101
|
Abstract
Food availability determines developmental rate, behavior, and survival of animals. Animals that enter diapause or hibernate in response to lack of food have a double advantage: they are able to adapt to environmental and cellular challenges and survive to these challenges for a prolonged time. The metabolic and physiological adaptations that make possible diapause and hibernation also provide a favorable cellular environment for tissue protection. This review highlights the benefits of dormancy on neuronal protection in the model organism Caenorhabditis elegans and small mammals such as squirrels. Additionally, I discuss the link between metabolic restructuring occurring in diapause and changes in gene expression with the increased capacity of diapausing animals to protect neurons from degeneration and potentially foster their regeneration.
Collapse
Affiliation(s)
- Andrea Calixto
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
102
|
Poupardin R, Schöttner K, Korbelová J, Provazník J, Doležel D, Pavlinic D, Beneš V, Koštál V. Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata. BMC Genomics 2015; 16:720. [PMID: 26391666 PMCID: PMC4578651 DOI: 10.1186/s12864-015-1907-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023] Open
Abstract
Background Diapause is a developmental alternative to direct ontogeny in many invertebrates. Its primary adaptive meaning is to secure survival over unfavourable seasons in a state of developmental arrest usually accompanied by metabolic suppression and enhanced tolerance to environmental stressors. During photoperiodically triggered diapause of insects, the ontogeny is centrally turned off under hormonal control, the molecular details of this transition being poorly understood. Using RNAseq technology, we characterized transcription profiles associated with photoperiodic diapause induction in the larvae of the drosophilid fly Chymomyza costata with the goal of identifying candidate genes and processes linked to upstream regulatory events that eventually lead to a complex phenotypic change. Results Short day photoperiod triggering diapause was associated to inhibition of 20-hydroxy ecdysone (20-HE) signalling during the photoperiod-sensitive stage of C. costata larval development. The mRNA levels of several key genes involved in 20-HE biosynthesis, perception, and signalling were significantly downregulated under short days. Hormonal change was translated into downregulation of a series of other transcripts with broad influence on gene expression, protein translation, alternative histone marking by methylation and alternative splicing. These changes probably resulted in blockade of direct development and deep restructuring of metabolic pathways indicated by differential expression of genes involved in cell cycle regulation, metabolism, detoxification, redox balance, protection against oxidative stress, cuticle formation and synthesis of larval storage proteins. This highly complex alteration of gene transcription was expressed already during first extended night, within the first four hours after the change of the photoperiodic signal from long days to short days. We validated our RNAseq differential gene expression results in an independent qRT-PCR experiment involving wild-type (photoperiodic) and NPD-mutant (non-photoperiodic) strains of C. costata. Conclusions Our study revealed several strong candidate genes for follow-up functional studies. Candidate genes code for upstream regulators of a complex change of gene expression, which leads to phenotypic switch from direct ontogeny to larval diapause. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1907-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodolphe Poupardin
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Konrad Schöttner
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Jaroslava Korbelová
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Jan Provazník
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - David Doležel
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Vladimír Koštál
- Biology Centre CAS, Institute of Entomology, Branišovská 31, 37005, České Budějovice, Czech Republic.
| |
Collapse
|
103
|
Li Y, Zhang L, Chen H, Koštál V, Simek P, Moos M, Denlinger DL. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:34-46. [PMID: 26005120 DOI: 10.1016/j.ibmb.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 05/23/2023]
Abstract
The ectoparasitoid wasp, Nasonia vitripennis can enhance its cold tolerance by exploiting a maternally-induced larval diapause. A simple manipulation of the fly host diapause status and supplementation of the host diet with proline also dramatically increase cold tolerance in the parasitoid. In this study, we used a metabolomics approach to define alterations in metabolite profiles of N. vitripennis caused by diapause in the parasitoid, diapause of the host, and augmentation of the host's diet with proline. Metabolic profiles of diapausing and nondiapausing parasitoid were significantly differentiated, with pronounced distinctions in levels of multiple cryoprotectants, amino acids, and carbohydrates. The dynamic nature of diapause was underscored by a shift in the wasp's metabolomic profile as the duration of diapause increased, a feature especially evident for increased concentrations of a suite of cryoprotectants. Metabolic pathways involved in amino acid and carbohydrate metabolism were distinctly enriched during diapause in the parasitoid. Host diapause status also elicited a pronounced effect on metabolic signatures of the parasitoid, noted by higher cryoprotectants and elevated compounds derived from glycolysis. Proline supplementation of the host diet did not translate directly into elevated proline in the parasitoid but resulted in an alteration in the abundance of many other metabolites, including elevated concentrations of essential amino acids, and reduction in metabolites linked to energy utilization, lipid and amino acid metabolism. Thus, the enhanced cold tolerance of N. vitripennis associated with proline augmentation of the host diet appears to be an indirect effect caused by the metabolic perturbations associated with diet supplementation.
Collapse
Affiliation(s)
- Yuyan Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
| | - Lisheng Zhang
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hongyin Chen
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Vladimir Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Petr Simek
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Martin Moos
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
104
|
Transcriptomic and proteomic analysis of pre-diapause and non-diapause eggs of migratory locust, Locusta migratoria L. (Orthoptera: Acridoidea). Sci Rep 2015; 5:11402. [PMID: 26091374 PMCID: PMC4650673 DOI: 10.1038/srep11402] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/26/2015] [Indexed: 11/09/2022] Open
Abstract
Low temperature induces diapause in locusts. However, the physiological processes and initiation mechanism of diapause are not well understood. To understand the molecular basis of diapause, ‘omics’ analyses were performed to examine the differences between diapause and non-diapause eggs at both transcriptional and translational levels. Results indicated that a total of 62,241 mRNAs and 212 proteins were differentially expressed. Among them, 116 transcripts had concurrent transcription and translation profiles. Up-regulated genes related to diapause included glutathiones-S-transferase et al., and down-regulated genes including juvenile hormone esterase-like protein et al. KEGG analysis mapped 7,243 and 99 differentially expressed genes and proteins, to 83 and 25 pathways, respectively. Correlation enriched pathways indicated that there were nine identical pathways related to diapause. Gene Ontology analysis placed these genes and proteins into three categories, and a higher proportion of genes related to metabolism was up-regulated than down-regulated. Furthermore, three up-regulated pathways were linked to cryoprotection. This study demonstrates the applicability of high-throughput omics tools to identify molecules linked to diapause in the locust. In addition, it reveals cellular metabolism in diapause eggs is more active than in non-diapause eggs, and up-regulated enzymes may play roles in cryoprotection and storing energy for diapause and post-diapause stages.
Collapse
|
105
|
Salminen TS, Vesala L, Laiho A, Merisalo M, Hoikkala A, Kankare M. Seasonal gene expression kinetics between diapause phases in Drosophila virilis group species and overwintering differences between diapausing and non-diapausing females. Sci Rep 2015; 5:11197. [PMID: 26063442 PMCID: PMC4463020 DOI: 10.1038/srep11197] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/07/2015] [Indexed: 11/08/2022] Open
Abstract
Most northern insect species experience a period of developmental arrest, diapause, which enables them to survive over the winter and postpone reproduction until favorable conditions. We studied the timing of reproductive diapause and its long-term effects on the cold tolerance of Drosophila montana, D. littoralis and D. ezoana females in seasonally varying environmental conditions. At the same time we traced expression levels of 219 genes in D. montana using a custom-made microarray. We show that the seasonal switch to reproductive diapause occurs over a short time period, and that overwintering in reproductive diapause has long-lasting effects on cold tolerance. Some genes, such as Hsc70, Jon25Bi and period, were upregulated throughout the diapause, while others, including regucalcin, couch potato and Thor, were upregulated only at its specific phases. Some of the expression patterns induced during the sensitive stage, when the females either enter diapause or not, remained induced regardless of the later conditions. qPCR analyses confirmed the findings of the microarray analysis in D. montana and revealed similar gene expression changes in D. littoralis and D. ezoana. The present study helps to achieve a better understanding of the genetic regulation of diapause and of the plasticity of seasonal responses in general.
Collapse
Affiliation(s)
- Tiina S. Salminen
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
- BioMediTech, University of Tampere, Biokatu 6, F1-33014 Finland
| | - Laura Vesala
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
- BioMediTech, University of Tampere, Biokatu 6, F1-33014 Finland
| | - Asta Laiho
- Finnish DNA Microarray Centre, Bioinformatics team, Turku Centre for Biotechnology, Tykistökatu 6, FI-20521 Turku, Finland
| | - Mikko Merisalo
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| | - Anneli Hoikkala
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| | - Maaria Kankare
- University of Jyvaskyla, Department of Biological and Environmental Science, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
| |
Collapse
|
106
|
Štětina T, Koštál V, Korbelová J. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster). PLoS One 2015; 10:e0128976. [PMID: 26034990 PMCID: PMC4452724 DOI: 10.1371/journal.pone.0128976] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/01/2015] [Indexed: 12/14/2022] Open
Abstract
Background The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. Principal Findings We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. Conclusions The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperaures below -8°C.
Collapse
Affiliation(s)
- Tomáš Štětina
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- * E-mail:
| | - Jaroslava Korbelová
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
107
|
Huang X, Poelchau MF, Armbruster PA. Global transcriptional dynamics of diapause induction in non-blood-fed and blood-fed Aedes albopictus. PLoS Negl Trop Dis 2015; 9:e0003724. [PMID: 25897664 PMCID: PMC4405372 DOI: 10.1371/journal.pntd.0003724] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Aedes albopictus is a vector of increasing public health concern due to its rapid global range expansion and ability to transmit Dengue virus, Chikungunya virus and a wide range of additional arboviruses. Traditional vector control strategies have been largely ineffective against Ae. albopictus and novel approaches are urgently needed. Photoperiodic diapause is a crucial ecological adaptation in a wide range of temperate insects. Therefore, targeting the molecular regulation of photoperiodic diapause or diapause-associated physiological processes could provide the basis of novel approaches to vector control. METHODOLOGY/PRINCIPAL FINDINGS We investigated the global transcriptional profiles of diapause induction in Ae. albopictus by performing paired-end RNA-Seq of biologically replicated libraries. We sequenced RNA from whole bodies of adult females reared under diapause-inducing and non-diapause-inducing photoperiods either with or without a blood meal. We constructed a comprehensive transcriptome assembly that incorporated previous assemblies and represents over 14,000 annotated dipteran gene models. Mapping of sequence reads to the transcriptome identified differential expression of 2,251 genes in response to diapause-inducing short-day photoperiods. In non-blood-fed females, potential regulatory elements of diapause induction were transcriptionally up-regulated, including two of the canonical circadian clock genes, timeless and cryptochrome 1. In blood-fed females, genes in metabolic pathways related to energy production and offspring provisioning were differentially expressed under diapause-inducing conditions, including the oxidative phosphorylation pathway and lipid metabolism genes. CONCLUSIONS/SIGNIFICANCE This study is the first to utilize powerful RNA-Seq technologies to elucidate the transcriptional basis of diapause induction in any insect. We identified candidate genes and pathways regulating diapause induction, including a conserved set of genes that are differentially expressed as part of the diapause program in a diverse group of insects. These genes provide candidates whose diapause-associated function can be further interrogated using functional genomics approaches in Ae. albopictus and other insects.
Collapse
Affiliation(s)
- Xin Huang
- Department of Biology, Georgetown University, Washington, D.C., United States of America
| | - Monica F. Poelchau
- Department of Biology, Georgetown University, Washington, D.C., United States of America
| | - Peter A. Armbruster
- Department of Biology, Georgetown University, Washington, D.C., United States of America
| |
Collapse
|
108
|
Chandrasekaran S, Rittschof CC, Djukovic D, Gu H, Raftery D, Price ND, Robinson GE. Aggression is associated with aerobic glycolysis in the honey bee brain(1). GENES BRAIN AND BEHAVIOR 2015; 14:158-66. [PMID: 25640316 DOI: 10.1111/gbb.12201] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/10/2015] [Accepted: 01/12/2015] [Indexed: 12/22/2022]
Abstract
Aerobic glycolysis involves increased glycolysis and decreased oxidative catabolism of glucose even in the presence of an ample oxygen supply. Aerobic glycolysis, a common metabolic pattern in cancer cells, was recently discovered in both the healthy and diseased human brain, but its functional significance is not understood. This metabolic pattern in the brain is surprising because it results in decreased efficiency of adenosine triphosphate (ATP) production in a tissue with high energetic demands. We report that highly aggressive honey bees (Apis mellifera) show a brain transcriptomic and metabolic state consistent with aerobic glycolysis, i.e. increased glycolysis in combination with decreased oxidative phosphorylation. Furthermore, exposure to alarm pheromone, which provokes aggression, causes a metabolic shift to aerobic glycolysis in the bee brain. We hypothesize that this metabolic state, which is associated with altered neurotransmitter levels, increased glycolytically derived ATP and a reduced cellular redox state, may lead to increased neuronal excitability and oxidative stress in the brain. Our analysis provides evidence for a robust, distinct and persistent brain metabolic response to aggression-inducing social cues. This finding for the first time associates aerobic glycolysis with naturally occurring behavioral plasticity, which has important implications for understanding both healthy and diseased brain function.
Collapse
Affiliation(s)
- S Chandrasekaran
- Institute for Systems Biology, Seattle, WA; Center for Biophysics and Computational Biology
| | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
Insect heat shock proteins include ATP-independent small heat shock proteins and the larger ATP-dependent proteins, Hsp70, Hsp90, and Hsp60. In concert with cochaperones and accessory proteins, heat shock proteins mediate essential activities such as protein folding, localization, and degradation. Heat shock proteins are synthesized constitutively in insects and induced by stressors such as heat, cold, crowding, and anoxia. Synthesis depends on the physiological state of the insect, but the common function of heat shock proteins, often working in networks, is to maintain cell homeostasis through interaction with substrate proteins. Stress-induced expression of heat shock protein genes occurs in a background of protein synthesis inhibition, but in the course of diapause, a state of dormancy and increased stress tolerance, these genes undergo differential regulation without the general disruption of protein production. During diapause, when ATP concentrations are low, heat shock proteins may sequester rather than fold proteins.
Collapse
Affiliation(s)
- Allison M King
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada; ,
| | | |
Collapse
|
110
|
Wadsworth CB, Dopman EB. Transcriptome profiling reveals mechanisms for the evolution of insect seasonality. J Exp Biol 2015; 218:3611-22. [DOI: 10.1242/jeb.126136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022]
Abstract
Rapid evolutionary change in seasonal timing can facilitate ecological speciation and resilience to climate warming. However, the molecular mechanisms behind shifts in animal seasonality are still unclear. Evolved differences in seasonality occur in the European corn borer moth (Ostrinia nubilalis), in which early summer emergence in E-strain adults and later summer emergence in Z-strain adults is explained by a shift in the length of the termination phase of larval diapause. Here, we sample from the developmental time course of diapause in both strains and use transcriptome sequencing to profile regulatory and amino acid changes associated with timing divergence. Within a previously defined QTL, we nominate 48 candidate genes including several in the insulin signaling and circadian rhythm pathways. Genome-wide transcriptional activity is negligible during the extended Z-strain termination, whereas shorter E-strain termination is characterized by a rapid burst of regulatory changes involved in resumption of the cell cycle, hormone production, and stress response. Although gene expression during diapause termination in Ostrinia is similar to that found previously in flies, nominated genes for shifts in timing are species-specific. Hence, across distant relatives the evolution of insect seasonality appears to involve unique genetic switches that direct organisms into distinct phases of the diapause pathway through wholesale restructuring of conserved gene regulatory networks
Collapse
Affiliation(s)
- Crista B. Wadsworth
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155 USA
| | - Erik B. Dopman
- Department of Biology, Tufts University, 200 Boston Ave, Suite 4700, Medford, MA, 02155 USA
| |
Collapse
|
111
|
Lehmann P, Piiroinen S, Kankare M, Lyytinen A, Paljakka M, Lindström L. Photoperiodic effects on diapause-associated gene expression trajectories in European Leptinotarsa decemlineata populations. INSECT MOLECULAR BIOLOGY 2014; 23:566-578. [PMID: 24924142 DOI: 10.1111/imb.12104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Behavioural and physiological changes during diapause, an important strategy of insects for surviving harsh seasonal conditions, have been intensively studied. The genetic and molecular mechanisms underpinning diapause development are less well known. We took a candidate gene approach to study prediapause gene expression patterns in the Colorado potato beetle (Leptinotarsa decemlineata), an invasive insect that has rapidly spread northwards to high seasonality environments. Newly eclosed beetles originating from southern (Italy) and northern (Russia) Europe were reared under short- [12 h light (L):12 h dark (D)] and long-day (18L:6D) photoperiods for 10 days. This time period includes the sensitive period for the photoperiodic induction and initiation of diapause. Gene expression trajectories of 12 diapause-related genes (regulatory, metabolic and stress-resistance) were analysed from 0-, 5- and 10-day-old beetles. Gene expression differences increased with age, deviating significantly between populations and photoperiods in 10-day-old beetles. The gene expression profiles, particularly those related to energy metabolism and stress-resistance, indicate that beetles originating from Russia also prepare for diapause under the long-day photoperiod and show qualitative differences in the diapausing phenotype. Our study shows that population-dependent differences seen in behavioural and physiological traits connected with diapause in L. decemlineata are also evident in the expression trajectories of diapause-related genes.
Collapse
Affiliation(s)
- P Lehmann
- Centre of Excellence in Biological Interactions Research, University of Jyväskylä, Jyväskylä, Finland
| | | | | | | | | | | |
Collapse
|
112
|
Hayward SA. Application of functional 'Omics' in environmental stress physiology: insights, limitations, and future challenges. CURRENT OPINION IN INSECT SCIENCE 2014; 4:35-41. [PMID: 28043406 DOI: 10.1016/j.cois.2014.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 06/06/2023]
Abstract
Omic technologies have revolutionised how environmental physiologists investigate stress response pathways. To date, however, omic screens typically constitute simple presence/absence correlations, and fall short of explaining mechanism. Disentangling function necessitates hypothesis-driven manipulation of selected molecular signals, and a systems level view will only come from more detailed tissue-specific and time series sampling. The increasing accessibility of omic applications means that species can be selected based on Krogh principles, but focus also needs to be given to core models where multi-platform approaches can be combined to provide a deeper understanding. This review highlights recent technological and intellectual advances in the application of omics to understanding insect stress adaptation, and sets out how to address remaining knowledge gaps.
Collapse
Affiliation(s)
- Scott Al Hayward
- University of Birmingham, College of Life and Environmental Sciences, School of Biological Sciences, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
113
|
Dong Y, Desneux N, Lei C, Niu C. Transcriptome characterization analysis of Bactrocera minax and new insights into its pupal diapause development with gene expression analysis. Int J Biol Sci 2014; 10:1051-63. [PMID: 25285037 PMCID: PMC4183925 DOI: 10.7150/ijbs.9438] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/15/2014] [Indexed: 11/29/2022] Open
Abstract
Bactrocera minax is a major citrus pest distributed in China, Bhutan and India. The long pupal diapause duration of this fly is a major bottleneck for artificial rearing and underlying mechanisms remain unknown. Genetic information on B. minax transcriptome and gene expression profiles are needed to understand its pupal diapause. High-throughput RNA-seq technology was used to characterize the B. minax transcriptome and to identify differentially expressed genes during pupal diapause development. A total number of 52,519,948 reads were generated and assembled into 47,217 unigenes. 26,843 unigenes matched to proteins in the NCBI database using the BLAST search. Four digital gene expression (DGE) libraries were constructed for pupae at early diapause, late diapause, post-diapause and diapause terminated developmental status. 4,355 unigenes showing the differences expressed across four libraries revealed major shifts in cellular functions of cell proliferation, protein processing and export, metabolism and stress response in pupal diapause. When diapause was terminated by 20-hydroxyecdysone (20E), many genes involved in ribosome and metabolism were differentially expressed which may mediate diapause transition. The gene sets involved in protein and energy metabolisms varied throughout early-, late- and post-diapause. A total of 15 genes were selected to verify the DGE results through quantitative real-time PCR (qRT-PCR); qRT-PCR expression levels strongly correlated with the DGE data. The results provided the extensive sequence resources available for B. minax and increased our knowledge on its pupal diapause development and they shed new light on the possible mechanisms involved in pupal diapause in this species.
Collapse
Affiliation(s)
- Yongcheng Dong
- 1. Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nicolas Desneux
- 2. French National Institute for Agricultural Research (INRA), UMR1355-ISA, 400 Route des Chappes, 06903, Sophia-Antipolis, France
| | - Chaoliang Lei
- 1. Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changying Niu
- 1. Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
114
|
Guz N, Toprak U, Dageri A, Oktay Gurkan M, Denlinger DL. Identification of a putative antifreeze protein gene that is highly expressed during preparation for winter in the sunn pest, Eurygaster maura. JOURNAL OF INSECT PHYSIOLOGY 2014; 68:30-35. [PMID: 25010548 DOI: 10.1016/j.jinsphys.2014.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/19/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
A cDNA library generated from the fat body of field-collected, diapausing adults of the sunn pest, Eurygaster maura revealed the presence of a transcript that encodes a protein that shares the distinct physiochemical and structural features of an insect antifreeze protein. The transcript, which is most abundant in the midgut, accumulates in adults as they leave the fields in late summer and migrate to surrounding mountainous areas to overwinter. Transcript abundance again declines when adults return to the fields the following spring. This winter pattern of abundance suggests that this protein may be critical for winter survival in the cold regions where the bug enters its obligatory diapause.
Collapse
Affiliation(s)
- Nurper Guz
- Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey.
| | - Umut Toprak
- Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey
| | - Asli Dageri
- Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey
| | - M Oktay Gurkan
- Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, USA
| |
Collapse
|
115
|
Hayward SAL, Manso B, Cossins AR. Molecular basis of chill resistance adaptations in poikilothermic animals. ACTA ACUST UNITED AC 2014; 217:6-15. [PMID: 24353199 DOI: 10.1242/jeb.096537] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chill and freeze represent very different components of low temperature stress. Whilst the principal mechanisms of tissue damage and of acquired protection from freeze-induced effects are reasonably well established, those for chill damage and protection are not. Non-freeze cold exposure (i.e. chill) can lead to serious disruption to normal life processes, including disruption to energy metabolism, loss of membrane perm-selectivity and collapse of ion gradients, as well as loss of neuromuscular coordination. If the primary lesions are not relieved then the progressive functional debilitation can lead to death. Thus, identifying the underpinning molecular lesions can point to the means of building resistance to subsequent chill exposures. Researchers have focused on four specific lesions: (i) failure of neuromuscular coordination, (ii) perturbation of bio-membrane structure and adaptations due to altered lipid composition, (iii) protein unfolding, which might be mitigated by the induced expression of compatible osmolytes acting as 'chemical chaperones', (iv) or the induced expression of protein chaperones along with the suppression of general protein synthesis. Progress in all these potential mechanisms has been ongoing but not substantial, due in part to an over-reliance on straightforward correlative approaches. Also, few studies have intervened by adoption of single gene ablation, which provides much more direct and compelling evidence for the role of specific genes, and thus processes, in adaptive phenotypes. Another difficulty is the existence of multiple mechanisms, which often act together, thus resulting in compensatory responses to gene manipulations, which may potentially mask disruptive effects on the chill tolerance phenotype. Consequently, there is little direct evidence of the underpinning regulatory mechanisms leading to induced resistance to chill injury. Here, we review recent advances mainly in lower vertebrates and in arthropods, but increasingly in genetic model species from a broader range of taxa.
Collapse
Affiliation(s)
- Scott A L Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
116
|
Sinclair BJ. Linking energetics and overwintering in temperate insects. J Therm Biol 2014; 54:5-11. [PMID: 26615721 DOI: 10.1016/j.jtherbio.2014.07.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 11/27/2022]
Abstract
Overwintering insects cannot feed, and energy they take into winter must therefore fuel energy demands during autumn, overwintering, warm periods prior to resumption of development in spring, and subsequent activity. Insects primarily consume lipids during winter, but may also use carbohydrate and proteins as fuel. Because they are ectotherms, the metabolic rate of insects is temperature-dependent, and the curvilinear nature of the metabolic rate-temperature relationship means that warm temperatures are disproportionately important to overwinter energy use. This energy use may be reduced physiologically, by reducing the slope or elevation of the metabolic rate-temperature relationship, or because of threshold changes, such as metabolic suppression upon freezing. Insects may also choose microhabitats or life history stages that reduce the impact of overwinter energy drain. There is considerable capacity for overwinter energy drain to affect insect survival and performance both directly (via starvation) or indirectly (for example, through a trade-off with cryoprotection), but this has not been well-explored. Likewise, the impact of overwinter energy drain on growing-season performance is not well understood. I conclude that overwinter energetics provides a useful lens through which to link physiology and ecology and winter and summer in studies of insect responses to their environment.
Collapse
Affiliation(s)
- Brent J Sinclair
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
117
|
A novel highly divergent protein family identified from a viviparous insect by RNA-seq analysis: a potential target for tsetse fly-specific abortifacients. PLoS Genet 2014; 10:e1003874. [PMID: 24763277 PMCID: PMC3998918 DOI: 10.1371/journal.pgen.1003874] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mother's milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1-3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4-10). The genes encoding mgp2-10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2-10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2-10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2-10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2-10 to tsetse and their critical role during lactation suggests that these proteins may be an excellent target for tsetse-specific population control approaches.
Collapse
|
118
|
Coleman PC, Bale JS, Hayward SAL. Cross generation plasticity in cold hardiness is associated with diapause, but not the non-diapause developmental pathway, in the blowfly, Calliphora vicina. J Exp Biol 2014; 217:1454-61. [DOI: 10.1242/jeb.098053] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Predicting insect responses to global climate change involves understanding cross generation effects of temperature. The majority of temperate insects overwinter in a state of diapause, a pre-emptive response to winter conditions associated with increased cold hardiness. Diapause is often induced following maternal adult detection of an environmental cue signifying the onset of winter, whilst diapause is initiated in a subsequent life-stage/generation. Continued global warming will expose adults to higher late-autumn temperatures, whilst diapause life-stages will still experience prolonged winter-cold. The cross generation effect of temperature was investigated by acclimating adult Calliphora vicina, to present day (15°C) and future (20°C) late-autumn conditions and assessing cold-hardiness in diapause (D15 and D20) and non-diapause (ND15 and ND 20) progeny. A cross generation plasticity in cold hardiness was associated with D but not ND larvae. D15 larvae exhibited an enhanced ability to suppress the internal freezing (SCP = -18.9±0.9°C) compared to D20 (-15.3±0.8°C), and displayed a greater tolerance of prolonged exposure to -4°C (LT50 26.0± 1.0 days and 11.4±1.1 days, respectively) and -8°C (5.1±1.1 days and 3.0 ±1.1 days, respectively). These changes were associated with a reduced glucose content in D15 (2.4±0.3 g mg-1) compared to D20 (3.0±0.3 g mg-1) larvae. In conclusion, C. vicina adults exposed to warmer autumn conditions during diapause induction will produce larvae with a reduced cold hardiness capacity, which could negatively impact winter survival. Given that maternal regulation of diapause is common among temperate insects this could be a widespread phenomenon.
Collapse
|
119
|
Abstract
Diapause, a dominant feature in the life history of many mosquito species, offers a mechanism for bridging unfavorable seasons in both temperate and tropical environments and serves to synchronize development within populations, thus directly affecting disease transmission cycles. The trait appears to have evolved independently numerous times within the Culicidae, as exemplified by the diverse developmental stages of diapause in closely related species. Its impact is pervasive, not only influencing the arrested stage, but also frequently altering physiological processes both before and after diapause. How the diapause response can be molded evolutionarily is critical for understanding potential range expansions of native and newly introduced species. The study of hormonal regulation of mosquito diapause has focused primarily on adult diapause, with little current information available on larval diapause or the intriguing maternal effects that regulate egg diapause. Recent quantitative trait locus, transcriptome, and RNA interference studies hold promise for interpreting the complex suite of genes that subserve the diapause phenotype.
Collapse
Affiliation(s)
- David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, Ohio 43210;
| | | |
Collapse
|
120
|
Danneels EL, Formesyn EM, Hahn DA, Denlinger DL, Cardoen D, Wenseleers T, Schoofs L, de Graaf DC. Early changes in the pupal transcriptome of the flesh fly Sarcophagha crassipalpis to parasitization by the ectoparasitic wasp, Nasonia vitripennis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:1189-200. [PMID: 24161520 DOI: 10.1016/j.ibmb.2013.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 05/26/2023]
Abstract
We investigated changes in the pupal transcriptome of the flesh fly Sarcophaga crassipalpis, 3 and 25 h after parasitization by the ectoparasitoid wasp, Nasonia vitripennis. These time points are prior to hatching of the wasp eggs, thus the results document host responses to venom injection, rather than feeding by the wasp larvae. Only a single gene appeared to be differentially expressed 3 h after parasitization. However, by 25 h, 128 genes were differentially expressed and expression patterns of a subsample of these genes were verified using RT-qPCR. Among the responsive genes were clusters of genes that altered the fly's metabolism, development, induced immune responses, elicited detoxification responses, and promoted programmed cell death. Envenomation thus clearly alters the metabolic landscape and developmental fate of the fly host prior to subsequent penetration of the pupal cuticle by the wasp larva. Overall, this study provides new insights into the specific action of ectoparasitoid venoms.
Collapse
Affiliation(s)
- Ellen L Danneels
- Laboratory of Zoophysiology, Ghent University, Krijgslaan 281 S2, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Bryon A, Wybouw N, Dermauw W, Tirry L, Van Leeuwen T. Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genomics 2013; 14:815. [PMID: 24261877 PMCID: PMC4046741 DOI: 10.1186/1471-2164-14-815] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diapause or developmental arrest, is one of the major adaptations that allows mites and insects to survive unfavorable conditions. Diapause evokes a number of physiological, morphological and molecular modifications. In general, diapause is characterized by a suppression of the metabolism, change in behavior, increased stress tolerance and often by the synthesis of cryoprotectants. At the molecular level, diapause is less studied but characterized by a complex and regulated change in gene-expression. The spider mite Tetranychus urticae is a serious polyphagous pest that exhibits a reproductive facultative diapause, which allows it to survive winter conditions. Diapausing mites turn deeply orange in color, stop feeding and do not lay eggs. RESULTS We investigated essential physiological processes in diapausing mites by studying genome-wide expression changes, using a custom built microarray. Analysis of this dataset showed that a remarkable number, 11% of the total number of predicted T. urticae genes, were differentially expressed. Gene Ontology analysis revealed that many metabolic pathways were affected in diapausing females. Genes related to digestion and detoxification, cryoprotection, carotenoid synthesis and the organization of the cytoskeleton were profoundly influenced by the state of diapause. Furthermore, we identified and analyzed an unique class of putative antifreeze proteins that were highly upregulated in diapausing females. We also further confirmed the involvement of horizontally transferred carotenoid synthesis genes in diapause and different color morphs of T. urticae. CONCLUSIONS This study offers the first in-depth analysis of genome-wide gene-expression patterns related to diapause in a member of the Chelicerata, and further adds to our understanding of the overall strategies of diapause in arthropods.
Collapse
Affiliation(s)
- Astrid Bryon
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
122
|
Sun J, Mu H, Zhang H, Chandramouli KH, Qian PY, Wong CKC, Qiu JW. Understanding the Regulation of Estivation in a Freshwater Snail through iTRAQ-Based Comparative Proteomics. J Proteome Res 2013; 12:5271-80. [DOI: 10.1021/pr400570a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jin Sun
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Huawei Mu
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Huoming Zhang
- Biosciences
Core Laboratory, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia
| | | | - Pei-Yuan Qian
- Division
of Life Science, the Hong Kong University of Science and Technology, Hong Kong, China
| | | | - Jian-Wen Qiu
- Department
of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
123
|
Reynolds JA, Clark J, Diakoff SJ, Denlinger DL. Transcriptional evidence for small RNA regulation of pupal diapause in the flesh fly, Sarcophaga bullata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:982-9. [PMID: 23933212 DOI: 10.1016/j.ibmb.2013.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 05/23/2023]
Abstract
Understanding the molecular basis of diapause, a phenotypically plastic, alternative developmental pathway, is key to predicting the seasonal distribution of economically and medically important insect species. Small regulatory RNAs, including piwi-related RNAs, small-interfering RNAs, and miRNAs, represent one type of epigenetic process that can alter the phenotype of organisms independent of changes in genome sequence. We hypothesize that small RNAs regulate pupal diapause and a maternal block of diapause in the flesh fly Sarcophaga bullata. We assessed the relative abundance of eight genes related to small RNA biogenesis and function using qRT-PCR in pre-diapause and diapause stages compared to their non-diapause counterparts. Elevated mRNA expression of piwi and spindle-E, as well as argonaute2 and r2d2, in photosensitive 1st instar larvae reared in diapause-inducing conditions indicate involvement of the piwi-associated RNA and small-interfering RNA pathways, respectively, in programming the switch from direct development to a developmental pathway that includes diapause. Two genes, related to the microRNA pathway, argonaute1 and loquacious, are upregulated during pupal diapause, suggesting a role for this pathway in maintaining diapause. Substantial reduction in transcript abundance of small RNA-related genes in photosensitive 1st instar larvae from mothers with a diapause history compared to those from mothers with no diapause history also suggest a role for small RNA pathways in regulating a diapause maternal effect in S. bullata. Together, the results point to a role for small RNAs in regulating the developmental trajectory in this species.
Collapse
Affiliation(s)
- Julie A Reynolds
- Department of Entomology, The Ohio State University, 300 Aronoff Laboratory, 318 W 12th Ave., Columbus, OH, USA; Department of Ecology, Evolutionary and Organismal Biology, The Ohio State University, 300 Aronoff Laboratory, 318 W 12th Ave., Columbus, OH, USA.
| | | | | | | |
Collapse
|
124
|
Gong ZJ, Wu YQ, Miao J, Duan Y, Jiang YL, Li T. Global transcriptome analysis of orange wheat blossom midge, Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae) to identify candidate transcripts regulating diapause. PLoS One 2013; 8:e71564. [PMID: 23940768 PMCID: PMC3733836 DOI: 10.1371/journal.pone.0071564] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/01/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Many insects enter a developmental arrest (diapause) that allows them to survive harsh seasonal conditions. Despite the well-established ecological significance of diapause, the molecular basis of this crucial adaptation remains largely unresolved. Sitodiplosis mosellana (Gehin), the orange wheat blossom midge (OWBM), causes serious damage to wheat throughout the northern hemisphere, and sporadic outbreaks occur in the world. Traits related to diapause appear to be important factors contributing to their rapid spread and outbreak. To better understand the diapause mechanisms of OWBM, we sequenced the transcriptome and determined the gene expression profile of this species. METHODOLOGY/PRINCIPAL FINDINGS In this study, we performed de novo transcriptome analysis using short-read sequencing technology (Illumina) and gene expression analysis with a tag-based digital gene expression (DGE) system. The sequencing results generated 89,117 contigs, and 45,713 unigenes. These unigenes were annotated by Blastx alignment against the NCBI non-redundant (nr), Clusters of orthologous groups (COG), gene orthology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. 20,802 unigenes (45.5% of the total) matched with protein in the NCBI nr database. Two digital gene expression (DGE) libraries were constructed to determine differences in gene expression profiles during diapause and non-diapause developmental stages. Genes related to diapause were analyzed in detail and in addition, nine diapause-related genes were analyzed by real time PCR. CONCLUSIONS/SIGNIFICANCE The OWBM transcriptome greatly improves our genetic understanding and provides a platform for functional genomics research of this species. The DGE profiling data provides comprehensive information at the transcriptional level that facilitates our understanding of the molecular mechanisms of various physiological aspects including development and diapause stages in OWBM. From this study it is evident that various genes coding metabolic enzymes are crucial for diapause and metamorphosis.
Collapse
Affiliation(s)
- Zhong-Jun Gong
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People's Republic of China, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
125
|
Poelchau MF, Reynolds JA, Elsik CG, Denlinger DL, Armbruster PA. RNA-Seq reveals early distinctions and late convergence of gene expression between diapause and quiescence in the Asian tiger mosquito, Aedes albopictus. ACTA ACUST UNITED AC 2013; 216:4082-90. [PMID: 23913949 DOI: 10.1242/jeb.089508] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dormancy is a crucial adaptation allowing insects to withstand harsh environmental conditions. The pre-programmed developmental arrest of diapause is a form of dormancy that is distinct from quiescence, in which development arrests in immediate response to hardship. Much progress has been made in understanding the environmental and hormonal controls of diapause. However, studies identifying transcriptional changes unique to diapause, rather than quiescence, are lacking, making it difficult to disentangle the transcriptional profiles of diapause from dormancy in general. The Asian tiger mosquito, Aedes albopictus, presents an ideal model for such a study, as diapausing and quiescent eggs can be staged and collected for global gene expression profiling using a newly developed transcriptome. Here, we use RNA-Seq to contrast gene expression during diapause with quiescence to identify transcriptional changes specific to the diapause response. We identify global trends in gene expression that show gradual convergence of diapause gene expression upon gene expression during quiescence. Functionally, early diapause A. albopictus show strong expression differences of genes involved in metabolism, which diminish over time. Of these, only expression of lipid metabolism genes remained distinct in late diapause. We identify several genes putatively related to hormonal control of development that are persistently differentially expressed throughout diapause, suggesting these might be involved in the maintenance of diapause. Our results identify key biological differences between diapausing and quiescent pharate larvae, and suggest candidate pathways for studying metabolism and the hormonal control of development during diapause in other species.
Collapse
Affiliation(s)
- Monica F Poelchau
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
126
|
Sim C, Denlinger DL. Insulin signaling and the regulation of insect diapause. Front Physiol 2013; 4:189. [PMID: 23885240 PMCID: PMC3717507 DOI: 10.3389/fphys.2013.00189] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/30/2013] [Indexed: 01/22/2023] Open
Abstract
A rich chapter in the history of insect endocrinology has focused on hormonal control of diapause, especially the major roles played by juvenile hormones (JHs), ecdysteroids, and the neuropeptides that govern JH and ecdysteroid synthesis. More recently, experiments with adult diapause in Drosophila melanogaster and the mosquito Culex pipiens, and pupal diapause in the flesh fly Sarcophaga crassipalpis provide strong evidence that insulin signaling is also an important component of the regulatory pathway leading to the diapause phenotype. Insects produce many different insulin-like peptides (ILPs), and not all are involved in the diapause response; ILP-1 appears to be the one most closely linked to diapause in C. pipiens. Many steps in the pathway leading from perception of daylength (the primary environmental cue used to program diapause) to generation of the diapause phenotype remain unknown, but the role for insulin signaling in mosquito diapause appears to be upstream of JH, as evidenced by the fact that application of exogenous JH can rescue the effects of knocking down expression of ILP-1 or the Insulin Receptor. Fat accumulation, enhancement of stress tolerance, and other features of the diapause phenotype are likely linked to the insulin pathway through the action of a key transcription factor, FOXO. This review highlights many parallels for the role of insulin signaling as a regulator in insect diapause and dauer formation in the nematode Caenorhabditis elegans.
Collapse
Affiliation(s)
- Cheolho Sim
- Department of Biology, Baylor University Waco, TX, USA
| | | |
Collapse
|
127
|
|
128
|
Poelchau MF, Reynolds JA, Denlinger DL, Elsik CG, Armbruster PA. Transcriptome sequencing as a platform to elucidate molecular components of the diapause response in the Asian tiger mosquito, Aedes albopictus.. PHYSIOLOGICAL ENTOMOLOGY 2013; 38:173-181. [PMID: 23833391 PMCID: PMC3700550 DOI: 10.1111/phen.12016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/18/2013] [Indexed: 05/26/2023]
Abstract
Diapause has long been recognized as a crucial ecological adaptation to spatio-temporal environmental variation. More recently, rapid evolution of the diapause response has been implicated in response to contemporary global warming and during the range expansion of invasive species. Although the molecular regulation of diapause remains largely unresolved, rapidly emerging next-generation sequencing (NGS) technologies provide exciting opportunities to address this longstanding question. Herein, a new assembly from life-history stages relevant to diapause in the Asian tiger mosquito, Aedes albopictus (Skuse) is presented, along with unique methods for the analysis of NGS data and transcriptome assembly. A digital normalization procedure that significantly reduces computational resources required for transcriptome assembly is evaluated. Additionally, a method for protein reference-based and genomic reference-based merged assembly of 454 and Illumina reads is described. Finally, a gene ontology analysis is presented, which creates a platform to identify physiological processes associated with diapause. Taken together, these methods provide valuable tools for analyzing the transcriptional underpinnings of many complex phenotypes, including diapause, and provide a basis for determining the molecular regulation of diapause in Ae. albopictus.
Collapse
|
129
|
Poelchau MF, Reynolds JA, Elsik CG, Denlinger DL, Armbruster PA. Deep sequencing reveals complex mechanisms of diapause preparation in the invasive mosquito, Aedes albopictus. Proc Biol Sci 2013; 280:20130143. [PMID: 23516243 DOI: 10.1098/rspb.2013.0143] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Seasonal environments present fundamental physiological challenges to a wide range of insects. Many temperate insects surmount the exigencies of winter by undergoing photoperiodic diapause, in which photoperiod provides a token cue that initiates an alternative developmental programme leading to dormancy. Pre-diapause is a crucial preparatory phase of this process, preceding developmental arrest. However, the regulatory and physiological mechanisms of diapause preparation are largely unknown. Using high-throughput gene expression profiling in the Asian tiger mosquito, Aedes albopictus, we reveal major shifts in endocrine signalling, cell proliferation, metabolism, energy production and cellular structure across pre-diapause development. While some hallmarks of diapause, such as insulin signalling and stress response, were not important at the transcriptional level, two genes, Pepck and PCNA, appear to show diapause-induced transcriptional changes across insect taxa. These processes demonstrate physiological commonalities between Ae. albopictus pre-diapause and diapause strategies across insects, and support the idea of a genetic 'toolkit' for diapause. Observations of gene expression trends from a comparative developmental perspective suggest that individual physiological processes are delayed against a background of a fixed morphological ontogeny. Our results demonstrate how deep sequencing can provide new insights into elusive molecular bases of complex ecological adaptations.
Collapse
Affiliation(s)
- Monica F Poelchau
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
130
|
Khodayari S, Moharramipour S, Larvor V, Hidalgo K, Renault D. Deciphering the metabolic changes associated with diapause syndrome and cold acclimation in the two-spotted spider mite Tetranychus urticae. PLoS One 2013; 8:e54025. [PMID: 23349779 PMCID: PMC3547965 DOI: 10.1371/journal.pone.0054025] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
Diapause is a common feature in several arthropod species that are subject to unfavorable growing seasons. The range of environmental cues that trigger the onset and termination of diapause, in addition to associated hormonal, biochemical, and molecular changes, have been studied extensively in recent years; however, such information is only available for a few insect species. Diapause and cold hardening usually occur together in overwintering arthropods, and can be characterized by recording changes to the wealth of molecules present in the tissue, hemolymph, or whole body of organisms. Recent technological advances, such as high throughput screening and quantification of metabolites via chromatographic analyses, are able to identify such molecules. In the present work, we examined the survival ability of diapausing and non-diapausing females of the two-spotted spider mite, Tetranychus urticae, in the presence (0 or 5°C) or absence of cold acclimation. Furthermore, we examined the metabolic fingerprints of these specimens via gas chromatography-mass spectrophotometry (GC-MS). Partial Least Square Discriminant Analysis (PLS-DA) of metabolites revealed that major metabolic variations were related to diapause, indicating in a clear cut-off between diapausing and non-diapausing females, regardless of acclimation state. Signs of metabolic depression were evident in diapausing females, with most amino acids and TCA cycle intermediates being significantly reduced. Out of the 40 accurately quantified metabolites, seven metabolites remained elevated or were accumulated in diapausing mites, i.e. cadaverine, gluconolactone, glucose, inositol, maltose, mannitol and sorbitol. The capacity to accumulate winter polyols during cold-acclimation was restricted to diapausing females. We conclude that the induction of increased cold hardiness in this species is associated with the diapause syndrome, rather than being a direct effect of low temperature. Our results provide novel information about biochemical events related to the cold hardening process in the two-spotted spider mite.
Collapse
Affiliation(s)
- Samira Khodayari
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
131
|
Huestis DL, Yaro AS, Traoré AI, Dieter KL, Nwagbara JI, Bowie AC, Adamou A, Kassogué Y, Diallo M, Timbiné S, Dao A, Lehmann T. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel. ACTA ACUST UNITED AC 2012; 215:2013-21. [PMID: 22623189 DOI: 10.1242/jeb.069468] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malaria in Africa is vectored primarily by the Anopheles gambiae complex. Although the mechanisms of population persistence during the dry season are not yet known, targeting dry season mosquitoes could provide opportunities for vector control. In the Sahel, it appears likely that M-form A. gambiae survive by aestivation (entering a dormant state). To assess the role of eco-physiological changes associated with dry season survival, we measured body size, flight activity and metabolic rate of wild-caught mosquitoes throughout 1 year in a Sahelian locality, far from permanent water sources, and at a riparian location adjacent to the Niger River. We found significant seasonal variation in body size at both the Sahelian and riparian sites, although the magnitude of the variation was greater in the Sahel. For flight activity, significant seasonality was only observed in the Sahel, with increased flight activity in the wet season when compared with that just prior to and throughout the dry season. Whole-organism metabolic rate was affected by numerous biotic and abiotic factors, and a significant seasonal component was found at both locations. However, assay temperature accounted completely for seasonality at the riparian location, while significant seasonal variation remained after accounting for all measured variables in the Sahel. Interestingly, we did not find that mean metabolic rate was lowest during the dry season at either location, contrary to our expectation that mosquitoes would conserve energy and increase longevity by reducing metabolism during this time. These results indicate that mosquitoes may use mechanisms besides reduced metabolic rate to enable survival during the Sahelian dry season.
Collapse
Affiliation(s)
- Diana L Huestis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Teets NM, Kawarasaki Y, Lee RE, Denlinger DL. Expression of genes involved in energy mobilization and osmoprotectant synthesis during thermal and dehydration stress in the Antarctic midge, Belgica antarctica. J Comp Physiol B 2012; 183:189-201. [PMID: 22972362 DOI: 10.1007/s00360-012-0707-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/07/2012] [Accepted: 08/15/2012] [Indexed: 12/18/2022]
Abstract
The Antarctic midge, Belgica antarctica, experiences sub-zero temperatures and desiccating conditions for much of the year, and in response to these environmental insults, larvae undergo rapid shifts in metabolism, mobilizing carbohydrate energy reserves to promote synthesis of low-molecular-mass osmoprotectants. In this study, we measured the expression of 11 metabolic genes in response to thermal and dehydration stress. During both heat and cold stress, we observed upregulation of phosphoenolpyruvate carboxykinase (pepck) and glycogen phosphorylase (gp) to support rapid glucose mobilization. In contrast, there was a general downregulation of pathways related to polyol, trehalose, and proline synthesis during both high- and low-temperature stress. Pepck was likewise upregulated in response to different types of dehydration stress; however, for many of the other genes, expression patterns depended on the nature of dehydration stress. Following fast dehydration, expression patterns were similar to those observed during thermal stress, i.e., upregulation of gp accompanied by downregulation of trehalose and proline synthetic genes. In contrast, gradual, prolonged dehydration (both at a constant temperature and in conjunction with chilling) promoted marked upregulation of genes responsible for trehalose and proline synthesis. On the whole, our data agree with known metabolic adaptations to stress in B. antarctica, although a few discrepancies between gene expression patterns and downstream metabolite contents point to fluxes that are not controlled at the level of transcription.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
133
|
Cross-talk between the fat body and brain regulates insect developmental arrest. Proc Natl Acad Sci U S A 2012; 109:14687-92. [PMID: 22912402 DOI: 10.1073/pnas.1212879109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Developmental arrest, a critical component of the life cycle in animals as diverse as nematodes (dauer state), insects (diapause), and vertebrates (hibernation), results in dramatic depression of the metabolic rate and a profound extension in longevity. Although many details of the hormonal systems controlling developmental arrest are well-known, we know little about the interactions between metabolic events and the hormones controlling the arrested state. Here, we show that diapause is regulated by an interplay between blood-borne metabolites and regulatory centers within the brain. Gene expression in the fat body, the insect equivalent of the liver, is strongly suppressed during diapause, resulting in low levels of tricarboxylic acid (TCA) intermediates circulating within the blood, and at diapause termination, the fat body becomes activated, releasing an abundance of TCA intermediates that act on the brain to stimulate synthesis of regulatory peptides that prompt production of the insect growth hormone ecdysone. This model is supported by our success in breaking diapause by injecting a mixture of TCA intermediates and upstream metabolites. The results underscore the importance of cross-talk between the brain and fat body as a regulator of diapause and suggest that the TCA cycle may be a checkpoint for regulating different forms of animal dormancy.
Collapse
|
134
|
Teets NM, Peyton JT, Ragland GJ, Colinet H, Renault D, Hahn DA, Denlinger DL. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly. Physiol Genomics 2012; 44:764-77. [DOI: 10.1152/physiolgenomics.00042.2012] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to respond rapidly to changes in temperature is critical for insects and other ectotherms living in variable environments. In a physiological process termed rapid cold-hardening (RCH), exposure to nonlethal low temperature allows many insects to significantly increase their cold tolerance in a matter of minutes to hours. Additionally, there are rapid changes in gene expression and cell physiology during recovery from cold injury, and we hypothesize that RCH may modulate some of these processes during recovery. In this study, we used a combination of transcriptomics and metabolomics to examine the molecular mechanisms of RCH and cold shock recovery in the flesh fly, Sarcophaga bullata. Surprisingly, out of ∼15,000 expressed sequence tags (ESTs) measured, no transcripts were upregulated during RCH, and likewise RCH had a minimal effect on the transcript signature during recovery from cold shock. However, during recovery from cold shock, we observed differential expression of ∼1,400 ESTs, including a number of heat shock proteins, cytoskeletal components, and genes from several cell signaling pathways. In the metabolome, RCH had a slight yet significant effect on several metabolic pathways, while cold shock resulted in dramatic increases in gluconeogenesis, amino acid synthesis, and cryoprotective polyol synthesis. Several biochemical pathways showed congruence at both the transcript and metabolite levels, indicating that coordinated changes in gene expression and metabolism contribute to recovery from cold shock. Thus, while RCH had very minor effects on gene expression, recovery from cold shock elicits sweeping changes in gene expression and metabolism along numerous cell signaling and biochemical pathways.
Collapse
Affiliation(s)
| | - Justin T. Peyton
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio
| | - Gregory J. Ragland
- Environmental Change Initiative and Department of Biology, University of Notre Dame, Notre Dame, Indiana
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida
| | - Herve Colinet
- Université de Rennes 1, Unite Mixté de Recherche Centre National de la Recherche Scientifique 6553 Ecobio, Rennes Cedex, France
- Earth and Life Institute ELI, Biodiversity Research Centre BDIV, Catholic University of Louvain, Louvain-la-Neuve, Belgium; and
| | - David Renault
- Université de Rennes 1, Unite Mixté de Recherche Centre National de la Recherche Scientifique 6553 Ecobio, Rennes Cedex, France
| | - Daniel A. Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida
| | - David L. Denlinger
- Department of Entomology, Ohio State University, Columbus, Ohio
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio
| |
Collapse
|
135
|
Storey KB, Storey JM. Insect cold hardiness: metabolic, gene, and protein adaptation1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-011] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Winter survival for thousands of species of insects relies on adaptive strategies for cold hardiness. Two basic mechanisms are widely used (freeze avoidance by deep supercooling and freeze tolerance where insects endure ice formation in extracellular fluid spaces), whereas additional strategies (cryoprotective dehydration, vitrification) are also used by some polar species in extreme environments. This review assesses recent research on the biochemical adaptations that support insect cold hardiness. We examine new information about the regulation of cryoprotectant biosynthesis, mechanisms of metabolic rate depression, role of aquaporins in water and glycerol movement, and cell preservation strategies (chaperones, antioxidant defenses and metal binding proteins, mitochondrial suppression) for survival over the winter. We also review the new information coming from the use of genomic and proteomic screening methods that are greatly widening the scope for discovery of genes and proteins that support winter survival.
Collapse
Affiliation(s)
- Kenneth B. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Janet M. Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
136
|
Whitehead A. Comparative genomics in ecological physiology: toward a more nuanced understanding of acclimation and adaptation. J Exp Biol 2012; 215:884-91. [DOI: 10.1242/jeb.058735] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Summary
Organisms that live in variable environments must adjust their physiology to compensate for environmental change. Modern functional genomics technologies offer global top-down discovery-based tools for identifying and exploring the mechanistic basis by which organisms respond physiologically to a detected change in the environment. Given that populations and species from different niches may exhibit different acclimation abilities, comparative genomic approaches may offer more nuanced understanding of acclimation responses, and provide insight into the mechanistic and genomic basis of variable acclimation. The physiological genomics literature is large and growing, as is the comparative evolutionary genomics literature. Yet, expansion of physiological genomics experiments to exploit taxonomic variation remains relatively undeveloped. Here, recent advances in the emerging field of comparative physiological genomics are considered, including examples of plants, bees and fish, and opportunities for further development are outlined particularly in the context of climate change research. Elements of robust experimental design are discussed with emphasis on the phylogenetic comparative approach. Understanding how acclimation ability is partitioned among populations and species in nature, and knowledge of the relevant genes and mechanisms, will be important for characterizing and predicting the ecological and evolutionary consequences of human-accelerated environmental change.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| |
Collapse
|
137
|
Colinet H, Renault D, Charoy-Guével B, Com E. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre. PLoS One 2012; 7:e32606. [PMID: 22389713 PMCID: PMC3289662 DOI: 10.1371/journal.pone.0032606] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/28/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Diapause, a condition of developmental arrest and metabolic depression exhibited by a wide range of animals is accompanied by complex physiological and biochemical changes that generally enhance environmental stress tolerance and synchronize reproduction. Even though some aspects of diapause have been well characterized, very little is known about the full range of molecular and biochemical modifications underlying diapause in non-model organisms. METHODOLOGY/PRINCIPAL FINDINGS In this study we focused on the parasitic wasp, Praon volucre that exhibits a pupal diapause in response to environmental signals. System-wide metabolic changes occurring during diapause were investigated using GC-MS metabolic fingerprinting. Moreover, proteomic changes were studied in diapausing versus non-diapausing phenotypes using a combination of two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry. We found a reduction of Krebs cycle intermediates which most likely resulted from the metabolic depression. Glycolysis was galvanized, probably to favor polyols biosynthesis. Diapausing parasitoids accumulated high levels of cryoprotective polyols, especially sorbitol. A large set of proteins were modulated during diapause and these were involved in various functions such as remodeling of cytoskeleton and cuticle, stress tolerance, protein turnover, lipid metabolism and various metabolic enzymes. CONCLUSIONS/SIGNIFICANCE The results presented here provide some first clues about the molecular and biochemical events that characterize the diapause syndrome in aphid parasitoids. These data are useful for probing potential commonality of parasitoids diapause with other taxa and they will help creating a general understanding of diapause underpinnings and a background for future interpretations.
Collapse
Affiliation(s)
- Hervé Colinet
- Earth and Life Institute ELI, Biodiversity Research Centre BDIV, Catholic University of Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
138
|
Kankare M, Salminen TS, Lampinen H, Hoikkala A. Sequence variation in couch potato and its effects on life-history traits in a northern malt fly, Drosophila montana. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:256-264. [PMID: 22138635 DOI: 10.1016/j.jinsphys.2011.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 05/31/2023]
Abstract
Couch potato (cpo) has previously been connected to reproductive diapause in several insect species including Drosophila melanogaster, where it has been suggested to provide a link between the insulin signalling pathway and the hormonal control of diapause. In the first part of the study we sequenced nearly 3.6 kb of this gene in a northern Drosophila species (Drosophila montana) with a robust photoperiodically determined diapause and found several types of polymorphisms along the sequenced area. We also found variation among five Drosophila virilis group species in the length of the 5th exon of cpo and in the site of the stop codon at the end of this exon. The second part of the study was targeted on a deletion of six amino acids located in the last section of exon 5, which in D. melanogaster, is translated only in one short transcript lacking the following exons. The studied deletion appeared to be extremely rare in the wild D. montana population where it was found, but its frequency rapidly increased during laboratory culture. qPCR analyses showed the expression level of the deletion allele to be significantly downregulated in both the diapausing and non-diapausing females compared to the wild type allele. At the phenotypic level, the deletion and the decreased expression of cpo transcript involving it did not have direct effect on the incidence of female reproductive diapause, but it was associated with a reduction in development time under diapause-inducing conditions. This suggests that while the cpo transcript containing the prolonged version of the 5th exon with a stop codon is clearly associated with fly development time, the exons with RNA domains included in other transcripts of the gene may be more directly related to diapause regulation.
Collapse
Affiliation(s)
- Maaria Kankare
- Centre of Excellence in Evolutionary Research, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland.
| | | | | | | |
Collapse
|
139
|
Poelchau MF, Reynolds JA, Denlinger DL, Elsik CG, Armbruster PA. A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. BMC Genomics 2011; 12:619. [PMID: 22185595 PMCID: PMC3258294 DOI: 10.1186/1471-2164-12-619] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 12/20/2011] [Indexed: 12/12/2022] Open
Abstract
Background Many temperate insects survive the harsh conditions of winter by undergoing photoperiodic diapause, a pre-programmed developmental arrest initiated by short day lengths. Despite the well-established ecological significance of photoperiodic diapause, the molecular basis of this crucial adaptation remains largely unresolved. The Asian tiger mosquito, Aedes albopictus (Skuse), represents an outstanding emerging model to investigate the molecular basis of photoperiodic diapause in a well-defined ecological and evolutionary context. Ae. albopictus is a medically significant vector and is currently considered the most invasive mosquito in the world. Traits related to diapause appear to be important factors contributing to the rapid spread of this mosquito. To generate novel sequence information for this species, as well as to discover transcripts involved in diapause preparation, we sequenced the transcriptome of Ae. albopictus oocytes destined to become diapausing or non-diapausing pharate larvae. Results 454 GS-FLX transcriptome sequencing yielded >1.1 million quality-filtered reads, which we assembled into 69,474 contigs (N50 = 1,009 bp). Our contig filtering approach, where we took advantage of strong sequence similarity to the fully sequenced genome of Aedes aegypti, as well as other reference organisms, resulted in 11,561 high-quality, conservative ESTs. Differential expression estimates based on normalized read counts revealed 57 genes with higher expression, and 257 with lower expression under diapause-inducing conditions. Analysis of expression by qPCR for 47 of these genes indicated a high correlation of expression levels between 454 sequence data and qPCR, but congruence of statistically significant differential expression was low. Seven genes identified as differentially expressed based on qPCR have putative functions that are consistent with the insect diapause syndrome; three genes have unknown function and represent novel candidates for the transcriptional basis of diapause. Conclusions Our transcriptome database provides a rich resource for the comparative genomics and functional genetics of Ae. albopictus, an invasive and medically important mosquito. Additionally, the identification of differentially expressed transcripts related to diapause enriches the limited knowledge base for the molecular basis of insect diapause, in particular for the preparatory stage. Finally, our analysis illustrates a useful approach that draws from a closely related reference genome to generate high-confidence ESTs in a non-model organism.
Collapse
Affiliation(s)
- Monica F Poelchau
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
140
|
Ragland GJ, Egan SP, Feder JL, Berlocher SH, Hahn DA. Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot fly Rhagoletis pomonella. J Exp Biol 2011; 214:3948-59. [DOI: 10.1242/jeb.061085] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The timing of dormancy is a rapidly evolving life-history trait playing a crucial role in the synchronization of seasonal life cycles and adaptation to environmental change. But the physiological mechanisms regulating dormancy in animals remain poorly understood. In insects, dormancy (diapause) is a developmentally dynamic state, and the mechanisms that control diapause transitions affect seasonal timing. Here we used microarrays to examine patterns of gene expression during dormancy termination: a crucial life-history transition in the apple maggot fly Rhagoletis pomonella (Walsh). This species is a model system for host race formation and ecological speciation via changes in diapause regulation of seasonality. Our goal was to pinpoint the timing of the transition from diapause to post-diapause development and to identify candidate genes and pathways for regulation of diapause termination. Samples were taken at six metabolically defined developmental landmarks, and time-series analysis suggests that release from metabolic depression coincides with preparation for or resumption of active cell cycling and morphogenesis, defining the ‘end’ of diapause. However, marked changes in expression, including members of pathways such as Wnt and TOR signaling, also occur prior to the metabolic rate increase, electing these pathways as candidates for early regulation of diapause termination. We discuss these results with respect to generalities in insect diapause physiology and to our long-term goal of identifying mechanisms of diapause adaptation in the Rhagoletis system.
Collapse
Affiliation(s)
- Gregory J. Ragland
- Department of Entomology and Nematology, University of Florida, FL 32611, USA
| | - Scott P. Egan
- Department of Biological Sciences, University of Notre Dame, IN 46556, USA
- Advanced Diagnostics and Therapeutics, University of Notre Dame, IN 46556, USA
| | - Jeffrey L. Feder
- Department of Biological Sciences, University of Notre Dame, IN 46556, USA
| | | | - Daniel A. Hahn
- Department of Entomology and Nematology, University of Florida, FL 32611, USA
| |
Collapse
|
141
|
Huestis DL, Yaro AS, Traoré AI, Adamou A, Kassogué Y, Diallo M, Timbiné S, Dao A, Lehmann T. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. ACTA ACUST UNITED AC 2011; 214:2345-53. [PMID: 21697426 DOI: 10.1242/jeb.054668] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion.
Collapse
Affiliation(s)
- Diana L Huestis
- Laboratory of Malaria and Vector Research, NIAID, NIH, 12735 Twinbrook Pkwy, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Gu SH, Young SC, Tsai WH, Lin JL, Lin PL. Involvement of 4E-BP phosphorylation in embryonic development of the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:978-985. [PMID: 21600900 DOI: 10.1016/j.jinsphys.2011.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
Phosphorylation of the translational repressor 4E-binding protein (4E-BP) plays a critical role in regulating the overall translation levels in cells. In the present study, we investigated 4E-BP phosphorylation of Bombyx mori eggs by an immunoblot analysis of a conserved phospho-specific antibody to 4E-BP and demonstrated its role during embryonic development. When HCl treatment was applied to diapause-destined eggs at 20 h after oviposition, a dramatic increase in the phosphorylation of 4E-BP occurred 5 min after treatment with HCl, and high phosphorylation levels were maintained throughout embryonic stage in HCl-treated eggs compared to those in diapause (control) eggs. When HCl treatment was applied to diapause eggs on day 10 after oviposition, no dramatic activation in 4E-BP phosphorylation occurred, indicating stage-specific effects of HCl treatment. In both non-diapause eggs and eggs whose diapause had been terminated by chilling of diapausing eggs at 5°C for 70 days and then were transferred to 25°C, high phosphorylation levels of 4E-BP were also detected. Moreover, 4E-BP phosphorylation dramatically increased when dechorionated eggs were incubated in medium. The addition of rapamycin, a specific inhibitor of mammalian target of rapamycin (TOR) signaling, and LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, but not the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor, U0126, dose-dependently inhibited 4E-BP phosphorylation in dechorionated eggs, indicating that PI3K/TOR signaling is an upstream signaling event involved in 4E-BP phosphorylation. Examination of 4E-BP gene expression levels showed no differences between treatments with HCl and water in the first hour after treatment, indicating that changes in phosphorylation of 4E-BP upon HCl treatment are mainly regulated at the post-transcriptional level. In addition, MAPK pathways and glycogen synthase kinase (GSK)-3β phosphorylation were not significantly affected in the first hour after HCl treatment. These results demonstrate that the rapid phosphorylation of 4E-BP is an early signaling event in embryonic development in the eggs whose diapause initiation was prevented by HCl treatment, thus being involved in the embryonic development of B. mori.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Zoology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
143
|
Lee SF, Sgrò CM, Shirriffs J, Wee CW, Rako L, van Heerwaarden B, Hoffmann AA. Polymorphism in the couch potato gene clines in eastern Australia but is not associated with ovarian dormancy in Drosophila melanogaster. Mol Ecol 2011; 20:2973-84. [PMID: 21689187 DOI: 10.1111/j.1365-294x.2011.05155.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural selection can generate parallel latitudinal clines in traits and gene frequencies across continents, but these have rarely been linked. An amino acid (isoleucine to lysine, or I462K) polymorphism of the couch potato (cpo) gene in Drosophila melanogaster is thought to control female reproductive diapause cline in North America (Schmidt et al. 2008, Proc Natl Acad Sci USA, 105, 16207-16211). Here, we show that under standard diapause-inducing conditions (12 °C and short photoperiod) (Saunders et al. 1989, Proc Natl Acad Sci USA, 86, 3748-3752), egg maturation in Australian flies is delayed, but not arrested at previtellogenic stages. At 12 °C, the phenotypic distribution in egg development was bimodal at stages 8 and 14 and showed a strong nonlinear pattern on the east coast of Australia, with incidence of egg maturation delay (ovarian dormancy) increasing both toward tropical and temperate climates. Furthermore, we found no evidence for an association between the cpo I462K polymorphism and ovarian dormancy at either 12 or 10 °C (when egg maturation was often delayed at stage 7). Owing to strong linkage disequilibrium, the latitudinal cline in cpo allele frequencies was no longer evident once variation in the In(3R)P inversion polymorphism was taken into account. Our results suggest that the standard diapause-inducing conditions (12 °C and short photoperiod) were not sufficient to cause the typical previtellogenic developmental arrest in Australian flies and that the cpo I462K polymorphism does not explain the observed delay in egg development. In conclusion, ovarian dormancy does not show a simple latitudinal cline, and the lack of cpo-dormancy association suggests a different genetic basis to reproductive dormancy in North America and Australia.
Collapse
Affiliation(s)
- Siu F Lee
- Department of Genetics and Bio21 Institute, The University of Melbourne, Parkville, Vic. 3010, Australia School of Biological Sciences, Monash University, Vic. 3800 Australia.
| | | | | | | | | | | | | |
Collapse
|
144
|
Bao B, Xu WH. Identification of gene expression changes associated with the initiation of diapause in the brain of the cotton bollworm, Helicoverpa armigera. BMC Genomics 2011; 12:224. [PMID: 21569297 PMCID: PMC3277317 DOI: 10.1186/1471-2164-12-224] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 05/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diapause, a state of arrested development accompanied by a marked decrease of metabolic rate, helps insects to overcome unfavorable seasons. Helicoverpa armigera (Har) undergoes pupal diapause, but the molecular mechanism of diapause initiation is unclear. Using suppression subtractive hybridization (SSH), we investigated differentially expressed genes in diapause- and nondiapause-destined pupal brains at diapause initiation. RESULTS We constructed two SSH libraries (forward, F and reverse, R) to isolate genes that are up-regulated or down-regulated at diapause initiation. We obtained 194 unique sequences in the F library and 115 unique sequences in the R library. Further, genes expression at the mRNA and protein level in diapause- and nondiapause-destined pupal brains were confirmed by RT-PCR, Northern blot or Western blot analysis. Finally, we classified the genes and predicted their possible roles at diapause initiation. CONCLUSION Differentially expressed genes at pupal diapause initiation are possibly involved in the regulation of metabolism, energy, stress resistance, signaling pathways, cell cycle, transcription and translation.
Collapse
Affiliation(s)
- Bin Bao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| |
Collapse
|
145
|
Zhang Q, Denlinger DL. Elevated couch potato transcripts associated with adult diapause in the mosquito Culex pipiens. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:620-7. [PMID: 21315077 PMCID: PMC3104097 DOI: 10.1016/j.jinsphys.2011.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 05/30/2023]
Abstract
The couch potato (cpo) cDNA that we cloned from the northern house mosquito, Culex pipiens, encodes the C-terminus containing a highly conserved RNA recognition motif (RRM). Protein structure prediction indicates a canonical RRM structure with a βαββαβ topological structure. Northern blots indicate a single mRNA band over 9.49 kb, and Southern blot analysis suggests that the cpo gene contains large introns. Highest expression was noted in first instar larvae and pupae. A comparison of nondiapausing (long daylength) and diapausing (short daylength) adult females showed no difference immediately at adult eclosion, but by day 7 and thereafter, expression of cpo was much higher in diapausing adults. When 2-month old diapausing females were transferred from short daylength to diapausing-terminating conditions of long daylength and high temperature, expression of cpo declined. Similarly, when a topical application of JH III was used to terminate diapause abundance of the cpo transcript declined. Consistent with observations in Drosophila melanogaster and several other species levels of cpo in C. pipiens are influenced by the diapause program, although the direction of change is not the same in all species.
Collapse
Affiliation(s)
- Qirui Zhang
- Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| | - David L. Denlinger
- Departments of Entomology and Evolution, Ecology, and Organismal Biology, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
146
|
Hand SC, Menze MA, Borcar A, Patil Y, Covi JA, Reynolds JA, Toner M. Metabolic restructuring during energy-limited states: insights from Artemia franciscana embryos and other animals. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:584-94. [PMID: 21335009 PMCID: PMC3104064 DOI: 10.1016/j.jinsphys.2011.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 05/21/2023]
Abstract
Many life history stages of animals that experience environmental insults enter developmental arrested states that are characterized by reduced cellular proliferation, with or without a concurrent reduction in overall metabolism. In the case of the most profound metabolic arrest reported in invertebrates, i.e., anaerobic quiescence in Artemia franciscana embryos, acidification of the intracellular milieu is a major factor governing catabolic and anabolic downregulation. Release of ions from intracellular compartments is the source for approximately 50% of the proton equivalents needed for the 1.5 unit acidification that is observed. Recovery from the metabolic arrest requires re-sequestration of the protons with a vacuolar-type ATPase (V-ATPase). The remarkable facet of this mechanism is the ability of embryonic cells to survive the dissipation of intracellular ion gradients. Across many diapause-like states, the metabolic reduction and subsequent matching of energy demand is accomplished by shifting energy metabolism from oxidative phosphorylation to aerobic glycolysis. Molecular pathways that are activated to induce these resilient hypometabolic states include stimulation of the AMP-activated protein kinase (AMPK) and insulin signaling via suite of daf (dauer formation) genes for diapause-like states in nematodes and insects. Contributing factors for other metabolically depressed states involve hypoxia-inducible factor-1 and downregulation of the pyruvate dehydrogenase complex. Metabolic similarities between natural states of stasis and some cancer phenotypes are noteworthy. Reduction of flux through oxidative phosphorylation helps prevent cell death in certain cancer types, similar to the way it increases viability of dauer stages in Caenorhabditis elegans. Mechanisms that underlie natural stasis are being used to pre-condition mammalian cells prior to cell biostabilization and storage.
Collapse
Affiliation(s)
- Steven C Hand
- Division of Cellular, Developmental and Integrative Biology, Department of Biological, Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | | | | | | | | | |
Collapse
|
147
|
Abstract
Managing metabolic resources is critical for insects during diapause when food sources are limited or unavailable. Insects accumulate reserves prior to diapause, and metabolic depression during diapause promotes reserve conservation. Sufficient reserves must be sequestered to both survive the diapause period and enable postdiapause development that may involve metabolically expensive functions such as metamorphosis or long-distance flight. Nutrient utilization during diapause is a dynamic process, and insects appear capable of sensing their energy reserves and using this information to regulate whether to enter diapause and how long to remain in diapause. Overwintering insects on a tight energy budget are likely to be especially vulnerable to increased temperatures associated with climate change. Molecular mechanisms involved in diapause nutrient regulation remain poorly known, but insulin signaling is likely a major player. We also discuss other possible candidates for diapause-associated nutrient regulation including adipokinetic hormone, neuropeptide F, the cGMP-kinase For, and AMPK.
Collapse
Affiliation(s)
- Daniel A Hahn
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|