101
|
Chang CF, Hsu LS, Weng CY, Chen CK, Wang SY, Chou YH, Liu YY, Yuan ZX, Huang WY, Lin H, Chen YH, Tsai JN. N-Glycosylation of Human R-Spondin 1 Is Required for Efficient Secretion and Stability but Not for Its Heparin Binding Ability. Int J Mol Sci 2016; 17:ijms17060937. [PMID: 27314333 PMCID: PMC4926470 DOI: 10.3390/ijms17060937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 01/01/2023] Open
Abstract
R-spondin 1 (Rspo1) plays an essential role in stem cell biology by potentiating Wnt signaling activity. Despite the fact that Rspo1 holds therapeutic potential for a number of diseases, its biogenesis is not fully elucidated. All Rspo proteins feature two amino-terminal furin-like repeats, which are responsible for Wnt signal potentiation, and a thrombospondin type 1 (TSR1) domain that can provide affinity towards heparan sulfate proteoglycans. Using chemical inhibitors, deglycosylase and site-directed mutagenesis, we found that human Rspo1 and Rspo3 are both N-glycosylated at N137, a site near the C-terminus of the furin repeat 2 domain, and Rspo2 is N-glycosylated at N160, a position near the N-terminus of TSR1 domain. Elimination of N-glycosylation at these sites affects their accumulation in media but have no effect on the ability towards heparin. Introduction of the N-glycosylation site to Rspo2 mutant at the position homologous to N137 in Rspo1 restored full glycosylation and rescued the accumulation defect of nonglycosylated Rspo2 mutant in media. Similar effect can be observed in the N137 Rspo1 or Rspo3 mutant engineered with Rspo2 N-glycosylation site. The results highlight the importance of N-glycosylation at these two positions in efficient folding and secretion of Rspo family. Finally, we further showed that human Rspo1 is subjected to endoplasmic reticulum (ER) quality control in N-glycan-dependent manner. While N-glycan of Rspo1 plays a role in its intracellular stability, it had little effect on secreted Rspo1. Our findings provide evidence for the critical role of N-glycosylation in the biogenesis of Rspo1.
Collapse
Affiliation(s)
- Chiung-Fang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Chieh-Yu Weng
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chih-Kai Chen
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Shu-Ying Wang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Yi-Hwa Chou
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Yan-Yu Liu
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Zi-Xiu Yuan
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Wen-Ying Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City 25137, Taiwan.
| | - Jen-Ning Tsai
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan.
| |
Collapse
|
102
|
Krasnova L, Wong CH. Understanding the Chemistry and Biology of Glycosylation with Glycan Synthesis. Annu Rev Biochem 2016; 85:599-630. [DOI: 10.1146/annurev-biochem-060614-034420] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037;
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037;
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
103
|
Glycosylation is crucial for a proper catalytic site organization in human glucocerebrosidase. Glycoconj J 2016; 33:237-44. [DOI: 10.1007/s10719-016-9661-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/30/2022]
|
104
|
Danwen Q, Code C, Quan C, Gong BJ, Arndt J, Pepinsky B, Rand KD, Houde D. Investigating the Role of Artemin Glycosylation. Pharm Res 2016; 33:1383-98. [DOI: 10.1007/s11095-016-1880-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/11/2016] [Indexed: 11/24/2022]
|
105
|
Frenkel-Pinter M, Richman M, Belostozky A, Abu-Mokh A, Gazit E, Rahimipour S, Segal D. Selective Inhibition of Aggregation and Toxicity of a Tau-Derived Peptide using Its Glycosylated Analogues. Chemistry 2016; 22:5945-52. [DOI: 10.1002/chem.201504950] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Moran Frenkel-Pinter
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| | - Michal Richman
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Anna Belostozky
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Amjaad Abu-Mokh
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| | - Ehud Gazit
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| | - Shai Rahimipour
- Department of Chemistry; Bar-Ilan University; Ramat-Gan 5290002 Israel
| | - Daniel Segal
- Department Molecular Microbiology and Biotechnology, and the Interdisciplinary Sagol School of Neurosciences; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
106
|
Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 2016; 73:79-94. [PMID: 26433683 PMCID: PMC4700099 DOI: 10.1007/s00018-015-2052-6] [Citation(s) in RCA: 1042] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute to the overall architecture and dynamics of the ER have been identified, but many questions remain as to how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain, and how coordinated responses add to the layers of regulation in this dynamic organelle.
Collapse
Affiliation(s)
- Dianne S Schwarz
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- New England Biolabs, Ipswich, MA, 01938, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
107
|
Anjum S, Raza S, Azhar A, Qamarunnisa S. Bnsro1: A new homologue of Arabidopsis thaliana rcd1 from Brassica napus. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
108
|
Zerze GH, Mittal J. Effect of O-Linked Glycosylation on the Equilibrium Structural Ensemble of Intrinsically Disordered Polypeptides. J Phys Chem B 2015; 119:15583-92. [PMID: 26618856 DOI: 10.1021/acs.jpcb.5b10022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glycosylation is one of the most common post-translational modifications (PTMs), which provides a large proteome diversity. Previous work on glycosylation of globular proteins has revealed remarkable effects of glycosylation on protein function, altering the folding stability and structure and/or altering the protein surface which affects their binding characteristics. Intrinsically disordered proteins (IDPs) or intrinsically disordered regions (IDRs) of large proteins are also frequently glycosylated, yet how glycosylation affects their function remains to be elucidated. An important open question is, does glycosylation affect IDP structure or binding characteristics or both? In this work, we particularly address the structural effects of O-linked glycosylation by investigating glycosylated and unglycosylated forms of two different IDPs, tau174-183 and human islet amyloid polypeptide (hIAPP), by all-atom explicit solvent simulations. We simulate these IDPs in aqueous solution for O-linked glycosylated and unglycosylated forms by employing two modern all-atom force fields for which glycan parameters are also available. We find that O-linked glycosylation only has a modest effect on equilibrium structural ensembles of IDPs, for the cases studied here, which suggests that the functional role of glycosylation may be primarily exerted by modulation of the protein binding characteristics rather than structure.
Collapse
Affiliation(s)
- Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| | - Jeetain Mittal
- Department of Chemical and Biomolecular Engineering, Lehigh University , Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
109
|
Targeted mutations in Val101 and Arg27 interferon beta protein increase its transcriptional and translational activities. Cytokine 2015; 78:1-6. [PMID: 26615566 DOI: 10.1016/j.cyto.2015.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 01/14/2023]
Abstract
Interferon β (IFNβ) is the most prescribed drug that has been used frequently for the treatment of multiple sclerosis (MS) patients. The aim of this study is to improve the production of IFNβ by induction of site directed mutagenesis. Accordingly, recombinant constructs were designed in order to enhance the expression of IFNβ mRNA and protein. The recombinant plasmids were transfected to the CHO cell line, following RNA extractions and cDNA synthesis. The effects of recombinant constructs were analyzed by real time PCR, ELISA and MTT assay. Transfected samples with either IFNβ101 or IFNβ101+27 have shown 11.55 and 2.26 fold elevation and over-expression compare to the wild type construct respectively. Our data also indicated that the IFNβ101 and IFNβ101+27 constructs increase IFNβ protein expression more than 2.2 and 4.5 fold, respectively compared to the control group. It could be concluded that the substitution of Phe in the codon 101 position, which may increase the binding activity of IFNβ with its receptors and introduction of an additional N glycosylation site (Asn-X-Thr) in the position 27 of IFNβ protein may cause such an effect. The proliferative activity of transfected cells by a recombinant IFNβ101 decreases in comparison to the wild type, although it was not statistically significant. Over-expression of IFNβ in such a level is promising not only for the patients but also for the pharmaceutical industries.
Collapse
|
110
|
The role of N-glycans and the C-terminal loop of the subunit rBAT in the biogenesis of the cystinuria-associated transporter. Biochem J 2015; 473:233-44. [PMID: 26537754 DOI: 10.1042/bj20150846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022]
Abstract
The transport system b(0,+) mediates reabsorption of dibasic amino acids and cystine in the kidney. It is made up of two disulfide-linked membrane subunits: the carrier, b(0,+)AT and the helper, rBAT (related to b(0,+) amino acid transporter). rBAT mutations that impair biogenesis of the transporter cause type I cystinuria. It has been shown that upon assembly, b(0,+)AT prevents degradation and promotes folding of rBAT; then, rBAT traffics b(0,+)AT from the endoplasmic reticulum (ER) to the plasma membrane. The role of the N-glycans of rBAT and of its C-terminal loop, which has no homology to any other sequence, in biogenesis of system b(0,+) is unknown. In the present study, we studied these points. We first identified the five N-glycans of rBAT. Elimination of the N-glycan Asn(575), but not of the others, delayed transporter maturation, as measured by pulse chase experiments and endoglycosidase H assays. Moreover, a transporter with only the N-glycan Asn(575) displayed similar maturation compared with wild-type, suggesting that this N-glycan was necessary and sufficient to achieve the maximum rate of transporter maturation. Deletion of the rBAT C-terminal disulfide loop (residues 673-685) prevented maturation and prompted degradation of the transporter. Alanine-scanning mutagenesis uncovered loop residues important for stability and/or maturation of system b(0,+). Further, double-mutant cycle analysis showed partial additivity of the effects of the Asn(679) loop residue and the N-glycan Asn(575) on transporter maturation, indicating that they may interact during system b(0,+) biogenesis. These data highlight the important role of the N-glycan Asn(575) and the C-terminal disulfide loop of rBAT in biogenesis of the rBAT-b(0,+)AT heterodimer.
Collapse
|
111
|
Dennis JW. Many Light Touches Convey the Message. Trends Biochem Sci 2015; 40:673-686. [DOI: 10.1016/j.tibs.2015.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/14/2015] [Accepted: 08/21/2015] [Indexed: 11/28/2022]
|
112
|
Lannoo N, Van Damme EJM. Review/N-glycans: The making of a varied toolbox. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:67-83. [PMID: 26398792 DOI: 10.1016/j.plantsci.2015.06.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 05/23/2023]
Abstract
Asparagine (N)-linked protein glycosylation is one of the most crucial, prevalent, and complex co- and post-translational protein modifications. It plays a pivotal role in protein folding, quality control, and endoplasmic reticulum (ER)-associated degradation (ERAD) as well as in protein sorting, protein function, and in signal transduction. Furthermore, glycosylation modulates many important biological processes including growth, development, morphogenesis, and stress signaling processes. As a consequence, aberrant or altered N-glycosylation is often associated with reduced fitness, diseases, and disorders. The initial steps of N-glycan synthesis at the cytosolic side of the ER membrane and in the lumen of the ER are highly conserved. In contrast, the final N-glycan processing in the Golgi apparatus is organism-specific giving rise to a wide variety of carbohydrate structures. Despite our vast knowledge on N-glycans in yeast and mammals, the modus operandi of N-glycan signaling in plants is still largely unknown. This review will elaborate on the N-glycosylation biosynthesis pathway in plants but will also critically assess how N-glycans are involved in different signaling cascades, either active during normal development or upon abiotic and biotic stresses.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Lab Biochemistry and Glycobiology, Department Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Els J M Van Damme
- Lab Biochemistry and Glycobiology, Department Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
113
|
Jo S, Qi Y, Im W. Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins. Glycobiology 2015; 26:19-29. [PMID: 26405106 DOI: 10.1093/glycob/cwv083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/14/2015] [Indexed: 11/13/2022] Open
Abstract
N-linked glycans are on protein surfaces and have direct and water/ion-mediated interactions with surrounding amino acids. Such contacts could restrict their conformational freedom compared to the same glycans free in solution. In this work, we have examined the conformational freedom of the N-glycan core pentasaccharide moiety in solution using standard molecular dynamics (MD) simulations as well as temperature replica-exchange MD simulations. Both simulations yield the comparable conformational variability of the pentasaccharide in solution, indicating the convergence of both simulations. The glycoprotein crystal structures are analyzed to compare the conformational freedom of the N-glycan on the protein surface with the simulation result. Surprisingly, the pentasaccharide free in solution shows more restricted conformational variability than the N-glycan on the protein surface. The interactions between the carbohydrate and the protein side chain appear to be responsible for the increased conformational diversity of the N-glycan on the protein surface. Finally, the transfer entropy analysis of the simulation trajectory also reveals an unexpected causality relationship between intramolecular hydrogen bonds and the conformational states in that the hydrogen bonds play a role in maintaining the conformational states rather than driving the change in glycosidic torsional states.
Collapse
Affiliation(s)
- Sunhwan Jo
- Leadership Computing Center, Argonne National Laboratory, 9700 Cass Ave Bldg. 240, Argonne, IL 60439, USA
| | - Yifei Qi
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Computational Biology, The University of Kansas, 2030 Becker Drive, Lawrence, KS 66047, USA
| |
Collapse
|
114
|
Guan X, Chaffey PK, Zeng C, Greene ER, Chen L, Drake MR, Chen C, Groobman A, Resch MG, Himmel ME, Beckham GT, Tan Z. Molecular-scale features that govern the effects of O-glycosylation on a carbohydrate-binding module. Chem Sci 2015; 6:7185-7189. [PMID: 28966766 PMCID: PMC5580309 DOI: 10.1039/c5sc02636a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Protein glycosylation is a ubiquitous post-translational modification in all kingdoms of life. Despite its importance in molecular and cellular biology, the molecular-level ramifications of O-glycosylation on biomolecular structure and function remain elusive. Here, we took a small model glycoprotein and changed the glycan structure and size, amino acid residues near the glycosylation site, and glycosidic linkage while monitoring any corresponding changes to physical stability and cellulose binding affinity. The results of this study reveal the collective importance of all the studied features in controlling the most pronounced effects of O-glycosylation in this system. Going forward, this study suggests the possibility of designing proteins with multiple improved properties by simultaneously varying the structures of O-glycans and amino acids local to the glycosylation site.
Collapse
Affiliation(s)
- Xiaoyang Guan
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Patrick K Chaffey
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Chen Zeng
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Eric R Greene
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Liqun Chen
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Matthew R Drake
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Claire Chen
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Ari Groobman
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Michael G Resch
- National Bioenergy Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA .
| | - Michael E Himmel
- Biosciences Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA
| | - Gregg T Beckham
- National Bioenergy Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA .
| | - Zhongping Tan
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| |
Collapse
|
115
|
Characterizing the Diverse Mutational Pathways Associated with R5-Tropic Maraviroc Resistance: HIV-1 That Uses the Drug-Bound CCR5 Coreceptor. J Virol 2015; 89:11457-72. [PMID: 26339063 PMCID: PMC4645647 DOI: 10.1128/jvi.01384-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/28/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Entry inhibitors represent a potent class of antiretroviral drugs that target a host cell protein, CCR5, an HIV-1 entry coreceptor, and not viral protein. Lack of sensitivity can occur due to preexisting virus that uses the CXCR4 coreceptor, while true resistance occurs through viral adaptation to use a drug-bound CCR5 coreceptor. To understand this R5 resistance pathway, we analyzed >500 envelope protein sequences and phenotypes from viruses of 20 patients from the clinical trials MOTIVATE 1 and 2, in which treatment-experienced patients received maraviroc plus optimized background therapy. The resistant viral population was phylogenetically distinct and associated with a genetic bottleneck in each patient, consistent with de novo emergence of resistance. Recombination analysis showed that the C2-V3-C3 region tends to genotypically correspond to the recombinant's phenotype, indicating its primary importance in conferring resistance. Between patients, there was a notable lack of commonality in the specific sites conferring resistance, confirming the unusual nature of R5-tropic resistance. We used coevolutionary and positive-selection analyses to characterize the genotypic determinants of resistance and found that (i) there are complicated covariation networks, indicating frequent coevolutionary/compensatory changes in the context of protein structure; (ii) covarying sites under positive selection are enriched in resistant viruses; (iii) CD4 binding sites form part of a unique covariation network independent of the V3 loop; and (iv) the covariation network formed between the V3 loop and other regions of gp120 and gp41 intersects sites involved in glycosylation and protein secretion. These results demonstrate that while envelope sequence mutations are the key to conferring maraviroc resistance, the specific changes involved are context dependent and thus inherently unpredictable. IMPORTANCE The entry inhibitor drug maraviroc makes the cell coreceptor CCR5 unavailable for use by HIV-1 and is now used in combination antiretroviral therapy. Treatment failure with drug-resistant virus is particularly interesting because it tends to be rare, with lack of sensitivity usually associated with the presence of CXCR4-using virus (CXCR4 is the main alternative coreceptor HIV-1 uses, in addition to CD4). We analyzed envelope sequences from HIV-1, obtained from 20 patients who enrolled in maraviroc clinical trials and experienced treatment failure, without detection of CXCR4-using virus. Evolutionary analysis was employed to identify molecular changes that confer maraviroc resistance. We found that in these individuals, resistant viruses form a distinct population that evolved once and was successful as a result of drug pressure. Further evolutionary analysis placed the complex network of interdependent mutational changes into functional groups that help explain the impediments to the emergence of maraviroc-associated R5 drug resistance.
Collapse
|
116
|
Subedi GP, Barb AW. The Structural Role of Antibody N-Glycosylation in Receptor Interactions. Structure 2015; 23:1573-1583. [PMID: 26211613 PMCID: PMC4558368 DOI: 10.1016/j.str.2015.06.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 01/06/2023]
Abstract
Asparagine(N)297-linked glycosylation of immunoglobulin G (IgG) Fc is required for binding to FcγRIIa, IIb, and IIIa, although it is unclear how it contributes. We found the quaternary structure of glycosylated Fc was indistinguishable from aglycosylated Fc, indicating that N-glycosylation does not maintain relative Fc Cγ2/Cγ3 domain orientation. However, the conformation of the C'E loop, which contains N297, was significantly perturbed in the aglycosylated Fc variant. The conformation of the C'E loop as measured with a range of Fc variants shows a strong correlation with FcγRIIIa affinity. These results indicate that the primary role of the IgG1 Fc N-glycan is to stabilize the C'E loop through intramolecular interactions between carbohydrate and amino acid residues, and preorganize the FcγRIIIa interface for optimal binding affinity. The features that contribute to the capacity of the IgG1 Fc N-glycan to restrict protein conformation and tune binding affinity are conserved in other antibodies including IgG2-IgG4, IgD, IgE, and IgM.
Collapse
Affiliation(s)
- Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, IA 50011, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, IA 50011, USA.
| |
Collapse
|
117
|
Genetic Diversity and mRNA Expression of Porcine MHC Class I Chain-Related 2 (SLA-MIC2) Gene and Development of a High-Resolution Typing Method. PLoS One 2015; 10:e0135922. [PMID: 26305091 PMCID: PMC4549063 DOI: 10.1371/journal.pone.0135922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022] Open
Abstract
The genetic structure and function of MHC class I chain-related (MIC) genes in the pig genome have not been well characterized, and show discordance in available data. Therefore, we have experimentally characterized the exon-intron structure and functional copy expression pattern of the pig MIC gene, SLA-MIC2. We have also studied the genetic diversity of SLA-MIC2 from seven different breeds using a high-resolution genomic sequence-based typing (GSBT) method. Our results showed that the SLA-MIC2 gene has a similar molecular organization as the human and cattle orthologs, and is expressed in only a few tissues including the small intestine, lung, and heart. A total of fifteen SLA-MIC2 alleles were identified from typing 145 animals, ten of which were previously unreported. Our analysis showed that the previously reported and tentatively named SLA-MIC2*05, 07, and 01 alleles occurred most frequently. The observed heterozygosity varied from 0.26 to 0.73 among breeds. The number of alleles of the SLA-MIC2 gene in pigs is somewhat lower compared to the number of alleles of the porcine MHC class I and II genes; however, the level of heterozygosity was similar. Our results indicate the comprehensiveness of using genomic DNA-based typing for the systemic study of the SLA-MIC2 gene. The method developed for this study, as well as the detailed information that was obtained, could serve as fundamental tools for understanding the influence of the SLA-MIC2 gene on porcine immune responses.
Collapse
|
118
|
Murray AN, Chen W, Antonopoulos A, Hanson SR, Wiseman RL, Dell A, Haslam SM, Powers DL, Powers ET, Kelly JW. Enhanced Aromatic Sequons Increase Oligosaccharyltransferase Glycosylation Efficiency and Glycan Homogeneity. ACTA ACUST UNITED AC 2015; 22:1052-62. [PMID: 26190824 DOI: 10.1016/j.chembiol.2015.06.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 01/28/2023]
Abstract
N-Glycosylation plays an important role in protein folding and function. Previous studies demonstrate that a phenylalanine residue introduced at the n-2 position relative to an Asn-Xxx-Thr/Ser N-glycosylation sequon increases the glycan occupancy of the sequon in insect cells. Here, we show that any aromatic residue at n-2 increases glycan occupancy in human cells and that this effect is dependent upon oligosaccharyltransferase substrate preferences rather than differences in other cellular processing events such as degradation or trafficking. Moreover, aromatic residues at n-2 alter glycan processing in the Golgi, producing proteins with less complex N-glycan structures. These results demonstrate that manipulating the sequence space surrounding N-glycosylation sequons is useful both for controlling glycosylation efficiency, thus enhancing glycan occupancy, and for influencing the N-glycan structures produced.
Collapse
Affiliation(s)
- Amber N Murray
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wentao Chen
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | - Sarah R Hanson
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - R Luke Wiseman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - David L Powers
- Department of Mathematics and Computer Science, Clarkson University, Potsdam, NY 13699, USA
| | - Evan T Powers
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Jeffery W Kelly
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
119
|
Impact of glycosylation on stability, structure and unfolding of soybean agglutinin (SBA): an insight from thermal perturbation molecular dynamics simulations. Glycoconj J 2015; 32:371-84. [DOI: 10.1007/s10719-015-9601-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 11/26/2022]
|
120
|
Chuang GY, Zhang B, McKee K, O'Dell S, Kwon YD, Zhou T, Blinn J, Lloyd K, Parks R, Von Holle T, Ko SY, Kong WP, Pegu A, Wang K, Baruah K, Crispin M, Mascola JR, Moody MA, Haynes BF, Georgiev IS, Kwong PD. Eliminating antibody polyreactivity through addition of N-linked glycosylation. Protein Sci 2015; 24:1019-30. [PMID: 25800131 DOI: 10.1002/pro.2682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/20/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
Abstract
Antibody polyreactivity can be an obstacle to translating a candidate antibody into a clinical product. Standard tests such as antibody binding to cardiolipin, HEp-2 cells, or nuclear antigens provide measures of polyreactivity, but its causes and the means to resolve are often unclear. Here we present a method for eliminating antibody polyreactivity through the computational design and genetic addition of N-linked glycosylation near known sites of polyreactivity. We used the HIV-1-neutralizing antibody, VRC07, as a test case, since efforts to increase VRC07 potency at three spatially distinct sites resulted in enhanced polyreactivity. The addition of N-linked glycans proximal to the polyreactivity-enhancing mutations at each of the spatially distinct sites resulted in reduced antibody polyreactivity as measured by (i) anti-cardiolipin ELISA, (ii) Luminex AtheNA Multi-Lyte ANA binding, and (iii) HEp-2 cell staining. The reduced polyreactivity trended with increased antibody concentration over time in mice, but not with improved overall protein stability as measured by differential scanning calorimetry. Moreover, glycan proximity to the site of polyreactivity appeared to be a critical factor. The results provide evidence that antibody polyreactivity can result from local, rather than global, features of an antibody and that addition of N-linked glycosylation can be an effective approach to reducing antibody polyreactivity.
Collapse
Affiliation(s)
- Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Julie Blinn
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Krissey Lloyd
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Tarra Von Holle
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Sung-Youl Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Kavitha Baruah
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1, 3QU, United Kingdom
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1, 3QU, United Kingdom
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, 103020
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
121
|
Hanson QM, Barb AW. A perspective on the structure and receptor binding properties of immunoglobulin G Fc. Biochemistry 2015; 54:2931-42. [PMID: 25926001 DOI: 10.1021/acs.biochem.5b00299] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recombinant antibodies spurred a revolution in medicine that saw the introduction of powerful therapeutics for treating a wide range of diseases, from cancers to autoimmune disorders and transplant rejection, with more applications looming on the horizon. Many of these therapeutic monoclonal antibodies (mAbs) are based on human immunoglobulin G1 (IgG1) or contain at least a portion of the molecule. Most mAbs require interactions with cell surface receptors for efficacy, including the Fc γ receptors. High-resolution structural models of antibodies and antibody fragments have been available for nearly 40 years; however, a thorough description of the structural features that determine the affinity with which antibodies interact with human receptors has not been published. In this review, we will cover the relevant history of IgG-related literature and how recent developments have changed our view of critical antibody-cell interactions at the atomic level with a nod to outstanding questions in the field and future prospects.
Collapse
Affiliation(s)
- Quinlin M Hanson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, Iowa 50011, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2214 Molecular Biology Building, Ames, Iowa 50011, United States
| |
Collapse
|
122
|
Bernardes A, Textor LC, Santos JC, Cuadrado NH, Kostetsky EY, Roig MG, Bavro VN, Muniz JR, Shnyrov VL, Polikarpov I. Crystal structure analysis of peroxidase from the palm tree Chamaerops excelsa. Biochimie 2015; 111:58-69. [DOI: 10.1016/j.biochi.2015.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/25/2015] [Indexed: 11/24/2022]
|
123
|
Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Sci Rep 2015; 5:8926. [PMID: 25748215 PMCID: PMC4352867 DOI: 10.1038/srep08926] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/11/2015] [Indexed: 12/29/2022] Open
Abstract
N-linked glycosylation is one of the most important, chemically complex, and ubiquitous post-translational modifications in all eukaryotes. The N-glycans that are covalently linked to proteins are involved in numerous biological processes. There is considerable interest in developments of general approaches to predict the structural consequences of site-specific glycosylation and to understand how these effects can be exploited in protein design with advantageous properties. In this study, the impacts of N-glycans on protein structure and dynamics are systematically investigated using an integrated computational approach of the Protein Data Bank structure analysis and atomistic molecular dynamics simulations of glycosylated and deglycosylated proteins. Our study reveals that N-glycosylation does not induce significant changes in protein structure, but decreases protein dynamics, likely leading to an increase in protein stability. Overall, these results suggest not only a common role of glycosylation in proteins, but also a need for certain proteins to be properly glycosylated to gain their intrinsic dynamic properties.
Collapse
|
124
|
Cheng S, Chang X, Wang Y, Gao GF, Shao Y, Ma L, Li X. Glycosylated Enfuvirtide: A Long-Lasting Glycopeptide with Potent Anti-HIV Activity. J Med Chem 2015; 58:1372-9. [DOI: 10.1021/jm5016582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuihong Cheng
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Xuesong Chang
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Yan Wang
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - George F. Gao
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- Center for Influenza
Research and Early-warning,
Chinese Academy of Sciences (CASCIRE), Chaoyang
District, Beijing 100101, China
| | - Yiming Shao
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Liying Ma
- State
Key Laboratory for Infection Disease Prevention and Control, National
Center for AIDS/STD Control and Prevention, Chinese Center for Disease
Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Xuebing Li
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
- Center for Influenza
Research and Early-warning,
Chinese Academy of Sciences (CASCIRE), Chaoyang
District, Beijing 100101, China
| |
Collapse
|
125
|
Vasudevan D, Takeuchi H, Johar SS, Majerus E, Haltiwanger RS. Peters plus syndrome mutations disrupt a noncanonical ER quality-control mechanism. Curr Biol 2014; 25:286-295. [PMID: 25544610 DOI: 10.1016/j.cub.2014.11.049] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND O-fucose is added to cysteine-rich domains called thrombospondin type 1 repeats (TSRs) by protein O-fucosyltransferase 2 (POFUT2) and is elongated with glucose by β3-glucosyltransferase (B3GLCT). Mutations in B3GLCT result in Peters plus syndrome (PPS), an autosomal recessive disorder characterized by eye and other developmental defects. Although 49 putative targets are known, the function of the disaccharide and its role in PPS remain unexplored. RESULTS Here we show that while POFUT2 is required for secretion of all targets tested, B3GLCT only affects the secretion of a subset, consistent with the observation that B3GLCT mutant phenotypes in PPS patients are less severe than embryonic lethal phenotypes of Pofut2-null mice. O-glycosylation occurs cotranslationally, as TSRs fold. Mass spectral analysis reveals that TSRs from mature, secreted protein are stoichiometrically modified with the disaccharide, whereas TSRs from protein still folding in the ER are partially modified, suggesting that O-glycosylation marks folded TSRs and promotes ER exit. In vitro unfolding assays demonstrate that fucose and glucose stabilize folded TSRs in an additive manner. In vitro refolding assays under redox conditions showed that POFUT2 recognizes, glycosylates, and stabilizes the folded form of TSRs, resulting in a net acceleration of folding. CONCLUSIONS While known ER quality-control machinery rely on identifying and tagging unfolded proteins, we find that POFUT2 and B3GLCT mediate a noncanonical ER quality-control mechanism that recognizes folded TSRs and stabilizes them by glycosylation. Our findings provide a molecular basis for the defects observed in PPS and potential targets that contribute to the pathology.
Collapse
Affiliation(s)
- Deepika Vasudevan
- Department of Biochemistry and Cell Biology, 450 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Hideyuki Takeuchi
- Department of Biochemistry and Cell Biology, 450 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sumreet Singh Johar
- Department of Biochemistry and Cell Biology, 450 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Elaine Majerus
- Department of Internal Medicine, Division of Hematology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, 450 Life Sciences Building, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
126
|
Tsai IH, Wang YM, Huang KF. Effects of single N-glycosylation site knockout on folding and defibrinogenating activities of acutobin recombinants from HEK293T. Toxicon 2014; 94:50-9. [PMID: 25533529 DOI: 10.1016/j.toxicon.2014.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022]
Abstract
Acutobin, the α-fibrinogenase from Deinagkistrodon acutus venom, contains four N-glycosylation sites with disialylated complex-typed glycans. Here, we explore the functional roles of each of the N-glycan by site-directed mutagenesis. The wild-type (ATB-wt) and single glycan-knockout mutants of recombinant acutobin were prepared from HEK293T, demonstrating that mutations at Asn(77), Asn(81) and Asn(100) impaired the folding while the S79A mutant and various Asn(229)-deglycosylated mutants were correctly folded. Based on homology modeling of acutobin and multiple sequence alignment with various venom thrombin-like enzymes, the importance of a hydrophilic environment at each glycosylation site to the enzyme folding could be rationalized. Remarkably, all the mutants showed similar catalytic activities for the chromogenic substrate and similar thermal stabilities as ATB-wt, suggesting that the glycan knockout did not affect the gross conformation and stability of the active sites. Although SDS-PAGE analyses revealed that ATB-wt and the D229-mutant degraded all human fibrinogen subunits faster but less specifically in vitro as compared with other mutants that cleaved only the α-subunit, ATB-wt and D229-mutant were not able to release fibrinogen-peptide A and thus coagulated human plasma slower than the other mutants did. In the mice model, the defibrinogenating effect of ATB-wt was stronger and lasting-longer than those of all the mutants. Taken together, all the glycans contribute to the pharmacokinetics of acutobin and ATB-wt in vivo, and the microenvironment around the Asn(229)-glycan appears to regulate the fibrinogen-chain specificity of acutobin while the N-glycans at positions 77, 81 and 100 are crucial for its folding.
Collapse
Affiliation(s)
- Inn-Ho Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.
| | - Ying-Ming Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
127
|
Águila S, Martínez-Martínez I, Dichiara G, Gutiérrez-Gallego R, Navarro-Fernández J, Vicente V, Corral J. Increased N-glycosylation efficiency by generation of an aromatic sequon on N135 of antithrombin. PLoS One 2014; 9:e114454. [PMID: 25485983 PMCID: PMC4259341 DOI: 10.1371/journal.pone.0114454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 11/07/2014] [Indexed: 11/30/2022] Open
Abstract
The inefficient glycosylation of consensus sequence on N135 in antithrombin explains the two glycoforms of this key anticoagulant serpin found in plasma: α and β, with four and three N-glycans, respectively. The lack of this N-glycan increases the heparin affinity of the β-glycoform. Recent studies have demonstrated that an aromatic sequon (Phe-Y-Asn-X-Thr) in reverse β-turns enhances N-glycosylation efficiency and stability of different proteins. We evaluated the effect of the aromatic sequon in this defective glycosylation site of antithrombin, despite of being located in a loop between the helix D and the strand 2A. We analyzed the biochemical and functional features of variants generated in a recombinant cell system (HEK-EBNA). Cells transfected with wild-type plasmid (K133-Y-N135-X-S137) generated 50% of α and β-antithrombin. The S137T, as previously reported, K133F, and the double mutant (K133F/S137T) had improved glycosylation efficiency, leading to the secretion of α-antithrombin, as shown by electrophoretic and mass analysis. The presence of the aromatic sequon did not significantly affect the stability of this conformationally sensitive serpin, as revealed by thermal denaturation assay. Moreover, the aromatic sequon hindered the activation induced by heparin, in which is involved the helix D. Accordingly, K133F and particularly K133F/S137T mutants had a reduced anticoagulant activity. Our data support that aromatic sequons in a different structural context from reverse turns might also improve the efficiency of N-glycosylation.
Collapse
Affiliation(s)
- Sonia Águila
- Centro Regional de Hemodonación, Hospital Morales Meseguer, Universidad de Murcia, IMIB, Murcia, Spain
| | - Irene Martínez-Martínez
- Centro Regional de Hemodonación, Hospital Morales Meseguer, Universidad de Murcia, IMIB, Murcia, Spain
| | - Gilda Dichiara
- Division of Cardiovascular Sciences, Laboratory of Thrombosis and Haemostasis, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Ricardo Gutiérrez-Gallego
- Bioanalysis Group, IMIM-Hospital del Mar, Department of Experimental and Health Sciences, University Pompeu Fabra (UPF), Barcelona, Spain
- Protein and Peptide Chemistry, Anapharm Biotech, Barcelona, Spain
| | - José Navarro-Fernández
- Centro Regional de Hemodonación, Hospital Morales Meseguer, Universidad de Murcia, IMIB, Murcia, Spain
| | - Vicente Vicente
- Centro Regional de Hemodonación, Hospital Morales Meseguer, Universidad de Murcia, IMIB, Murcia, Spain
| | - Javier Corral
- Centro Regional de Hemodonación, Hospital Morales Meseguer, Universidad de Murcia, IMIB, Murcia, Spain
- * E-mail:
| |
Collapse
|
128
|
Hulleman JD, Kelly JW. Genetic ablation of N-linked glycosylation reveals two key folding pathways for R345W fibulin-3, a secreted protein associated with retinal degeneration. FASEB J 2014; 29:565-75. [PMID: 25389134 DOI: 10.1096/fj.14-255414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An R345W mutation in the N-glycoprotein, fibulin-3 (F3), results in inefficient F3 folding/secretion and higher intracellular F3 levels. Inheritance of this mutation causes the retinal dystrophy malattia leventinese. N-Linked glycosylation is a common cotranslational protein modification that can regulate protein folding efficiency and energetics. Therefore, we explored how N-glycosylation alters the protein homeostasis or proteostasis of wild-type (WT) and R345W F3 in ARPE-19 cells. Enzymatic and lectin binding assays confirmed that WT and R345W F3 are both primarily N-glycosylated at Asn249. Tunicamycin treatment selectively reduced R345W F3 secretion by 87% (vs. WT F3). Genetic elimination of F3 N-glycosylation (via an N249Q mutation) caused R345W F3 to aggregate intracellularly and adopt an altered secreted conformation. The endoplasmic reticulum (ER) chaperones GRP78 (glucose-regulated protein 78) and GRP94 (glucose-regulated protein 94), and the ER lectins calnexin and calreticulin were identified as F3 binding partners by immunoprecipitation. Significantly more N249Q and N249Q/R345W F3 interacted with GRP94, while substantially less N249Q and N249Q/R345W interacted with the ER lectins than their N-glycosylated counterparts. Inhibition of GRP94 ATPase activity reduced only N249Q/R345W F3 secretion (by 62%), demonstrating this variant's unique reliance on GRP94 for secretion. These observations suggest that R345W F3, but not WT F3, requires N-glycosylation to acquire a stable, native-like structure.
Collapse
Affiliation(s)
- John D Hulleman
- Departments of Chemistry and the Skaggs Institute for Chemical Biology andMolecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jeffery W Kelly
- Departments of Chemistry and the Skaggs Institute for Chemical Biology andMolecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
129
|
Hebert DN, Lamriben L, Powers ET, Kelly JW. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat Chem Biol 2014; 10:902-10. [PMID: 25325701 PMCID: PMC4232232 DOI: 10.1038/nchembio.1651] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/28/2014] [Indexed: 01/29/2023]
Abstract
Proteins that traffic through the eukaryotic secretory pathway are commonly modified with N-linked carbohydrates. These bulky amphipathic modifications at asparagines intrinsically enhance solubility and folding energetics through carbohydrate-protein interactions. N-linked glycans can also extrinsically enhance glycoprotein folding by using the glycoprotein homeostasis or 'glycoproteostasis' network, which comprises numerous glycan binding and/or modification enzymes or proteins that synthesize, transfer, sculpt and use N-linked glycans to direct folding and trafficking versus degradation and trafficking of nascent N-glycoproteins through the cellular secretory pathway. If protein maturation is perturbed by misfolding, aggregation or both, stress pathways are often activated that result in transcriptional remodeling of the secretory pathway in an attempt to alleviate the insult (or insults). The inability to achieve glycoproteostasis is linked to several pathologies, including amyloidoses, cystic fibrosis and lysosomal storage diseases. Recent progress on genetic and pharmacologic adaptation of the glycoproteostasis network provides hope that drugs of this mechanistic class can be developed for these maladies in the near future.
Collapse
Affiliation(s)
- Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Lydia Lamriben
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Evan T. Powers
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jeffery W. Kelly
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
130
|
Miyazaki T, Yashiro H, Nishikawa A, Tonozuka T. The side chain of a glycosylated asparagine residue is important for the stability of isopullulanase. J Biochem 2014; 157:225-34. [PMID: 25359784 DOI: 10.1093/jb/mvu065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
N-glycosylation has been shown to be important for the stability of some glycoproteins. Isopullulanase (IPU), a polysaccharide-hydrolyzing enzyme, is a highly N-glycosylated protein, and IPU deglycosylation results in a decrease in thermostability. To investigate the function of N-glycan in IPU, we focused on an N-glycosylated residue located in the vicinity of the active site, Asn448. The thermostabilities of three IPU variants, Y440A, N448A and S450A, were 0.5-8.4°C lower than the wild-type enzyme. The crystal structure of endoglycosidase H (Endo H)-treated N448A variant was determined. There are four IPU molecules, Mol-A, B, C and D, in the asymmetric unit. The conformation of a loop composed of amino acid residues 435-455 in Mol-C was identical to wild-type IPU, whereas the conformations of this loop in Mol-A, Mol-B and Mol-D were different from each other. These results suggest that the Asn448 side chain is primarily important for the stability of IPU. Our results indicate that mutation of only N-glycosylated Asn residue may lead to incorrect conclusion for the evaluation of the function of N-glycan. Usually, the structures of N-glycosylation sites form an extended configuration in IPU; however, the Asn448 site had an atypical structure that lacked this configuration.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hiroyuki Yashiro
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Atsushi Nishikawa
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Takashi Tonozuka
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
131
|
Yang Y, Huang L, Wang J, Xu Z. Expression, characterization and mutagenesis of an FAD-dependent glucose dehydrogenase from Aspergillus terreus. Enzyme Microb Technol 2014; 68:43-9. [PMID: 25435504 DOI: 10.1016/j.enzmictec.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/09/2014] [Accepted: 10/14/2014] [Indexed: 11/18/2022]
Abstract
An FAD-dependent glucose dehydrogenase (FAD-GDH) from Aspergillus terreus NIH2624 was expressed in Escherichia coli with a yield of 228±16U/L of culture. Co-expression with chaperones DnaK/DnaJ/GrpE and osmotic stress induced by simple carbon sources enhanced productivity significantly, improving the yield to 23883±563U/L after optimization. FAD-GDH was purified in two steps with the specific activity of 604U/mg. Using d-glucose as substrate, the optimal pH and temperature for FAD-GDH were determined to be 7.5 and 50°C, respectively. Activity was stable across the pH range 3.5-9.0, and the half-life was 52min at 42°C. Km and Vmax were calculated as 86.7±5.3mM and 928±35U/mg, and the molecular weight was approximately 65.6kDa based on size exclusion chromatography, indicating a monomeric structure. The 3D structure of FAD-GDH was simulated by homology modelling using the structure of A. niger glucose oxidase (GOD) as template. From the model, His551, His508, Asn506 and Arg504 were identified as key residues, and their importance was verified by site-directed mutagenesis. Furthermore, three additional mutants (Arg84Ala, Tyr340Phe and Tyr406Phe) were generated and all exhibited a higher degree of substrate specificity than the native enzyme. These results extend our understanding of the structure and function of FAD-GDH, and could assist potential commercial applications.
Collapse
Affiliation(s)
- Yufeng Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China; Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China; Zunyi Medical College (Zhuhai Campus), Zhuhai, 519041, PR China
| | - Lei Huang
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jufang Wang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China.
| | - Zhinan Xu
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
132
|
Affiliation(s)
- Christopher R. Ellis
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - William G. Noid
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
133
|
Expression of STEAP1 and STEAP1B in prostate cell lines, and the putative regulation of STEAP1 by post-transcriptional and post-translational mechanisms. Genes Cancer 2014; 5:142-51. [PMID: 25053991 PMCID: PMC4091532 DOI: 10.18632/genesandcancer.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/10/2014] [Indexed: 12/26/2022] Open
Abstract
STEAP1 gene is overexpressed in several kinds of tumors, particularly in prostate cancer. Besides STEAP1, there is another related gene, STEAP1B, which may encode two different transcripts. Although several studies have been pointing STEAP1 as a putative immunotherapeutic target and biomarker, the mechanisms underlying its regulation are not fully understood. In silico analysis allowed us to show that STEAP1 and STEAP1B share high homology, but with slight differences at structural level. Experiments with prostate cells showed that STEAP1B2 is overexpressed in cancer cells. Regarding STEAP1 regulation, it is demonstrated that the stability of mRNA and protein is higher in LNCaP than in PNT1A cells. Of note, serum triggered opposite effects in LNCaP and PNT1A in relation to STEAP1 stability, e.g., increasing it in PNT1A and decreasing in LNCaP. These results suggest that STEAP1 may be regulated by post-transcriptional and post-translational modifications (PTM), which may differ between non-neoplastic and neoplastic cells. These PTM are supported through in silico analysis, where several modifications such as N-glycosylation, N-Glycation, Phosphorylation and O-linked β-N-acetylglucosamine, may occur in STEAP1 protein. In conclusion, these data indicate that STEAP1B2 is overexpressed in neoplastic cells, and PTM may be involved in regulation of STEAP1 expression in prostate cells.
Collapse
|
134
|
Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules. Proc Natl Acad Sci U S A 2014; 111:7612-7. [PMID: 24821760 DOI: 10.1073/pnas.1402518111] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of biological turnover of lignocellulosic biomass in nature is conducted by fungi, which commonly use Family 1 carbohydrate-binding modules (CBMs) for targeting enzymes to cellulose. Family 1 CBMs are glycosylated, but the effects of glycosylation on CBM function remain unknown. Here, the effects of O-mannosylation are examined on the Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase at three glycosylation sites. To enable this work, a procedure to synthesize glycosylated Family 1 CBMs was developed. Subsequently, a library of 20 CBMs was synthesized with mono-, di-, or trisaccharides at each site for comparison of binding affinity, proteolytic stability, and thermostability. The results show that, although CBM mannosylation does not induce major conformational changes, it can increase the thermolysin cleavage resistance up to 50-fold depending on the number of mannose units on the CBM and the attachment site. O-Mannosylation also increases the thermostability of CBM glycoforms up to 16 °C, and a mannose disaccharide at Ser3 seems to have the largest themostabilizing effect. Interestingly, the glycoforms with small glycans at each site displayed higher binding affinities for crystalline cellulose, and the glycoform with a single mannose at each of three positions conferred the highest affinity enhancement of 7.4-fold. Overall, by combining chemical glycoprotein synthesis and functional studies, we show that specific glycosylation events confer multiple beneficial properties on Family 1 CBMs.
Collapse
|
135
|
Solís D, Bovin NV, Davis AP, Jiménez-Barbero J, Romero A, Roy R, Smetana K, Gabius HJ. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim Biophys Acta Gen Subj 2014; 1850:186-235. [PMID: 24685397 DOI: 10.1016/j.bbagen.2014.03.016] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The most demanding challenge in research on molecular aspects within the flow of biological information is posed by the complex carbohydrates (glycan part of cellular glycoconjugates). How the 'message' encoded in carbohydrate 'letters' is 'read' and 'translated' can only be unraveled by interdisciplinary efforts. SCOPE OF REVIEW This review provides a didactic step-by-step survey of the concept of the sugar code and the way strategic combination of experimental approaches characterizes structure-function relationships, with resources for teaching. MAJOR CONCLUSIONS The unsurpassed coding capacity of glycans is an ideal platform for generating a broad range of molecular 'messages'. Structural and functional analyses of complex carbohydrates have been made possible by advances in chemical synthesis, rendering production of oligosaccharides, glycoclusters and neoglycoconjugates possible. This availability facilitates to test the glycans as ligands for natural sugar receptors (lectins). Their interaction is a means to turn sugar-encoded information into cellular effects. Glycan/lectin structures and their spatial modes of presentation underlie the exquisite specificity of the endogenous lectins in counterreceptor selection, that is, to home in on certain cellular glycoproteins or glycolipids. GENERAL SIGNIFICANCE Understanding how sugar-encoded 'messages' are 'read' and 'translated' by lectins provides insights into fundamental mechanisms of life, with potential for medical applications.
Collapse
Affiliation(s)
- Dolores Solís
- Instituto de Química Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 07110 Bunyola, Mallorca, Illes Baleares, Spain.
| | - Nicolai V Bovin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117871 GSP-7, V-437, Moscow, Russian Federation.
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Jesús Jiménez-Barbero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Antonio Romero
- Chemical and Physical Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | - Karel Smetana
- Charles University, 1st Faculty of Medicine, Institute of Anatomy, U nemocnice 3, 128 00 Prague 2, Czech Republic.
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr. 13, 80539 München, Germany.
| |
Collapse
|
136
|
Garcia De Gonzalo CV, Zhu L, Oman TJ, van
der Donk WA. NMR structure of the S-linked glycopeptide sublancin 168. ACS Chem Biol 2014; 9:796-801. [PMID: 24405370 PMCID: PMC3985867 DOI: 10.1021/cb4008106] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/09/2014] [Indexed: 01/22/2023]
Abstract
Sublancin 168 is a member of a small group of glycosylated antimicrobial peptides known as glycocins. The solution structure of sublancin 168, a 37-amino-acid peptide produced by Bacillus subtilis 168, has been solved by nuclear magnetic resonance (NMR) spectroscopy. Sublancin comprises two α-helices and a well-defined interhelical loop. The two helices span residues 6-16 and 26-35, and the loop region encompasses residues 17-25. The 9-amino-acid loop region contains a β-S-linked glucose moiety attached to Cys22. Hydrophobic interactions as well as hydrogen bonding are responsible for the well-structured loop region. The three-dimensional structure provides an explanation for the previously reported extraordinary high stability of sublancin 168.
Collapse
Affiliation(s)
- Chantal V. Garcia De Gonzalo
- Howard Hughes Medical Institute and Roger Adams Laboratory,
Department of Chemistry, University of Illinois
at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Lingyang Zhu
- NMR Laboratory, School of Chemical Sciences, University of Illinois at Urbana−Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Trent J. Oman
- Howard Hughes Medical Institute and Roger Adams Laboratory,
Department of Chemistry, University of Illinois
at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Wilfred A. van
der Donk
- Howard Hughes Medical Institute and Roger Adams Laboratory,
Department of Chemistry, University of Illinois
at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| |
Collapse
|
137
|
Hsieh YSY, Wijeyewickrema LC, Wilkinson BL, Pike RN, Payne RJ. Total Synthesis of Homogeneous Variants of Hirudin P6: A Post-Translationally Modified Anti-Thrombotic Leech-Derived Protein. Angew Chem Int Ed Engl 2014; 53:3947-51. [DOI: 10.1002/anie.201310777] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/05/2014] [Indexed: 11/09/2022]
|
138
|
Hsieh YSY, Wijeyewickrema LC, Wilkinson BL, Pike RN, Payne RJ. Total Synthesis of Homogeneous Variants of Hirudin P6: A Post-Translationally Modified Anti-Thrombotic Leech-Derived Protein. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310777] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
139
|
Johnson QR, Lindsay RJ, Raval SR, Dobbs JS, Nellas RB, Shen T. Effects of Branched O-Glycosylation on a Semiflexible Peptide Linker. J Phys Chem B 2014; 118:2050-7. [DOI: 10.1021/jp410788r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Quentin R. Johnson
- UT-ORNL
Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Richard J. Lindsay
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sherin R. Raval
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeremy S. Dobbs
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ricky B. Nellas
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tongye Shen
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
140
|
Tan NY, Bailey UM, Jamaluddin MF, Mahmud SHB, Raman SC, Schulz BL. Sequence-based protein stabilization in the absence of glycosylation. Nat Commun 2014; 5:3099. [DOI: 10.1038/ncomms4099] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022] Open
|
141
|
Takara M, Toyoshima M, Seto H, Hoshino Y, Miura Y. Polymer-modified gold nanoparticles via RAFT polymerization: a detailed study for a biosensing application. Polym Chem 2014. [DOI: 10.1039/c3py01001e] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
142
|
Dai Z, Aryal UK, Shukla A, Qian WJ, Smith RD, Magnuson JK, Adney WS, Beckham GT, Brunecky R, Himmel ME, Decker SR, Ju X, Zhang X, Baker SE. Impact of alg3 gene deletion on growth, development, pigment production, protein secretion, and functions of recombinant Trichoderma reesei cellobiohydrolases in Aspergillus niger. Fungal Genet Biol 2013; 61:120-32. [DOI: 10.1016/j.fgb.2013.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/05/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
|
143
|
Barry C, Cocinero EJ, Çarçabal P, Gamblin D, Stanca-Kaposta EC, Remmert SM, Fernández-Alonso MC, Rudić S, Simons JP, Davis BG. 'Naked' and hydrated conformers of the conserved core pentasaccharide of N-linked glycoproteins and its building blocks. J Am Chem Soc 2013; 135:16895-903. [PMID: 24127839 PMCID: PMC3901393 DOI: 10.1021/ja4056678] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 12/11/2022]
Abstract
N-glycosylation of eukaryotic proteins is widespread and vital to survival. The pentasaccharide unit -Man3GlcNAc2- lies at the protein-junction core of all oligosaccharides attached to asparagine side chains during this process. Although its absolute conservation implies an indispensable role, associated perhaps with its structure, its unbiased conformation and the potential modulating role of solvation are unknown; both have now been explored through a combination of synthesis, laser spectroscopy, and computation. The proximal -GlcNAc-GlcNAc- unit acts as a rigid rod, while the central, and unusual, -Man-β-1,4-GlcNAc- linkage is more flexible and is modulated by the distal Man-α-1,3- and Man-α-1,6- branching units. Solvation stiffens the 'rod' but leaves the distal residues flexible, through a β-Man pivot, ensuring anchored projection from the protein shell while allowing flexible interaction of the distal portion of N-glycosylation with bulk water and biomolecular assemblies.
Collapse
Affiliation(s)
- Conor
S. Barry
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Emilio J. Cocinero
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ United Kingdom
| | - Pierre Çarçabal
- Institut
des Sciences Moléculaire d’Orsay-CNRS, Université Paris Sud, Bâtiment 210, 91405 Orsay Cedex, France
| | - David
P. Gamblin
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - E. Cristina Stanca-Kaposta
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ United Kingdom
| | - Sarah M. Remmert
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ United Kingdom
| | | | - Svemir Rudić
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ United Kingdom
| | - John P. Simons
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ United Kingdom
| | - Benjamin G. Davis
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
144
|
Chi-Huey Wong. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/anie.201308126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
145
|
Chi-Huey Wong. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
146
|
Pandey BK, Enck S, Price JL. Stabilizing impact of N-glycosylation on the WW domain depends strongly on the Asn-GlcNAc linkage. ACS Chem Biol 2013; 8:2140-4. [PMID: 23937634 DOI: 10.1021/cb4004496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-glycans play important roles in many cellular processes and can increase protein conformational stability in specific structural contexts. Glycosylation (with a single GlcNAc) of the reverse turn sequence Phe-Yyy-Asn-Xxx-Thr at Asn stabilizes the Pin 1 WW domain by -0.85 ± 0.12 kcal mol(-1). Alternative methods exist for attaching carbohydrates to proteins; some occur naturally (e.g., the O-linkage), whereas others use chemoselective ligation reactions to mimic the natural N- or O-linkages. Here, we assess the energetic consequences of replacing the Asn linkage in the glycosylated WW domain with a Gln linkage, with two natural O-linkages, with two unnatural triazole linkages, and with an unnatural α-mercaptoacetamide linkage. Of these alternatives, only glycosylation of the triazole linkages stabilizes WW, and by a smaller amount than N-glycosylation, highlighting the need for caution when using triazole- or α-mercaptoacetamide-linked carbohydrates to mimic native N-glycans, especially where the impact of glycosylation on protein conformational stability is important.
Collapse
Affiliation(s)
- Brijesh K. Pandey
- Department of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| | - Sebastian Enck
- Department of Chemistry and
Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California
92037, United States
| | - Joshua L. Price
- Department of Chemistry and
Biochemistry, Brigham Young University,
Provo, Utah 84602, United States
| |
Collapse
|
147
|
Mansell TJ, Guarino C, DeLisa MP. Engineered genetic selection links in vivo protein folding and stability with asparagine-linked glycosylation. Biotechnol J 2013; 8:1445-51. [DOI: 10.1002/biot.201300026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/20/2013] [Accepted: 07/22/2013] [Indexed: 11/07/2022]
|
148
|
Pickel B, Schaller A. Dirigent proteins: molecular characteristics and potential biotechnological applications. Appl Microbiol Biotechnol 2013; 97:8427-38. [PMID: 23989917 DOI: 10.1007/s00253-013-5167-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 11/25/2022]
Abstract
Dirigent proteins (DIRs) are thought to play important roles in plant secondary metabolism. They lack catalytic activity but direct the outcome of bimolecular coupling reactions toward regio- and stereospecific product formation. Functionally described DIRs confer specificity to the oxidative coupling of coniferyl alcohol resulting in the preferred production of either (+)- or (-)-pinoresinol, which are the first intermediates in the enantiocomplementary pathways for lignan biosynthesis. DIRs are extracellular glycoproteins with high β-strand content and have been found in all land plants investigated so far. Their ability to capture and orientate radicals represents a unique naturally evolved concept for the control of radical dimerization reactions. Although oxidative coupling is commonly used in biological systems, its wider application in chemical synthesis is often limited by insufficient selectivity. This minireview gives an overview of functionally described DIRs and their molecular characteristics and wants to inspire further research for their use in biotechnological applications.
Collapse
Affiliation(s)
- Benjamin Pickel
- Department of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August University Göttingen, Büsgenweg 2, 37077, Göttingen, Germany,
| | | |
Collapse
|
149
|
Breitling J, Aebi M. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 2013; 5:a013359. [PMID: 23751184 DOI: 10.1101/cshperspect.a013359] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The attachment of glycans to asparagine residues of proteins is an abundant and highly conserved essential modification in eukaryotes. The N-glycosylation process includes two principal phases: the assembly of a lipid-linked oligosaccharide (LLO) and the transfer of the oligosaccharide to selected asparagine residues of polypeptide chains. Biosynthesis of the LLO takes place at both sides of the endoplasmic reticulum (ER) membrane and it involves a series of specific glycosyltransferases that catalyze the assembly of the branched oligosaccharide in a highly defined way. Oligosaccharyltransferase (OST) selects the Asn-X-Ser/Thr consensus sequence on polypeptide chains and generates the N-glycosidic linkage between the side-chain amide of asparagine and the oligosaccharide. This ER-localized pathway results in a systemic modification of the proteome, the basis for the Golgi-catalyzed modification of the N-linked glycans, generating the large diversity of N-glycoproteome in eukaryotic cells. This article focuses on the processes in the ER. Based on the highly conserved nature of this pathway we concentrate on the mechanisms in the eukaryotic model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Jörg Breitling
- Institute of Microbiology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
150
|
B-cell maturation antigen is modified by a single N-glycan chain that modulates ligand binding and surface retention. Proc Natl Acad Sci U S A 2013; 110:10928-33. [PMID: 23776238 DOI: 10.1073/pnas.1309417110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glycosylation, an important posttranslational modification process, can modulate the structure and function of proteins, but its effect on the properties of plasma cells is largely unknown. In this study, we identified a panel of glycoproteins by click reaction with alkynyl sugar analogs in plasma cells coupled with mass spectrometry analysis. The B-cell maturation antigen (BCMA), an essential membrane protein for maintaining the survival of plasma cells, was identified as a glycoprotein exhibiting complex-type N-glycans at a single N-glycosylation site, asparagine 42. We then investigated the effect of N-glycosylation on the function of BCMA and found that the dexamethasone-induced apoptosis in malignant plasma cells can be rescued by treatment with BCMA ligands, such as a proliferation-inducing ligand (APRIL) and B-cell-activating factor (BAFF), whereas removal of terminal sialic acid on plasma cells further potentiated the ligand-mediated protection. This effect is associated with the increased surface retention of BCMA, leading to its elevated level on cell surface. In addition, the α1-3,-4 fucosylation, but not the terminal sialylation, assists the binding of BCMA with ligands in an in vitro binding assay. Together, our results highlight the importance of N-glycosylation on BCMA in the regulation of ligand binding and functions of plasma cells.
Collapse
|