101
|
Ledys F, Kalfeist L, Galland L, Limagne E, Ladoire S. Therapeutic Associations Comprising Anti-PD-1/PD-L1 in Breast Cancer: Clinical Challenges and Perspectives. Cancers (Basel) 2021; 13:5999. [PMID: 34885109 PMCID: PMC8656936 DOI: 10.3390/cancers13235999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Despite a few cases of long-responder patients, immunotherapy with anti-PD-(L)1 has so far proved rather disappointing in monotherapy in metastatic breast cancer, prompting the use of synergistic therapeutic combinations incorporating immunotherapy by immune-checkpoint inhibitors. In addition, a better understanding of both the mechanisms of sensitivity and resistance to immunotherapy, as well as the immunological effects of the usual treatments for breast cancer, make it possible to rationally consider this type of therapeutic combination. For several years, certain treatments, commonly used to treat patients with breast cancer, have shown that in addition to their direct cytotoxic effects, they may have an impact on the tumor immune microenvironment, by increasing the antigenicity and/or immunogenicity of a "cold" tumor, targeting the immunosuppressive microenvironment or counteracting the immune-exclusion profile. This review focuses on preclinical immunologic synergic mechanisms of various standard therapeutic approaches with anti-PD-(L)1, and discusses the potential clinical use of anti-PD-1/L1 combinations in metastatic or early breast cancer.
Collapse
Affiliation(s)
- Fanny Ledys
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Laura Kalfeist
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Loick Galland
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- Department of Medical Oncology, Georges-François Leclerc Center, 21000 Dijon, France
| | - Emeric Limagne
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Sylvain Ladoire
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
- Department of Medical Oncology, Georges-François Leclerc Center, 21000 Dijon, France
| |
Collapse
|
102
|
Schlam I, Church SE, Hether TD, Chaldekas K, Hudson BM, White AM, Maisonet E, Harris BT, Swain SM. The tumor immune microenvironment of primary and metastatic HER2- positive breast cancers utilizing gene expression and spatial proteomic profiling. J Transl Med 2021; 19:480. [PMID: 34838031 PMCID: PMC8626906 DOI: 10.1186/s12967-021-03113-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/10/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The characterization of the immune component of the tumor microenvironment (TME) of human epidermal growth factor receptor 2 positive (HER2+) breast cancer has been limited. Molecular and spatial characterization of HER2+ TME of primary, recurrent, and metastatic breast tumors has the potential to identify immune mediated mechanisms and biomarker targets that could be used to guide selection of therapies. METHODS We examined 15 specimens from eight patients with HER2+ breast cancer: 10 primary breast tumors (PBT), two soft tissue, one lung, and two brain metastases (BM). Using molecular profiling by bulk gene expression TME signatures, including the Tumor Inflammation Signature (TIS) and PAM50 subtyping, as well as spatial characterization of immune hot, warm, and cold regions in the stroma and tumor epithelium using 64 protein targets on the GeoMx Digital Spatial Profiler. RESULTS PBT had higher infiltration of immune cells relative to metastatic sites and higher protein and gene expression of immune activation markers when compared to metastatic sites. TIS scores were lower in metastases, particularly in BM. BM also had less immune infiltration overall, but in the stromal compartment with the highest density of immune infiltration had similar levels of T cells that were less activated than PBT stromal regions suggesting immune exclusion in the tumor epithelium. CONCLUSIONS Our findings show stromal and tumor localized immune cells in the TME are more active in primary versus metastatic disease. This suggests patients with early HER2+ breast cancer could have more benefit from immune-targeting therapies than patients with advanced disease.
Collapse
Affiliation(s)
- Ilana Schlam
- Department of Hematology-Oncology, MedStar Washington Hospital Center, Washington, DC USA
- Present Address: Department of Hematology and Oncology, Tufts Medical Center, 800 Washington St, 245, Boston, MA 02111 USA
| | | | | | - Krysta Chaldekas
- MedStar Georgetown University Hospital, 4000 Reservoir road NW, 120 Building D, Washington, DC 20057 USA
- Lombardi Comprehensive Cancer Center, Washington, DC USA
| | - Briana M. Hudson
- Present Address: Department of Hematology and Oncology, Tufts Medical Center, 800 Washington St, 245, Boston, MA 02111 USA
| | | | - Emily Maisonet
- MedStar Georgetown University Hospital, 4000 Reservoir road NW, 120 Building D, Washington, DC 20057 USA
- Lombardi Comprehensive Cancer Center, Washington, DC USA
| | - Brent T. Harris
- MedStar Georgetown University Hospital, 4000 Reservoir road NW, 120 Building D, Washington, DC 20057 USA
- Lombardi Comprehensive Cancer Center, Washington, DC USA
| | - Sandra M. Swain
- MedStar Georgetown University Hospital, 4000 Reservoir road NW, 120 Building D, Washington, DC 20057 USA
- Lombardi Comprehensive Cancer Center, Washington, DC USA
- MedStar Health, Washington, DC USA
| |
Collapse
|
103
|
Matusz-Fisher A, Tan AR. Combination of HER2-targeted agents with immune checkpoint inhibitors in the treatment of HER2-positive breast cancer. Expert Opin Biol Ther 2021; 22:385-395. [PMID: 34806498 DOI: 10.1080/14712598.2021.1981284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Human epidermal growth factor receptor 2 (HER2)-positive breast cancers account for approximately 15 to 20% of breast cancer diagnoses. Historically, HER2-positive breast cancers had been associated with poorer prognosis. The addition of HER2-targeted agents to treatment regimens has significantly improved outcomes for patients with HER2-positive breast cancer. Despite this, relapses continue to occur in about 20% of patients. Newer therapeutic strategies are needed. The role of immunotherapy in the treatment of HER2-positive breast cancer is currently under clinical investigation. AREAS COVERED This article will focus on the clinical trial data evaluating immune checkpoint inhibitors, including pembrolizumab, atezolizumab, avelumab, durvalumab, and nivolumab in the treatment of HER2-positive breast cancer. EXPERT OPINION The incorporation of immunotherapy in the treatment of HER2-positive breast cancer is a reasonable strategy. Clinical trials of checkpoint inhibitors with HER2-targeted agents show clinical activity in HER2-positive breast cancer tumors that are programmed cell death-ligand 1 (PD-L1) positive and also when used as an earlier line of therapy in the metastatic setting. Treatment of HER2-positive breast cancer with immunotherapy and HER2-targeted agents warrants continued clinical investigation.
Collapse
Affiliation(s)
- Ashley Matusz-Fisher
- Hematology/Oncology Fellow, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Antoinette R Tan
- Chief of Breast Medical Oncology, Co-Director, Phase I Program, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
104
|
O’Shea AE, Clifton GT, Peoples GE. Results from a randomized trial combining trastuzumab with a peptide vaccine suggest a role for HER2-targeted therapy in triple-negative breast cancer. Oncotarget 2021; 12:2318-2319. [PMID: 34786184 PMCID: PMC8590818 DOI: 10.18632/oncotarget.27998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Anne E. O’Shea
- Correspondence to: Anne E. O’Shea, Department of Surgery, Brooke Army Medical Center, Ft. Sam Houston, TX, USA email
| | | | | |
Collapse
|
105
|
Torres ETR, Emens LA. Emerging combination immunotherapy strategies for breast cancer: dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies. Breast Cancer Res Treat 2021; 191:291-302. [PMID: 34716871 DOI: 10.1007/s10549-021-06423-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer has historically been considered a non-immunogenic tumor. Multiple studies over the last 10-15 years have demonstrated that a small subset of breast cancers is immune-activated, with PD-L1 expression and/or TILs in the tumor microenvironment. The PD-1 inhibitor pembrolizumab in combination with chemotherapy is now approved by the US FDA for the first-line treatment of metastatic PD-L1 + triple negative breast cancer, and the PD-L1 inhibitor atezolizumab has also demonstrated clinical activity. The median progression-free survival for pembrolizumab or atezolizumab combined with chemotherapy increased with the addition of immunotherapy by 4.1 months and 2.5 months, respectively. Despite this success, there is major room for improvement. Clinical benefit is modest. Only about 40% of triple negative breast cancers are PD-L1 + , not all PD-L1 + patients with advanced triple negative breast cancer respond, and immunotherapy is not yet approved for advanced PD-L1-negative triple negative breast cancer, HER2 + breast cancer, or ER + breast cancer. It is likely that redundant pathways of immune suppression are active in breast cancer, or that important pathways of immune activation are silent. In this review, we discuss emerging strategies for targeting multiple pathways of immunoregulation in advanced breast cancer with dual immune checkpoint inhibition, bispecific antibodies, and novel antibody drug conjugates. We also discuss the potential of nanotechnology to improve the delivery of immunotherapeutics to the breast tumor microenvironment to enhance their antitumor activity.
Collapse
Affiliation(s)
- Evanthia T Roussos Torres
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Medicine-Oncology, Norris Comprehensive Cancer Center, 1441 Eastlake Ave, Suite 6412, Los Angeles, CA, 90033, USA.
| | - Leisha A Emens
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Room 1.46e, Pittsburgh, PA, 15213, USA. .,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
106
|
Cabo M, Santana-Hernández S, Costa-Garcia M, Rea A, Lozano-Rodríguez R, Ataya M, Balaguer F, Juan M, Ochoa MC, Menéndez S, Comerma L, Rovira A, Berraondo P, Albanell J, Melero I, López-Botet M, Muntasell A. CD137 Costimulation Counteracts TGFβ Inhibition of NK-cell Antitumor Function. Cancer Immunol Res 2021; 9:1476-1490. [PMID: 34580116 DOI: 10.1158/2326-6066.cir-21-0030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Enhancing natural killer (NK) cell-based cancer immunotherapy by overcoming immunosuppression is an area of intensive research. Here, we have demonstrated that the anti-CD137 agonist urelumab can overcome TGFβ-mediated inhibition of human NK-cell proliferation and antitumor function. Transcriptomic, immunophenotypic, and functional analyses showed that CD137 costimulation modified the transcriptional program induced by TGFβ on human NK cells by rescuing their proliferation in response to IL2, preserving their expression of activating receptors (NKG2D) and effector molecules (granzyme B, IFNγ) while allowing the acquisition of tumor-homing/retention features (CXCR3, CD103). Activated NK cells cultured in the presence of TGFβ1 and CD137 agonist recovered CCL5 and IFNγ secretion and showed enhanced direct and antibody-dependent cytotoxicity upon restimulation with cancer cells. Trastuzumab treatment of fresh breast carcinoma-derived multicellular cultures induced CD137 expression on tumor-infiltrating CD16+ NK cells, enabling the action of urelumab, which fostered tumor-infiltrating NK cells and recapitulated the enhancement of CCL5 and IFNγ production. Bioinformatic analysis pointed to IFNG as the driver of the association between NK cells and clinical response to trastuzumab in patients with HER2-positive primary breast cancer, highlighting the translational relevance of the CD137 costimulatory axis for enhancing IFNγ production. Our data reveals CD137 as a targetable checkpoint for overturning TGFβ constraints on NK-cell antitumor responses.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Santana-Hernández
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Anna Rea
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roberto Lozano-Rodríguez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Francesc Balaguer
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Immunology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria C Ochoa
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain
| | - Silvia Menéndez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Comerma
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Pedro Berraondo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain
| | - Joan Albanell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Ignacio Melero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain.,Clínica Universitaria de Navarra, Pamplona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
107
|
Ishii T, Shitara K. Trastuzumab deruxtecan and other HER2-targeting agents for the treatment of HER2-positive gastric cancer. Expert Rev Anticancer Ther 2021; 21:1193-1201. [PMID: 34543577 DOI: 10.1080/14737140.2021.1982698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Although various new drugs have been developed, the prognosis of therapeutic advances for metastatic gastric cancer is insufficient. Trastuzumab deruxtecan (T-DXd), a new human epidermal growth factor receptor 2 (HER2)-targeting antibody-drug conjugate (ADC), has demonstrated promising results in clinical trials. AREAS COVERED In this article, we review the history of anti-HER2 ADCs and focus on the efficacy and safety of T-DXd and describe the development of new anti-HER2 drugs. EXPERT OPINION So far, no other anti-HER2 ADCs have demonstrated efficacy in patients with HER2-positive advanced gastric cancer with two or more previous lines of chemotherapy, including trastuzumab. However, a new drug, T-DXd, has shown a significantly higher objective response rate and a longer overall survival and, thus, was approved in Japan. In the future, new anti-HER2 drugs and/or treatment strategies including T-DXd along with cytotoxic chemotherapy or immune checkpoint inhibitors will be developed.
Collapse
Affiliation(s)
- Takahiro Ishii
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Experimental Therapeutics, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
108
|
Tsao LC, Force J, Hartman ZC. Mechanisms of Therapeutic Antitumor Monoclonal Antibodies. Cancer Res 2021; 81:4641-4651. [PMID: 34145037 PMCID: PMC8448950 DOI: 10.1158/0008-5472.can-21-1109] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Monoclonal antibodies (mAb) are a major component of cancer therapy. In this review, we summarize the different therapeutic mAbs that have been successfully developed against various tumor-expressed antigens and examine our current understanding of their different mechanisms of antitumor action. These mechanisms of action (MOA) largely center on the stimulation of different innate immune effector processes, which appear to be principally responsible for the efficacy of most unconjugated mAb therapies against cancer. This is evident in studies of mAbs targeting antigens for hematologic cancers, with emerging data also demonstrating the critical nature of innate immune-mediated mechanisms in the efficacy of anti-HER2 mAbs against solid HER2+ cancers. Although HER2-targeted mAbs were originally described as inhibitors of HER2-mediated signaling, multiple studies have since demonstrated these mAbs function largely through their engagement with Fc receptors to activate innate immune effector functions as well as complement activity. Next-generation mAbs are capitalizing on these MOAs through improvements to enhance Fc-activity, although regulation of these mechanisms may vary in different tumor microenvironments. In addition, novel antibody-drug conjugates have emerged as an important means to activate different MOAs. Although many unknowns remain, an improved understanding of these immunologic MOAs will be essential for the future of mAb therapy and cancer immunotherapy.
Collapse
Affiliation(s)
- Li-Chung Tsao
- Department of Surgery, Duke University, Durham, North Carolina
| | - Jeremy Force
- Department of Medicine, Duke University, Durham, North Carolina
| | - Zachary C Hartman
- Department of Surgery, Duke University, Durham, North Carolina.
- Department of Pathology, Duke University, Durham, North Carolina
| |
Collapse
|
109
|
Larbouret C, Gros L, Pèlegrin A, Chardès T. Improving Biologics' Effectiveness in Clinical Oncology: From the Combination of Two Monoclonal Antibodies to Oligoclonal Antibody Mixtures. Cancers (Basel) 2021; 13:cancers13184620. [PMID: 34572847 PMCID: PMC8465647 DOI: 10.3390/cancers13184620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/01/2021] [Accepted: 09/09/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The approval of the two antibody combinations trastuzumab/pertuzumab and ipilimumab/nivolumab in oncology has paved the way for novel antibody combinations or oligoclonal antibody mixtures to improve their efficacy in cancer. The underlying biological mechanisms and challenges of these strategies will be discussed using data from clinical trials listed in databases. These therapeutic combinations also lead to questions on how to optimize their formulation and delivery to induce a therapeutic polyclonal response in patients with cancer. Abstract Monoclonal antibodies have revolutionized the treatment of many diseases, but their clinical efficacy remains limited in some other cases. Pre-clinical and clinical trials have shown that combinations of antibodies that bind to the same target (homo-combinations) or to different targets (hetero-combinations) to mimic the polyclonal humoral immune response improve their therapeutic effects in cancer. The approval of the trastuzumab/pertuzumab combination for breast cancer and then of the ipilimumab/nivolumab combination for melanoma opened the way to novel antibody combinations or oligoclonal antibody mixtures as more effective biologics for cancer management. We found more than 300 phase II/III clinical trials on antibody combinations, with/without chemotherapy, radiotherapy, small molecules or vaccines, in the ClinicalTrials.gov database. Such combinations enhance the biological responses and bypass the resistance mechanisms observed with antibody monotherapy. Usually, such antibody combinations are administered sequentially as separate formulations. Combined formulations have also been developed in which separately produced antibodies are mixed before administration or are produced simultaneously in a single cell line or a single batch of different cell lines as a polyclonal master cell bank. The regulation, toxicity and injection sequence of these oligoclonal antibody mixtures still need to be addressed in order to optimize their delivery and their therapeutic effects.
Collapse
Affiliation(s)
- Christel Larbouret
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Correspondence: ; Tel.: +33-411-283-110
| | - Laurent Gros
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - André Pèlegrin
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
| | - Thierry Chardès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Institut Régional du Cancer de Montpellier (ICM), Inserm U1194, Université de Montpellier, 34298 Montpellier, France; (L.G.); (A.P.); (T.C.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| |
Collapse
|
110
|
Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. BIOLOGY 2021; 10:856. [PMID: 34571733 PMCID: PMC8467547 DOI: 10.3390/biology10090856] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Type I Interferons (IFNs) are key regulators of natural and therapy-induced host defense against viral infection and cancer. Several years of remarkable progress in the field of oncoimmunology have revealed the dual nature of these cytokines. Hence, Type I IFNs may trigger anti-tumoral responses, while leading immune dysfunction and disease progression. This dichotomy relies on the duration and intensity of the transduced signaling, the nature of the unleashed IFN stimulated genes, and the subset of responding cells. Here, we discuss the role of Type I IFNs in the evolving relationship between the host immune system and cancer, as we offer a view of the therapeutic strategies that exploit and require an intact Type I IFN signaling, and the role of these cytokines in inducing adaptive resistance. A deep understanding of the complex, yet highly regulated, network of Type I IFN triggered molecular pathways will help find a timely and immune"logical" way to exploit these cytokines for anticancer therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
111
|
Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat Rev Clin Oncol 2021; 18:473-487. [PMID: 33790428 DOI: 10.1038/s41571-021-00492-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
Advances in cancer biology and sequencing technology have enabled the selection of targeted and more effective treatments for individual patients with various types of solid tumour. However, only three molecular biomarkers have thus far been demonstrated to predict a response to targeted therapies in patients with gastric and/or gastro-oesophageal junction (G/GEJ) cancers: HER2 positivity for trastuzumab and trastuzumab deruxtecan, and microsatellite instability (MSI) status and PD-L1 expression for pembrolizumab. Despite this lack of clinically relevant biomarkers, distinct molecular subtypes of G/GEJ cancers have been identified and have informed the development of novel agents, including receptor tyrosine kinase inhibitors and monoclonal antibodies, several of which are currently being tested in ongoing trials. Many of these trials include biomarker stratification, and some include analysis of circulating tumour DNA (ctDNA), which both enables the noninvasive assessment of biomarker expression and provides an indication of the contributions of intratumoural heterogeneity to response and resistance. The results of these studies might help to optimize the selection of patients to receive targeted therapies, thus facilitating precision medicine approaches for patients with G/GEJ cancers. In this Review, we describe the current evidence supporting the use of targeted therapies in patients with G/GEJ cancers and provide guidance on future research directions.
Collapse
|
112
|
Anti-HER2 antibody prolongs overall survival disproportionally more than progression-free survival in HER2-Positive metastatic breast cancer patients. Breast 2021; 59:211-220. [PMID: 34298300 PMCID: PMC8321956 DOI: 10.1016/j.breast.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 12/01/2022] Open
Abstract
Background This meta-analysis aimed to test the hypothesis that the HER2-positive metastatic breast cancer (mBC) patients treated with anti-HER2 antibodies in trial intervention arms have a greater prolongation of overall survival (OS) than of progression-free survival (PFS) and this extra-prolongation of median survival time in OS relates specifically to the anti-HER2 antibody. Methods The NCBI/Pubmed and Cochrane databases were searched systematically for HER2-positive or mBC trials published in English during January 1999–November 2017. Treatment arms with shorter PFS were considered as the “control” arm, whereas those with longer PFS as the “test” arm. The between-treatment drug differences were grouped into nine categories. Groups with or without anti-HER2 antibodies were pooled respectively for comparisons. The interrelationships between PFS and OS hazard ratios (HRs) and median survival time differences were investigated by conducting fixed-effects and mixed-effects linear meta-regression analyses. Results Twenty-eight trials (10,928 patients) from 438 articles were collected, and four with missing data were excluded in meta-regression analysis. Overall median PFS (HR = 0.73, 95% CI: 0.68–0.78) and median OS (HR = 0.82, 95% CI: 0.77–0.87) weakly favored the longer PFS arm with a weak correlation between the PFS and OS HRs. However, the between-treatment drug difference was anti-HER2 antibody, the absolute increment in median OS time was double that of median PFS time (p < 0.001) and linearly correlated, which was not found with any non-anti-HER2 antibody drug differences. Conclusions Anti-HER2 antibody in patients with HER2-positive mBC prolonged OS more than PFS and mandates further investigation. Our study dissected the overall survival benefit over progression-free survival in HER-2 positive metastatic breast cancer treated with anti-HER2 antibody by meta-analysis. Use of anti-HER2 antibodies, but not other anticancer drugs, to treat HER2-positive metastatic breast cancer independently predicted the OS compared with PFS. The design of future clinical trials should consider anti-HER2 antibodies carefully in the treatment armamentarium for HER2-positive metastatic breast cancer.
Collapse
|
113
|
Fong CYK, Chau I. Harnessing biomarkers of response to improve therapy selection in esophago-gastric adenocarcinoma. Pharmacogenomics 2021; 22:703-726. [PMID: 34120461 PMCID: PMC8265282 DOI: 10.2217/pgs-2020-0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
Advanced esophago-gastric (OG) adenocarcinomas have a high mortality rate and new therapeutic options are urgently required. Despite recent advances in understanding the molecular characteristics of OG cancers, tumor heterogeneity poses a challenge in developing new therapeutics capable of improving patient outcomes. Consequently, chemotherapy remains the mainstay of systemic treatment, with the HER2 being the only predictive biomarker routinely targeted in clinical practice. Recent data indicate that immunotherapy will be incorporated into first-line chemotherapy, but further research is required to refine patient selection. This review will summarize the clinical strategies being evaluated to utilize our knowledge of predictive biomarkers with reference to novel therapeutics, and discuss the barriers to implementing precision oncology in OG adenocarcinoma.
Collapse
Affiliation(s)
- Caroline YK Fong
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Ian Chau
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| |
Collapse
|
114
|
Wang Y, Wang M, Wu HX, Xu RH. Advancing to the era of cancer immunotherapy. Cancer Commun (Lond) 2021; 41:803-829. [PMID: 34165252 PMCID: PMC8441060 DOI: 10.1002/cac2.12178] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer greatly affects the quality of life of humans worldwide and the number of patients suffering from it is continuously increasing. Over the last century, numerous treatments have been developed to improve the survival of cancer patients but substantial progress still needs to be made before cancer can be truly cured. In recent years, antitumor immunity has become the most debated topic in cancer research and the booming development of immunotherapy has led to a new epoch in cancer therapy. In this review, we describe the relationships between tumors and the immune system, and the rise of immunotherapy. Then, we summarize the characteristics of tumor‐associated immunity and immunotherapeutic strategies with various molecular mechanisms by showing the typical immune molecules whose antibodies are broadly used in the clinic and those that are still under investigation. We also discuss important elements from individual cells to the whole human body, including cellular mutations and modulation, metabolic reprogramming, the microbiome, and the immune contexture. In addition, we also present new observations and technical advancements of both diagnostic and therapeutic methods aimed at cancer immunotherapy. Lastly, we discuss the controversies and challenges that negatively impact patient outcomes.
Collapse
Affiliation(s)
- Yun Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Min Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| | - Hao-Xiang Wu
- Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Rui-Hua Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
115
|
Saini KS, Punie K, Twelves C, Bortini S, de Azambuja E, Anderson S, Criscitiello C, Awada A, Loi S. Antibody-drug conjugates, immune-checkpoint inhibitors, and their combination in breast cancer therapeutics. Expert Opin Biol Ther 2021; 21:945-962. [PMID: 34043927 DOI: 10.1080/14712598.2021.1936494] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Advanced breast cancer (aBC) remains incurable and the quest for more effective systemic anticancer agents continues. Promising results have led to the FDA approval of three antibody-drug conjugates (ADCs) and two immune checkpoint inhibitors (ICIs) to date for patients with aBC. AREAS COVERED With the anticipated emergence of newer ADCs and ICIs for patients with several subtypes of breast cancer, and given their potential synergy, their use in combination is of clinical interest. In this article, we review the use of ADCs and ICIs in patients with breast cancer, assess the scientific rationale for their combination, and provide an overview of ongoing trials and some early efficacy and safety results of such dual therapy. EXPERT OPINION Improvement in the medicinal chemistry of next-generation ADCs, their rational combination with ICIs and other agents, and the development of multiparametric immune biomarkers could help to significantly improve the outlook for patients with refractory aBC.
Collapse
Affiliation(s)
- Kamal S Saini
- Clinical Development Services, Covance Inc, Princeton, NJ, USA
| | - Kevin Punie
- Department of General Medical Oncology and Multidisciplinary Breast Centre, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.,Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Chris Twelves
- Leeds Institute of Medical Research, University of Leeds and Leeds Teaching Hospitals Trust, Leeds, UK
| | | | - Evandro de Azambuja
- Medical Support Team (Academic Promoting Team), Institut Jules Bordet, Brussels, Belgium.,Faculté de Médecine, Université Libre De Bruxelles (U.L.B.), Brussels, Belgium
| | - Steven Anderson
- Clinical Development Services, Covance Inc, Princeton, NJ, USA
| | - Carmen Criscitiello
- Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ahmad Awada
- Medical Support Team (Academic Promoting Team), Institut Jules Bordet, Brussels, Belgium
| | - Sherene Loi
- Division of Research and Clinical Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
116
|
Martínez-Sáez O, Prat A. Current and Future Management of HER2-Positive Metastatic Breast Cancer. JCO Oncol Pract 2021; 17:594-604. [PMID: 34077236 DOI: 10.1200/op.21.00172] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed and/or amplified in approximately 20% of breast cancers, conferring an aggressive tumor behavior but also an opportunity for targeted therapies. In the advanced setting, the prognosis of patients suffering from this disease has greatly improved after the introduction of new anti-HER2 drugs beyond trastuzumab. For most patients, a taxane combined with trastuzumab and pertuzumab in the first-line setting, followed by trastuzumab-emtansine in second line, should be considered the standard of care today. However, chemo-free anti-HER2 strategies in hormone receptor-positive, HER2-positive breast cancer could also be considered in selected patients. In the third-line setting and beyond, several emerging anti-HER2 therapies are becoming available, including tucatinib, fam-trastuzumab deruxtecan-nxki (DS-8201a), neratinib, and margetuximab-cmkb. In addition, new compounds and combinations are showing promising results in the late-line setting. The treatment landscape of HER2-positive advanced disease is evolving constantly, active drugs such as pertuzumab and trastuzumab-emtansine are moving to early-stage, many biomarkers, including quantification of HER2 itself, are being explored to improve patient selection, and patient populations with specific needs are emerging, such as those with brain metastasis. Here, we provide an overview of the current and future management of HER2-positive advanced breast cancer.
Collapse
Affiliation(s)
- Olga Martínez-Sáez
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clinic of Barcelona, Spain.,SOLTI Cooperative Group, Barcelona, Spain
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.,Department of Medical Oncology, Hospital Clinic of Barcelona, Spain.,SOLTI Cooperative Group, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Spain.,Institute of Oncology (IOB)-Quirón, Barcelona, Spain
| |
Collapse
|
117
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
118
|
Aoki M, Iwasa S, Boku N. Trastuzumab deruxtecan for the treatment of HER2-positive advanced gastric cancer: a clinical perspective. Gastric Cancer 2021; 24:567-576. [PMID: 33646464 DOI: 10.1007/s10120-021-01164-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive gastric cancer is a subtype for which new drugs and specific treatment strategies should be developed. Trastuzumab deruxtecan (T-DXd) is a novel HER2-targeted antibody-drug conjugate containing topoisomerase I inhibitor as a payload. In the randomized phase 2 study (DESTINY-Gastric01) for HER2-positive advanced gastric or gastroesophageal junction cancer (AGC), patients treated with T-DXd showed a significantly higher response rate compared with the chemotherapy of physician's choice, associated with remarkably prolonged progression-free and overall survival. T-DXd also exhibits anti-tumor activity to HER2-negative tumor cells close to HER2-positive cells (so-called bystander killing effect). T-DXd was effective even for HER2-low expressing breast and gastric cancer in several clinical studies. Taking advantage of these strong points and synergism with other cytotoxic, molecular-targeted and immunological agents, it is expected that T-DXd will bring further progression in treatment both for strongly and weakly HER2 positive AGC in various treatment settings including perioperative chemotherapy.
Collapse
Affiliation(s)
- Masahiko Aoki
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Satoru Iwasa
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Narikazu Boku
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
119
|
Tolba MF, Elghazaly H, Bousoik E, Elmazar MMA, Tolaney SM. Novel combinatorial strategies for boosting the efficacy of immune checkpoint inhibitors in advanced breast cancers. Clin Transl Oncol 2021; 23:1979-1994. [PMID: 33871826 DOI: 10.1007/s12094-021-02613-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
The year 2019 witnessed the first approval of an immune checkpoint inhibitor (ICI) for the management of triple negative breast cancers (TNBC) that are metastatic and programmed death ligand (PD)-L1 positive. Extensive research has focused on testing ICI-based combinatorial strategies, with the ultimate goal of enhancing the response of breast tumors to immunotherapy to increase the number of breast cancer patients benefiting from this transformative treatment. The promising investigational strategies included immunotherapy combinations with monoclonal antibodies (mAbs) against human epidermal growth factor receptor (HER)-2 for the HER2 + tumors versus cyclin-dependent kinase (CDK)4/6 inhibitors in the estrogen receptor (ER) + disease. Multiple approaches are showing signals of success in advanced TNBC include employing Poly (ADP-ribose) polymerase (PARP) inhibitors, tyrosine kinase inhibitors, MEK inhibitors, phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (AKT) signaling inhibitors or inhibitors of adenosine receptor, in combination with the classical PD-1/PD-L1 immune checkpoint inhibitors. Co-treatment with chemotherapy, high intensity focused ultrasound (HIFU) or interleukin-2-βɣ agonist have also produced promising outcomes. This review highlights the latest combinatorial strategies under development for overcoming cancer immune evasion and enhancing the percentage of immunotherapy responders in the different subsets of advanced breast cancers.
Collapse
Affiliation(s)
- M F Tolba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Center of Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
- School of Life and Medical Sciences, University of Hertfordshire-Hosted By Global Academic Foundation, New Capital City, Egypt.
| | - H Elghazaly
- Clinical Oncology Department, and Medical Research Center (MASRI), Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - E Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Chapman University, Irvine, CA, USA
- School of Pharmacy, Omar-Al-Mukhtar University, Derna, Libya
| | - M M A Elmazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, The British University in Egypt (BUE), 11837, El Sherouk City, Egypt
| | - S M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
120
|
Liang Y, Hannan R, Fu YX. Type I IFN Activating Type I Dendritic Cells for Antitumor Immunity. Clin Cancer Res 2021; 27:3818-3824. [PMID: 33692027 DOI: 10.1158/1078-0432.ccr-20-2564] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Immune checkpoint inhibitors are successful immunotherapy modalities that enhance CD8+ T-cell responses. Although T cells are initially primed in draining lymph nodes, the mechanisms that underlie their reactivation inside the tumor microenvironment are less clear. Recent studies have found that not only is the cross-priming of conventional type 1 dendritic cells (cDC1) required to initiate CD8+ T-cell responses during tumor progression, but it also plays a central role in immunotherapy-mediated reactivation of tumor-specific CD8+ T cells for tumor regression. Moreover, many cancer treatment modalities trigger type I IFN responses, which play critical roles in boosting cDC1 cross-priming and CD8+ T-cell reactivation. Inducing type I IFNs within tumors can overcome innate immune resistance and activate antitumor adaptive immunity. Here, we review recent studies on how type I IFN-cDC1 cross-priming reactivates CD8+ T cells and contributes to tumor control by cancer immunotherapy.
Collapse
Affiliation(s)
- Yong Liang
- The Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Raquibul Hannan
- The Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Yang-Xin Fu
- The Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
121
|
Abstract
Introduction: Existing HER2-targeted therapies modulate the tumor microenvironment and the immunologic response cancer in a favorable way. While these therapies have made dramatic improvements in the treatment and prognosis of HER2-overexpressing malignancies, additional treatment options are still needed.Areas covered: This review covers the immunomodulatory effects of approved HER2-targeted therapies. We discuss the preclinical data that demonstrate an additive effect of the combination of trastuzumab or other HER2-targeting agents with immunomodulatory drugs. Finally, we report the initial studies on the combination of HER2-targeted agents together with immune checkpoint inhibitors or cancer vaccines in breast cancer.Expert opinion: Preclinical data suggest a synergistic effect of HER2-targeted therapy together with both checkpoint inhibitor and cancer vaccine immunotherapy. Results from initial trials with PD-1/PD-L1-blocking therapy together with HER2-targeted therapy have been negative, but responses were seen in patients with PD-L1+ breast cancer. Trastuzumab together with HER2-targeted cancer vaccination has shown benefits in triple negative breast cancer. Further trials are necessary and warranted to confirm the benefit of these combinations.
Collapse
Affiliation(s)
- Guy T Clifton
- Department of General Surgery, Brooke Army Medical Center, Fort Sam Houston, TX, USA
| | | |
Collapse
|
122
|
Petroni G, Buqué A, Zitvogel L, Kroemer G, Galluzzi L. Immunomodulation by targeted anticancer agents. Cancer Cell 2021; 39:310-345. [PMID: 33338426 DOI: 10.1016/j.ccell.2020.11.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
At odds with conventional chemotherapeutics, targeted anticancer agents are designed to inhibit precise molecular alterations that support oncogenesis or tumor progression. Despite such an elevated degree of molecular specificity, many clinically employed and experimental targeted anticancer agents also mediate immunostimulatory or immunosuppressive effects that (at least in some settings) influence therapeutic efficacy. Here, we discuss the main immunomodulatory effects of targeted anticancer agents and explore potential avenues to harness them in support of superior clinical efficacy.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, Villejuif, France; INSERM U1015, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France; Faculty of Medicine, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Université de Paris, Sorbonne Université, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| |
Collapse
|
123
|
Wang Z, Weiner GJ. Immune checkpoint markers and anti-CD20-mediated NK cell activation. J Leukoc Biol 2021; 110:723-733. [PMID: 33615552 DOI: 10.1002/jlb.5a0620-365r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/13/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022] Open
Abstract
Anti-CD20 mAb is an effective therapy for most B-cell malignancies. Checkpoint blockade has been used to enhance T-cell-mediated antitumor response. Little is known about the biologic significance of immune checkpoints expressed by NK cells in anti-CD20-based therapy. To investigate the role of checkpoints in anti-CD20-mediated NK cell biology, Raji B-cell lymphoma cells, and PBMCs from normal donors were cocultured with rituximab (RTX), obinutuzumab (OBZ), or trastuzumab as a control mAb for between 20 h and 9 d. RTX and OBZ induced a dose-dependent NK cell up-regulation of T-cell immunoreceptor with Ig and ITIM domain (TIGIT) and T-cell immunoglobulin mucin-3 (TIM3), but not PD1, CTLA4, or LAG3. Resting CD56dim NK had higher TIGIT and TIM3 expression than resting CD56bright NK although TIGIT and TIM3 were up-regulated on both subsets. NK cells with the CD16 158VV single nucleotide polymorphism had greater TIM3 up-regulation than did NK from VF or FF donors. TIGIT+ and TIM3+ NK cells degranulated, produced cytokines, and expressed activation markers to a greater degree than did TIGIT- or TIM3- NK cells. Blockade of TIGIT, TIM3, or both had little impact on RTX-induced NK cell proliferation, degranulation, cytokine production, or activation. Taken together, TIGIT and TIM3 can serve as markers for anti-CD20-mediated NK cell activation, but may not serve well as targets for enhancing the anti-tumor activity of such therapy.
Collapse
Affiliation(s)
- Zhaoming Wang
- Cancer Biology Graduate Program, Carver College of Medicine, the University of Iowa, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, Carver College of Medicine, the University of Iowa, Iowa City, Iowa, USA
| | - George J Weiner
- Cancer Biology Graduate Program, Carver College of Medicine, the University of Iowa, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, Carver College of Medicine, the University of Iowa, Iowa City, Iowa, USA.,Department of Internal Medicine, Carver College of Medicine, the University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
124
|
Mortenson ED, Fu YX. Anti-HER2/Neu passive-aggressive immunotherapy. Oncoimmunology 2021; 3:e27296. [PMID: 24605268 PMCID: PMC3935925 DOI: 10.4161/onci.27296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 11/26/2022] Open
Abstract
Preclinical studies have established that CD8+ T cells are necessary for efficient immunotherapeutic regimens targeting v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2, best known as HER2/Neu). Recently, we extended upon these findings by demonstrating that anti-HER2/Neu therapy also requires CD4+ T cells and CD40/CD40L signaling within the tumor microenvironment. Our results add to mounting evidence demonstrating that adaptive immunity is crucial to the efficacy of conventional and targeted anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Eric D Mortenson
- Department of Melanoma Medical Oncology-Research; MD Anderson Cancer Center; Houston, TX USA
| | - Yang-Xin Fu
- Department of Pathology and Committee on Immunology; University of Chicago; Chicago, IL USA
| |
Collapse
|
125
|
Prendergast GC. Immunological thought in the mainstream of cancer research: Past divorce, recent remarriage and elective affinities of the future. Oncoimmunology 2021; 1:793-797. [PMID: 23162746 PMCID: PMC3489734 DOI: 10.4161/onci.20909] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Immunological thought is exerting a growing effect in cancer research, correcting a divorce that occurred in the mainstream of the field decades ago just as cancer genetics began to emerge as a dominant movement. Today, with a general consensus on the significance of epigenetics, the inflammatory cancer microenvironment and the immune response in determining cancer pathophysiology, a new synthesis of thought is being spurred by a remarriage with cancer immunology, with great implications for the future of the field. This perspective offers a view on how this synthesis is impacting both the understanding and treatment of cancer using adjuvant immunomodulatory modalities in the context of surgical, radiotherapeutic and chemotherapeutic interventions which are present standards of care. With the revolutions in immunochemotherapy and immunoradiotherapy coming this decade, the next great challenge faced by the field will be how to identify simple, cost effective and broadly applicable solutions that do not rely deeply on personalized characters, in an effort to minimize the daunting complexity and costs of a problem that challenges not only physicians and patients but also health care systems and insurers caring for aging populations in the developed world.
Collapse
|
126
|
Quetglas JI, John LB, Kershaw MH, Alvarez-Vallina L, Melero I, Darcy PK, Smerdou C. Virotherapy, gene transfer and immunostimulatory monoclonal antibodies. Oncoimmunology 2021; 1:1344-1354. [PMID: 23243597 PMCID: PMC3518506 DOI: 10.4161/onci.21679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Malignant cells are susceptible to viral infection and consequent cell death. Virus-induced cell death is endowed with features that are known to stimulate innate and adaptive immune responses. Thus danger signals emitted by cells succumbing to viral infection as well as viral nucleic acids are detected by specific receptors, and tumor cell antigens can be routed to professional antigen-presenting cells. The anticancer immune response triggered by viral infection is frequently insufficient to eradicate malignancy but may be further amplified. For this purpose, transgenes encoding cytokines as co-stimulatory molecules can be genetically engineered into viral vectors. Alternatively, or in addition, it is possible to use monoclonal antibodies that either block inhibitory receptors of immune effector cells, or act as agonists for co-stimulatory receptors. Combined strategies are based on the ignition of a local immune response at the malignant site plus systemic immune boosting. We have recently reported examples of this approach involving the Vaccinia virus or Semliki Forest virus, interleukin-12 and anti-CD137 monoclonal antibodies.
Collapse
Affiliation(s)
- José I Quetglas
- Division of Hepatology and Gene Therapy; Center for Applied Medical Research; University of Navarra; Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
127
|
Paget C, Duret H, Ngiow SF, Kansara M, Thomas DM, Smyth MJ. Studying the role of the immune system on the antitumor activity of a Hedgehog inhibitor against murine osteosarcoma. Oncoimmunology 2021; 1:1313-1322. [PMID: 23243595 PMCID: PMC3518504 DOI: 10.4161/onci.21680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent evidence demonstrates that the efficacy of conventional anticancer therapies including chemotherapy requires a functional immune system. Here, we addressed the possibility that the antitumor effect of a selective Smoothened antagonist and Hedgehog (Hh) pathway inhibitor (LDE225), a promising anticancer drug, might at least partially depend on the immune system. To this aim, we used tumor cell lines derived from a murine model of radiation-induced osteosarcoma. In vitro treatment of osteosarcoma cells with LDE225 resulted in a decreased ability of tumor cells to proliferate, but had no effect on their viability. Flow cytometry analysis demonstrated that LDE225-treatment did not detectably modulate the immunogenicity of tumor cells. Moreover, LDE225 did not display any pro-apoptotic properties on osteosarcoma cells, highlighting that its antitumor profile mainly derives from a cytostatic effect. Furthermore, calreticulin exposure, a key feature of immunogenic cell death, was not provoked by LDE225, neither alone nor combined with recognized immunogenic drugs. Finally, the oral administration of LDE225 to osteosarcoma-bearing mice did significantly delay the tumor growth even in an immunocompromised setting. These data suggest that inhibiting Hh signaling can control osteosarcoma cell proliferation but does not modulate the immunogenic profile of these cells.
Collapse
Affiliation(s)
- Christophe Paget
- Cancer Immunology Program; Peter MacCallum Cancer Centre; East Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
128
|
Di Modica M, Gargari G, Regondi V, Bonizzi A, Arioli S, Belmonte B, De Cecco L, Fasano E, Bianchi F, Bertolotti A, Tripodo C, Villani L, Corsi F, Guglielmetti S, Balsari A, Triulzi T, Tagliabue E. Gut Microbiota Condition the Therapeutic Efficacy of Trastuzumab in HER2-Positive Breast Cancer. Cancer Res 2021; 81:2195-2206. [PMID: 33483370 DOI: 10.1158/0008-5472.can-20-1659] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Emerging evidence indicates that gut microbiota affect the response to anticancer therapies by modulating the host immune system. In this study, we investigated the impact of gut microbiota on immune-mediated trastuzumab antitumor efficacy in preclinical models of HER2-positive breast cancer and in 24 patients with primary HER2-positive breast cancer undergoing trastuzumab-containing neoadjuvant treatment. In mice, the antitumor activity of trastuzumab was impaired by antibiotic administration or fecal microbiota transplantation from antibiotic-treated donors. Modulation of the intestinal microbiota was reflected in tumors by impaired recruitment of CD4+ T cells and granzyme B-positive cells after trastuzumab treatment. Antibiotics caused reductions in dendritic cell (DC) activation and the release of IL12p70 upon trastuzumab treatment, a mechanism that was necessary for trastuzumab effectiveness in our model. In patients, lower α-diversity and lower abundance of Lachnospiraceae, Turicibacteraceae, Bifidobacteriaceae, and Prevotellaceae characterized nonresponsive patients (NR) compared with those who achieved pathologic complete response (R), similar to antibiotic-treated mice. The transfer of fecal microbiota from R and NR into mice bearing HER2-positive breast cancer recapitulated the response to trastuzumab observed in patients. Fecal microbiota β-diversity segregated patients according to response and positively correlated with immune signature related to interferon (IFN) and NO2-IL12 as well as activated CD4+ T cells and activated DCs in tumors. Overall, our data reveal the direct involvement of the gut microbiota in trastuzumab efficacy, suggesting that manipulation of the gut microbiota is an optimal future strategy to achieve a therapeutic effect or to exploit its potential as a biomarker for treatment response. SIGNIFICANCE: Evidence of gut microbiota involvement in trastuzumab efficacy represents the foundation for new therapeutic strategies aimed at manipulating commensal bacteria to improve response in trastuzumab-resistant patients.See related commentary by Sharma, p. 1937 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2195/F1.large.jpg.
Collapse
Affiliation(s)
- Martina Di Modica
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgio Gargari
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viola Regondi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arianna Bonizzi
- Department of Biomedical and Clinical Sciences "L. Sacco," Università degli Studi di Milano, Milan, Italy
| | - Stefania Arioli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department PROMISE, Università degli Studi di Palermo, Palermo, Italy
| | - Loris De Cecco
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Fasano
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Bianchi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessia Bertolotti
- Department of Pathology, Fondazione IRCSS Istituto Nazionale Tumori, Milan, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department PROMISE, Università degli Studi di Palermo, Palermo, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Laura Villani
- Pathology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Corsi
- Department of Biomedical and Clinical Sciences "L. Sacco," Università degli Studi di Milano, Milan, Italy.,Breast Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Andrea Balsari
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
129
|
Improved therapeutic efficacy of unmodified anti-tumor antibodies by immune checkpoint blockade and kinase targeted therapy in mouse models of melanoma. Oncotarget 2021; 12:66-80. [PMID: 33520112 PMCID: PMC7825641 DOI: 10.18632/oncotarget.27868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The use of specific anti-tumor antibodies has transformed the solid cancer therapeutics landscape with the relative successes of therapies such as anti-HER2 in breast cancer, and anti-EGFR in HNSCC and colorectal cancer. However, these therapies result in toxicity and the emergence of resistant tumors. Here, we showed that removing immune suppression and enhancing stimulatory signals increased the anti-tumor activity of unmodified TA99 antibodies (anti-TYRP1) with a significant reduction of growth of solid tumors and lung metastases in mouse models of melanoma. Immune checkpoint blockade enhanced the efficacy of TA99, which was associated with greater CD8+/Foxp3+, NK1.1+ and dendritic cell infiltrates, suggestive of an increased anti-tumor innate and adaptive immune responses. Further, MEK inhibition in melanoma cell lines increased the expression of melanosomal antigens in vitro, and combining TA99 and MEKi in vivo resulted in enhanced tumor control. Moreover, we found an improved therapeutic effect when YUMM tumor-bearing mice were treated with TA99 combined with MEKi and immune checkpoint blockade (anti-PD1 and anti-CTLA4). Our findings suggest that MEKi induced an increased expression of tumor-associated antigens, which in combination with anti-tumor antibodies, generated a robust adaptive anti-tumor response that was sustained by immune checkpoint inhibition therapy. We postulate that combining anti-tumor antibodies with standard-of-care strategies such as immune checkpoint blockade or targeted therapy, will improve therapeutic outcomes in cancer.
Collapse
|
130
|
Lee CG, Kim T, Hong S, Chu J, Kang JE, Park HG, Choi JY, Song K, Rha SY, Lee S, Choi JS, Kim SM, Jeong HM, Shin YK. Antibody-Based Targeting of Interferon-Beta-1a Mutein in HER2-Positive Cancer Enhances Antitumor Effects Through Immune Responses and Direct Cell Killing. Front Pharmacol 2021; 11:608774. [PMID: 33505314 PMCID: PMC7832035 DOI: 10.3389/fphar.2020.608774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 11/17/2022] Open
Abstract
Type I interferon (IFN) has been approved as an anticancer agent to treat some malignancies. However, IFNs have a short in vivo half-life, systemic toxicity, and poor biophysical properties, which prevent it from being widely used for cancer therapy. This study aimed to construct recombinant IFN-β-1a mutein immunocytokines that comprise a human epidermal growth factor receptor 2 (HER2)-targeting antibody and IFN-β muteins with an additional glycosylation, which can overcome the limitation of the cytokine itself. Hence, the molecular design aims to 1) enhance productivity and biophysical properties by adding secondary glycosylation in IFN-β, 2) increase the therapeutic index of IFN-β therapy by preferential retention at the tumor by possessing high affinity for HER2-expressing cancer cells, and 3) improve the pharmacokinetics and, thus, the convenience of IFN-β administration. The yield of trastuzumab-IFN-β mutein was higher than that of trastuzumab-wild-type IFN-β in the mammalian cell culture system. Trastuzumab-IFN-β mutein showed similar IFN activity and HER2-targeting ability equivalent to that of IFN-β mutein and trastuzumab, respectively. Trastuzumab-IFN-β mutein directly inhibited the growth of HER2-positive gastric cancer cell lines and was more effective than trastuzumab or IFN-β mutein alone. Trastuzumab-IFN-β mutein and IFN-β mutein displayed enhanced immune cell-mediated cytotoxicity. Collectively, trastuzumab-IFN-β mutein may have indirect immune cell-mediated antitumor effects and direct cell growth inhibitory effects. Tumor-targeting effect of trastuzumab-IFN-β mutein was analyzed using in vivo fluorescence imaging. The accumulation of trastuzumab-IFN-β mutein was observed in HER2-positive tumors rather than other tissues except the liver. To evaluate the both direct tumor growth inhibition effect and indirect immune cell-mediated antitumor effect, we tested the effect of trastuzumab-IFN-β mutein in HER2-positive cancer xenograft models using nude mice or humanized mice. Trastuzumab-IFN-β mutein could significantly enhance tumor regression when compared with trastuzumab or IFN-β mutein. In addition, an increase in tumor-infiltrating lymphocytes was observed in the trastuzumab-IFN-β mutein-treated group, implying that the tumor-targeting IFN-β may have an enhanced antitumor effect through increased immune response. Therefore, targeting IFN-β with an anti-HER2 monoclonal antibody makes the immunocytokine more potent than either agent alone. These novel findings suggest that trastuzumab-IFN-β mutein merits clinical evaluation as a new candidate of anticancer therapeutics.
Collapse
Affiliation(s)
- Chan Gyu Lee
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea.,Genopharm Inc., Seoul, South Korea
| | - TaeEun Kim
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Sungyoul Hong
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jongwan Chu
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | - Hee Geon Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | | | - Kyoung Song
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Sun Young Rha
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Soohyeon Lee
- Division of Oncology-Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, South Korea
| | - Sun Min Kim
- Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, and Seoul National University College of Medicine, Seoul, South Korea
| | | | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Bio-MAX/N-Bio, Seoul National University, Seoul, South Korea
| |
Collapse
|
131
|
Sanchez K, Kim I, Chun B, Pucilowska J, Redmond WL, Urba WJ, Martel M, Wu Y, Campbell M, Sun Z, Grunkemeier G, Chang SC, Bernard B, Page DB. Multiplex immunofluorescence to measure dynamic changes in tumor-infiltrating lymphocytes and PD-L1 in early-stage breast cancer. Breast Cancer Res 2021; 23:2. [PMID: 33413574 PMCID: PMC7788790 DOI: 10.1186/s13058-020-01378-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The H&E stromal tumor-infiltrating lymphocyte (sTIL) score and programmed death ligand 1 (PD-L1) SP142 immunohistochemistry assay are prognostic and predictive in early-stage breast cancer, but are operator-dependent and may have insufficient precision to characterize dynamic changes in sTILs/PD-L1 in the context of clinical research. We illustrate how multiplex immunofluorescence (mIF) combined with statistical modeling can be used to precisely estimate dynamic changes in sTIL score, PD-L1 expression, and other immune variables from a single paraffin-embedded slide, thus enabling comprehensive characterization of activity of novel immunotherapy agents. METHODS Serial tissue was obtained from a recent clinical trial evaluating loco-regional cytokine delivery as a strategy to promote immune cell infiltration and activation in breast tumors. Pre-treatment biopsies and post-treatment tumor resections were analyzed by mIF (PerkinElmer Vectra) using an antibody panel that characterized tumor cells (cytokeratin-positive), immune cells (CD3, CD8, CD163, FoxP3), and PD-L1 expression. mIF estimates of sTIL score and PD-L1 expression were compared to the H&E/SP142 clinical assays. Hierarchical linear modeling was utilized to compare pre- and post-treatment immune cell expression, account for correlation of time-dependent measurement, variation across high-powered magnification views within each subject, and variation between subjects. Simulation methods (Monte Carlo, bootstrapping) were used to evaluate the impact of model and tissue sample size on statistical power. RESULTS mIF estimates of sTIL and PD-L1 expression were strongly correlated with their respective clinical assays (p < .001). Hierarchical linear modeling resulted in more precise estimates of treatment-related increases in sTIL, PD-L1, and other metrics such as CD8+ tumor nest infiltration. Statistical precision was dependent on adequate tissue sampling, with at least 15 high-powered fields recommended per specimen. Compared to conventional t-testing of means, hierarchical linear modeling was associated with substantial reductions in enrollment size required (n = 25➔n = 13) to detect the observed increases in sTIL/PD-L1. CONCLUSION mIF is useful for quantifying treatment-related dynamic changes in sTILs/PD-L1 and is concordant with clinical assays, but with greater precision. Hierarchical linear modeling can mitigate the effects of intratumoral heterogeneity on immune cell count estimations, allowing for more efficient detection of treatment-related pharmocodynamic effects in the context of clinical trials. TRIAL REGISTRATION NCT02950259 .
Collapse
Affiliation(s)
- Katherine Sanchez
- Earle A. Chiles Research Institute, 4805 N.E. Glisan St., North Tower, Suite 2N87, Portland, OR, 97213, USA
- Providence Cancer Institute, Portland, OR, USA
| | - Isaac Kim
- Earle A. Chiles Research Institute, 4805 N.E. Glisan St., North Tower, Suite 2N87, Portland, OR, 97213, USA
- Providence Cancer Institute, Portland, OR, USA
| | - Brie Chun
- Earle A. Chiles Research Institute, 4805 N.E. Glisan St., North Tower, Suite 2N87, Portland, OR, 97213, USA
- Providence Cancer Institute, Portland, OR, USA
| | - Joanna Pucilowska
- Earle A. Chiles Research Institute, 4805 N.E. Glisan St., North Tower, Suite 2N87, Portland, OR, 97213, USA
- Providence Cancer Institute, Portland, OR, USA
| | - William L Redmond
- Earle A. Chiles Research Institute, 4805 N.E. Glisan St., North Tower, Suite 2N87, Portland, OR, 97213, USA
- Providence Cancer Institute, Portland, OR, USA
| | - Walter J Urba
- Earle A. Chiles Research Institute, 4805 N.E. Glisan St., North Tower, Suite 2N87, Portland, OR, 97213, USA
- Providence Cancer Institute, Portland, OR, USA
| | - Maritza Martel
- Department of Pathology, Providence Portland Medical Center, Portland, OR, USA
| | - Yaping Wu
- Earle A. Chiles Research Institute, 4805 N.E. Glisan St., North Tower, Suite 2N87, Portland, OR, 97213, USA
- Providence Cancer Institute, Portland, OR, USA
| | - Mary Campbell
- Department of Pathology, Providence Portland Medical Center, Portland, OR, USA
| | - Zhaoyu Sun
- Earle A. Chiles Research Institute, 4805 N.E. Glisan St., North Tower, Suite 2N87, Portland, OR, 97213, USA
| | - Gary Grunkemeier
- Medical Data Research Center, Providence Health & Services, Portland, OR, USA
| | - Shu Ching Chang
- Medical Data Research Center, Providence Health & Services, Portland, OR, USA
| | - Brady Bernard
- Earle A. Chiles Research Institute, 4805 N.E. Glisan St., North Tower, Suite 2N87, Portland, OR, 97213, USA
- Providence Cancer Institute, Portland, OR, USA
| | - David B Page
- Earle A. Chiles Research Institute, 4805 N.E. Glisan St., North Tower, Suite 2N87, Portland, OR, 97213, USA.
- Providence Cancer Institute, Portland, OR, USA.
| |
Collapse
|
132
|
Multimodality approaches to control esophageal cancer: development of chemoradiotherapy, chemotherapy, and immunotherapy. Esophagus 2021; 18:25-32. [PMID: 32964312 DOI: 10.1007/s10388-020-00782-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/15/2020] [Indexed: 02/03/2023]
Abstract
Esophageal cancer has a poor prognosis despite the fact that surgical techniques have been advanced and optimized, and systemic multimodality approaches have progressed recently. Adding chemotherapy, radiotherapy, and immunotherapy to the basic surgical approach have been shown to have therapeutic benefit for esophageal cancer. This review describes the latest development of chemoradiotherapy, chemotherapy, and immunotherapy, which have contributed to the reduction in esophageal cancer growth and improved the survival of patients. Chemoradiation is a treatment option for resectable esophageal cancer to preserve the esophagus for patients who cannot tolerate surgery. Moreover, a combination of chemoradiotherapy and salvage surgery could extend the survival of patients. The effects of a triplet chemotherapy regimen are currently being verified in some Phase III studies for unresectable advanced/recurrent esophageal cancer. In addition, with the great promise of immune checkpoint inhibitors, strategies that incorporate the use of immunotherapy may shift from the metastatic setting to the neoadjuvant/adjuvant setting as a result of clinical trials. More precise comprehension of the molecular biology of esophageal cancer is expected to further control disease progression using multimodality treatments in the future.
Collapse
|
133
|
Miglietta F, Cona MS, Dieci MV, Guarneri V, La Verde N. An overview of immune checkpoint inhibitors in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:452-472. [PMID: 36046385 PMCID: PMC9400749 DOI: 10.37349/etat.2020.00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Although breast cancer is not traditionally considered an immunogenic type of tumor, the combination of immunotherapy and chemotherapy has recently emerged as a novel treatment option in triple-negative subtype in the advanced setting and other similar combinations of immune checkpoint inhibitors with chemotherapy are expected to become part of the neoadjuvant management in the near future. In addition, encouraging results have been observed with the combination of immune checkpoint blockade with diverse biological agents, including anti-HER2 agents, CDK 4/6 inhibitors, PARP-inhibitors. The present review summarized the available evidence coming from clinical trials on the role of immune checkpoint inhibitors in the management of breast cancer, both in advanced and early setting.
Collapse
Affiliation(s)
- Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Maria Silvia Cona
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
- Division of Oncology 2, Istituto Oncologico Veneto IRCCS, 35128 Padova, Italy
| | - Nicla La Verde
- Department of Oncology, Luigi Sacco Hospital, ASST Fatebenefratelli Sacco, Via G.B. Grassi 74, 20157 Milano, Italy
| |
Collapse
|
134
|
Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug Discov Today 2020; 26:1319-1329. [PMID: 33359114 DOI: 10.1016/j.drudis.2020.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2), a tyrosine kinase receptor with a molecular mass of 185kDa, is overexpressed in several cancers, such as breast, gastric, ovary, prostate, and lung. HER2 is a promising target in cancer therapy because of its crucial role in cell migration, proliferation, survival, angiogenesis, and metastasis through various intracellular signaling cascades. This receptor is an ideal target for the delivery of chemotherapeutic agents because of its accessibility to the extracellular domain. In this review, we highlight different HER2-targeting strategies and various approaches for HER2-targeted delivery systems to improve outcomes for cancer therapy.
Collapse
Affiliation(s)
- Rakesh Kumar Dhritlahre
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
135
|
Miar A, Arnaiz E, Bridges E, Beedie S, Cribbs AP, Downes DJ, Beagrie RA, Rehwinkel J, Harris AL. Hypoxia Induces Transcriptional and Translational Downregulation of the Type I IFN Pathway in Multiple Cancer Cell Types. Cancer Res 2020; 80:5245-5256. [PMID: 33115807 PMCID: PMC7611234 DOI: 10.1158/0008-5472.can-19-2306] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/26/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
Hypoxia is a common phenomenon in solid tumors and is strongly linked to hallmarks of cancer. Recent evidence has shown that hypoxia promotes local immune suppression. Type I IFN supports cytotoxic T lymphocytes by stimulating the maturation of dendritic cells and enhancing their capacity to process and present antigens. However, little is known about the relationship between hypoxia and the type I IFN pathway, which comprises the sensing of double-stranded RNA and DNA (dsRNA/dsDNA) followed by IFNα/β secretion and transcriptional activation of IFN-stimulated genes (ISG). In this study, we determined the effects of hypoxia on the type I IFN pathway in breast cancer and the mechanisms involved. In cancer cell lines and xenograft models, mRNA and protein expressions of the type I IFN pathway were downregulated under hypoxic conditions. This pathway was suppressed at each level of signaling, from the dsRNA sensors RIG-I and MDA5, the adaptor MAVS, transcription factors IRF3, IRF7, and STAT1, and several ISG including RIG-I, IRF7, STAT1, and ADAR-p150. Importantly, IFN secretion was reduced under hypoxic conditions. HIF1α- and HIF2α-mediated regulation of gene expression did not explain most of the effects. However, ATAC-seq data revealed in hypoxia that peaks with STAT1 and IRF3 motifs had decreased accessibility. Collectively, these results indicate that hypoxia leads to an overall downregulation of the type I IFN pathway due to repressed transcription and lower chromatin accessibility in an HIF1/2α-independent manner, which could contribute to immunosuppression in hypoxic tumors. SIGNIFICANCE: These findings characterize a new mechanism of immunosuppression by hypoxia via downregulation of the type I IFN pathway and its autocrine/paracrine effects on tumor growth.
Collapse
Affiliation(s)
- Ana Miar
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Esther Arnaiz
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Esther Bridges
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Shaunna Beedie
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Adam P Cribbs
- Botnar Research Center, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford BRU, University of Oxford, United Kingdom
| | - Damien J Downes
- Medical Research Council (MRC) Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert A Beagrie
- Medical Research Council (MRC) Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- Department of Medical Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
136
|
Hu X, Liu Y, Zhang X, Kong D, Kong J, Zhao D, Guo Y, Sun L, Chu L, Liu S, Hou X, Ren F, Zhao Y, Lu C, Zhai D, Yuan X. The anti-B7-H4 checkpoint synergizes trastuzumab treatment to promote phagocytosis and eradicate breast cancer. Neoplasia 2020; 22:539-553. [PMID: 32966956 PMCID: PMC7509589 DOI: 10.1016/j.neo.2020.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Trastuzumab is a humanized mAb used to treat HER2-overexpressing breast cancer; however its mechanisms remain to be fully elucidated. Previous studies suggest a role for immunity in mediating trastuzumab-specific antitumor effects. This study evaluated the role(s) of trastuzumab and other antibodies on macrophage activation and Ab-dependent cell-mediated phagocytosis (ADCP) of HER2+ breast cancer cells in vitro and in vivo. We employed orthotopic implantation of HER2+ murine breast cancer (BC) cells in immunocompetent mouse models, a human HER2+ BC xenograft in an immune humanized mouse model, and human PDXs involving adoptive transfer of autologous macrophages to simulate an endogenous mammary tumor-immune microenvironment. Our study demonstrated that trastuzumab greatly and consistently increased macrophage frequency and tumor-cell phagocytosis, and that concurrent knockdown of B7-H4 by a neutralizing antibody increased immune cell infiltration and promoted an antitumor phenotype. Furthermore, neoadjuvant trastuzumab therapy significantly upregulated B7-H4 in the cancer-infiltrating macrophages of HER2+ BC patients, which predicted poor trastuzumab response. We suggest that strategies to specifically enhance ADCP activity might be critical to overcoming resistance to HER2 mAb therapies by inhibiting tumor growth and potentially enhance antigen presentation. Furthermore, these results advance the understanding of macrophage plasticity by uncovering a dual role for ADCP in macrophages involving elimination of tumors by engulfing cancer cells while causing a concomitant undesired effect by upregulating immunosuppressive checkpoints.
Collapse
Affiliation(s)
- Xiaochen Hu
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Yiwen Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Xiusen Zhang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Dejiu Kong
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Jinyu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Di Zhao
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Yibo Guo
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Lingyun Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Luoyi Chu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Shupei Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Xurong Hou
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China
| | - Feng Ren
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Zhao
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Chengbiao Lu
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Desheng Zhai
- Department of Pathology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Yuan
- Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China; Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang 471003, China.
| |
Collapse
|
137
|
Yamashita K, Iwatsuki M, Yasuda-Yoshihara N, Morinaga T, Nakao Y, Harada K, Eto K, Kurashige J, Hiyoshi Y, Ishimoto T, Nagai Y, Iwagami S, Baba Y, Miyamoto Y, Yoshida N, Ajani JA, Baba H. Trastuzumab upregulates programmed death ligand-1 expression through interaction with NK cells in gastric cancer. Br J Cancer 2020; 124:595-603. [PMID: 33100329 PMCID: PMC7851117 DOI: 10.1038/s41416-020-01138-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/22/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The predictive significance of programmed death ligand 1 (PD-L1) for programmed death 1 (PD-1) inhibitors remains unclear in gastric cancer (GC) due to the dynamic alteration by treatments. We aimed to elucidate the effects of trastuzumab (Tmab) on PD-L1 expression in GC. METHODS PD-L1 expression was evaluated by multicolour flow cytometry analysis after co-culturing GG cell lines and immune cells with Tmab. IFN-γ in the co-culture experiments was quantified. Immunohistochemistry (IHC) for PD-L1 expression using clinical samples was also performed to confirm PD-L1 alteration by Tmab. RESULTS PD-L1 expression was significantly upregulated by Tmab in HER2-amplified GC cell lines co-cultured with peripheral blood mononuclear cells (PBMCs). PD-L1 upregulation by Tmab was also observed in the GC cells co-cultured with NK cells in time-dependent manner, but not with monocytes. IFN-γ concentration in conditioned media from co-cultured PBMCs and NK cells with Tmab was significantly higher and anti-IFN-γ significantly suppress the Tmab-induced PD-L1 upregulation. IHC also suggested PD-L1 upregulation after Tmab treatment. CONCLUSIONS Tmab can upregulate PD-L1 expression on GC cells through interaction with NK cells. These results suggest clinical implications in the assessment of the predictive significance of PD-L1 expression for PD-1 inhibitors.
Collapse
Affiliation(s)
- Kohei Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Noriko Yasuda-Yoshihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Morinaga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Nakao
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kojiro Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yohei Nagai
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
138
|
D'Arrigo P, Tufano M, Rea A, Vigorito V, Novizio N, Russo S, Romano MF, Romano S. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Curr Med Chem 2020; 27:2402-2448. [PMID: 30398102 DOI: 10.2174/0929867325666181106114421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenza Vigorito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Novizio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
139
|
Catenacci DVT, Kang YK, Park H, Uronis HE, Lee KW, Ng MCH, Enzinger PC, Park SH, Gold PJ, Lacy J, Hochster HS, Oh SC, Kim YH, Marrone KA, Kelly RJ, Juergens RA, Kim JG, Bendell JC, Alcindor T, Sym SJ, Song EK, Chee CE, Chao Y, Kim S, Lockhart AC, Knutson KL, Yen J, Franovic A, Nordstrom JL, Li D, Wigginton J, Davidson-Moncada JK, Rosales MK, Bang YJ. Margetuximab plus pembrolizumab in patients with previously treated, HER2-positive gastro-oesophageal adenocarcinoma (CP-MGAH22-05): a single-arm, phase 1b-2 trial. Lancet Oncol 2020; 21:1066-1076. [PMID: 32653053 DOI: 10.1016/s1470-2045(20)30326-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Margetuximab, a novel, investigational, Fc-engineered, anti-HER2 monoclonal antibody, is designed to more effectively potentiate innate immunity than trastuzumab. We aimed to evaluate the safety, tolerability, and antitumour activity of margetuximab plus pembrolizumab (an anti-PD-1 monoclonal antibody) in previously treated patients with HER2-positive gastro-oesophageal adenocarcinoma. METHODS CP-MGAH22-05 was a single-arm, open-label, phase 1b-2 dose-escalation and cohort expansion study done at 11 academic centres in the USA and Canada and 15 centres in southeast Asia (Korea, Taiwan, and Singapore) that enrolled men and women aged 18 years or older with histologically proven, unresectable, locally advanced or metastatic, HER2-positive, PD-L1-unselected gastro-oesophageal adenocarcinoma, with an Eastern Cooperative Oncology Group performance status of 0 or 1, who had progressed after at least one previous line of therapy with trastuzumab plus chemotherapy in the locally advanced unresectable or metastatic setting. In the dose-escalation phase, nine patients were treated: three received margetuximab 10 mg/kg intravenously plus pembrolizumab 200 mg intravenously every 3 weeks and six received the recommended phase 2 dose of margetuximab 15 mg/kg plus pembrolizumab 200 mg intravenously every 3 weeks. An additional 86 patients were enrolled in the phase 2 cohort expansion and received the recommended phase 2 dose. The primary endpoints were safety and tolerability, assessed in the safety population (patients who received at least one dose of either margetuximab or pembrolizumab) and the objective response rate as assessed by the investigator according to both Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, in the response-evaluable population (patients with measurable disease at baseline and who received the recommended phase 2 dose of margetuximab and pembrolizumab). This trial is registered with ClinicalTrials.gov, NCT02689284. Recruitment for the trial has completed and follow-up is ongoing. FINDINGS Between Feb 11, 2016, and Oct 2, 2018, 95 patients were enrolled. Median follow-up was 19·9 months (IQR 10·7-23·1). The combination therapy showed acceptable safety and tolerability; there were no dose-limiting toxicities in the dose-escalation phase. The most common grade 3-4 treatment-related adverse events were anaemia (four [4%]) and infusion-related reactions (three [3%]). Serious treatment-related adverse events were reported in nine (9%) patients. No treatment-related deaths were reported. Objective responses were observed in 17 (18·48%; 95% CI 11·15-27·93) of 92 evaluable patients. INTERPRETATION These findings serve as proof of concept of synergistic antitumour activity with the combination of an Fc-optimised anti-HER2 agent (margetuximab) along with anti-PD-1 checkpoint blockade (pembrolizumab). FUNDING MacroGenics.
Collapse
Affiliation(s)
| | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Haeseong Park
- Washington University School of Medicine, St Louis, MO, USA
| | | | - Keun-Wook Lee
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Matthew C H Ng
- National Cancer Centre, Duke-NUS Medical School, Singapore
| | | | - Se Hoon Park
- Sungkyunkwan University, Samsung Medical Center, Seoul, South Korea
| | | | - Jill Lacy
- Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | - Jong Gwang Kim
- Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | | | | | - Sun Jin Sym
- Gachon University Gil Medical Center, Incheon, South Korea
| | - Eun-Kee Song
- Chonbuk National University Medical School, Jeonju, South Korea
| | | | - Yee Chao
- Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sunnie Kim
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | - Yung-Jue Bang
- Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
140
|
Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel) 2020; 9:E34. [PMID: 32698317 PMCID: PMC7551545 DOI: 10.3390/antib9030034] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibody-based immunotherapy is now considered to be a main component of cancer therapy, alongside surgery, radiation, and chemotherapy. Monoclonal antibodies possess a diverse set of clinically relevant mechanisms of action. In addition, antibodies can directly target tumor cells while simultaneously promoting the induction of long-lasting anti-tumor immune responses. The multifaceted properties of antibodies as a therapeutic platform have led to the development of new cancer treatment strategies that will have major impacts on cancer care. This review focuses on the known mechanisms of action, current clinical applications for the treatment of cancer, and mechanisms of resistance of monoclonal antibody therapy. We further discuss how monoclonal antibody-based strategies have moved towards enhancing anti-tumor immune responses by targeting immune cells instead of tumor antigens as well as some of the current combination therapies.
Collapse
Affiliation(s)
- David Zahavi
- Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA;
| | - Louis Weiner
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Medical Center, 3800 Reservoir Rd NW, Washington, DC 20007, USA
| |
Collapse
|
141
|
Abdolvahab MH, Darvishi B, Zarei M, Majidzadeh-A K, Farahmand L. Interferons: role in cancer therapy. Immunotherapy 2020; 12:833-855. [PMID: 32635782 DOI: 10.2217/imt-2019-0217] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are a group of signaling cytokines, secreted by host cells to induce protection against various disorders. IFNs can directly impact on tumor cells or indirectly induce the immune system to protect host cells. The expression levels of IFNs and its functions of are excellently modulated in a way to protect host cells from probable toxicities caused by extreme responses. The efficacy of anticancer therapies is correlated to IFNs signaling. Although IFN signaling is involved in induction of antitumor responses, chronic stimulation of the IFN signaling pathway can induce resistance to various antineoplasm therapies. Hence, IFNs are expressed by both cancer and immune cells, and modulate their biological function. Understanding this mechanism of action might be a key target of combination therapies.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Mohammad Zarei
- Department of Pathology & Laboratory Medicine, Center for Mitochondrial & Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keivan Majidzadeh-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran 1517964311, Iran
| |
Collapse
|
142
|
Yang T, Fu Z, Zhang Y, Wang M, Mao C, Ge W. Serum proteomics analysis of candidate predictive biomarker panel for the diagnosis of trastuzumab-based therapy resistant breast cancer. Biomed Pharmacother 2020; 129:110465. [PMID: 32887021 DOI: 10.1016/j.biopha.2020.110465] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive is a particularly aggressive type of the breast cancer. Trastuzumab-based therapy is a standard treatment for HER2-positive breast cancer, but some patients are resistant to the therapy. Serum proteins have been used to predict therapeutic benefit for various cancers, but whether serum proteins can serve as biomarkers for HER2-positive breast cancer remains unclear. Using an isobaric Tandem Mass Tag (TMT) label-based quantitative proteomic, we discovered 18 differentially expressed proteins in the serum of trastuzumab-based therapy resistant patients before therapy. Then, four proteins were selected and validated using an LC-MS/MS-based multiple reaction monitoring quantification method, and it was confirmed that three proteins (SRGN, LDHA and CST3) were correlated with trastuzumab-based therapy resistance. Finally, the trastuzumab-based therapy resistance diagnostic score was calculated and acquired by means of a logistic regression pattern based on the level of these three proteins. In summary, we develop a serum-based protein signature that potentially predicts the therapeutic effects of trastuzumab-based therapy for HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Ting Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Ziyi Fu
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Women's Hospital of Nanjing Medical University, Nanjing, China; Department of Oncology, First Affiliated Hospital, Nanjing Medical University, 210029 Nanjing, China
| | - Yin Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Changfei Mao
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
143
|
Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol 2020; 20:e175-e186. [PMID: 30842061 DOI: 10.1016/s1470-2045(19)30026-9] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Immunotherapy is emerging as a new treatment modality in breast cancer. After long-standing use of endocrine therapy and targeted biological therapy, improved understanding of immune evasion by cancer cells and the discovery of selective immune checkpoint inhibitors have created novel opportunities for treatment. Single-drug therapies with monoclonal antibodies against programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have shown little efficacy in patients with metastatic breast cancer, in part because of the low number of tumour-infiltrating lymphocytes in most breast cancers. There is growing interest in the development of combinations of immunotherapy and molecularly targeted therapies for metastatic breast cancer. In this Personal View, we review the available data and ongoing efforts to establish the safety and efficacy of immunotherapeutic approaches in combination with HER2-targeted therapy, inhibitors of cyclin-dependent kinases 4 and 6, angiogenesis inhibitors, poly(ADP-ribose) polymerase inhibitors, as well as chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Francisco J Esteva
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| | | | - Jun Tang
- Anna-Maria Kellen Clinical Accelerator, Cancer Research Institute, New York, NY, USA
| | - Lajos Pusztai
- Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
144
|
Wilkes JG, Czerniecki BJ, Costa RLB. Treatment from within: Ductal Carcinoma as an Opportunity to Harness the Immune System. CURRENT BREAST CANCER REPORTS 2020. [DOI: 10.1007/s12609-020-00356-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
145
|
Treatment selection for patients with equivocal HER2 status and in luminal versus HER2-enriched disease. Breast 2020; 48 Suppl 1:S49-S52. [PMID: 31839160 DOI: 10.1016/s0960-9776(19)31123-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Equivocal HER2 status has been variably defined in the past, and its clinical implications have long been debated. In the 2018 focused update, ASCO/CAP guidelines recommended that tumours with double-equivocal (by immunohistochemistry and in situ hybridization assays) HER2 status should be considered HER2-negative due to the lack of evidence for any benefit of HER2-targeted therapy. The biology and the response to systemic therapies of tumours co-expressing HR and HER2 is quite complex. There is an extensive bi-directional cross-talk between these 2 pathways, that may result in both intrinsic and acquired resistance to endocrine agents, as well as in lower sensitivity to HER2-targeted therapies. In fact, neoadjuvant studies indicate that pCR rates are significantly lower in HER2-positive/ER-positive than ER-negative tumours, regardless the type of HER2 targeted treatment. The recent identification of different subtypes of HER2-positive breast cancer, according to the co-expression of HR and/or the molecular (intrinsic) subtyping, has prompted a renewed interest for clinical studies aimed at better tailoring the systemic therapy for these patients. A subgroup of them might not need chemotherapy if treated with dual HER2 blockade, and this option has been tested in a number of neo-adjuvant trials. In addition, triple targeting of HR, HER2, and CDK4/6 pathways simultaneously may be an effective treatment and overcome the drug resistance mechanisms that are typical of the disease. Finally, HER2-positive breast cancer may well benefit from immunotherapeutic interventions with anti-programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) agents.
Collapse
|
146
|
Janjigian YY, Maron SB, Chatila WK, Millang B, Chavan SS, Alterman C, Chou JF, Segal MF, Simmons MZ, Momtaz P, Shcherba M, Ku GY, Zervoudakis A, Won ES, Kelsen DP, Ilson DH, Nagy RJ, Lanman RB, Ptashkin RN, Donoghue MTA, Capanu M, Taylor BS, Solit DB, Schultz N, Hechtman JF. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: an open-label, single-arm, phase 2 trial. Lancet Oncol 2020; 21:821-831. [PMID: 32437664 DOI: 10.1016/s1470-2045(20)30169-8] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Addition of trastuzumab to first-line chemotherapy improves overall survival in patients with HER2-positive metastatic gastric cancer. We assessed the safety and activity of pembrolizumab in combination with trastuzumab and chemotherapy in first-line HER2-positive metastatic oesophagogastric (gastric, oesophageal, or gastroesophageal junction) cancer. METHODS This study was an investigator-initiated, open-label, non-randomised, single-arm, single centre, phase 2 trial in patients aged 18 years or older with HER2-positive metastatic oesophagogastric cancer. Eligible patients had measurable or evaluable non-measurable disease, Eastern Cooperative Oncology Group performance status of 0, 1, or 2, and left ventricular ejection fraction of at least 53%. Patients were eligible to receive an initial induction cycle of 200 mg flat dose of intravenous pembrolizumab and 8 mg/kg loading dose of intravenous trastuzumab. For subsequent cycles, patients received 130 mg/m2 of intravenous oxaliplatin or 80 mg/m2 of cisplatin on day 1, 850 mg/m2 of oral capecitabine twice a day for 2 weeks followed by 1 week off (or intravenous 5-fluorouracil, 800 mg/m2 per day on days 1-5), and a 200 mg flat dose of intravenous pembrolizumab, and 6 mg/kg of trastuzumab, administered on day 1 of each 3-week cycle. The primary endpoint was 6-month progression-free survival, defined as the proportion of patients alive and free of progression at 6 months, assessed in patients who received at least one dose of trastuzumab and pembrolizumab. The regimen would be considered worthy of further investigation if 26 or more of 37 patients were progression-free at 6 months. This trial is registered with ClinicalTrials.gov, NCT02954536, and is ongoing, but closed to enrolment. FINDINGS Between Nov 11, 2016, and Jan 23, 2019, 37 patients were enrolled. At the time of data cutoff on Aug 6, 2019, median follow-up among survivors was 13·0 months (IQR 11·7-23·5). The primary endpoint was achieved; 26 (70%; 95% CI 54-83) of 37 patients were progression-free at 6 months. The most common treatment-related adverse event of any grade was neuropathy, which was reported in 36 (97%) of 37 patients. The most common grade 3 or 4 adverse events were lymphocytopenia (seven [19%] patients with grade 3 and two [5%] with grade 4), grade 3 decreased electrolytes (six [16%] patients), and grade 3 anaemia (four [11%] patients). Serious adverse events occurred in two patients patients (both grade 3 nephritis leading to treatment discontinuation). Four patients discontinued pembrolizumab because of immune-related adverse events. There were no treatment-related deaths. INTERPRETATION Pembrolizumab can be safely combined with trastuzumab and chemotherapy and has promising activity in HER2-positive metastatic oesophagogastric cancer. A randomised phase 3 clinical trial assessing the efficacy and safety of pembrolizumab versus placebo in combination with trastuzumab and chemotherapy in first-line HER2-positive metastatic oesophagogastric cancer is underway. FUNDING Merck & Co.
Collapse
Affiliation(s)
- Yelena Y Janjigian
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Steven B Maron
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Walid K Chatila
- Marie-Josée & Henry R Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional Program in Computational Biology and Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Brittanie Millang
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shweta S Chavan
- Marie-Josée & Henry R Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carly Alterman
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joanne F Chou
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michal F Segal
- Department of Nursing, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Z Simmons
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parisa Momtaz
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marina Shcherba
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Geoffrey Y Ku
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alice Zervoudakis
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth S Won
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David P Kelsen
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David H Ilson
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Ryan N Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T A Donoghue
- Marie-Josée & Henry R Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marinela Capanu
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barry S Taylor
- Marie-Josée & Henry R Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Marie-Josée & Henry R Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nikolaus Schultz
- Marie-Josée & Henry R Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
147
|
Abstract
Suppression of anti-tumor immunity is recognized as a critical step in the development of many types of cancers. Over the past decade, a multitude of immunosuppressive pathways occurring in the tumor microenvironment (TME) have been identified. Amongst them, the hydrolysis of extracellular ATP into adenosine by ecto-nucleotidases has been increasingly documented as new immune checkpoint pathway that can significantly impair anti-tumor immunity of multiple types of cancer. In this review, we summarize past and recent research on the ecto-nucleotidases CD39 and CD73, conducted by our group and others, that recently lead to the development and clinical testing of adenosine targeting agents for cancer immunotherapy.
Collapse
|
148
|
Zhao J, Huang J. Breast cancer immunology and immunotherapy: targeting the programmed cell death protein-1/programmed cell death protein ligand-1. Chin Med J (Engl) 2020; 133:853-862. [PMID: 32106121 PMCID: PMC7147660 DOI: 10.1097/cm9.0000000000000710] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/28/2022] Open
Abstract
Historically, breast cancer has been regarded as an immunogenic "cold" tumor. However, the discovery of immune checkpoint inhibitors has made immunotherapy becoming an emerging new treatment modality for breast cancer. This review discusses the immune system, immune features of breast cancer, and the programmed cell death protein-1/programmed cell death protein ligand-1 (PD-1/PD-L1) inhibitors used in the treatment of breast cancer. High T lymphocyte infiltration and mutation burden were observed in triple-negative breast cancer and human epidermal growth factor receptor 2 positive breast cancer. Increasing breast cancer immunogenicity and modulating the tumor microenvironment has been reported to improve the therapeutic efficacy of immunotherapy. Recent clinical trials involving PD-1/PD-L1 inhibitors monotherapy in breast cancer has revealed little efficacy, which highlights the need to develop combinations of PD-1/PD-L1 inhibitors with chemotherapy, molecularly targeted therapies, and other immunotherapies to maximize the clinical efficacy. Collectively, the immunotherapy might be a promising therapeutic strategy for breast cancer and several clinical trials are still on-going.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
149
|
Derakhshani A, Rezaei Z, Safarpour H, Sabri M, Mir A, Sanati MA, Vahidian F, Gholamiyan Moghadam A, Aghadoukht A, Hajiasgharzadeh K, Baradaran B. Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy. J Cell Physiol 2020; 235:3142-3156. [PMID: 31566722 DOI: 10.1002/jcp.29216] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) comprises around 20-30% of all BC subtypes and is correlated with poor prognosis. For many years, trastuzumab, a monoclonal antibody, has been used to inhibit the HER2 activity. Though, the main resistance to trastuzumab has challenged the use of this drug in the management of HER2-positive BC. Therefore, the determination of resistance mechanisms and the incorporation of new agents may lead to the development of a better blockade of the HER family receptor signaling. During the last few years, some therapeutic drugs have been developed for treating patients with trastuzumab-resistant HER2-positive BC that have more effective influences in the management of this condition. In this regard, the present study aimed at reviewing the mechanisms of trastuzumab resistance and the innovative therapies that have been investigated in trastuzumab-resistant HER2-positive BC subjects.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Morteza Sabri
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Atefeh Mir
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Mohammad Amin Sanati
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Aghadoukht
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
150
|
Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat Immunol 2020; 21:546-554. [PMID: 32231300 DOI: 10.1038/s41590-020-0641-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
High-dose radiation activates caspases in tumor cells to produce abundant DNA fragments for DNA sensing in antigen-presenting cells, but the intrinsic DNA sensing in tumor cells after radiation is rather limited. Here we demonstrate that irradiated tumor cells hijack caspase 9 signaling to suppress intrinsic DNA sensing. Instead of apoptotic genomic DNA, tumor-derived mitochondrial DNA triggers intrinsic DNA sensing. Specifically, loss of mitochondrial DNA sensing in Casp9-/- tumors abolishes the enhanced therapeutic effect of radiation. We demonstrated that combining emricasan, a pan-caspase inhibitor, with radiation generates synergistic therapeutic effects. Moreover, loss of CASP9 signaling in tumor cells led to adaptive resistance by upregulating programmed death-ligand 1 (PD-L1) and resulted in tumor relapse. Additional anti-PD-L1 blockade can further overcome this acquired immune resistance. Therefore, combining radiation with a caspase inhibitor and anti-PD-L1 can effectively control tumors by sequentially blocking both intrinsic and extrinsic inhibitory signaling.
Collapse
|