors on microtubule growth velocity. In addition, HDAC6 was found to be physically associated with the microtubule end-tracking protein EB1 and a dynactin core component, Arp1, both of which accumulate at the tips of growing microtubules. We hypothesize that inhibition of HDAC6 catalytic activity may affect microtubule dynamics by promoting the interaction of HDAC6 with tubulin and/or with other microtubule regulatory proteins.
Collapse
Affiliation(s)
- Yuliya Zilberman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
143
|
Hyperglutamylation of tubulin can either stabilize or destabilize microtubules in the same cell. EUKARYOTIC CELL 2009; 9:184-93. [PMID: 19700636 DOI: 10.1128/ec.00176-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In most eukaryotic cells, tubulin is subjected to posttranslational glutamylation, a conserved modification of unclear function. The glutamyl side chains form as branches of the primary sequence glutamic acids in two biochemically distinct steps: initiation and elongation. The length of the glutamyl side chain is spatially controlled and microtubule type specific. Here, we probe the significance of the glutamyl side chain length regulation in vivo by overexpressing a potent side chain elongase enzyme, Ttll6Ap, in Tetrahymena. Overexpression of Ttll6Ap caused hyperelongation of glutamyl side chains on the tubulin of axonemal, cortical, and cytoplasmic microtubules. Strikingly, in the same cell, hyperelongation of glutamyl side chains stabilized cytoplasmic microtubules and destabilized axonemal microtubules. Our observations suggest that the cellular outcomes of glutamylation are mediated by spatially restricted tubulin interactors of diverse nature.
Collapse
|
144
|
Organ‐Specific Distributions of Lysophosphatidylcholine and Triacylglycerol in Mouse Embryo. Lipids 2009; 44:837-48. [DOI: 10.1007/s11745-009-3331-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
145
|
Schlager MA, Hoogenraad CC. Basic mechanisms for recognition and transport of synaptic cargos. Mol Brain 2009; 2:25. [PMID: 19653898 PMCID: PMC2732917 DOI: 10.1186/1756-6606-2-25] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/04/2009] [Indexed: 12/15/2022] Open
Abstract
Synaptic cargo trafficking is essential for synapse formation, function and plasticity. In order to transport synaptic cargo, such as synaptic vesicle precursors, mitochondria, neurotransmitter receptors and signaling proteins to their site of action, neurons make use of molecular motor proteins. These motors operate on the microtubule and actin cytoskeleton and are highly regulated so that different cargos can be transported to distinct synaptic specializations at both pre- and post-synaptic sites. How synaptic cargos achieve specificity, directionality and timing of transport is a developing area of investigation. Recent studies demonstrate that the docking of motors to their cargos is a key control point. Moreover, precise spatial and temporal regulation of motor-cargo interactions is important for transport specificity and cargo recruitment. Local signaling pathways - Ca2+ influx, CaMKII signaling and Rab GTPase activity - regulate motor activity and cargo release at synaptic locations. We discuss here how different motors recognize their synaptic cargo and how motor-cargo interactions are regulated by neuronal activity.
Collapse
Affiliation(s)
- Max A Schlager
- Department of Neuroscience, Erasmus Medical Center, 3015GE, Rotterdam, The Netherlands.
| | | |
Collapse
|
146
|
Abstract
Microtubule motors drive the movement of many different cargoes in eukaryotic cells. A combination of in vitro and in vivo approaches has led to a better understanding of their mechanism of action and function and are also revealing that the microtubule track itself may have an important role to play in directing cargo movement within the cell.
Collapse
Affiliation(s)
- Viki Allan
- Faculty of Life Sciences, University of Manchester The Michael Smith Building, Oxford Road, Manchester M13 9PT UK.
| |
Collapse
|
147
|
Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends Cell Biol 2009; 19:306-16. [DOI: 10.1016/j.tcb.2009.04.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 01/25/2023]
|
148
|
Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc Natl Acad Sci U S A 2009; 106:8731-6. [PMID: 19439658 DOI: 10.1073/pnas.0812391106] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic plasticity, the ability of synapses to change in strength, requires alterations in synaptic molecule compositions over time, and synapses undergo selective modifications on stimulation. Molecular motors operate in sorting/transport of neuronal proteins; however, the targeting mechanisms that guide and direct cargo delivery remain elusive. We addressed the impact of synaptic transmission on the regulation of intracellular microtubule (MT)-based transport. We show that increased neuronal activity, as induced through GlyR activity blockade, facilitates tubulin polyglutamylation, a posttranslational modification thought to represent a molecular traffic sign for transport. Also, GlyR activity blockade alters the binding of the MT-associated protein MAP2 to MTs. By using the kinesin (KIF5) and the postsynaptic protein gephyrin as models, we show that such changes of MT tracks are accompanied by reduced motor protein mobility and cargo delivery into neurites. Notably, the observed neurite targeting deficits are prevented on functional depletion or gene expression knockdown of neuronal polyglutamylase. Our data suggest a previously undescribed concept of synaptic transmission regulating MT-dependent cargo delivery.
Collapse
|
149
|
May-Simera HL, Ross A, Rix S, Forge A, Beales PL, Jagger DJ. Patterns of expression of Bardet-Biedl syndrome proteins in the mammalian cochlea suggest noncentrosomal functions. J Comp Neurol 2009; 514:174-88. [PMID: 19396898 DOI: 10.1002/cne.22001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bardet-Biedl syndrome is a heterogeneous disorder causing a spectrum of symptoms, including visual impairment, kidney disease, and hearing impairment. Evidence suggests that BBS gene mutations cause defective ciliogenesis and/or cilium dysfunction. Cochlear development is affected by BBS gene deletion, and adult Bbs6(-/-) and Bbs4(-/-) mice are hearing impaired. This study addresses BBS protein expression in the rodent cochlea, to gain a better understanding of its function in vivo. As predicted by in vitro studies, Bbs6 immunofluorescence was localized to the basal bodies of supporting cells and sensory hair cells prior to the onset of hearing. In adult tissue, Bbs6 expression persisted in afferent neurons, including within the dendrites that innervate hair cells, implicating Bbs6 in a sensory neuronal function. Bbs2, which interacts with Bbs6, was also localized to hair cell basal bodies and stereociliary bundles. Additionally, Bbs2 was expressed in supporting cells at their intercellular boundaries, in a spatiotemporal pattern mirroring the development of the microtubule network. Bbs4 localized to cilia and developing cytoplasmic microtubule arrays. Pcm-1, a microtubular protein that interacts with Bbs4 in vitro, showed a comparable expression. Depolymerization of microtubules in slice preparations of the living cochlea resulted in Bbs4 and Pcm-1 mislocalization. Pcm-1 was also mislocalized in Bbs4(-/-) mice. This suggests that Bbs4/Pcm-1 interactions may be important in microtubule-dependent cytoplasmic trafficking in vivo. In summary, our findings indicate that BBS proteins adopt a range of cellular distributions in vivo, not restricted to the centrosome or cilium, and so broaden the possible underlying pathomechanisms of the disease.
Collapse
Affiliation(s)
- Helen L May-Simera
- Institute of Child Health, University College London, London WC1N1EH, United Kingdom
| | | | | | | | | | | |
Collapse
|
150
|
Ikegami K, Setou M. TTLL10 can perform tubulin glycylation when co-expressed with TTLL8. FEBS Lett 2009; 583:1957-63. [PMID: 19427864 DOI: 10.1016/j.febslet.2009.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/27/2009] [Accepted: 05/02/2009] [Indexed: 11/16/2022]
Abstract
Tubulin can undergo unusual post-translational modifications, glycylation and glutamylation. We previously failed to find glycylase (glycine ligase) for tubulin while identifying TTLL10 as a polyglycylase for nucleosome assembly protein 1. We here examine whether TTLL10 performs tubulin glycylation. We used a polyclonal antibody (R-polygly) raised against a poly(glycine) chain, which does not recognize monoglycylated protein. R-polygly strongly reacted with mouse tracheal cilia and axonemal tubulins. R-polygly detected many proteins in cell lysates co-expressing TTLL10 with TTLL8. Two-dimensional electrophoresis revealed that the R-polygly-reactive proteins included alpha- and beta-tubulin. R-polygly labeling signals overlapped with microtubules. These results indicate that TTLL10 can strongly glycylate tubulin in a TTLL8-dependent manner. Furthermore, these two TTLL proteins can glycylate unidentified 170-, 110-, 75-, 40-, 35-, and 30-kDa acidic proteins.
Collapse
Affiliation(s)
- Koji Ikegami
- Department of Molecular Anatomy, Molecular Imaging Advanced Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | | |
Collapse
|