101
|
|
102
|
Banisadr G, Podojil JR, Miller SD, Miller RJ. Pattern of CXCR7 Gene Expression in Mouse Brain Under Normal and Inflammatory Conditions. J Neuroimmune Pharmacol 2015; 11:26-35. [PMID: 25997895 DOI: 10.1007/s11481-015-9616-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/06/2015] [Indexed: 12/20/2022]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 acting via its G-protein coupled receptor (GPCR) CXCR4 has been implicated in neurogenesis, neuromodulation, brain inflammation, HIV-1 encephalopathy and tumor growth. CXCR7 was identified as an alternate receptor for SDF-1/CXCL12. Characterization of CXCR7-deficient mice demonstrated a role for CXCR7 in fetal endothelial biology, cardiac development, and B-cell localization. Despite its ligand binding properties, CXCR7 does not seem to signal like a conventional GPCR. It has been suggested that CXCR7 may not function alone but in combination with CXCR4. Here, we investigated the regional localization of CXCR7 receptors in adult mouse brain using CXCR7-EGFP transgenic mice. We found that the receptors were expressed in various brain regions including olfactory bulb, cerebral cortex, hippocampus, subventricular zone (SVZ), hypothalamus and cerebellum. Extensive CXCR7 expression was associated with cerebral blood vessels. Using cell type specific markers, CXCR7 expression was found in neurons, astrocytes and oligodendrocyte progenitors. GAD-expressing neurons exhibited CXCR7 expression in the hippocampus. Expression of CXCR7 in the dentate gyrus included cells that expressed nestin, GFAP and cells that appeared to be immature granule cells. In mice with Experimental Autoimmune Encephalomyelitis (EAE), CXCR7 was expressed by migrating oligodendrocyte progenitors in the SVZ. We then compared the distribution of SDF-1/CXCL12 and CXCR7 using bitransgenic mice expressing both CXCR7-EGFP and SDF-1-mRFP. Enhanced expression of SDF-1/CXCL12 and CXCR7 was observed in the corpus callosum, SVZ and cerebellum. Overall, the expression of CXCR7 in normal and pathological nervous system suggests CXCR4-independent functions of SDF-1/CXCL12 mediated through its interaction with CXCR7.
Collapse
Affiliation(s)
- Ghazal Banisadr
- Department of Pharmacology, Northwestern University Medical School, 303 E Superior Ave, Chicago, IL, 60611, USA.
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E Chicago Ave, Chicago, IL, 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Medical School, 303 E Chicago Ave, Chicago, IL, 60611, USA
| | - Richard J Miller
- Department of Pharmacology, Northwestern University Medical School, 303 E Superior Ave, Chicago, IL, 60611, USA
| |
Collapse
|
103
|
Zendedel A, Johann S, Mehrabi S, Joghataei MT, Hassanzadeh G, Kipp M, Beyer C. Activation and Regulation of NLRP3 Inflammasome by Intrathecal Application of SDF-1a in a Spinal Cord Injury Model. Mol Neurobiol 2015; 53:3063-3075. [PMID: 25972240 DOI: 10.1007/s12035-015-9203-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/29/2015] [Indexed: 01/13/2023]
Abstract
Stromal cell-derived factor-1 alpha (SDF-1a) or CXCL12 is an important cytokine with multiple functions in the brain during development and in adulthood. The inflammatory response initiated by spinal cord injury (SCI) involves the processing of interleukin-1beta (IL-1ß) and IL-18 mediated by caspase-1 which is under the control of an intracellular multiprotein complex termed inflammasome. Using an SCI rat model, we found improved functional long-term recovery which is paralleled by a reduction of apoptosis after intrathecal treatment with SDF-1a. An intriguing aspect is that SDF-1a changed the number of neuroinflammatory cells in the damaged area. We further examined the cellular localization and sequential expression of several inflammasomes during SCI at 6 h, 24 h, 3 days, and 7 days as well as the role of SDF-1a as a regulatory factor for inflammasomes. Using 14-week old male Wistar rats, spinal cord contusion was applied at the thoracic segment 9, and animals were subsequently treated with SDF-1a via intrathecal application through an osmotic pump. SCI temporally increased the expression of the inflammasomes NLRP3, ASC, the inflammatory marker tumor necrosis factor-a (TNF-a), interleukin-1ß (IL-1β) and IL-18. SDF-1a significantly reduced the levels of IL-18, IL-1b, TNF-a, NLRP3, ASC, and caspase-1. Immunofluorescence double-labeling demonstrated that microglia and neurons are major sources of the ASC and NLRP3 respectivley. Our data provide clear evidence that SCI stimulates a complex scenario of inflammasome activation at the injured site and that SDF-1a-mediated neuroprotection presumably depends on the attenuation of the inflammasome complex.
Collapse
Affiliation(s)
- Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany. .,Department of Anatomical Sciences, Faculty of Medicine, Gilan University of Medical Sciences, Rasht, Iran.
| | - Sonja Johann
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| | - Soraya Mehrabi
- School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Taghi Joghataei
- Department of Anatomy and Neuroscience, Cellular and Molecular Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Markus Kipp
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany.,Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074, Aachen, Germany
| |
Collapse
|
104
|
Yamamoto T, Osako Y, Ito M, Murakami M, Hayashi Y, Horibe H, Iohara K, Takeuchi N, Okui N, Hirata H, Nakayama H, Kurita K, Nakashima M. Trophic Effects of Dental Pulp Stem Cells on Schwann Cells in Peripheral Nerve Regeneration. Cell Transplant 2015; 25:183-93. [PMID: 25903498 DOI: 10.3727/096368915x688074] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recently, mesenchymal stem cells have demonstrated a potential for neurotrophy and neurodifferentiation. We have recently isolated mobilized dental pulp stem cells (MDPSCs) using granulocyte-colony stimulating factor (G-CSF) gradient, which has high neurotrophic/angiogenic potential. The aim of this study is to investigate the effects of MDPSC transplantation on peripheral nerve regeneration. Effects of MDPSC transplantation were examined in a rat sciatic nerve defect model and compared with autografts and control conduits containing collagen scaffold. Effects of conditioned medium of MDPSCs were also evaluated in vitro. Transplantation of MDPSCs in the defect demonstrated regeneration of myelinated fibers, whose axons were significantly higher in density compared with those in autografts and control conduits only. Enhanced revascularization was also observed in the MDPSC transplants. The MDPSCs did not directly differentiate into Schwann cell phenotype; localization of these cells near Schwann cells induced several neurotrophic factors. Immunofluorescence labeling demonstrated reduced apoptosis and increased proliferation in resident Schwann cells in the MDPSC transplant compared with control conduits. These trophic effects of MDPSCs on proliferation, migration, and antiapoptosis in Schwann cells were further elucidated in vitro. The results demonstrate that MDPSCs promote axon regeneration through trophic functions, acting on Schwann cells, and promoting angiogenesis.
Collapse
Affiliation(s)
- Tsubasa Yamamoto
- Center of Advanced Medicine for Dental and Oral Diseases, National Center for Geriatrics and Gerontology, Research Institute, Morioka, Obu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Lindner M, Thümmler K, Arthur A, Brunner S, Elliott C, McElroy D, Mohan H, Williams A, Edgar JM, Schuh C, Stadelmann C, Barnett SC, Lassmann H, Mücklisch S, Mudaliar M, Schaeren-Wiemers N, Meinl E, Linington C. Fibroblast growth factor signalling in multiple sclerosis: inhibition of myelination and induction of pro-inflammatory environment by FGF9. Brain 2015; 138:1875-93. [PMID: 25907862 PMCID: PMC7185739 DOI: 10.1093/brain/awv102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/14/2015] [Indexed: 12/18/2022] Open
Abstract
Remyelination failure plays an important role in the pathophysiology of multiple sclerosis, but the underlying cellular and molecular mechanisms remain poorly understood. We now report actively demyelinating lesions in patients with multiple sclerosis are associated with increased glial expression of fibroblast growth factor 9 (FGF9), which we demonstrate inhibits myelination and remyelination in vitro. This inhibitory activity is associated with the appearance of multi-branched ‘pre-myelinating’ MBP+/PLP+ oligodendrocytes that interact with axons but fail to assemble myelin sheaths; an oligodendrocyte phenotype described previously in chronically demyelinated multiple sclerosis lesions. This inhibitory activity is not due to a direct effect of FGF9 on cells of the oligodendrocyte lineage but is mediated by factors secreted by astrocytes. Transcriptional profiling and functional validation studies demonstrate that these include effects dependent on increased expression of tissue inhibitor of metalloproteinase-sensitive proteases, enzymes more commonly associated with extracellular matrix remodelling. Further, we found that FGF9 induces expression of Ccl2 and Ccl7, two pro-inflammatory chemokines that contribute to recruitment of microglia and macrophages into multiple sclerosis lesions. These data indicate glial expression of FGF9 can initiate a complex astrocyte-dependent response that contributes to two distinct pathogenic pathways involved in the development of multiple sclerosis lesions. Namely, induction of a pro-inflammatory environment and failure of remyelination; a combination of effects predicted to exacerbate axonal injury and loss in patients.
Collapse
Affiliation(s)
- Maren Lindner
- 1 Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Katja Thümmler
- 1 Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Ariel Arthur
- 1 Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Sarah Brunner
- 2 Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christina Elliott
- 1 Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Daniel McElroy
- 1 Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Hema Mohan
- 3 Institute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Anna Williams
- 4 MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Julia M Edgar
- 1 Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Cornelia Schuh
- 5 Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | - Susan C Barnett
- 1 Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Hans Lassmann
- 5 Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Steve Mücklisch
- 7 Department of Computer Science, Chemnitz University of Technology, Chemnitz, Germany
| | - Manikhandan Mudaliar
- 8 Glasgow Polyomics, College of Medical, Veterinary and Life Science, University of Glasgow, UK
| | - Nicole Schaeren-Wiemers
- 2 Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Edgar Meinl
- 3 Institute of Clinical Neuroimmunology, Ludwig-Maximilians-Universität, Munich, Germany
| | | |
Collapse
|
106
|
Analysis of chemokines and receptors expression profile in the myelin mutant taiep rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:397310. [PMID: 25883747 PMCID: PMC4390177 DOI: 10.1155/2015/397310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 11/18/2022]
Abstract
Taiep rat has a failure in myelination and remyelination processes leading to a state of hypomyelination throughout its life. Chemokines, which are known to play a role in inflammation, are also involved in the remyelination process. We aimed to demonstrate that remyelination-stimulating factors are altered in the brainstem of 1- and 6-month-old taiep rats. We used a Rat RT2 Profiler PCR Array to assess mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors. We also evaluated protein levels of CCL2, CCR1, CCR2, CCL5, CCR5, CCR8, CXCL1, CXCR2, CXCR4, FGF2, and VEGFA by ELISA. Sprague-Dawley rats were used as a control. PCR Array procedure showed that proinflammatory cytokines were not upregulated in the taiep rat. In contrast, some mRNA levels of beta and alpha chemokines were upregulated in 1-month-old rats, but CXCR4 was downregulated at their 6 months of age. ELISA results showed that CXCL1, CCL2, CCR2, CCR5, CCR8, and CXCR4 protein levels were decreased in brainstem at the age of 6 months. These results suggest the presence of a chronic neuroinflammation process with deficiency of remyelination-stimulating factors (CXCL1, CXCR2, and CXCR4), which might account for the demyelination in the taiep rat.
Collapse
|
107
|
Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B, Beutner C, Linnartz-Gerlach B, Neumann H, Vallières L, Amor S, Ohl K, Tenbrock K, Beyer C, Kipp M. CXCL10 Triggers Early Microglial Activation in the Cuprizone Model. THE JOURNAL OF IMMUNOLOGY 2015; 194:3400-13. [DOI: 10.4049/jimmunol.1401459] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
108
|
Janssen K, Rickert M, Clarner T, Beyer C, Kipp M. Absence of CCL2 and CCL3 Ameliorates Central Nervous System Grey Matter But Not White Matter Demyelination in the Presence of an Intact Blood-Brain Barrier. Mol Neurobiol 2015; 53:1551-1564. [PMID: 25663168 DOI: 10.1007/s12035-015-9113-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022]
Abstract
A broad spectrum of diseases is characterized by myelin abnormalities, oligodendrocyte pathology, and concomitant glia activation, among multiple sclerosis (MS). Our knowledge regarding the factors triggering gliosis and demyelination is scanty. Chemokines are pivotal for microglia and astrocyte activation and orchestrate critical steps during the formation of central nervous system (CNS) demyelinating lesions. Redundant functions of chemokines complicate, however, the study of their functional relevance. We used the cuprizone model to study redundant functions of two chemokines, CCL2/MCP1 and CCL3/MIP1α, which are critically involved in the pathological process of cuprizone-induced demyelination. First, we generated a mutant mouse strain lacking functional genes of both chemokines and demonstrated that double-mutant animals are viable, fertile, and do not present with gross abnormalities. Astrocytes and peritoneal macrophages, cultured form tissues of these animals did neither express CCL2 nor CCL3. Exposure to cuprizone resulted in increased CCL2 and CCL3 brain levels in wild-type but not mutant animals. Cuprizone-induced demyelination, oligodendrocyte loss, and astrogliosis were significantly ameliorated in the cortex but not corpus callosum of chemokine-deficient animals. In summary, we provide a novel powerful model to study the redundant function of two important chemokines. Our study reveals that chemokine function in the CNS redounds to region-specific pathophysiological events.
Collapse
Affiliation(s)
- Katharina Janssen
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Mira Rickert
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Markus Kipp
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany.
| |
Collapse
|
109
|
Somkuwar SS, Staples MC, Galinato MH, Fannon MJ, Mandyam CD. Role of NG2 expressing cells in addiction: a new approach for an old problem. Front Pharmacol 2014; 5:279. [PMID: 25566075 PMCID: PMC4271769 DOI: 10.3389/fphar.2014.00279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/30/2014] [Indexed: 12/17/2022] Open
Abstract
Neuron-glial antigen 2 (NG2) is a proteoglycan expressed predominantly in oligodendrocyte progenitor cells (OPCs). NG2-expressing OPCs (NG2-OPCs) are self-renewing cells that are widely distributed in the gray and white matter areas of the central nervous system. NG2-OPCs can mature into premyelinating oligodendrocytes and myelinating oligodendroglia which serve as the primary source of myelin in the brain. This review characterizes NG2-OPCs in brain structure and function, conceptualizes the role of NG2-OPCs in brain regions associated with negative reinforcement and relapse to drug seeking and discusses how NG2-OPCs are regulated by neuromodulators linked to motivational withdrawal. We hope to provide the readers with an overview of the role of NG2-OPCs in brain structure and function in the context of negative affect state in substance abuse disorders and to integrate our current understanding of the physiological significance of the NG2-OPCs in the adult brain.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Melissa H Galinato
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - McKenzie J Fannon
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
110
|
Tingjun C, Zhaohui L, Zhaocai J, Zihao L, Quangang X, Dehui H, Qing L, Shihui W. Changes of CXCL12, CXCL14 and PDGF levels in the brain of patients with idiopathic demyelinating optic neuritis and neuromyelitis optica. J Neuroimmunol 2014; 279:1-6. [PMID: 25669992 DOI: 10.1016/j.jneuroim.2014.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/27/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
The CXC chemokines (CXC-motif ligand 12 and CXC-motif ligand 14) and platelet-derived growth factor are suggested to modulate remyelination in the course of many demyelinating diseases. The present study compared the difference in the brain levels of these chemokines between patients with idiopathic demyelinating optic neuritis (IDON) and neuromyelitis optica (NMO) by measuring their concentrations in the cerebrospinal fluid using an enzyme linked immunosorbent assay. Our data indicate that the prognosis of neuritis depends on the remyelinating process that is impaired due to decreased chemokines. The much lower levels of chemokines would specifically indicate the severe neuritis, such as NMO.
Collapse
Affiliation(s)
- Chen Tingjun
- Department of Neuro-Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Li Zhaohui
- Department of Neuro-Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiang Zhaocai
- Department of Neuro-Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Ophthalmology, LongFu Hospital, Beijing, China
| | - Liu Zihao
- Department of Neuro-Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Ophthalmology, Dongzhimen Hospital, Beijing, China
| | - Xu Quangang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Huang Dehui
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lin Qing
- Department of Psychology, College of Science, The University of Texas at Arlington, Arlington, TX, USA.
| | - Wei Shihui
- Department of Neuro-Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
111
|
Jennings AR, Carroll WM. Oligodendrocyte Lineage Cells in Chronic Demyelination of Multiple Sclerosis Optic Nerve. Brain Pathol 2014; 25:517-30. [PMID: 25175564 PMCID: PMC8028859 DOI: 10.1111/bpa.12193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/26/2014] [Indexed: 11/27/2022] Open
Abstract
Reports that chronically demyelinated multiple sclerosis brain and spinal cord lesions contained immature oligodendrocyte lineage cells have generated major interest aimed at the potential for promotion of endogenous repair. Despite the prominence of the optic nerve as a lesion site and its importance in clinical disease assessment, no detailed studies of multiple sclerosis‐affected optic nerve exist. This study aims to provide insight into the cellular pathology of chronic demyelination in multiple sclerosis through direct morphological and immunohistochemical analysis of optic nerve in conjunction with observations from an experimental cat optic nerve model of successful remyelination. Myelin staining was followed by immunohistochemistry to differentially label neuroglia. Digitally immortalized sections were then analyzed to generate quantification data and antigenic phenotypes including maturational stages within the oligodendrocyte lineage. It was found that some chronically demyelinated multiple sclerosis optic nerve lesions contained oligodendroglial cells and that heterogeneity existed in the presence of myelin sheaths, oligodendrocyte maturational stages and extent of axonal investment. The findings advance our understanding of oligodendrocyte activity in chronically demyelinated human optic nerve and may have implications for studies aimed at enhancement of endogenous repair in multiple sclerosis.
Collapse
Affiliation(s)
- Alison Ruth Jennings
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia
| | - William M Carroll
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia.,Department of Neurology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| |
Collapse
|
112
|
Durrant DM, Williams JL, Daniels BP, Klein RS. Chemokines Referee Inflammation within the Central Nervous System during Infection and Disease. Adv Med 2014; 2014:806741. [PMID: 26556427 PMCID: PMC4590974 DOI: 10.1155/2014/806741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/27/2014] [Indexed: 01/25/2023] Open
Abstract
The discovery that chemokines and their receptors are expressed by a variety of cell types within the normal adult central nervous system (CNS) has led to an expansion of their repertoire as molecular interfaces between the immune and nervous systems. Thus, CNS chemokines are now divided into those molecules that regulate inflammatory cell migration into the CNS and those that initiate CNS repair from inflammation-mediated tissue damage. Work in our laboratory throughout the past decade has sought to elucidate how chemokines coordinate leukocyte entry and interactions at CNS endothelial barriers, under both homeostatic and inflammatory conditions, and how they promote repair within the CNS parenchyma. These studies have identified several chemokines, including CXCL12 and CXCL10, as critical regulators of leukocyte migration from perivascular locations. CXCL12 additionally plays an essential role in promoting remyelination of injured white matter. In both scenarios we have shown that chemokines serve as molecular links between inflammatory mediators and other effector molecules involved in neuroprotective processes.
Collapse
Affiliation(s)
- Douglas M. Durrant
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Jessica L. Williams
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Brian P. Daniels
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Robyn S. Klein
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
113
|
Gallo V, Deneen B. Glial development: the crossroads of regeneration and repair in the CNS. Neuron 2014; 83:283-308. [PMID: 25033178 DOI: 10.1016/j.neuron.2014.06.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 02/07/2023]
Abstract
Given the complexities of the mammalian CNS, its regeneration is viewed as the holy grail of regenerative medicine. Extraordinary efforts have been made to understand developmental neurogenesis, with the hopes of clinically applying this knowledge. CNS regeneration also involves glia, which comprises at least 50% of the cellular constituency of the brain and is involved in all forms of injury and disease response, recovery, and regeneration. Recent developmental studies have given us unprecedented insight into the processes that regulate the generation of CNS glia. Because restorative processes often parallel those found in development, we will peer through the lens of developmental gliogenesis to gain a clearer understanding of the processes that underlie glial regeneration under pathological conditions. Specifically, this review will focus on key signaling pathways that regulate astrocyte and oligodendrocyte development and describe how these mechanisms are reutilized in these populations during regeneration and repair after CNS injury.
Collapse
Affiliation(s)
- Vittorio Gallo
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA.
| | - Benjamin Deneen
- Department of Neuroscience and Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
114
|
Fu C, Yin Z, Yu D, Yang Z. Substance P and calcitonin gene-related peptide expression in dorsal root ganglia in sciatic nerve injury rats. Neural Regen Res 2014; 8:3124-30. [PMID: 25206633 PMCID: PMC4158707 DOI: 10.3969/j.issn.1673-5374.2013.33.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/13/2013] [Indexed: 02/05/2023] Open
Abstract
The neuropeptides, substance P and calcitonin gene-related peptide, have been shown to be involved in pain transmission and repair of sciatic nerve injury. A model of sciatic nerve defect was prepared by dissecting the sciatic nerve at the middle, left femur in female Sprague Dawley rats. The two ends of the nerve were encased in a silica gel tube. L5 dorsal root ganglia were harvested 7, 14 and 28 days post sciatic nerve injury for immunohistochemical staining. Results showed that substance P and citonin gene-related peptide expression increased significantly in dorsal root ganglion of rats with sciatic nerve injury. This increase peaked at 7 days, declined at 14 days, and reduced to normal levels by 28 days post injury. The findings indicate that the neuropeptides, substance P and calcitonin gene- related peptide, mainly increased in the early stages after sciatic nerve injury.
Collapse
Affiliation(s)
- Changma Fu
- Department of Orthopedics, First Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Zongsheng Yin
- Department of Orthopedics, First Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Defu Yu
- Department of Orthopedics, First Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Zuhua Yang
- Third Clinical College, Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
115
|
Holmes WR, Nie Q. Interactions and tradeoffs between cell recruitment, proliferation, and differentiation affect CNS regeneration. Biophys J 2014; 106:1528-36. [PMID: 24703314 DOI: 10.1016/j.bpj.2014.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/15/2014] [Accepted: 02/06/2014] [Indexed: 12/21/2022] Open
Abstract
Regeneration of central nervous system (CNS) lesions requires movement of progenitor cells and production of their differentiated progeny. Although damage to the CNS clearly promotes these two processes, the interplay between these complex events and how it affects a response remains elusive. Here, we use spatial stochastic modeling to show that tradeoffs arise between production and recruitment during regeneration. Proper spatial control of cell cycle timing can mitigate these tradeoffs, maximizing recruitment, improving infiltration into the lesion, and reducing wasteful production outside of it. Feedback regulation of cell lineage dynamics alone however leads to spatial defects in cell recruitment, suggesting a novel, to our knowledge, hypothesis for the aggregation of cells to the periphery of a lesion in multiple sclerosis. Interestingly, stronger chemotaxis does not correct this aggregation and instead, substantial random cell motions near the site of the lesion are required to improve CNS regeneration.
Collapse
Affiliation(s)
- William R Holmes
- Center for Mathematical and Computational Biology, Center for Complex Biological Systems, Department of Mathematics, University of California, Irvine, California
| | - Qing Nie
- Center for Mathematical and Computational Biology, Center for Complex Biological Systems, Department of Mathematics, University of California, Irvine, California.
| |
Collapse
|
116
|
Mitew S, Hay C, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014; 276:29-47. [DOI: 10.1016/j.neuroscience.2013.11.029] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|
117
|
Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. mBio 2014; 5:e01476-14. [PMID: 25161189 PMCID: PMC4173776 DOI: 10.1128/mbio.01476-14] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pattern recognition receptor (PRR) detection of pathogen-associated molecular patterns (PAMPs), such as viral RNA, drives innate immune responses against West Nile virus (WNV), an emerging neurotropic pathogen. Here we demonstrate that WNV PAMPs orchestrate endothelial responses to WNV via competing innate immune cytokine signals at the blood-brain barrier (BBB), a multicellular interface with highly specialized brain endothelial cells that normally prevents pathogen entry. While Th1 cytokines increase the permeability of endothelial barriers, type I interferon (IFN) promoted and stabilized BBB function. Induction of innate cytokines by pattern recognition pathways directly regulated BBB permeability and tight junction formation via balanced activation of the small GTPases Rac1 and RhoA, which in turn regulated the transendothelial trafficking of WNV. In vivo, mice with attenuated type I IFN signaling or IFN induction (Ifnar−/−Irf7−/−) exhibited enhanced BBB permeability and tight junction dysregulation after WNV infection. Together, these data provide new insight into host-pathogen interactions at the BBB during neurotropic viral infection. West Nile virus (WNV) is an emerging pathogen capable of infecting the central nervous system (CNS), causing fatal encephalitis. However, the mechanisms that control the ability of WNV to cross the blood-brain barrier (BBB) and access the CNS are unclear. In this study, we show that detection of WNV by host tissues induces innate immune cytokine expression at the BBB, regulating BBB structure and function and impacting transendothelial trafficking of WNV. This regulatory effect is shown to happen rapidly following exposure to virus, to occur independently of viral replication within BBB cells, and to require the signaling of cytoskeletal regulatory Rho GTPases. These results provide new understanding of host-pathogen interactions at the BBB during viral encephalitis.
Collapse
|
118
|
Abstract
We review the current state of knowledge of remyelination in multiple sclerosis (MS), concentrating on advances in the understanding of the pathology and the regenerative response, and we summarise progress on the development of new therapies to enhance remyelination aimed at reducing progressive accumulation of disability in MS. We discuss key target pathways identified in experimental models, as although most identified targets have not yet progressed to the stage of being tested in human clinical trials, they may provide treatment strategies for demyelinating diseases in the future. Finally, we discuss some of the problems associated with testing this class of drugs, where they might fit into the therapeutic arsenal and the gaps in our knowledge.
Collapse
Affiliation(s)
- E. Jolanda Münzel
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh Bioquarter, 5 Little France Drive, Edinburgh, EH16 4UU UK
| | - Anna Williams
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh Bioquarter, 5 Little France Drive, Edinburgh, EH16 4UU UK
| |
Collapse
|
119
|
Hu X, Liou AKF, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y, Zheng P, Chen J. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 2014; 119-120:60-84. [PMID: 24923657 PMCID: PMC4121732 DOI: 10.1016/j.pneurobio.2014.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022]
Abstract
Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial 'On' or 'Off' responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made toward deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, 'On' and 'Off' receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| | - Anthony K F Liou
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Mingyue Xu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Chengrui An
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
120
|
Angiogenesis in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 2014; 2:84. [PMID: 25047180 PMCID: PMC4149233 DOI: 10.1186/s40478-014-0084-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, the formation of new vessels, is found in Multiple Sclerosis (MS) demyelinating lesions following Vascular Endothelial Growth Factor (VEGF) release and the production of several other angiogenic molecules. The increased energy demand of inflammatory cuffs and damaged neural cells explains the strong angiogenic response in plaques and surrounding white matter. An angiogenic response has also been documented in an experimental model of MS, experimental allergic encephalomyelitis (EAE), where blood–brain barrier disruption and vascular remodelling appeared in a pre-symptomatic disease phase. In both MS and EAE, VEGF acts as a pro-inflammatory factor in the early phase but its reduced responsivity in the late phase can disrupt neuroregenerative attempts, since VEGF naturally enhances neuron resistance to injury and regulates neural progenitor proliferation, migration, differentiation and oligodendrocyte precursor cell (OPC) survival and migration to demyelinated lesions. Angiogenesis, neurogenesis and oligodendroglia maturation are closely intertwined in the neurovascular niches of the subventricular zone, one of the preferential locations of inflammatory lesions in MS, and in all the other temporary vascular niches where the mutual fostering of angiogenesis and OPC maturation occurs. Angiogenesis, induced either by CNS inflammation or by hypoxic stimuli related to neurovascular uncoupling, appears to be ineffective in chronic MS due to a counterbalancing effect of vasoconstrictive mechanisms determined by the reduced axonal activity, astrocyte dysfunction, microglia secretion of free radical species and mitochondrial abnormalities. Thus, angiogenesis, that supplies several trophic factors, should be promoted in therapeutic neuroregeneration efforts to combat the progressive, degenerative phase of MS.
Collapse
|
121
|
Mueller AM, Yoon BH, Sadiq SA. Inhibition of hyaluronan synthesis protects against central nervous system (CNS) autoimmunity and increases CXCL12 expression in the inflamed CNS. J Biol Chem 2014; 289:22888-22899. [PMID: 24973214 DOI: 10.1074/jbc.m114.559583] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan (HA) may have proinflammatory roles in the context of CNS autoimmunity. It accumulates in demyelinated multiple sclerosis (MS) lesions, promotes antigen presentation, and enhances T-cell activation and proliferation. HA facilitates lymphocyte binding to vessels and CNS infiltration at the CNS vascular endothelium. Furthermore, HA signals through Toll-like receptors 2 and 4 to stimulate inflammatory gene expression. We assessed the role of HA in experimental autoimmune encephalomyelitis (EAE), an animal model of MS by administration of 4-methylumbelliferone (4MU), a well established inhibitor of HA synthesis. 4MU decreased hyaluronan synthesis in vitro and in vivo. It was protective in active EAE of C57Bl/6 mice, decreased spinal inflammatory infiltrates and spinal infiltration of Th1 cells, and increased differentiation of regulatory T-cells. In adoptive transfer EAE, feeding of 4MU to donor mice significantly decreased the encephalitogenicity of lymph node cells. The transfer of proteolipid protein (PLP)-stimulated lymph node cells to 4MU-fed mice resulted in a delayed EAE onset and delayed spinal T-cell infiltration. Expression of CXCL12, an anti-inflammatory chemokine, is reduced in MS patients in CSF cells and in spinal cord tissue during EAE. Hyaluronan suppressed production of CXCL12, whereas 4MU increased spinal CXCL12 in naive animals and during neuroinflammation. Neutralization of CXCR4, the most prominent receptor of CXCL12, by administration of AMD3100 diminished the protective impact of 4MU in adoptive transfer EAE. In conclusion, hyaluronan exacerbates CNS autoimmunity, enhances encephalitogenic T-cell responses, and suppresses the protective chemokine CXCL12 in CNS tissue. Inhibition of hyaluronan synthesis with 4MU protects against an animal model of MS and may represent an important therapeutic option in MS and other neuroinflammatory diseases.
Collapse
Affiliation(s)
| | - Bo Hyung Yoon
- Tisch Multiple Sclerosis Research Center of New York, New York, New York 10019
| | - Saud Ahmed Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, New York 10019.
| |
Collapse
|
122
|
El Waly B, Macchi M, Cayre M, Durbec P. Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 2014; 8:145. [PMID: 24971048 PMCID: PMC4054666 DOI: 10.3389/fnins.2014.00145] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated late in development and myelination is thus a tardive event in the brain developmental process. It is however maintained whole life long at lower rate, and myelin sheath is crucial for proper signal transmission and neuronal survival. Unfortunately, OLGs present a high susceptibility to oxidative stress, thus demyelination often takes place secondary to diverse brain lesions or pathologies. OLGs can also be the target of immune attacks, leading to primary demyelination lesions. Following oligodendrocytic death, spontaneous remyelination may occur to a certain extent. In this review, we will mainly focus on the adult brain and on the two main sources of progenitor cells that contribute to oligodendrogenesis: parenchymal oligodendrocyte precursor cells (OPCs) and subventricular zone (SVZ)-derived progenitors. We will shortly come back on the main steps of oligodendrogenesis in the postnatal and adult brain, and summarize the key factors involved in the determination of oligodendrocytic fate. We will then shed light on the main causes of demyelination in the adult brain and present the animal models that have been developed to get insight on the demyelination/remyelination process. Finally, we will synthetize the results of studies searching for factors able to modulate spontaneous myelin repair.
Collapse
Affiliation(s)
- Bilal El Waly
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Magali Macchi
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Myriam Cayre
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Pascale Durbec
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| |
Collapse
|
123
|
Williams JL, Holman DW, Klein RS. Chemokines in the balance: maintenance of homeostasis and protection at CNS barriers. Front Cell Neurosci 2014; 8:154. [PMID: 24920943 PMCID: PMC4036130 DOI: 10.3389/fncel.2014.00154] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/15/2014] [Indexed: 12/15/2022] Open
Abstract
In the adult central nervous system (CNS), chemokines and their receptors are involved in developmental, physiological and pathological processes. Although most lines of investigation focus on their ability to induce the migration of cells, recent studies indicate that chemokines also promote cellular interactions and activate signaling pathways that maintain CNS homeostatic functions. Many homeostatic chemokines are expressed on the vasculature of the blood brain barrier (BBB) including CXCL12, CCL19, CCL20, and CCL21. While endothelial cell expression of these chemokines is known to regulate the entry of leukocytes into the CNS during immunosurveillance, new data indicate that CXCL12 is also involved in diverse cellular activities including adult neurogenesis and neuronal survival, having an opposing role to the homeostatic chemokine, CXCL14, which appears to regulate synaptic inputs to neural precursors. Neuronal expression of CX3CL1, yet another homeostatic chemokine that promotes neuronal survival and communication with microglia, is partly regulated by CXCL12. Regulation of CXCL12 is unique in that it may regulate its own expression levels via binding to its scavenger receptor CXCR7/ACKR3. In this review, we explore the diverse roles of these and other homeostatic chemokines expressed within the CNS, including the possible implications of their dysfunction as a cause of neurologic disease.
Collapse
Affiliation(s)
- Jessica L Williams
- Department of Internal Medicine, Washington University School of Medicine St. Louis, MO, USA
| | - David W Holman
- Infectious Diseases Division, Decision Resources Group Burlington, MA, USA
| | - Robyn S Klein
- Department of Internal Medicine, Washington University School of Medicine St. Louis, MO, USA ; Department of Pathology and Immunology, Washington University School of Medicine St. Louis, MO, USA ; Department of Anatomy and Neurobiology, Washington University School of Medicine St. Louis, MO, USA
| |
Collapse
|
124
|
Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 2014; 141:302-13. [PMID: 23981039 DOI: 10.1111/imm.12163] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022] Open
Abstract
Communication between the immune system and the central nervous system (CNS) is exemplified by cross-talk between glia and neurons shown to be essential for maintaining homeostasis. While microglia are actively modulated by neurons in the healthy brain, little is known about the cross-talk between oligodendrocytes and microglia. Oligodendrocytes, the myelin-forming cells in the CNS, are essential for the propagation of action potentials along axons, and additionally serve to support neurons by producing neurotrophic factors. In demyelinating diseases such as multiple sclerosis, oligodendrocytes are thought to be the victims. Here, we review evidence that oligodendrocytes also have strong immune functions, express a wide variety of innate immune receptors, and produce and respond to chemokines and cytokines that modulate immune responses in the CNS. We also review evidence that during stress events in the brain, oligodendrocytes can trigger a cascade of protective and regenerative responses, in addition to responses that elicit progressive neurodegeneration. Knowledge of the cross-talk between microglia and oligodendrocytes may continue to uncover novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and degeneration.
Collapse
Affiliation(s)
- Laura Peferoen
- Pathology Department, VU University Medical Centre, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
125
|
Williams JL, Patel JR, Daniels BP, Klein RS. Targeting CXCR7/ACKR3 as a therapeutic strategy to promote remyelination in the adult central nervous system. ACTA ACUST UNITED AC 2014; 211:791-9. [PMID: 24733828 PMCID: PMC4010893 DOI: 10.1084/jem.20131224] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Current treatment modalities for the neurodegenerative disease multiple sclerosis (MS) use disease-modifying immunosuppressive compounds but do not promote repair. Although several potential targets that may induce myelin production have been identified, there has yet to be an approved therapy that promotes remyelination in the damaged central nervous system (CNS). Remyelination of damaged axons requires the generation of new oligodendrocytes from oligodendrocyte progenitor cells (OPCs). Although OPCs are detected in MS lesions, repair of myelin is limited, contributing to progressive clinical deterioration. In the CNS, the chemokine CXCL12 promotes remyelination via CXCR4 activation on OPCs, resulting in their differentiation into myelinating oligodendrocytes. Although the CXCL12 scavenging receptor CXCR7/ACKR3 (CXCR7) is also expressed by OPCs, its role in myelin repair in the adult CNS is unknown. We show that during cuprizone-induced demyelination, in vivo CXCR7 antagonism augmented OPC proliferation, leading to increased numbers of mature oligodendrocytes within demyelinated lesions. CXCR7-mediated effects on remyelination required CXCR4 activation, as assessed via both phospho-S339-CXCR4-specific antibodies and administration of CXCR4 antagonists. These findings identify a role for CXCR7 in OPC maturation during remyelination and are the first to use a small molecule to therapeutically enhance myelin repair in the demyelinated adult CNS.
Collapse
Affiliation(s)
- Jessica L Williams
- Department of Internal Medicine, 2 Department of Pathology and Immunology, and 3 Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | | | |
Collapse
|
126
|
Boulanger JJ, Messier C. From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 2014; 269:343-66. [PMID: 24721734 DOI: 10.1016/j.neuroscience.2014.03.063] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/28/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Oligodendrocyte precursor cells (OPC) are glial cells that metamorphose into myelinating oligodendrocytes during embryogenesis and early stages of post-natal life. OPCs continue to divide throughout adulthood and some eventually differentiate into oligodendrocytes in response to demyelinating lesions. There is growing evidence that OPCs are also involved in activity-driven de novo myelination of previously unmyelinated axons and myelin remodeling in adulthood. In this review, we summarize the interwoven factors and cascades that promote the activation, recruitment and differentiation of OPCs into myelinating oligodendrocytes in the adult brain based mostly on results found in the study of demyelinating diseases. The goal of the review was to draw a complete picture of the transformation of OPCs into mature oligodendrocytes to facilitate the study of this transformation in both the normal and diseased adult brain.
Collapse
Affiliation(s)
| | - C Messier
- School of Psychology, University of Ottawa, Canada.
| |
Collapse
|
127
|
Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 2014; 8:73. [PMID: 24659953 PMCID: PMC3952085 DOI: 10.3389/fncel.2014.00073] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/19/2014] [Indexed: 12/21/2022] Open
Abstract
Although astrogliosis and microglia activation are characteristic features of multiple sclerosis (MS) and other central nervous system (CNS) lesions the exact functions of these events are not fully understood. Animal models help to understand the complex interplay between the different cell types of the CNS and uncover general mechanisms of damage and repair of myelin sheaths. The so called cuprizone model is a toxic model of demyelination in the CNS white and gray matter, which lacks an autoimmune component. Cuprizone induces apoptosis of mature oligodendrocytes that leads to a robust demyelination and profound activation of both astrocytes and microglia with regional heterogeneity between different white and gray matter regions. Although not suitable to study autoimmune mediated demyelination, this model is extremely helpful to elucidate basic cellular and molecular mechanisms during de- and particularly remyelination independently of interactions with peripheral immune cells. Phagocytosis and removal of damaged myelin seems to be one of the major roles of microglia in this model and it is well known that removal of myelin debris is a prerequisite of successful remyelination. Furthermore, microglia provide several signals that support remyelination. The role of astrocytes during de- and remyelination is not well defined. Both supportive and destructive functions have been suggested. Using the cuprizone model we could demonstrate that there is an important crosstalk between astrocytes and microglia. In this review we focus on the role of glial reactions and interaction in the cuprizone model. Advantages and limitations of as well as its potential therapeutic relevance for the human disease MS are critically discussed in comparison to other animal models.
Collapse
Affiliation(s)
- Viktoria Gudi
- Department of Neurology, Hannover Medical SchoolHannover, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical SchoolHannover, Germany
| | | | - Martin Stangel
- Department of Neurology, Hannover Medical SchoolHannover, Germany
- Center for Systems NeuroscienceHannover, Germany
| |
Collapse
|
128
|
Anders HJ, Romagnani P, Mantovani A. Pathomechanisms: homeostatic chemokines in health, tissue regeneration, and progressive diseases. Trends Mol Med 2014; 20:154-65. [PMID: 24440002 DOI: 10.1016/j.molmed.2013.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
Homeostatic chemokines control stem and progenitor cell migration and activation during vasculogenesis and organ development. They orchestrate hematopoietic stem cell (HSC) homing to their bone marrow niches and direct immature lymphocytes to a series of maturation sites within lymphoid organs. Along these lines, homeostatic chemokines regulate the niches of peripheral committed progenitor cell populations for tissue renewal. These biological functions support neovascularization and wound healing, including the recruitment of endothelial and other progenitor cells from the bone marrow. Here, we summarize the roles of homeostatic chemokines, their signaling receptors, and atypical decoy receptors during homeostasis and tissue regeneration in order to better understand their pathogenic roles in disease, for example, in diabetes complications, cancer, autoimmunity, epithelial hyperplasia, or hypertrophic scarring and fibrosis.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Germany.
| | - Paola Romagnani
- Excellence Centre for Research, Transfer, and High Education for the Development of De Novo Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), via Manzoni 113, 20089, Rozzano, Italy; University of Milan, Department of Translational Medicine, 20089 Rozzano, Italy
| |
Collapse
|
129
|
Pitcher J, Abt A, Myers J, Han R, Snyder M, Graziano A, Festa L, Kutzler M, Garcia F, Gao WJ, Fischer-Smith T, Rappaport J, Meucci O. Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction. J Clin Invest 2014; 124:656-69. [PMID: 24401274 DOI: 10.1172/jci70090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 10/24/2013] [Indexed: 11/17/2022] Open
Abstract
Interaction of the chemokine CXCL12 with its receptor CXCR4 promotes neuronal function and survival during embryonic development and throughout adulthood. Previous studies indicated that μ-opioid agonists specifically elevate neuronal levels of the protein ferritin heavy chain (FHC), which negatively regulates CXCR4 signaling and affects the neuroprotective function of the CXCL12/CXCR4 axis. Here, we determined that CXCL12/CXCR4 activity increased dendritic spine density, and also examined FHC expression and CXCR4 status in opiate abusers and patients with HIV-associated neurocognitive disorders (HAND), which is typically exacerbated by illicit drug use. Drug abusers and HIV patients with HAND had increased levels of FHC, which correlated with reduced CXCR4 activation, within cortical neurons. We confirmed these findings in a nonhuman primate model of SIV infection with morphine administration. Transfection of a CXCR4-expressing human cell line with an iron-deficient FHC mutant confirmed that increased FHC expression deregulated CXCR4 signaling and that this function of FHC was independent of iron binding. Furthermore, examination of morphine-treated rodents and isolated neurons expressing FHC shRNA revealed that FHC contributed to morphine-induced dendritic spine loss. Together, these data implicate FHC-dependent deregulation of CXCL12/CXCR4 as a contributing factor to cognitive dysfunction in neuroAIDS.
Collapse
|
130
|
Nash B, Meucci O. Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:105-28. [PMID: 25175863 PMCID: PMC4369781 DOI: 10.1016/b978-0-12-801284-0.00005-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activation of the G protein-coupled receptor CXCR4 by its chemokine ligand CXCL12 regulates a number of physiopathological functions in the central nervous system, during development as well as later in life. In addition to the more classical roles of the CXCL12/CXCR4 axis in the recruitment of immune cells or migration and proliferation of neural precursor cells, recent studies suggest that CXCR4 signaling also modulates synaptic function and neuronal survival in the mature brain, through direct and indirect effects on neurons and glia. These effects, which include regulation of glutamate receptors and uptake, and of dendritic spine density, can significantly alter the ability of neurons to face excitotoxic insults. Therefore, they are particularly relevant to neurodegenerative diseases featuring alterations of glutamate neurotransmission, such as HIV-associated neurocognitive disorders. Importantly, CXCR4 signaling can be dysregulated by HIV viral proteins, host HIV-induced factors, and opioids. Potential mechanisms of opioid regulation of CXCR4 include heterologous desensitization, transcriptional regulation and changes in receptor expression levels, opioid-chemokine receptor dimer or heteromer formation, and the newly described modulation by the protein ferritin heavy chain-all leading to inhibition of CXCR4 signaling. After reviewing major effects of chemokines and opioids in the CNS, this chapter discusses chemokine-opioid interactions in neuronal and immune cells, focusing on their potential contribution to HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
131
|
Fischer R, Wajant H, Kontermann R, Pfizenmaier K, Maier O. Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor. Glia 2013; 62:272-83. [PMID: 24310780 DOI: 10.1002/glia.22605] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 01/06/2023]
Abstract
Tumor necrosis factor (TNF) and its receptors TNFR1 and TNFR2 have pleiotropic effects in neurodegenerative disorders. For example, while TNFR1 mediates neurodegenerative effects in multiple sclerosis, TNFR2 is protective and contributes to remyelination. The exact mode of TNFR2 action, however, is poorly understood. Here, we show that TNFR2-mediated activation of the PI3K-PKB/Akt pathway in primary astrocytes increased the expression of neuroprotective genes, including that encoding the neurotrophic cytokine leukemia inhibitory factor (LIF). To investigate whether intercellular signaling between TNFR2-stimulated astrocytes and oligodendrocytes plays a role in oligodendrocyte maturation, we established an astrocyte-oligodendrocyte coculture model, composed of primary astrocytes from huTNFR2-transgenic (tgE1335) mice and oligodendrocyte progenitor cells (OPCs) from wild-type mice, capable of differentiating into mature myelinating oligodendrocytes. In this model, selective stimulation of human TNFR2 on astrocytes, promoted differentiation of cocultured OPCs to myelin basic protein-positive mature oligodendrocytes. Addition of LIF neutralizing antibodies inhibited oligodendrocyte differentiation, indicating a crucial role of TNFR2-induced astrocyte derived LIF for oligodendrocyte maturation.
Collapse
Affiliation(s)
- Roman Fischer
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
132
|
Adamo AM. Nutritional factors and aging in demyelinating diseases. GENES AND NUTRITION 2013; 9:360. [PMID: 24311441 DOI: 10.1007/s12263-013-0360-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/07/2013] [Indexed: 12/18/2022]
Abstract
Demyelination is a pathological process characterized by the loss of myelin around axons. In the central nervous system, oligodendroglial damage and demyelination are common pathological features characterizing white matter and neurodegenerative disorders. Remyelination is a regenerative process by which myelin sheaths are restored to demyelinated axons, resolving functional deficits. This process is often deficient in demyelinating diseases such as multiple sclerosis (MS), and the reasons for the failure of repair mechanisms remain unclear. The characterization of these mechanisms and the factors involved in the proliferation, recruitment, and differentiation of oligodendroglial progenitor cells is key in designing strategies to improve remyelination in demyelinating disorders. First, a very dynamic combination of different molecules such as growth factors, cytokines, chemokines, and different signaling pathways is tightly regulated during the remyelination process. Second, factors unrelated to this pathology, i.e., age and genetic background, may impact disease progression either positively or negatively, and in particular, age-related remyelination failure has been proven to involve oligodendroglial cells aging and their intrinsic capacities among other factors. Third, nutrients may either help or hinder disease progression. Experimental evidence supports the anti-inflammatory role of omega-6 and omega-3 polyunsaturated fatty acids through the competitive inhibition of arachidonic acid, whose metabolites participate in inflammation, and the reduction in T cell proliferation. In turn, vitamin D intake and synthesis have been associated with lower MS incidence levels, while vitamin D-gene interactions might be involved in the pathogenesis of MS. Finally, dietary polyphenols have been reported to mitigate demyelination by modulating the immune response.
Collapse
Affiliation(s)
- Ana M Adamo
- Department of Biological Chemistry, IQUIFIB (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD, Buenos Aires, Argentina,
| |
Collapse
|
133
|
The peculiarities of the SDF-1/CXCL12 system: in some cells, CXCR4 and CXCR7 sing solos, in others, they sing duets. Cell Tissue Res 2013; 355:239-53. [DOI: 10.1007/s00441-013-1747-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/17/2013] [Indexed: 12/26/2022]
|
134
|
Kaneko N, Kako E, Sawamoto K. Enhancement of ventricular-subventricular zone-derived neurogenesis and oligodendrogenesis by erythropoietin and its derivatives. Front Cell Neurosci 2013; 7:235. [PMID: 24348331 PMCID: PMC3842008 DOI: 10.3389/fncel.2013.00235] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/08/2013] [Indexed: 12/17/2022] Open
Abstract
In the postnatal mammalian brain, stem cells in the ventricular-subventricular zone (V-SVZ) continuously generate neuronal and glial cells throughout life. Genetic labeling of cells of specific lineages have demonstrated that the V-SVZ is an important source of the neuroblasts and/or oligodendrocyte progenitor cells (OPCs) that migrate toward injured brain areas in response to several types of insult, including ischemia and demyelinating diseases. However, this spontaneous regeneration is insufficient for complete structural and functional restoration of the injured brain, so interventions to enhance these processes are sought for clinical applications. Erythropoietin (EPO), a clinically applied erythropoietic factor, is reported to have cytoprotective effects in various kinds of insult in the central nervous system. Moreover, recent studies suggest that EPO promotes the V-SVZ-derived neurogenesis and oligodendrogenesis. EPO increases the proliferation of progenitors in the V-SVZ and/or the migration and differentiation of their progenies in and around injured areas, depending on the dosage, timing, and duration of treatment, as well as the type of animal model used. On the other hand, EPO has undesirable side effects, including thrombotic complications. We recently demonstrated that a 2-week treatment with the EPO derivative asialo-EPO promotes the differentiation of V-SVZ-derived OPCs into myelin-forming mature oligodendrocytes in the injured white matter of neonatal mice without causing erythropoiesis. Here we present an overview of the multifaceted effects of EPO and its derivatives in the V-SVZ and discuss the possible applications of these molecules in regenerative medicine.
Collapse
Affiliation(s)
- Naoko Kaneko
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | - Eisuke Kako
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan ; Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| |
Collapse
|
135
|
Chung DJ, Wong A, Hayashi K, Yellowley CE. Effect of hypoxia on generation of neurospheres from adipose tissue-derived canine mesenchymal stromal cells. Vet J 2013; 199:123-30. [PMID: 24252224 DOI: 10.1016/j.tvjl.2013.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/29/2022]
Abstract
Adipose tissue-derived mesenchymal stromal cells (AT-MSCs) are good candidates for cell therapy due to the accessibility of fat tissue and the abundance of AT-MSCs therein. Neurospheres are free-floating spherical condensations of cells with neural stem/progenitor cell (NSPC) characteristics that can be derived from AT-MSCs. The aims of this study were to examine the influence of oxygen (O2) tension on generation of neurospheres from canine AT-MSCs (AT-cMSCs) and to develop a hypoxic cell culture system to enhance the survival and therapeutic benefit of generated neurospheres. AT-cMSCs were cultured under varying oxygen tensions (1%, 5% and 21%) in a neurosphere culture system. Neurosphere number and area were evaluated and NSPC markers were quantified using real-time quantitative PCR (qPCR). Effects of oxygen on neurosphere expression of hypoxia inducible factor 1, α subunit (HIF1A) and its target genes, erythropoietin receptor (EPOR), chemokine (C-X-C motif) receptor 4 (CXCR4) and vascular endothelial growth factor (VEGF), were quantified by qPCR. Neural differentiation potential was evaluated in 21% O2 by cell morphology and qPCR. Neurospheres were successfully generated from AT-cMSCs at all O2 tensions. Expression of nestin mRNA (NES) was significantly increased after neurosphere culture and was significantly higher in 1% O2 compared to 5% and 21% O2. Neurospheres cultured in 1% O2 had significantly increased levels of VEGF and EPOR. There was a significant increase in CXCR4 expression in neurospheres generated at all O2 tensions. Neurosphere culture under hypoxia had no negative effect on subsequent neural differentiation. This study suggests that generation of neurospheres under hypoxia could be beneficial when considering these cells for neurological cell therapies.
Collapse
Affiliation(s)
- D J Chung
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - A Wong
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - K Hayashi
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - C E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
136
|
Positively correlated miRNA-mRNA regulatory networks in mouse frontal cortex during early stages of alcohol dependence. BMC Genomics 2013; 14:725. [PMID: 24148570 PMCID: PMC3924350 DOI: 10.1186/1471-2164-14-725] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/04/2013] [Indexed: 01/06/2023] Open
Abstract
Background Although the study of gene regulation via the action of specific microRNAs (miRNAs) has experienced a boom in recent years, the analysis of genome-wide interaction networks among miRNAs and respective targeted mRNAs has lagged behind. MicroRNAs simultaneously target many transcripts and fine-tune the expression of genes through cooperative/combinatorial targeting. Therefore, they have a large regulatory potential that could widely impact development and progression of diseases, as well as contribute unpredicted collateral effects due to their natural, pathophysiological, or treatment-induced modulation. We support the viewpoint that whole mirnome-transcriptome interaction analysis is required to better understand the mechanisms and potential consequences of miRNA regulation and/or deregulation in relevant biological models. In this study, we tested the hypotheses that ethanol consumption induces changes in miRNA-mRNA interaction networks in the mouse frontal cortex and that some of the changes observed in the mouse are equivalent to changes in similar brain regions from human alcoholics. Results miRNA-mRNA interaction networks responding to ethanol insult were identified by differential expression analysis and weighted gene coexpression network analysis (WGCNA). Important pathways (coexpressed modular networks detected by WGCNA) and hub genes central to the neuronal response to ethanol are highlighted, as well as key miRNAs that regulate these processes and therefore represent potential therapeutic targets for treating alcohol addiction. Importantly, we discovered a conserved signature of changing miRNAs between ethanol-treated mice and human alcoholics, which provides a valuable tool for future biomarker/diagnostic studies in humans. We report positively correlated miRNA-mRNA expression networks that suggest an adaptive, targeted miRNA response due to binge ethanol drinking. Conclusions This study provides new evidence for the role of miRNA regulation in brain homeostasis and sheds new light on current understanding of the development of alcohol dependence. To our knowledge this is the first report that activated expression of miRNAs correlates with activated expression of mRNAs rather than with mRNA downregulation in an in vivo model. We speculate that early activation of miRNAs designed to limit the effects of alcohol-induced genes may be an essential adaptive response during disease progression.
Collapse
|
137
|
Sofroniew MV. Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist 2013; 20:160-72. [PMID: 24106265 DOI: 10.1177/1073858413504466] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes are increasingly recognized as exerting complex functions essential for normal neural activity in the healthy central nervous system (CNS). Because astrocytes also respond to all forms of CNS injury or disease, there is growing interest in how reactive astrogliosis might alter astrocyte functions and thereby affect neural functions. Reactive astrogliosis is heterogeneous and regulated in a context specific manner by different molecular signals. Prominent among astrocyte signaling mechanisms is the ability to respond to, as well as to produce, many different cytokines and inflammatory mediators. These signaling mechanisms enable astrocytes to interact with diverse cell types in ways that may contribute to crosstalk between immune/inflammatory and neural systems. Consistent with this notion is the increasing evidence that cytokines and inflammatory mediators modulate astrocyte signaling not only to influence immune and inflammatory activities in the CNS, but also to influence synaptic and neural functions in ways that may affect complex behaviors such as sickness behavior, pain, appetite, sleep, and mood.
Collapse
Affiliation(s)
- Michael V Sofroniew
- 1Department of Neurobiology and Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
138
|
Jagielska A, Wilhite KD, Van Vliet KJ. Extracellular acidic pH inhibits oligodendrocyte precursor viability, migration, and differentiation. PLoS One 2013; 8:e76048. [PMID: 24098762 PMCID: PMC3786906 DOI: 10.1371/journal.pone.0076048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/22/2013] [Indexed: 02/04/2023] Open
Abstract
Axon remyelination in the central nervous system requires oligodendrocytes that produce myelin. Failure of this repair process is characteristic of neurodegeneration in demyelinating diseases such as multiple sclerosis, and it remains unclear how the lesion microenvironment contributes to decreased remyelination potential of oligodendrocytes. Here, we show that acidic extracellular pH, which is characteristic of demyelinating lesions, decreases the migration, proliferation, and survival of oligodendrocyte precursor cells (OPCs), and reduces their differentiation into oligodendrocytes. Further, OPCs exhibit directional migration along pH gradients toward acidic pH. These in vitro findings support a possible in vivo scenario whereby pH gradients attract OPCs toward acidic lesions, but resulting reduction in OPC survival and motility in acid decreases progress toward demyelinated axons and is further compounded by decreased differentiation into myelin-producing oligodendrocytes. As these processes are integral to OPC response to nerve demyelination, our results suggest that lesion acidity could contribute to decreased remyelination.
Collapse
Affiliation(s)
- Anna Jagielska
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kristen D. Wilhite
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Krystyn J. Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
139
|
Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology. Trends Mol Med 2013; 19:604-13. [PMID: 24007818 DOI: 10.1016/j.molmed.2013.08.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 12/15/2022]
Abstract
The nuclear factor kappa B (NF-κB) signaling cascade plays a critical role in the regulation of immune and inflammatory responses and has been implicated in the pathogenesis of autoimmune demyelinating diseases such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the main animal model of MS. NF-κB is essential for peripheral immune cell activation and the induction of pathology, but also plays crucial roles in resident cells of the central nervous system (CNS) during disease development. Here we review recent evidence clarifying the role of NF-κB in the different cell compartments contributing to MS pathology and its implications for the development of therapeutic strategies for the treatment of MS and other demyelinating pathologies of the CNS.
Collapse
|
140
|
Medina-Rodríguez EM, Arenzana FJ, Pastor J, Redondo M, Palomo V, García de Sola R, Gil C, Martínez A, Bribián A, de Castro F. Inhibition of endogenous phosphodiesterase 7 promotes oligodendrocyte precursor differentiation and survival. Cell Mol Life Sci 2013; 70:3449-62. [PMID: 23661015 PMCID: PMC11113628 DOI: 10.1007/s00018-013-1340-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 12/21/2022]
Abstract
During the development of the central nervous system (CNS), oligodendrocyte precursors (OPCs) are generated in specific sites within the neural tube and then migrate to colonize the entire CNS, where they differentiate into myelin-forming oligodendrocytes. Demyelinating diseases such as multiple sclerosis (MS) are characterized by the death of these cells. The CNS reacts to demyelination and by promoting spontaneous remyelination, an effect mediated by endogenous OPCs, cells that represent approximately 5-7 % of the cells in the adult brain. Numerous factors influence oligodendrogliogenesis and oligodendrocyte differentiation, including morphogens, growth factors, chemotropic molecules, extracellular matrix proteins, and intracellular cAMP levels. Here, we show that during development and in early adulthood, OPCs in the murine cerebral cortex contain phosphodiesterase-7 (PDE7) that metabolizes cAMP. We investigated the effects of different PDE7 inhibitors (the well-known BRL-50481 and two new ones, TC3.6 and VP1.15) on OPC proliferation, survival, and differentiation. While none of the PDE7 inhibitors analyzed altered OPC proliferation, TC3.6 and VP1.15 enhanced OPC survival and differentiation, processes in which ERK intracellular signaling played a key role. PDE7 expression was also observed in OPCs isolated from adult human brains and the differentiation of these OPCs into more mature oligodendroglial phenotypes was accelerated by treatment with both new PDE7 inhibitors. These findings reveal new roles for PDE7 in regulating OPC survival and differentiation during brain development and in adulthood, and they may further our understanding of myelination and facilitate the development of therapeutic remyelination strategies for the treatment of MS.
Collapse
Affiliation(s)
- E. M. Medina-Rodríguez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca “La Peraleda”, s/n, 45071 Toledo, Spain
| | - F. J. Arenzana
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca “La Peraleda”, s/n, 45071 Toledo, Spain
| | - J. Pastor
- Neurofisiología Clínica, Hospital Universitario La Princesa, Madrid, Spain
| | - M. Redondo
- Instituto de Química Médica, CSIC, Juan de la Cierva, Madrid, Spain
| | - V. Palomo
- Instituto de Química Médica, CSIC, Juan de la Cierva, Madrid, Spain
| | | | - C. Gil
- Instituto de Química Médica, CSIC, Juan de la Cierva, Madrid, Spain
| | - A. Martínez
- Instituto de Química Médica, CSIC, Juan de la Cierva, Madrid, Spain
| | - A. Bribián
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca “La Peraleda”, s/n, 45071 Toledo, Spain
- Institute of Bioengineering of Catalonia, Parc Cientific de Barcelona & Cell Biology Department, Universidad de Barcelona, Barcelona, Spain
| | - F. de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca “La Peraleda”, s/n, 45071 Toledo, Spain
| |
Collapse
|
141
|
Pang Y, Fan LW, Tien LT, Dai X, Zheng B, Cai Z, Lin RCS, Bhatt A. Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro. Brain Behav 2013; 3:503-14. [PMID: 24392271 PMCID: PMC3869978 DOI: 10.1002/brb3.152] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/23/2013] [Accepted: 06/08/2013] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte (OL) development relies on many extracellular cues, most of which are secreted cytokines from neighboring neural cells. Although it is generally accepted that both astrocytes and microglia are beneficial for OL development, there is a lack of understanding regarding whether astrocytes and microglia play similar or distinct roles. The current study examined the effects of astrocytes and microglia on OL developmental phenotypes including cell survival, proliferation, differentiation, and myelination in vitro. Our data reveal that, although both astrocytes- and microglia-conditioned medium (ACDM and MCDM, respectively) protect OL progenitor cells (OPCs) against growth factor withdrawal-induced apoptosis, ACDM is significantly more effective than MCDM in supporting long-term OL survival. In contrast, MCDM preferentially promotes OL differentiation and myelination. These differential effects of ACDM and MCDM on OL development are highlighted by distinct pattern of cytokine/growth factors in the conditioned medium, which correlates with differentially activated intracellular signaling pathways in OPCs upon exposure to the conditioned medium.
Collapse
Affiliation(s)
- Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center Jackson, Mississippi, 39216
| | - Lir-Wan Fan
- Department of Pediatrics, University of Mississippi Medical Center Jackson, Mississippi, 39216
| | - Lu-Tai Tien
- School of Medicine, Fu Jen Catholic University Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Xuemei Dai
- Department of Chemistry, Jackson State University Jackson, Mississippi, 39217
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center Jackson, Mississippi, 39216
| | - Zhengwei Cai
- Department of Pediatrics, University of Mississippi Medical Center Jackson, Mississippi, 39216
| | - Rick C S Lin
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center Jackson, Mississippi, 39216
| | - Abhay Bhatt
- Department of Pediatrics, University of Mississippi Medical Center Jackson, Mississippi, 39216
| |
Collapse
|
142
|
Dalet FGE, Guadalupe TFJ, María del Carmen CH, Humberto GAC, Antonio SUM. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes. Neural Regen Res 2013; 8:2290-2302. [PMID: 25206539 PMCID: PMC4146033 DOI: 10.3969/j.issn.1673-5374.2013.24.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/25/2013] [Indexed: 02/05/2023] Open
Abstract
In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selectivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and orthosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopamine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric rinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.
Collapse
Affiliation(s)
- Farfán-García Eunice Dalet
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Trujillo-Ferrara José Guadalupe
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Castillo-Hernández María del Carmen
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Guerra-Araiza Christian Humberto
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Soriano-Ursúa Marvin Antonio
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| |
Collapse
|
143
|
Inhibition of CXCL12 signaling attenuates the postischemic immune response and improves functional recovery after stroke. J Cereb Blood Flow Metab 2013; 33:1225-34. [PMID: 23632969 PMCID: PMC3734773 DOI: 10.1038/jcbfm.2013.71] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022]
Abstract
After stroke, brain inflammation in the ischemic hemisphere hampers brain tissue reorganization and functional recovery. Housing rats in an enriched environment (EE) dramatically improves recovery of lost neurologic functions after experimental stroke. We show here that rats housed in EE after stroke induced by permanent occlusion of the middle cerebral artery (pMCAO), showed attenuated levels of proinflammatory cytokines in the ischemic core and the surrounding peri-infarct area, including a significant reduction in the stroke-induced chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor-1 (CXCL12). To mimic beneficial effects of EE, we studied the impact of inhibiting CXCL12 action on functional recovery after transient MCAO (tMCAO). Rats treated with the specific CXCL12 receptor antagonist 1-[4-(1,4,8,11-tetrazacyclotetradec-1-ylmethyl)phenyl]methyl]-1,4,8,11-tetrazacyclo-tetradecan (AMD3100) showed improved recovery compared with saline-treated rats after tMCAO, without a concomitant reduction in infarct size. This was accompanied by a reduction of infiltrating immune cells in the ischemic hemisphere, particularly cluster of differentiation 3-positive (CD3(+)) and CD3(+)/CD4(+) T cells. Spleen atrophy and delayed death of splenocytes, induced by tMCAO, was prevented by AMD3100 treatment. We conclude that immoderate excessive activation of the CXCL12 pathway after stroke contributes to depression of neurologic function after stroke and that CXCR4 antagonism is beneficial for the recovery after stroke.
Collapse
|
144
|
Bracchi-Ricard V, Lambertsen KL, Ricard J, Nathanson L, Karmally S, Johnstone J, Ellman DG, Frydel B, McTigue DM, Bethea JR. Inhibition of astroglial NF-κB enhances oligodendrogenesis following spinal cord injury. J Neuroinflammation 2013; 10:92. [PMID: 23880092 PMCID: PMC3751509 DOI: 10.1186/1742-2094-10-92] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/12/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Astrocytes are taking the center stage in neurotrauma and neurological diseases as they appear to play a dominant role in the inflammatory processes associated with these conditions. Previously, we reported that inhibiting NF-κB activation in astrocytes, using a transgenic mouse model (GFAP-IκBα-dn mice), results in improved functional recovery, increased white matter preservation and axonal sparing following spinal cord injury (SCI). In the present study, we sought to determine whether this improvement, due to inhibiting NF-κB activation in astrocytes, could be the result of enhanced oligodendrogenesis in our transgenic mice. METHODS To assess oligodendrogenesis in GFAP-IκBα-dn compared to wild-type (WT) littermate mice following SCI, we used bromodeoxyuridine labeling along with cell-specific immuno-histochemistry, confocal microscopy and quantitative cell counts. To further gain insight into the underlying molecular mechanisms leading to increased white matter, we performed a microarray analysis in naïve and 3 days, 3 and 6 weeks following SCI in GFAP-IκBα-dn and WT littermate mice. RESULTS Inhibition of astroglial NF-κB in GFAP-IκBα-dn mice resulted in enhanced oligodendrogenesis 6 weeks following SCI and was associated with increased levels of myelin proteolipid protein compared to spinal cord injured WT mice. The microarray data showed a large number of differentially expressed genes involved in inflammatory and immune response between WT and transgenic mice. We did not find any difference in the number of microglia/leukocytes infiltrating the spinal cord but did find differences in their level of expression of toll-like receptor 4. We also found increased expression of the chemokine receptor CXCR4 on oligodendrocyte progenitor cells and mature oligodendrocytes in the transgenic mice. Finally TNF receptor 2 levels were significantly higher in the transgenic mice compared to WT following injury. CONCLUSIONS These studies suggest that one of the beneficial roles of blocking NF-κB in astrocytes is to promote oligodendrogenesis through alteration of the inflammatory environment.
Collapse
|
145
|
Mithal DS, Ren D, Miller RJ. CXCR4 signaling regulates radial glial morphology and cell fate during embryonic spinal cord development. Glia 2013; 61:1288-305. [PMID: 23828719 DOI: 10.1002/glia.22515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 03/04/2013] [Accepted: 04/01/2013] [Indexed: 12/20/2022]
Abstract
Embryonic meninges secrete the chemokine SDF-1/CXCL12 as a chemotactic guide for migrating neural stem cells, but SDF-1 is not known to directly regulate the functions of radial glia. Recently, the developing meninges have been shown to regulate radial glial function, yet the mechanisms and signals responsible for this phenomenon remain unclear. Moreover, as a nonmigratory cell type, radial glia do not conform to traditional models associated with chemokine signaling in the central nervous system. Using fluorescent transgenes, in vivo genetic manipulations and pharmacological techniques, we demonstrate that SDF-1 derived from the meninges exerts a CXCR4-dependent effect on radial glia. Deletion of CXCR4 expression by radial glia influences their morphology, mitosis, and progression through both oligodendroglial and astroglial lineages. Additionally, disruption of CXCR4 signaling in radial glia has a transient effect on the migration of oligodendrocyte progenitors. These data indicate that a specific chemokine signal derived from the meninges has multiple regulatory effects on radial glia.
Collapse
Affiliation(s)
- Divakar S Mithal
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA
| | | | | |
Collapse
|
146
|
Petković F, Blaževski J, Momčilović M, Mostarica Stojkovic M, Miljković D. Nitric oxide inhibits CXCL12 expression in neuroinflammation. Immunol Cell Biol 2013; 91:427-34. [PMID: 23732617 DOI: 10.1038/icb.2013.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 02/07/2023]
Abstract
Chemokine CXCL12 (C-X-C motif chemokine ligand 12) restricts immune cell invasion of the central nervous system (CNS) and limits neuroinflammation in experimental autoimmune encephalomyelitis (EAE), an animal model of inflammatory and demyelinating disease of the CNS, multiple sclerosis (MS). Nitric oxide (NO), by contrast, predominantly contributes to CNS tissue destruction in MS and EAE. Thus, the influence of NO on CXCL12 in the inflamed CNS was investigated. Excess expression of inducible NO synthase was inversely correlated to CXCL12 gene expression in spinal cord homogenates of rats immunized to develop EAE. NO inhibited gene expression of CXCL12 in astrocytes and endothelial cells in vitro. The inhibition was paralleled with reduction of p38 mitogen-activated protein kinase (MAPK) phosphorylation and it was mimicked with inhibitors of p38 MAPK activation in astrocytes. In vivo suppression of nitric generation recovered CXCL12 expression in the CNS and attenuated EAE in Dark Agouti rats. On the contrary, in vivo NO donation decreased CXCL12 expression in the CNS of EAE-resistant Albino Oxford (AO) rats. However, the effect was not paralleled with induction of EAE in AO rats. It is suggested that NO acting through suppression of p38 MAPK inhibits CXCL12 expression in neuroinflammation. These results imply that downregulation of NO release and protection of CXCL12 expression within the CNS might present the potential approaches in MS therapy.
Collapse
Affiliation(s)
- Filip Petković
- Department of Immunology, Institute for Biological Research, Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
147
|
Virgintino D, Errede M, Rizzi M, Girolamo F, Strippoli M, Wälchli T, Robertson D, Frei K, Roncali L. The CXCL12/CXCR4/CXCR7 ligand-receptor system regulates neuro-glio-vascular interactions and vessel growth during human brain development. J Inherit Metab Dis 2013; 36:455-66. [PMID: 23344887 DOI: 10.1007/s10545-012-9574-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/29/2012] [Accepted: 12/03/2012] [Indexed: 12/30/2022]
Abstract
This study investigates glio-vascular interactions in human fetal brain at midgestation, specifically examining the expression and immunolocalization of the CXCL12/CXCR4/CXCR7 ligand-receptor axis and its possible role in the vascular patterning of the developing brain. At midgestation, the telencephalic vesicles are characterized by well developed radial glia cells (RGCs), the first differentiated astrocytes and a basic vascular network mainly built of radial vessels. RGCs have been recognized to contribute to cerebral cortex neuro-vascular architecture and have also been demonstrated to act as a significant source of neural cells (Rakic, Brain Res 33:471-476, 1971; Malatesta et al, Development 127:5253-5263, 2000). According to our hypothesis CXCL12, a potent migration and differentiation chemokine released by RGCs, may act as a linking factor coordinating neuroblast migration with vessel growth and patterning through the activation of different ligand/receptor axes. The obtained results support this hypothesis showing that together with CXCR4/CXCR7-reactive neuroblasts, which migrate in close association with CXCL12 RGCs, layer-specific subsets of CXCL12 RGCs and astrocytes specifically contact the microvessel wall. Moreover, the CXCL12/CXCR4/CXCR7 system appears to be directly involved in microvessel growth, its members being differentially expressed in angiogenically activated microvessels and vascular sprouts.
Collapse
Affiliation(s)
- Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences, Sensory Organs-Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Blaževski J, Petković F, Momčilović M, Jevtic B, Miljković D, Mostarica Stojković M. High interleukin-10 expression within the central nervous system may be important for initiation of recovery of Dark Agouti rats from experimental autoimmune encephalomyelitis. Immunobiology 2013; 218:1192-9. [PMID: 23664544 DOI: 10.1016/j.imbio.2013.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/03/2013] [Accepted: 04/07/2013] [Indexed: 10/27/2022]
Abstract
Dark Agouti (DA) rats are highly susceptible to induction of experimental autoimmune encephalomyelitis (EAE), still they completely recover from the disease. Here, we were interested to determine contribution of major anti-inflammatory cytokines transforming growth factor (TGF)-β and interleukin (IL)-10 to the recovery of DA rats from EAE. To that extent we determined CNS expression of these cytokines in DA rats at different phases of EAE and compared data to those obtained in EAE-resistant Albino Oxford (AO) rats. Higher expression of TGF-β was persistently observed in the CNS of AO rats, even if rats were not immunized. This implied that high TGF-β within the CNS is important for resistance of AO rats to EAE induction. On the contrary, IL-10 expression was consistently higher in DA than in AO rats and it culminated at the peak of EAE. Methylprednisolone suppressed EAE and expression of IL-10 in spinal cord homogenates, while IL-10 was increased in CNS-infiltrating immune cells. This implied that IL-10 might have a significant role in recovery of DA rats from the disease. Thus, we next explored effects of IL-10 on astrocytes, glial cells that largely contribute to control of CNS inflammation. IL-10 stimulated astrocytic expression of an important regulator of neuroinflammation, CXCL12. Thus, IL-10 might contribute to recovery of DA rats from EAE through induction of CXCL12 expression in astrocytes.
Collapse
Affiliation(s)
- Jana Blaževski
- Department of Immunology, Institute for Biological Research, Siniša Stanković, University of Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
149
|
Réaux-Le Goazigo A, Van Steenwinckel J, Rostène W, Mélik Parsadaniantz S. Current status of chemokines in the adult CNS. Prog Neurobiol 2013; 104:67-92. [PMID: 23454481 DOI: 10.1016/j.pneurobio.2013.02.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 12/13/2022]
Abstract
Chemokines - chemotactic cytokines - are small secreted proteins that attract and activate immune and non-immune cells in vitro and in vivo. It has been suggested that chemokines and their receptors play a role in the central nervous system (CNS), in addition to their well established role in the immune system. We focus here on three chemokines-CXCL12 (C-X-C motif ligand 12), CCL2 (C-C motif ligand 2), and CX3CL1 (C-X-3C motif ligand 1) - and their principal receptors - CXCR4 (C-X-C motif receptor 4), CCR2 (C-C motif receptor 2) and CX3CR1 (C-X-3C motif receptor 1), respectively. We first introduce the classification of chemokines and their G-protein coupled receptors and the main signaling pathways triggered by receptor activation. We then discuss the cellular distribution of CXCL12/CXCR4, CCL2/CCR2 and CX3CL1/CX3CR1 in adult brain and the neurotransmission and neuromodulation effects controlled by these chemokines in the adult CNS. Changes in the expression of CXCL12, CCL2 and CX3CL1 and their respective receptors are also increasingly being implicated in the pathogenesis of CNS disorders, such as Alzheimer's disease, Parkinson's disease, HIV-associated encephalopathy, stroke and multiple sclerosis, and are therefore plausible targets for future pharmacological intervention. The final section thus discusses the role of these chemokines in these pathophysiological states. In conclusion, the role of these chemokines in cellular communication may make it possible: (i) to identify new pathways of neuron-neuron, glia-glia or neuron-glia communications relevant to both normal brain function and neuroinflammatory and neurodegenerative diseases; (ii) to develop new therapeutic approaches for currently untreatable brain diseases.
Collapse
|
150
|
Kako E, Kaneko N, Aoyama M, Hida H, Takebayashi H, Ikenaka K, Asai K, Togari H, Sobue K, Sawamoto K. Subventricular zone-derived oligodendrogenesis in injured neonatal white matter in mice enhanced by a nonerythropoietic erythropoietin derivative. Stem Cells 2013; 30:2234-47. [PMID: 22890889 DOI: 10.1002/stem.1202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Perinatal hypoxia-ischemia (HI) frequently causes white-matter injury, leading to severe neurological deficits and mortality, and only limited therapeutic options exist. The white matter of animal models and human patients with HI-induced brain injury contains increased numbers of oligodendrocyte progenitor cells (OPCs). However, the origin and fates of these OPCs and their potential to repair injured white matter remain unclear. Here, using cell-type- and region-specific genetic labeling methods in a mouse HI model, we characterized the Olig2-expressing OPCs. We found that after HI, Olig2+ cells increased in the posterior part of the subventricular zone (pSVZ) and migrated into the injured white matter. However, their oligodendrocytic differentiation efficiency was severely compromised compared with the OPCs in normal tissue, indicating the need for an intervention to promote their differentiation. Erythropoietin (EPO) treatment is a promising candidate, but it has detrimental effects that preclude its clinical use for brain injury. We found that long-term postinjury treatment with a nonerythropoietic derivative of EPO, asialo-erythropoietin, promoted the maturation of pSVZ-derived OPCs and the recovery of neurological function, without affecting hematopoiesis. These results demonstrate the limitation and potential of endogenous OPCs in the pSVZ as a therapeutic target for treating neonatal white-matter injury.
Collapse
Affiliation(s)
- Eisuke Kako
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|