101
|
Sengupta D, Chattopadhyay A. Molecular dynamics simulations of GPCR–cholesterol interaction: An emerging paradigm. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1775-82. [DOI: 10.1016/j.bbamem.2015.03.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022]
|
102
|
Scholtysek P, Shah SWH, Müller SS, Schöps R, Frey H, Blume A, Kressler J. Unusual triskelion patterns and dye-labelled GUVs: consequences of the interaction of cholesterol-containing linear-hyperbranched block copolymers with phospholipids. SOFT MATTER 2015; 11:6106-6117. [PMID: 26133098 DOI: 10.1039/c5sm01017a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cholesterol (Ch) linked to a linear-hyperbranched block copolymer composed of poly(ethylene glycol) (PEG) and poly(glycerol) (hbPG) was investigated for its membrane anchoring properties. Two polyether-based linear-hyperbranched block copolymers with and without a covalently attached rhodamine fluorescence label (Rho) were employed (Ch-PEG30-b-hbPG23 and Ch-PEG30-b-hbPG17-Rho). Compression isotherms of co-spread 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with the respective polymers were measured on the Langmuir trough and the morphology development of the liquid-condensed (LC) domains was studied by epi-fluorescence microscopy. LC domains were strongly deformed due to the localization of the polymers at the domain interface, indicating a line activity for both block copolymers. Simultaneously, it was observed that the presence of the fluorescence label significantly influences the domain morphology, the rhodamine labelled polymer showing higher line activity. Adsorption isotherms of the polymers to the water surface or to monolayers of DPPC and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), respectively, were collected. Again the rhodamine labelled polymer showed higher surface activity and a higher affinity for insertion into lipid monolayers, which was negligibly affected when the sub-phase was changed to aqueous sodium chloride solution or phosphate buffer. Calorimetric investigations in bulk confirmed the results found using tensiometry. Confocal laser scanning microscopy (CLSM) of giant unilamellar vesicles (GUVs) also confirmed the polymers' fast adsorption to and insertion into phospholipid membranes.
Collapse
Affiliation(s)
- Peggy Scholtysek
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| | | | | | | | | | | | | |
Collapse
|
103
|
Autzen HE, Siuda I, Sonntag Y, Nissen P, Møller JV, Thøgersen L. Regulation of the Ca(2+)-ATPase by cholesterol: a specific or non-specific effect? Mol Membr Biol 2015; 32:75-87. [PMID: 26260074 DOI: 10.3109/09687688.2015.1073382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Like other integral membrane proteins, the activity of the Sarco/Endoplasmic Reticulum Ca(2+)-ATPase (SERCA) is regulated by the membrane environment. Cholesterol is present in the endoplasmic reticulum membrane at low levels, and it has the potential to affect SERCA activity both through direct, specific interaction with the protein or through indirect interaction through changes of the overall membrane properties. There are experimental data arguing for both modes of action for a cholesterol-mediated regulation of SERCA. In the current study, coarse-grained molecular dynamics simulations are used to address how a mixed lipid-cholesterol membrane interacts with SERCA. Candidates for direct regulatory sites with specific cholesterol binding modes are extracted from the simulations. The binding pocket for thapsigargin, a nanomolar inhibitor of SERCA, has been suggested as a cholesterol binding site. However, the thapsigargin binding pocket displayed very little cholesterol occupation in the simulations. Neither did atomistic simulations of cholesterol in the thapsigargin binding pocket support any specific interaction. The current study points to a non-specific effect of cholesterol on SERCA activity, and offers an alternative interpretation of the experimental results used to argue for a specific effect.
Collapse
Affiliation(s)
- Henriette Elisabeth Autzen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Iwona Siuda
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,c Bioinformatics Research Centre (BiRC) , Aarhus , Denmark , and
| | - Yonathan Sonntag
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Poul Nissen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,b Department of Molecular Biology and Genetics , Aarhus University , Aarhus , Denmark
| | - Jesper Vuust Møller
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,d Department of Biomedicine , Aarhus University , Aarhus , Denmark
| | - Lea Thøgersen
- a Centre for Membrane Pumps in Cells and Disease (PUMPkin), Danish National Research Foundation , Aarhus , Denmark .,c Bioinformatics Research Centre (BiRC) , Aarhus , Denmark , and
| |
Collapse
|
104
|
Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape. Nat Methods 2015; 12:845-851. [PMID: 26167642 DOI: 10.1038/nmeth.3479] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/29/2015] [Indexed: 11/08/2022]
Abstract
Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors.
Collapse
|
105
|
Gensler M, Eidamshaus C, Taszarek M, Reissig HU, Rabe JP. Mechanical stability of bivalent transition metal complexes analyzed by single-molecule force spectroscopy. Beilstein J Org Chem 2015; 11:817-27. [PMID: 26124883 PMCID: PMC4464087 DOI: 10.3762/bjoc.11.91] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/06/2015] [Indexed: 12/19/2022] Open
Abstract
Multivalent biomolecular interactions allow for a balanced interplay of mechanical stability and malleability, and nature makes widely use of it. For instance, systems of similar thermal stability may have very different rupture forces. Thus it is of paramount interest to study and understand the mechanical properties of multivalent systems through well-characterized model systems. We analyzed the rupture behavior of three different bivalent pyridine coordination complexes with Cu2+ in aqueous environment by single-molecule force spectroscopy. Those complexes share the same supramolecular interaction leading to similar thermal off-rates in the range of 0.09 and 0.36 s−1, compared to 1.7 s−1 for the monovalent complex. On the other hand, the backbones exhibit different flexibility, and we determined a broad range of rupture lengths between 0.3 and 1.1 nm, with higher most-probable rupture forces for the stiffer backbones. Interestingly, the medium-flexible connection has the highest rupture forces, whereas the ligands with highest and lowest rigidity seem to be prone to consecutive bond rupture. The presented approach allows separating bond and backbone effects in multivalent model systems.
Collapse
Affiliation(s)
- Manuel Gensler
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany
| | - Christian Eidamshaus
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Maurice Taszarek
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Hans-Ulrich Reissig
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Jürgen P Rabe
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstr. 15, D-12489 Berlin, Germany
| |
Collapse
|
106
|
Petrosyan R, Bippes CA, Walheim S, Harder D, Fotiadis D, Schimmel T, Alsteens D, Müller DJ. Single-molecule force spectroscopy of membrane proteins from membranes freely spanning across nanoscopic pores. NANO LETTERS 2015; 15:3624-3633. [PMID: 25879249 DOI: 10.1021/acs.nanolett.5b01223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Single-molecule force spectroscopy (SMFS) provides detailed insight into the mechanical (un)folding pathways and structural stability of membrane proteins. So far, SMFS could only be applied to membrane proteins embedded in native or synthetic membranes adsorbed to solid supports. This adsorption causes experimental limitations and raises the question to what extent the support influences the results obtained by SMFS. Therefore, we introduce here SMFS from native purple membrane freely spanning across nanopores. We show that correct analysis of the SMFS data requires extending the worm-like chain model, which describes the mechanical stretching of a polypeptide, by the cubic extension model, which describes the bending of a purple membrane exposed to mechanical stress. This new experimental and theoretical approach allows to characterize the stepwise (un)folding of the membrane protein bacteriorhodopsin and to assign the stability of single and grouped secondary structures. The (un)folding and stability of bacteriorhodopsin shows no significant difference between freely spanning and directly supported purple membranes. Importantly, the novel experimental SMFS setup opens an avenue to characterize any protein from freely spanning cellular or synthetic membranes.
Collapse
Affiliation(s)
- Rafayel Petrosyan
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Christian A Bippes
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Stefan Walheim
- †Institute of Applied Physics and Center for Functional Nanostructures (CFN) and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - Daniel Harder
- §Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- §Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Thomas Schimmel
- †Institute of Applied Physics and Center for Functional Nanostructures (CFN) and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany
| | - David Alsteens
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Daniel J Müller
- ‡Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| |
Collapse
|
107
|
Conformational rearrangements in the transmembrane domain of CNGA1 channels revealed by single-molecule force spectroscopy. Nat Commun 2015; 6:7093. [PMID: 25963832 PMCID: PMC4432583 DOI: 10.1038/ncomms8093] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/01/2015] [Indexed: 11/12/2022] Open
Abstract
Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the open state, but S3 in the closed state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels. Cyclic nucleotide gated channels are activated after binding cyclic nucleotides. Here, using single molecule force spectroscopy, the authors reveal that cyclic nucleotide binding causes conformational changes and tighter coupling of the S4 helix to the pore forming domain.
Collapse
|
108
|
Serdiuk T, Sugihara J, Mari SA, Kaback HR, Müller DJ. Observing a lipid-dependent alteration in single lactose permeases. Structure 2015; 23:754-61. [PMID: 25800555 DOI: 10.1016/j.str.2015.02.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
Abstract
Lipids of the Escherichia coli membrane are mainly composed of 70%-80% phosphatidylethanolamine (PE) and 20%-25% phosphatidylglycerol (PG). Biochemical studies indicate that the depletion of PE causes inversion of the N-terminal helix bundle of the lactose permease (LacY), and helix VII becomes extramembranous. Here we study this phenomenon using single-molecule force spectroscopy, which is sensitive to the structure of membrane proteins. In PE and PG at a ratio of 3:1, ∼95% of the LacY molecules adopt a native structure. However, when PE is omitted and the membrane contains PG only, LacY almost equally populates a native and a perturbed conformation. The most drastic changes occur at helices VI and VII and the intervening loop. Since helix VII contains Asp237 and Asp240, zwitterionic PE may suppress electrostatic repulsion between LacY and PG in the PE:PG environment. Thus, PE promotes a native fold and prevents LacY from populating a functionally defective, nonnative conformation.
Collapse
Affiliation(s)
- Tetiana Serdiuk
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Junichi Sugihara
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | - Stefania A Mari
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - H Ronald Kaback
- Department of Physiology, University of California, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
109
|
Yano Y, Kondo K, Kitani R, Yamamoto A, Matsuzaki K. Cholesterol-Induced Lipophobic Interaction between Transmembrane Helices Using Ensemble and Single-Molecule Fluorescence Resonance Energy Transfer. Biochemistry 2015; 54:1371-9. [DOI: 10.1021/bi501528e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kotaro Kondo
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryota Kitani
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Arisa Yamamoto
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical
Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
110
|
Kulig W, Jurkiewicz P, Olżyńska A, Tynkkynen J, Javanainen M, Manna M, Rog T, Hof M, Vattulainen I, Jungwirth P. Experimental determination and computational interpretation of biophysical properties of lipid bilayers enriched by cholesteryl hemisuccinate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:422-32. [DOI: 10.1016/j.bbamem.2014.10.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/06/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
111
|
Chakraborty H, Chattopadhyay A. Excitements and challenges in GPCR oligomerization: molecular insight from FRET. ACS Chem Neurosci 2015; 6:199-206. [PMID: 25363209 DOI: 10.1021/cn500231d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of proteins involved in signal transduction across cell membranes, and they represent major drug targets in all clinical areas. Oligomerization of GPCRs and its implications in drug discovery constitute an exciting area in contemporary biology. In this Review, we have highlighted the application of fluorescence resonance energy transfer (FRET) in exploring GPCR oligomerization, with special emphasis on possible pitfalls and experimental complications involved. Based on FRET photophysics, we discuss some of the possible complications, and recommend that FRET results in complex cellular environments should be interpreted with caution. Although both hetero- and homo-FRET are used in measurements of GPCR oligomerization, we suggest that homo-FRET enjoys certain advantages over hetero-FRET. Given the seminal role of GPCRs as current drug targets, we envision that methodological progress in studying GPCR oligomerization would result in better therapeutic strategies.
Collapse
Affiliation(s)
- Hirak Chakraborty
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
112
|
Zhang L, Wang X. Mechanisms of graphyne-enabled cholesterol extraction from protein clusters. RSC Adv 2015. [DOI: 10.1039/c4ra16944a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Functionalized graphyne provides a novel vehicle for cholesterol removal from protein clusters by molecular dynamics simulations.
Collapse
Affiliation(s)
- Liuyang Zhang
- College of Engineering and NanoSEC
- University of Georgia
- Athens
- USA
| | - Xianqiao Wang
- College of Engineering and NanoSEC
- University of Georgia
- Athens
- USA
| |
Collapse
|
113
|
Chen Q, Vishnivetskiy SA, Zhuang T, Cho MK, Thaker TM, Sanders CR, Gurevich VV, Iverson TM. The rhodopsin-arrestin-1 interaction in bicelles. Methods Mol Biol 2015; 1271:77-95. [PMID: 25697518 DOI: 10.1007/978-1-4939-2330-4_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
G-protein-coupled receptors (GPCRs) are essential mediators of information transfer in eukaryotic cells. Interactions between GPCRs and their binding partners modulate the signaling process. For example, the interaction between GPCR and cognate G protein initiates the signal, while the interaction with cognate arrestin terminates G-protein-mediated signaling. In visual signal transduction, arrestin-1 selectively binds to the phosphorylated light-activated GPCR rhodopsin to terminate rhodopsin signaling. Under physiological conditions, the rhodopsin-arrestin-1 interaction occurs in highly specialized disk membrane in which rhodopsin resides. This membrane is replaced with mimetics when working with purified proteins. While detergents are commonly used as membrane mimetics, most detergents denature arrestin-1, preventing biochemical studies of this interaction. In contrast, bicelles provide a suitable alternative medium. An advantage of bicelles is that they contain lipids, which have been shown to be necessary for normal rhodopsin-arrestin-1 interaction. Here we describe how to reconstitute rhodopsin into bicelles, and how bicelle properties affect the rhodopsin-arrestin-1 interaction.
Collapse
Affiliation(s)
- Qiuyan Chen
- Department of Pharmacology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232-6600, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Formosa C, Lachaize V, Galés C, Rols MP, Martin-Yken H, François JM, Duval RE, Dague E. Mapping HA-tagged protein at the surface of living cells by atomic force microscopy. J Mol Recognit 2014; 28:1-9. [DOI: 10.1002/jmr.2407] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/20/2014] [Accepted: 06/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- C. Formosa
- CNRS; LAAS; 7 avenue du Colonel Roche 31400 Toulouse France
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- CNRS; UMR 7565, SRSMC; Vandœuvre-lès-Nancy France
- Université de Lorraine; UMR 7565, Faculté de Pharmacie; Nancy France
| | - V. Lachaize
- CNRS; LAAS; 7 avenue du Colonel Roche 31400 Toulouse France
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale U1048; Université Toulouse III Paul Sabatier; 31432 Toulouse France
- CNRS; ITAV; 1 Place Pierre Potier 31000 Toulouse France
| | - C. Galés
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale U1048; Université Toulouse III Paul Sabatier; 31432 Toulouse France
- CNRS; ITAV; 1 Place Pierre Potier 31000 Toulouse France
| | - M. P. Rols
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- CNRS; IPBS, UMR 5089; 205 route de Narbonne 31077 Toulouse France
| | - H. Martin-Yken
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- INRA; UMR 972 LISBP; Toulouse France
| | - J. M. François
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- INRA; UMR 972 LISBP; Toulouse France
| | - R. E. Duval
- CNRS; UMR 7565, SRSMC; Vandœuvre-lès-Nancy France
- Université de Lorraine; UMR 7565, Faculté de Pharmacie; Nancy France
- ABC Platform®; Nancy France
| | - E. Dague
- CNRS; LAAS; 7 avenue du Colonel Roche 31400 Toulouse France
- Université de Toulouse; LAAS, ITAV, IPBS; 31400 Toulouse France
- CNRS; ITAV; 1 Place Pierre Potier 31000 Toulouse France
| |
Collapse
|
115
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
116
|
Koldsø H, Shorthouse D, Hélie J, Sansom MSP. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers. PLoS Comput Biol 2014; 10:e1003911. [PMID: 25340788 PMCID: PMC4207469 DOI: 10.1371/journal.pcbi.1003911] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/16/2014] [Indexed: 12/21/2022] Open
Abstract
Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2), in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side) regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins. Cell membranes play important roles in vivo both in shielding the cell interior from the surrounding environment and in cell function through lipid components of the membrane having roles in controlling protein function, cell signaling etc. We employ molecular dynamics simulations to explore the behavior of biologically realistic membrane models. Our simulations reveal nano-domain clustering of the glycolipid GM3 and to a lesser extent of the anionic lipid phosphatidylinositol 4,5-bisphophate (PIP2). When including transmembrane proteins we are able to observe preferential interactions of known regulatory lipids (e.g. GM3, PIP2 and cholesterol) with the proteins. Membrane curvature is shown to be coupled to the local lipid composition, suggestive of a link between lipid nano-domains and membrane geometry.
Collapse
Affiliation(s)
- Heidi Koldsø
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David Shorthouse
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jean Hélie
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark S. P. Sansom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
117
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across cell membranes and represent major targets in the development of novel drug candidates in all clinical areas. Although there have been some recent leads, structural information on GPCRs is relatively rare due to the difficulty associated with crystallization. A specific reason for this is the intrinsic flexibility displayed by GPCRs, which is necessary for their functional diversity. Since GPCRs are integral membrane proteins, interaction of membrane lipids with them constitutes an important area of research in GPCR biology. In particular, membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. The role of membrane cholesterol in GPCR function is discussed with specific example of the serotonin1A receptor. Recent results show that GPCRs are characterized with structural motifs that preferentially associate with cholesterol. An emerging and important concept is oligomerization of GPCRs and its role in GPCR function and signaling. The role of membrane cholesterol in GPCR oligomerization is highlighted. Future research in GPCR biology would offer novel insight in basic biology and provide new avenues for drug discovery.
Collapse
|
118
|
Wolny M, Batchelor M, Knight PJ, Paci E, Dougan L, Peckham M. Stable single α-helices are constant force springs in proteins. J Biol Chem 2014; 289:27825-35. [PMID: 25122759 PMCID: PMC4183817 DOI: 10.1074/jbc.m114.585679] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Single α-helix (SAH) domains are rich in charged residues (Arg, Lys, and Glu) and stable in solution over a wide range of pH and salt concentrations. They are found in many different proteins where they bridge two functional domains. To test the idea that their high stability might enable these proteins to resist unfolding along their length, the properties and unfolding behavior of the predicted SAH domain from myosin-10 were characterized. The expressed and purified SAH domain was highly helical, melted non-cooperatively, and was monomeric as shown by circular dichroism and mass spectrometry as expected for a SAH domain. Single molecule force spectroscopy experiments showed that the SAH domain unfolded at very low forces (<30 pN) without a characteristic unfolding peak. Molecular dynamics simulations showed that the SAH domain unfolds progressively as the length is increased and refolds progressively as the length is reduced. This enables the SAH domain to act as a constant force spring in the mechanically dynamic environment of the cell.
Collapse
Affiliation(s)
- Marcin Wolny
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Matthew Batchelor
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter J Knight
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Emanuele Paci
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lorna Dougan
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michelle Peckham
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
119
|
Hu X, Li H. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective. FEBS Lett 2014; 588:3613-20. [PMID: 24747422 DOI: 10.1016/j.febslet.2014.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/04/2023]
Abstract
Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings.
Collapse
Affiliation(s)
- Xiaotang Hu
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, PR China
| | - Hongbin Li
- State Key Laboratory of Precision Measurements Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, PR China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
120
|
Abstract
The lactose permease (LacY) of Escherichia coli, a paradigm for the major facilitator superfamily, catalyzes the coupled stoichiometric translocation of a galactopyranoside and an H(+) across the cytoplasmic membrane. To catalyze transport, LacY undergoes large conformational changes that allow alternating access of sugar- and H(+)-binding sites to either side of the membrane. Despite strong evidence for an alternating access mechanism, it remains unclear how H(+)- and sugar-binding trigger the cascade of interactions leading to alternating conformational states. Here we used dynamic single-molecule force spectroscopy to investigate how substrate binding induces this phenomenon. Galactoside binding strongly modifies kinetic, energetic, and mechanical properties of the N-terminal 6-helix bundle of LacY, whereas the C-terminal 6-helix bundle remains largely unaffected. Within the N-terminal 6-helix bundle, the properties of helix V, which contains residues critical for sugar binding, change most radically. Particularly, secondary structures forming the N-terminal domain exhibit mechanically brittle properties in the unbound state, but highly flexible conformations in the substrate-bound state with significantly increased lifetimes and energetic stability. Thus, sugar binding tunes the properties of the N-terminal domain to initiate galactoside/H(+) symport. In contrast to wild-type LacY, the properties of the conformationally restricted mutant Cys154→Gly do not change upon sugar binding. It is also observed that the single mutation of Cys154→Gly alters intramolecular interactions so that individual transmembrane helices manifest different properties. The results support a working model of LacY in which substrate binding induces alternating conformational states and provides insight into their specific kinetic, energetic, and mechanical properties.
Collapse
|
121
|
How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers? J Mol Model 2014; 20:2121. [DOI: 10.1007/s00894-014-2121-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/18/2013] [Indexed: 12/22/2022]
|
122
|
Shpakov AO. Advances in the study of structure and function of G protein-coupled receptors (about awarding the Nobel Prize for Chemistry in 2012 to Robert Lefkowitz and Brian Kobilka). J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013050022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
123
|
Bruzzone A, Saulière A, Finana F, Sénard JM, Lüthy I, Galés C. Dosage-dependent regulation of cell proliferation and adhesion through dual β2-adrenergic receptor/cAMP signals. FASEB J 2013; 28:1342-54. [PMID: 24308976 DOI: 10.1096/fj.13-239285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of β-adrenergic receptors (β-ARs) remains controversial in normal and tumor breast. Herein we explore the cAMP signaling involved in β-AR-dependent control of proliferation and adhesion of nontumor human breast cell line MCF-10A. Low concentrations of a β-agonist, isoproterenol (ISO), promote cell adhesion (87.5% cells remaining adherent to the plastic dishes following specific detachment vs. 35.0% in control, P<0.001), while increasing concentrations further engages an additional 36% inhibition of Erk1/2 phosphorylation (p-Erk1/2)-dependent cell proliferation (P<0.01). Isoproterenol dose response on cell adhesion was fitted to a 2-site curve (EC50(1): 16.5±11.5 fM, EC50(2): 4.08±3.09 nM), while ISO significantly inhibited p-Erk1/2 according to a 1-site model (EC50: 0.25±0.13 nM). Using β-AR-selective agonist/antagonists and cAMP analogs/inhibitors, we identified a dosage-dependent signaling in which low ISO concentrations target a β2-AR population localized in raft microdomains and stimulate a Gs/cAMP/Epac/adhesion-signaling module, while higher concentrations engage a concomitant activation of another β2-AR population outside rafts and inhibit the proliferation by a Gs/cAMP/PKA-dependent signaling module. Our data provide a new molecular basis for the dose-dependent switch of β-AR signaling. This study also sheds light on a new cAMP pathway core mechanism with a single receptor triggering dual cAMP signaling controlled by PKA or Epac but with different cellular outputs.
Collapse
Affiliation(s)
- Ariana Bruzzone
- 2Inserm U1048, Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, 1, avenue Jean-Poulhès, BP84225, 31432 Toulouse Cedex 4, France.
| | | | | | | | | | | |
Collapse
|
124
|
Peptide transporter DtpA has two alternate conformations, one of which is promoted by inhibitor binding. Proc Natl Acad Sci U S A 2013; 110:E3978-86. [PMID: 24082128 DOI: 10.1073/pnas.1312959110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Peptide transporters (PTRs) of the large PTR family facilitate the uptake of di- and tripeptides to provide cells with amino acids for protein synthesis and for metabolic intermediates. Although several PTRs have been structurally and functionally characterized, how drugs modulate peptide transport remains unclear. To obtain insight into this mechanism, we characterize inhibitor binding to the Escherichia coli PTR dipeptide and tripeptide permease A (DtpA), which shows substrate specificities similar to its human homolog hPEPT1. After demonstrating that Lys[Z-NO2]-Val, the strongest inhibitor of hPEPT1, also acts as a high-affinity inhibitor for DtpA, we used single-molecule force spectroscopy to localize the structural segments stabilizing the peptide transporter and investigated which of these structural segments change stability upon inhibitor binding. This characterization was done with DtpA embedded in the lipid membrane and exposed to physiologically relevant conditions. In the unbound state, DtpA adopts two main alternate conformations in which transmembrane α-helix (TMH) 2 is either stabilized (in ∼43% of DtpA molecules) or not (in ∼57% of DtpA molecules). The two conformations are understood to represent the inward- and outward-facing conformational states of the transporter. With increasing inhibitor concentration, the conformation characterized by a stabilized TMH 2 becomes increasingly prevalent, reaching ∼92% at saturation. Our measurements further suggest that Lys[Z-NO2]-Val interacts with discrete residues in TMH 2 that are important for ligand binding and substrate affinity. These interactions in turn stabilize TMH 2, thereby promoting the inhibited conformation of DtpA.
Collapse
|
125
|
Dalet FGE, Guadalupe TFJ, María del Carmen CH, Humberto GAC, Antonio SUM. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes. Neural Regen Res 2013; 8:2290-2302. [PMID: 25206539 PMCID: PMC4146033 DOI: 10.3969/j.issn.1673-5374.2013.24.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/25/2013] [Indexed: 02/05/2023] Open
Abstract
In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selectivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and orthosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopamine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric rinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway.
Collapse
Affiliation(s)
- Farfán-García Eunice Dalet
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Trujillo-Ferrara José Guadalupe
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Castillo-Hernández María del Carmen
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Guerra-Araiza Christian Humberto
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| | - Soriano-Ursúa Marvin Antonio
- Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Del. Benito Juárez, Mexico City 11340, Mexico
| |
Collapse
|
126
|
Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:532-45. [PMID: 23899502 DOI: 10.1016/j.bbamem.2013.07.018] [Citation(s) in RCA: 396] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 07/16/2013] [Indexed: 12/14/2022]
Abstract
The plasma membrane in eukaryotic cells contains microdomains that are enriched in certain glycosphingolipids, gangliosides, and sterols (such as cholesterol) to form membrane/lipid rafts (MLR). These regions exist as caveolae, morphologically observable flask-like invaginations, or as a less easily detectable planar form. MLR are scaffolds for many molecular entities, including signaling receptors and ion channels that communicate extracellular stimuli to the intracellular milieu. Much evidence indicates that this organization and/or the clustering of MLR into more active signaling platforms depends upon interactions with and dynamic rearrangement of the cytoskeleton. Several cytoskeletal components and binding partners, as well as enzymes that regulate the cytoskeleton, localize to MLR and help regulate lateral diffusion of membrane proteins and lipids in response to extracellular events (e.g., receptor activation, shear stress, electrical conductance, and nutrient demand). MLR regulate cellular polarity, adherence to the extracellular matrix, signaling events (including ones that affect growth and migration), and are sites of cellular entry of certain pathogens, toxins and nanoparticles. The dynamic interaction between MLR and the underlying cytoskeleton thus regulates many facets of the function of eukaryotic cells and their adaptation to changing environments. Here, we review general features of MLR and caveolae and their role in several aspects of cellular function, including polarity of endothelial and epithelial cells, cell migration, mechanotransduction, lymphocyte activation, neuronal growth and signaling, and a variety of disease settings. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
127
|
Zocher M, Bippes CA, Zhang C, Müller DJ. Single-molecule force spectroscopy of G-protein-coupled receptors. Chem Soc Rev 2013; 42:7801-15. [PMID: 23799399 DOI: 10.1039/c3cs60085h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The applicability of single-molecule force spectroscopy (SMFS) to characterize membrane proteins in vitro is developing rapidly and opening a wide range of fascinating possibilities to study how intra- and intermolecular interactions determine their structural stability and functional state. In particular, understanding how molecular interactions contribute to the functional state of G-protein-coupled receptors (GPCRs) is of importance because they mediate most of our physiological responses and act as therapeutic targets for a broad spectrum of diseases. In our review we focus on SMFS to characterize GPCRs embedded in their physiologically relevant membranes and exposed to physiologically relevant conditions. SMFS uses a molecularly sharp stylus to grasp the terminal end of a GPCR and to quickly unfold the receptor while recording interaction forces. The positional accuracy of SMFS localizes these interactions to structural segments of the GPCR whereas the sensitivity of SMFS enables their stabilizing interaction forces to be quantified. To further investigate the kinetic, energetic and mechanical properties of the structural segments, dynamic SMFS (DFS) probes their stability over a wide range of loading rates. These parameters provide insight into the energy landscape that provides information on the structural and functional properties of the GPCRs. Selected highlights exemplify the application of SMFS to characterize inter- and intramolecular interactions, which change the properties of GPCRs in relation to their functional state (e.g., ligand binding), diseased state (e.g., mutation), or lipid environment such as cholesterol.
Collapse
Affiliation(s)
- Michael Zocher
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland.
| | | | | | | |
Collapse
|
128
|
Whited AM, Park PSH. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:56-68. [PMID: 23603221 DOI: 10.1016/j.bbamem.2013.04.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/22/2013] [Accepted: 04/09/2013] [Indexed: 01/31/2023]
Abstract
Membrane proteins are embedded in lipid bilayers and facilitate the communication between the external environment and the interior of the cell. This communication is often mediated by the binding of ligands to the membrane protein. Understanding the nature of the interaction between a ligand and a membrane protein is required to both understand the mechanism of action of these proteins and for the development of novel pharmacological drugs. The highly hydrophobic nature of membrane proteins and the requirement of a lipid bilayer for native function have hampered the structural and molecular characterizations of these proteins under physiologically relevant conditions. Atomic force microscopy offers a solution to studying membrane proteins and their interactions with ligands under physiologically relevant conditions and can provide novel insights about the nature of these critical molecular interactions that facilitate cellular communication. In this review, we provide an overview of the atomic force microscopy technique and discuss its application in the study of a variety of questions related to the interaction between a membrane protein and a ligand. This article is part of a Special Issue entitled: Structural and biophysical characterization of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Allison M Whited
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
129
|
Preininger AM, Meiler J, Hamm HE. Conformational flexibility and structural dynamics in GPCR-mediated G protein activation: a perspective. J Mol Biol 2013; 425:2288-98. [PMID: 23602809 DOI: 10.1016/j.jmb.2013.04.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Structure and dynamics of G proteins and their cognate receptors, both alone and in complex, are becoming increasingly accessible to experimental techniques. Understanding the conformational changes and timelines that govern these changes can lead to new insights into the processes of ligand binding and associated G protein activation. Experimental systems may involve the use of, or otherwise stabilize, non-native environments. This can complicate our understanding of structural and dynamic features of processes such as the ionic lock, tryptophan toggle, and G protein flexibility. While elements in the receptor's transmembrane helices and the C-terminal α5 helix of Gα undergo well-defined structural changes, regions subject to conformational flexibility may be important in fine-tuning the interactions between activated receptors and G proteins. The pairing of computational and experimental approaches will continue to provide powerful tools to probe the conformation and dynamics of receptor-mediated G protein activation.
Collapse
Affiliation(s)
- Anita M Preininger
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| | | | | |
Collapse
|
130
|
Kawamura S, Gerstung M, Colozo AT, Helenius J, Maeda A, Beerenwinkel N, Park PSH, Müller DJ. Kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin. Structure 2013; 21:426-37. [PMID: 23434406 DOI: 10.1016/j.str.2013.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/05/2013] [Accepted: 01/15/2013] [Indexed: 11/20/2022]
Abstract
Rhodopsin, the photoreceptor pigment of the retina, initiates vision upon photon capture by its covalently linked chromophore 11-cis-retinal. In the absence of light, the chromophore serves as an inverse agonist locking the receptor in the inactive dark state. In the absence of chromophore, the apoprotein opsin shows low-level constitutive activity. Toward revealing insight into receptor properties controlled by the chromophore, we applied dynamic single-molecule force spectroscopy to quantify the kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin in native membranes from the retina of mice. Both rhodopsin and opsin are stabilized by ten structural segments. Compared to dark-state rhodopsin, the structural segments stabilizing opsin showed higher interaction strengths and mechanical rigidities and lower conformational variabilities, lifetimes, and free energies. These changes outline a common mechanism toward activating G-protein-coupled receptors. Additionally, we detected that opsin was more pliable and frequently stabilized alternate structural intermediates.
Collapse
Affiliation(s)
- Shiho Kawamura
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|