101
|
Battchikova N, Angeleri M, Aro EM. Proteomic approaches in research of cyanobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:47-70. [PMID: 25359503 DOI: 10.1007/s11120-014-0050-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/18/2014] [Indexed: 05/03/2023]
Abstract
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
Collapse
Affiliation(s)
- Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| | - Martina Angeleri
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| |
Collapse
|
102
|
Ménoret A, Crocker SJ, Rodriguez A, Rathinam VA, Clark RB, Vella AT. Transition from identity to bioactivity-guided proteomics for biomarker discovery with focus on the PF2D platform. Proteomics Clin Appl 2015. [PMID: 26201056 DOI: 10.1002/prca.201500029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteomic strategies provide a valuable tool kit to identify proteins involved in diseases. With recent progress in MS technology, high throughput proteomics has accelerated protein identification for potential biomarkers. Numerous biomarker candidates have been identified in several diseases, and many are common among pathologies. An overall strategy that could complement and strengthen the search for biomarkers is combining protein identity with biological outcomes. This review describes an emerging framework of bridging bioactivity to protein identity, exploring the possibility that some biomarkers will have a mechanistic role in the disease process. A review of pulmonary, cardiovascular, and CNS biomarkers will be discussed to demonstrate the utility of combining bioactivity with identification as a means to not only find meaningful biomarkers, but also to uncover functional mediators of disease.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Annabelle Rodriguez
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
103
|
The Pacific Northwest National Laboratory library of bacterial and archaeal proteomic biodiversity. Sci Data 2015; 2:150041. [PMID: 26306205 PMCID: PMC4540001 DOI: 10.1038/sdata.2015.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/22/2015] [Indexed: 01/09/2023] Open
Abstract
This Data Descriptor announces the submission to public repositories of the PNNL Biodiversity Library, a large collection of global proteomics data for 112 bacterial and archaeal organisms. The data comprises 35,162 tandem mass spectrometry (MS/MS) datasets from ~10 years of research. All data has been searched, annotated and organized in a consistent manner to promote reuse by the community. Protein identifications were cross-referenced with KEGG functional annotations which allows for pathway oriented investigation. We present the data as a freely available community resource. A variety of data re-use options are described for computational modelling, proteomics assay design and bioengineering. Instrument data and analysis files are available at ProteomeXchange via the MassIVE partner repository under the identifiers PXD001860 and MSV000079053.
Collapse
|
104
|
Desmet G, Callewaert M, Ottevaere H, De Malsche W. Merging Open-Tubular and Packed Bed Liquid Chromatography. Anal Chem 2015; 87:7382-8. [DOI: 10.1021/acs.analchem.5b01579] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gert Desmet
- Department
of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Manly Callewaert
- Department
of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- B-PHOT,
Department of Applied Physics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Heidi Ottevaere
- B-PHOT,
Department of Applied Physics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Wim De Malsche
- Department
of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
105
|
Herweg JA, Hansmeier N, Otto A, Geffken AC, Subbarayal P, Prusty BK, Becher D, Hensel M, Schaible UE, Rudel T, Hilbi H. Purification and proteomics of pathogen-modified vacuoles and membranes. Front Cell Infect Microbiol 2015; 5:48. [PMID: 26082896 PMCID: PMC4451638 DOI: 10.3389/fcimb.2015.00048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023] Open
Abstract
Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation.
Collapse
Affiliation(s)
- Jo-Ana Herweg
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Nicole Hansmeier
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Andreas Otto
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Anna C Geffken
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Prema Subbarayal
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Bhupesh K Prusty
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald Greifswald, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück Osnabrück, Germany
| | - Ulrich E Schaible
- Priority Area Infections, Cellular Microbiology, Research Center Borstel, Leibniz Center for Medicine and Biosciences Borstel, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg Würzburg, Germany
| | - Hubert Hilbi
- Department of Medicine, Max von Pettenkofer Institute, Ludwig-Maximilians University Munich Munich, Germany ; Department of Medicine, Institute of Medical Microbiology, University of Zürich Zürich, Switzerland
| |
Collapse
|
106
|
The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 2015; 567:103-31. [PMID: 25987439 DOI: 10.1016/j.gene.2015.04.085] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
N-terminal acetylation (NTA) is one of the most abundant protein modifications known, and the N-terminal acetyltransferase (NAT) machinery is conserved throughout all Eukarya. Over the past 50 years, the function of NTA has begun to be slowly elucidated, and this includes the modulation of protein-protein interaction, protein-stability, protein function, and protein targeting to specific cellular compartments. Many of these functions have been studied in the context of Naa10/NatA; however, we are only starting to really understand the full complexity of this picture. Roughly, about 40% of all human proteins are substrates of Naa10 and the impact of this modification has only been studied for a few of them. Besides acting as a NAT in the NatA complex, recently other functions have been linked to Naa10, including post-translational NTA, lysine acetylation, and NAT/KAT-independent functions. Also, recent publications have linked mutations in Naa10 to various diseases, emphasizing the importance of Naa10 research in humans. The recent design and synthesis of the first bisubstrate inhibitors that potently and selectively inhibit the NatA/Naa10 complex, monomeric Naa10, and hNaa50 further increases the toolset to analyze Naa10 function.
Collapse
|
107
|
Valeja SG, Xiu L, Gregorich ZR, Guner H, Jin S, Ge Y. Three dimensional liquid chromatography coupling ion exchange chromatography/hydrophobic interaction chromatography/reverse phase chromatography for effective protein separation in top-down proteomics. Anal Chem 2015; 87:5363-5371. [PMID: 25867201 PMCID: PMC4575680 DOI: 10.1021/acs.analchem.5b00657] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To address the complexity of the proteome in mass spectrometry (MS)-based top-down proteomics, multidimensional liquid chromatography (MDLC) strategies that can effectively separate proteins with high resolution and automation are highly desirable. Although various MDLC methods that can effectively separate peptides from protein digests exist, very few MDLC strategies, primarily consisting of 2DLC, are available for intact protein separation, which is insufficient to address the complexity of the proteome. We recently demonstrated that hydrophobic interaction chromatography (HIC) utilizing a MS-compatible salt can provide high resolution separation of intact proteins for top-down proteomics. Herein, we have developed a novel 3DLC strategy by coupling HIC with ion exchange chromatography (IEC) and reverse phase chromatography (RPC) for intact protein separation. We demonstrated that a 3D (IEC-HIC-RPC) approach greatly outperformed the conventional 2D IEC-RPC approach. For the same IEC fraction (out of 35 fractions) from a crude HEK 293 cell lysate, a total of 640 proteins were identified in the 3D approach (corresponding to 201 nonredundant proteins) as compared to 47 in the 2D approach, whereas simply prolonging the gradients in RPC in the 2D approach only led to minimal improvement in protein separation and identifications. Therefore, this novel 3DLC method has great potential for effective separation of intact proteins to achieve deep proteome coverage in top-down proteomics.
Collapse
Affiliation(s)
- Santosh G. Valeja
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lichen Xiu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Wisconsin, USA
| | - Huseyin Guner
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
108
|
Verrastro I, Pasha S, Jensen KT, Pitt AR, Spickett CM. Mass spectrometry-based methods for identifying oxidized proteins in disease: advances and challenges. Biomolecules 2015; 5:378-411. [PMID: 25874603 PMCID: PMC4496678 DOI: 10.3390/biom5020378] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/02/2023] Open
Abstract
Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs) of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Sabah Pasha
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Karina Tveen Jensen
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
109
|
Loi VV, Rossius M, Antelmann H. Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol 2015; 6:187. [PMID: 25852656 PMCID: PMC4360819 DOI: 10.3389/fmicb.2015.00187] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 12/31/2022] Open
Abstract
Low molecular weight (LMW) thiols function as thiol-redox buffers to maintain the reduced state of the cytoplasm. The best studied LMW thiol is the tripeptide glutathione (GSH) present in all eukaryotes and Gram-negative bacteria. Firmicutes bacteria, including Bacillus and Staphylococcus species utilize the redox buffer bacillithiol (BSH) while Actinomycetes produce the related redox buffer mycothiol (MSH). In eukaryotes, proteins are post-translationally modified to S-glutathionylated proteins under conditions of oxidative stress. S-glutathionylation has emerged as major redox-regulatory mechanism in eukaryotes and protects active site cysteine residues against overoxidation to sulfonic acids. First studies identified S-glutathionylated proteins also in Gram-negative bacteria. Advances in mass spectrometry have further facilitated the identification of protein S-bacillithiolations and S-mycothiolation as BSH- and MSH-mixed protein disulfides formed under oxidative stress in Firmicutes and Actinomycetes, respectively. In Bacillus subtilis, protein S-bacillithiolation controls the activities of the redox-sensing OhrR repressor and the methionine synthase MetE in vivo. In Corynebacterium glutamicum, protein S-mycothiolation was more widespread and affected the functions of the maltodextrin phosphorylase MalP and thiol peroxidase (Tpx). In addition, novel bacilliredoxins (Brx) and mycoredoxins (Mrx1) were shown to function similar to glutaredoxins in the reduction of BSH- and MSH-mixed protein disulfides. Here we review the current knowledge about the functions of the bacterial thiol-redox buffers glutathione, bacillithiol, and mycothiol and the role of protein S-thiolation in redox regulation and thiol protection in model and pathogenic bacteria.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Martina Rossius
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| | - Haike Antelmann
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald Greifswald, Germany
| |
Collapse
|
110
|
Baez NOD, Reisz JA, Furdui CM. Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. Free Radic Biol Med 2015; 80:191-211. [PMID: 25261734 PMCID: PMC4355329 DOI: 10.1016/j.freeradbiomed.2014.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has become a powerful and widely utilized tool in the investigation of protein thiol chemistry, biochemistry, and biology. Very early biochemical studies of metabolic enzymes have brought to light the broad spectrum of reactivity profiles that distinguish cysteine thiols with functions in catalysis and protein stability from other cysteine residues in proteins. The development of MS methods for the analysis of proteins using electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) coupled with the emergence of high-resolution mass analyzers has been instrumental in advancing studies of thiol modifications, both in single proteins and within the cellular context. This article reviews MS instrumentation and methods of analysis employed in investigations of thiols and their reactivity toward a range of small biomolecules. A selected number of studies are detailed to highlight the advantages brought about by the MS technologies along with the caveats associated with these analyses.
Collapse
Affiliation(s)
- Nelmi O Devarie Baez
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Julie A Reisz
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
111
|
Lin JCY, Chiang BY, Chou CC, Chen TC, Chen YJ, Chen YJ, Lin CH. Glutathionylspermidine in the modification of protein SH groups: the enzymology and its application to study protein glutathionylation. Molecules 2015; 20:1452-74. [PMID: 25599150 PMCID: PMC6272389 DOI: 10.3390/molecules20011452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/15/2014] [Indexed: 11/29/2022] Open
Abstract
Cysteine is very susceptible to reactive oxygen species. In response; posttranslational thiol modifications such as reversible disulfide bond formation have arisen as protective mechanisms against undesired in vivo cysteine oxidation. In Gram-negative bacteria a major defense mechanism against cysteine overoxidation is the formation of mixed protein disulfides with low molecular weight thiols such as glutathione and glutathionylspermidine. In this review we discuss some of the mechanistic aspects of glutathionylspermidine in prokaryotes and extend its potential use to eukaryotes in proteomics and biochemical applications through an example with tissue transglutaminase and its S-glutathionylation.
Collapse
Affiliation(s)
- Jason Ching-Yao Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Bing-Yu Chiang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Tzu-Chieh Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Section 2, Taipei 11529, Taiwan.
| |
Collapse
|
112
|
Fleurbaaij F, van Leeuwen HC, Klychnikov OI, Kuijper EJ, Hensbergen PJ. Mass Spectrometry in Clinical Microbiology and Infectious Diseases. Chromatographia 2015. [DOI: 10.1007/s10337-014-2839-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
113
|
Quantitation of protein S-glutathionylation by liquid chromatography–tandem mass spectrometry: Correction for contaminating glutathione and glutathione disulfide. Anal Biochem 2015; 469:54-64. [DOI: 10.1016/j.ab.2014.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 01/16/2023]
|
114
|
Liu W, Zheng J, Li S, Wang R, Lin Z, Yang H. Aluminium glycinate functionalized silica nanoparticles for highly specific separation of phosphoproteins. J Mater Chem B 2015; 3:6528-6535. [DOI: 10.1039/c5tb01055a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aluminium glycinate functionalized silica nanoparticles were synthesized by a facile approach and successfully applied for the specific capture of phosphoproteins from a complex sample.
Collapse
Affiliation(s)
- Wei Liu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Jiangnan Zheng
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Shihua Li
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Ruirui Wang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Zian Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Huanghao Yang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
115
|
Gregorich ZR, Ge Y. Top-down proteomics in health and disease: challenges and opportunities. Proteomics 2014; 14:1195-210. [PMID: 24723472 DOI: 10.1002/pmic.201300432] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/10/2014] [Accepted: 03/24/2014] [Indexed: 01/06/2023]
Abstract
Proteomics is essential for deciphering how molecules interact as a system and for understanding the functions of cellular systems in human disease; however, the unique characteristics of the human proteome, which include a high dynamic range of protein expression and extreme complexity due to a plethora of PTMs and sequence variations, make such analyses challenging. An emerging "top-down" MS-based proteomics approach, which provides a "bird's eye" view of all proteoforms, has unique advantages for the assessment of PTMs and sequence variations. Recently, a number of studies have showcased the potential of top-down proteomics for the unraveling of disease mechanisms and discovery of new biomarkers. Nevertheless, the top-down approach still faces significant challenges in terms of protein solubility, separation, and the detection of large intact proteins, as well as underdeveloped data analysis tools. Consequently, new technological developments are urgently needed to advance the field of top-down proteomics. Herein, we intend to provide an overview of the recent applications of top-down proteomics in biomedical research. Moreover, we will outline the challenges and opportunities facing top-down proteomics strategies aimed at understanding and diagnosing human diseases.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
116
|
Han X, Wang Y, Aslanian A, Fonslow B, Graczyk B, Davis TN, Yates JR. In-line separation by capillary electrophoresis prior to analysis by top-down mass spectrometry enables sensitive characterization of protein complexes. J Proteome Res 2014; 13:6078-86. [PMID: 25382489 PMCID: PMC4262260 DOI: 10.1021/pr500971h] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Intact
protein analysis via top-down mass spectrometry (MS) provides
a bird’s eye view over the protein complexes and complex protein
mixtures with the unique capability of characterizing protein variants,
splice isoforms, and combinatorial post-translational modifications
(PTMs). Here we applied capillary electrophoresis (CE) through a sheathless
CE–electrospray ionization interface coupled to an LTQ Velos
Orbitrap Elite mass spectrometer to analyze the Dam1 complex from Saccharomyces cerevisiae. We achieved a 100-fold
increase in sensitivity compared to a reversed-phase liquid chromatography
coupled MS analysis of recombinant Dam1 complex with a total loading
of 2.5 ng (12 amol). N-terminal processing forms of individual subunits
of the Dam1 complex were observed as well as their phosphorylation
stoichiometry upon Mps1p kinase treatment.
Collapse
Affiliation(s)
- Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | |
Collapse
|
117
|
Han X, Wang Y, Aslanian A, Bern M, Lavallée-Adam M, Yates JR. Sheathless capillary electrophoresis-tandem mass spectrometry for top-down characterization of Pyrococcus furiosus proteins on a proteome scale. Anal Chem 2014; 86:11006-12. [PMID: 25346219 PMCID: PMC4238646 DOI: 10.1021/ac503439n] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
Intact protein analysis via top-down
mass spectrometry (MS) provides
the unique capability of fully characterizing protein isoforms and
combinatorial post-translational modifications (PTMs) compared to
the bottom-up MS approach. Front-end protein separation poses a challenge
for analyzing complex mixtures of intact proteins on a proteomic scale.
Here we applied capillary electrophoresis (CE) through a sheathless
capillary electrophoresis-electrospray ionization (CESI) interface
coupled to an Orbitrap Elite mass spectrometer to profile the proteome
from Pyrococcus furiosus. CESI-top-down MS analysis
of Pyrococcus furiosus cell lysate identified 134
proteins and 291 proteoforms with a total sample consumption of 270
ng in 120 min of total analysis time. Truncations and various PTMs
were detected, including acetylation, disulfide bonds, oxidation,
glycosylation, and hypusine. This is the largest scale analysis of
intact proteins by CE-top-down MS to date.
Collapse
Affiliation(s)
- Xuemei Han
- Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
118
|
Pivato M, Fabrega-Prats M, Masi A. Low-molecular-weight thiols in plants: Functional and analytical implications. Arch Biochem Biophys 2014; 560:83-99. [DOI: 10.1016/j.abb.2014.07.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/15/2023]
|
119
|
Chardonnet S, Sakr S, Cassier-Chauvat C, Le Maréchal P, Chauvat F, Lemaire SD, Decottignies P. First proteomic study of S-glutathionylation in cyanobacteria. J Proteome Res 2014; 14:59-71. [PMID: 25208982 DOI: 10.1021/pr500625a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathionylation, the reversible post-translational formation of a mixed disulfide between a cysteine residue and glutathione (GSH), is a crucial mechanism for signal transduction and regulation of protein function. Until now this reversible redox modification was studied mainly in eukaryotic cells. Here we report a large-scale proteomic analysis of glutathionylation in a photosynthetic prokaryote, the model cyanobacterium Synechocystis sp. PCC6803. Treatment of acellular extracts with N,N-biotinyl glutathione disulfide (BioGSSG) induced glutathionylation of numerous proteins, which were subsequently isolated by affinity chromatography on streptavidin columns and identified by nano LC-MS/MS analysis. Potential sites of glutathionylation were also determined for 125 proteins following tryptic cleavage, streptavidin-affinity purification, and mass spectrometry analysis. Taken together the two approaches allowed the identification of 383 glutathionylatable proteins that participate in a wide range of cellular processes and metabolic pathways such as carbon and nitrogen metabolisms, cell division, stress responses, and H2 production. In addition, the glutathionylation of two putative targets, namely, peroxiredoxin (Sll1621) involved in oxidative stress tolerance and 3-phosphoglycerate dehydrogenase (Sll1908) acting on amino acids metabolism, was confirmed by biochemical studies on the purified recombinant proteins. These results suggest that glutathionylation constitutes a major mechanism of global regulation of the cyanobacterial metabolism under oxidative stress conditions.
Collapse
|
120
|
Correia S, Nunes-Miranda JD, Pinto L, Santos HM, de Toro M, Sáenz Y, Torres C, Capelo JL, Poeta P, Igrejas G. Complete proteome of a quinolone-resistant Salmonella Typhimurium phage type DT104B clinical strain. Int J Mol Sci 2014; 15:14191-219. [PMID: 25196519 PMCID: PMC4159846 DOI: 10.3390/ijms150814191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 06/27/2014] [Accepted: 07/25/2014] [Indexed: 11/26/2022] Open
Abstract
Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen.
Collapse
Affiliation(s)
- Susana Correia
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Júlio D Nunes-Miranda
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Luís Pinto
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Hugo M Santos
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - María de Toro
- Departamento de Biología Molecular (Universidad de Cantabria) and Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC (UC-SODERCAN-CSIC), Santander 39011, Spain.
| | - Yolanda Sáenz
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - Carmen Torres
- Microbiología Molecular, Centro de Investigación Biomédica de La Rioja, C/Piqueras 98, 26006 Logroño, La Rioja, Spain.
| | - José Luis Capelo
- BIOSCOPE group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.
| | - Patrícia Poeta
- Centre of Studies of Animal and Veterinary Sciences, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal.
| |
Collapse
|
121
|
Xiu L, Valeja SG, Alpert A, Jin S, Ge Y. Effective protein separation by coupling hydrophobic interaction and reverse phase chromatography for top-down proteomics. Anal Chem 2014; 86:7899-906. [PMID: 24968279 PMCID: PMC4144745 DOI: 10.1021/ac501836k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/26/2014] [Indexed: 01/16/2023]
Abstract
One of the challenges in proteomics is the proteome's complexity, which necessitates the fractionation of proteins prior to the mass spectrometry (MS) analysis. Despite recent advances in top-down proteomics, separation of intact proteins remains challenging. Hydrophobic interaction chromatography (HIC) appears to be a promising method that provides high-resolution separation of intact proteins, but unfortunately the salts conventionally used for HIC are incompatible with MS. In this study, we have identified ammonium tartrate as a MS-compatible salt for HIC with comparable separation performance as the conventionally used ammonium sulfate. Furthermore, we found that the selectivity obtained with ammonium tartrate in the HIC mobile phases is orthogonal to that of reverse phase chromatography (RPC). By coupling HIC and RPC as a novel two-dimensional chromatographic method, we have achieved effective high-resolution intact protein separation as demonstrated with standard protein mixtures and a complex cell lysate. Subsequently, the separated intact proteins were identified by high-resolution top-down MS. For the first time, these results have shown the high potential of HIC as a high-resolution protein separation method for top-down proteomics.
Collapse
Affiliation(s)
- Lichen Xiu
- Department
of Chemistry, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
| | - Santosh G. Valeja
- Department of Cell and Regenerative Biology, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
| | - Andrew
J. Alpert
- Department of Cell and Regenerative Biology, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
- PolyLC Inc., Columbia 21045, Maryland, United States
| | - Song Jin
- Department
of Chemistry, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
| | - Ying Ge
- Department
of Chemistry, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
- Department of Cell and Regenerative Biology, University of Wisconsin—Madison, Madison 53706, Wisconsin, United States
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
122
|
Ying P, Serife AG, Deyang Y, Ying G. Top-down mass spectrometry of cardiac myofilament proteins in health and disease. Proteomics Clin Appl 2014; 8:554-68. [PMID: 24945106 PMCID: PMC4231170 DOI: 10.1002/prca.201400043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
Myofilaments are composed of thin and thick filaments that coordinate with each other to regulate muscle contraction and relaxation. PTMs together with genetic variations and alternative splicing of the myofilament proteins play essential roles in regulating cardiac contractility in health and disease. Therefore, a comprehensive characterization of the myofilament proteins in physiological and pathological conditions is essential for better understanding the molecular basis of cardiac function and dysfunction. Due to the vast complexity and dynamic nature of proteins, it is challenging to obtain a holistic view of myofilament protein modifications. In recent years, top-down MS has emerged as a powerful approach to study isoform composition and PTMs of proteins owing to its advantage of complete sequence coverage and its ability to identify PTMs and sequence variants without a priori knowledge. In this review, we will discuss the application of top-down MS to the study of cardiac myofilaments and highlight the insights it provides into the understanding of molecular mechanisms in contractile dysfunction of heart failure. Particularly, recent results of cardiac troponin and tropomyosin modifications will be elaborated. The limitations and perspectives on the use of top-down MS for myofilament protein characterization will also be briefly discussed.
Collapse
Affiliation(s)
- Peng Ying
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ayaz-Guner Serife
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Yu Deyang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Environmental Toxicology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Ge Ying
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
123
|
Structural and functional characterization of DUF1471 domains of Salmonella proteins SrfN, YdgH/SssB, and YahO. PLoS One 2014; 9:e101787. [PMID: 25010333 PMCID: PMC4092069 DOI: 10.1371/journal.pone.0101787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/07/2014] [Indexed: 11/20/2022] Open
Abstract
Bacterial species in the Enterobacteriaceae typically contain multiple paralogues of a small domain of unknown function (DUF1471) from a family of conserved proteins also known as YhcN or BhsA/McbA. Proteins containing DUF1471 may have a single or three copies of this domain. Representatives of this family have been demonstrated to play roles in several cellular processes including stress response, biofilm formation, and pathogenesis. We have conducted NMR and X-ray crystallographic studies of four DUF1471 domains from Salmonella representing three different paralogous DUF1471 subfamilies: SrfN, YahO, and SssB/YdgH (two of its three DUF1471 domains: the N-terminal domain I (residues 21–91), and the C-terminal domain III (residues 244–314)). Notably, SrfN has been shown to have a role in intracellular infection by Salmonella Typhimurium. These domains share less than 35% pairwise sequence identity. Structures of all four domains show a mixed α+β fold that is most similar to that of bacterial lipoprotein RcsF. However, all four DUF1471 sequences lack the redox sensitive cysteine residues essential for RcsF activity in a phospho-relay pathway, suggesting that DUF1471 domains perform a different function(s). SrfN forms a dimer in contrast to YahO and SssB domains I and III, which are monomers in solution. A putative binding site for oxyanions such as phosphate and sulfate was identified in SrfN, and an interaction between the SrfN dimer and sulfated polysaccharides was demonstrated, suggesting a direct role for this DUF1471 domain at the host-pathogen interface.
Collapse
|
124
|
Peng Y, Gregorich ZR, Valeja SG, Zhang H, Cai W, Chen YC, Guner H, Chen AJ, Schwahn DJ, Hacker TA, Liu X, Ge Y. Top-down proteomics reveals concerted reductions in myofilament and Z-disc protein phosphorylation after acute myocardial infarction. Mol Cell Proteomics 2014; 13:2752-64. [PMID: 24969035 PMCID: PMC4189000 DOI: 10.1074/mcp.m114.040675] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality worldwide and is most often precipitated by myocardial infarction. However, the molecular changes driving cardiac dysfunction immediately after myocardial infarction remain poorly understood. Myofilament proteins, responsible for cardiac contraction and relaxation, play critical roles in signal reception and transduction in HF. Post-translational modifications of myofilament proteins afford a mechanism for the beat-to-beat regulation of cardiac function. Thus it is of paramount importance to gain a comprehensive understanding of post-translational modifications of myofilament proteins involved in regulating early molecular events in the post-infarcted myocardium. We have developed a novel liquid chromatography–mass spectrometry-based top-down proteomics strategy to comprehensively assess the modifications of key cardiac proteins in the myofilament subproteome extracted from a minimal amount of myocardial tissue with high reproducibility and throughput. The entire procedure, including tissue homogenization, myofilament extraction, and on-line LC/MS, takes less than three hours. Notably, enabled by this novel top-down proteomics technology, we discovered a concerted significant reduction in the phosphorylation of three crucial cardiac proteins in acutely infarcted swine myocardium: cardiac troponin I and myosin regulatory light chain of the myofilaments and, unexpectedly, enigma homolog isoform 2 (ENH2) of the Z-disc. Furthermore, top-down MS allowed us to comprehensively sequence these proteins and pinpoint their phosphorylation sites. For the first time, we have characterized the sequence of ENH2 and identified it as a phosphoprotein. ENH2 is localized at the Z-disc, which has been increasingly recognized for its role as a nodal point in cardiac signaling. Thus our proteomics discovery opens up new avenues for the investigation of concerted signaling between myofilament and Z-disc in the early molecular events that contribute to cardiac dysfunction and progression to HF.
Collapse
Affiliation(s)
- Ying Peng
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706
| | - Zachery R Gregorich
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706; §Molecular Pharmacology Training Program, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706
| | - Santosh G Valeja
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706
| | - Han Zhang
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706
| | - Wenxuan Cai
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706; §Molecular Pharmacology Training Program, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706
| | - Yi-Chen Chen
- ¶Department of Chemistry, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706
| | - Huseyin Guner
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706; ‖Human Proteomics Program, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706
| | - Albert J Chen
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706
| | - Denise J Schwahn
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706
| | - Timothy A Hacker
- ‡‡Department of Medicine, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706
| | - Xiaowen Liu
- §§Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, 719 Indiana Ave., Indianapolis, Indiana 46202; ¶¶Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410 West 10th Street, Indianapolis, Indiana 46202
| | - Ying Ge
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706; ¶Department of Chemistry, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706; ‖Human Proteomics Program, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin 53706;
| |
Collapse
|
125
|
LeDuc RD, Fellers RT, Early BP, Greer JB, Thomas PM, Kelleher NL. The C-score: a Bayesian framework to sharply improve proteoform scoring in high-throughput top down proteomics. J Proteome Res 2014; 13:3231-40. [PMID: 24922115 PMCID: PMC4084843 DOI: 10.1021/pr401277r] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
automated processing of data generated by top down proteomics
would benefit from improved scoring for protein identification and
characterization of highly related protein forms (proteoforms). Here
we propose the “C-score” (short for Characterization
Score), a Bayesian approach to the proteoform identification and characterization
problem, implemented within a framework to allow the infusion of expert
knowledge into generative models that take advantage of known properties
of proteins and top down analytical systems (e.g., fragmentation propensities,
“off-by-1 Da” discontinuous errors, and intelligent
weighting for site-specific modifications). The performance of the
scoring system based on the initial generative models was compared
to the current probability-based scoring system used within both ProSightPC
and ProSightPTM on a manually curated set of 295 human proteoforms.
The current implementation of the C-score framework generated a marked
improvement over the existing scoring system as measured by the area
under the curve on the resulting ROC chart (AUC of 0.99 versus 0.78).
Collapse
Affiliation(s)
- Richard D LeDuc
- National Center for Genome Analysis Support, Indiana University , 2709 E. 10th Street, Bloomington, Indiana 47408, United States
| | | | | | | | | | | |
Collapse
|
126
|
Ntai I, Kim K, Fellers RT, Skinner OS, Smith A, Early BP, Savaryn JP, LeDuc RD, Thomas PM, Kelleher NL. Applying label-free quantitation to top down proteomics. Anal Chem 2014; 86:4961-8. [PMID: 24807621 PMCID: PMC4033644 DOI: 10.1021/ac500395k] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/28/2014] [Indexed: 01/16/2023]
Abstract
With the prospect of resolving whole protein molecules into their myriad proteoforms on a proteomic scale, the question of their quantitative analysis in discovery mode comes to the fore. Here, we demonstrate a robust pipeline for the identification and stringent scoring of abundance changes of whole protein forms <30 kDa in a complex system. The input is ~100-400 μg of total protein for each biological replicate, and the outputs are graphical displays depicting statistical confidence metrics for each proteoform (i.e., a volcano plot and representations of the technical and biological variation). A key part of the pipeline is the hierarchical linear model that is tailored to the original design of the study. Here, we apply this new pipeline to measure the proteoform-level effects of deleting a histone deacetylase (rpd3) in S. cerevisiae. Over 100 proteoform changes were detected above a 5% false positive threshold in WT vs the Δrpd3 mutant, including the validating observation of hyperacetylation of histone H4 and both H2B isoforms. Ultimately, this approach to label-free top down proteomics in discovery mode is a critical technical advance for testing the hypothesis that whole proteoforms can link more tightly to complex phenotypes in cell and disease biology than do peptides created in shotgun proteomics.
Collapse
Affiliation(s)
- Ioanna Ntai
- Departments
of Chemistry, Molecular Biosciences and
the Proteomics Center of Excellence, 2145 N. Sheridan Road, Evanston, Illinois 60208, United
States
| | - Kyunggon Kim
- Departments
of Chemistry, Molecular Biosciences and
the Proteomics Center of Excellence, 2145 N. Sheridan Road, Evanston, Illinois 60208, United
States
| | - Ryan T. Fellers
- Departments
of Chemistry, Molecular Biosciences and
the Proteomics Center of Excellence, 2145 N. Sheridan Road, Evanston, Illinois 60208, United
States
| | - Owen S. Skinner
- Departments
of Chemistry, Molecular Biosciences and
the Proteomics Center of Excellence, 2145 N. Sheridan Road, Evanston, Illinois 60208, United
States
| | - Archer
D. Smith
- Departments
of Chemistry, Molecular Biosciences and
the Proteomics Center of Excellence, 2145 N. Sheridan Road, Evanston, Illinois 60208, United
States
| | - Bryan P. Early
- Departments
of Chemistry, Molecular Biosciences and
the Proteomics Center of Excellence, 2145 N. Sheridan Road, Evanston, Illinois 60208, United
States
| | - John P. Savaryn
- Departments
of Chemistry, Molecular Biosciences and
the Proteomics Center of Excellence, 2145 N. Sheridan Road, Evanston, Illinois 60208, United
States
| | - Richard D. LeDuc
- National
Center for Genome Analysis
Support, Indiana University, 2709 E. 10th Street, Bloomington, Indiana 47408, United States
| | - Paul M. Thomas
- Departments
of Chemistry, Molecular Biosciences and
the Proteomics Center of Excellence, 2145 N. Sheridan Road, Evanston, Illinois 60208, United
States
| | - Neil L. Kelleher
- Departments
of Chemistry, Molecular Biosciences and
the Proteomics Center of Excellence, 2145 N. Sheridan Road, Evanston, Illinois 60208, United
States
| |
Collapse
|
127
|
Zhao Y, Sun L, Champion MM, Knierman MD, Dovichi NJ. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for top-down characterization of the Mycobacterium marinum secretome. Anal Chem 2014; 86:4873-8. [PMID: 24725189 PMCID: PMC4033641 DOI: 10.1021/ac500092q] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Capillary zone electrophoresis (CZE) with an electrokinetically pumped sheath-flow nanospray interface was coupled with a high-resolution Q-Exactive mass spectrometer for the analysis of culture filtrates from Mycobacterium marinum. We confidently identified 22 gene products from the wildtype M. marinum secretome in a single CZE-tandem mass spectrometry (MS/MS) run. A total of 58 proteoforms were observed with post-translational modifications including signal peptide removal, N-terminal methionine excision, and acetylation. The conductivities of aqueous acetic acid and formic acid solutions were measured from 0.1% to 100% concentration (v/v). Acetic acid (70%) provided lower conductivity than 0.25% formic acid and was evaluated as low ionic-strength and a CZE-MS compatible sample buffer with good protein solubility.
Collapse
Affiliation(s)
- Yimeng Zhao
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | | | | | | | | |
Collapse
|
128
|
Auclair JR, Salisbury JP, Johnson JL, Petsko GA, Ringe D, Bosco DA, Agar NYR, Santagata S, Durham HD, Agar JN. Artifacts to avoid while taking advantage of top-down mass spectrometry based detection of protein S-thiolation. Proteomics 2014; 14:1152-7. [PMID: 24634066 DOI: 10.1002/pmic.201300450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/14/2014] [Accepted: 03/07/2014] [Indexed: 11/12/2022]
Abstract
Bottom-up MS studies typically employ a reduction and alkylation step that eliminates a class of PTM, S-thiolation. Given that molecular oxygen can mediate S-thiolation from reduced thiols, which are abundant in the reducing intracellular milieu, we investigated the possibility that some S-thiolation modifications are artifacts of protein preparation. Cu/Zn-superoxide dismutase (SOD1) was chosen for this case study as it has a reactive surface cysteine residue, which is readily cysteinylated in vitro. The ability of oxygen to generate S-thiolation artifacts was tested by comparing purification of SOD1 from postmortem human cerebral cortex under aerobic and anaerobic conditions. S-thiolation was ∼50% higher in aerobically processed preparations, consistent with oxygen-dependent artifactual S-thiolation. The ability of endogenous small molecule disulfides (e.g. cystine) to participate in artifactual S-thiolation was tested by blocking reactive protein cysteine residues during anaerobic homogenization. A 50-fold reduction in S-thiolation occurred indicating that the majority of S-thiolation observed aerobically was artifact. Tissue-specific artifacts were explored by comparing brain- and blood-derived protein, with remarkably more artifacts observed in brain-derived SOD1. Given the potential for such artifacts, rules of thumb for sample preparation are provided. This study demonstrates that without taking extraordinary precaution, artifactual S-thiolation of highly reactive, surface-exposed, cysteine residues can result.
Collapse
Affiliation(s)
- Jared R Auclair
- Department of Chemistry and Chemical Biology, Barnett Institute, Northeastern University, Boston, MA, USA; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA; Department of Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Dekker L, Wu S, Vanduijn M, Tolić N, Stingl C, Zhao R, Luider T, Paša-Tolić L. An integrated top-down and bottom-up proteomic approach to characterize the antigen-binding fragment of antibodies. Proteomics 2014; 14:1239-48. [DOI: 10.1002/pmic.201300366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/14/2014] [Accepted: 03/07/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Lennard Dekker
- Department of Neurology; Erasmus MC; Rotterdam The Netherlands
| | - Si Wu
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| | | | - Nikolai Tolić
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| | | | - Rui Zhao
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| | - Theo Luider
- Department of Neurology; Erasmus MC; Rotterdam The Netherlands
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratories; Richland WA USA
| |
Collapse
|
130
|
Gregorich ZR, Chang YH, Ge Y. Proteomics in heart failure: top-down or bottom-up? Pflugers Arch 2014; 466:1199-209. [PMID: 24619480 DOI: 10.1007/s00424-014-1471-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 01/11/2023]
Abstract
The pathophysiology of heart failure (HF) is diverse, owing to multiple etiologies and aberrations in a number of cellular processes. Therefore, it is essential to understand how defects in the molecular pathways that mediate cellular responses to internal and external stressors function as a system to drive the HF phenotype. Mass spectrometry (MS)-based proteomics strategies have great potential for advancing our understanding of disease mechanisms at the systems level because proteins are the effector molecules for all cell functions and, thus, are directly responsible for determining cell phenotype. Two MS-based proteomics strategies exist: peptide-based bottom-up and protein-based top-down proteomics--each with its own unique strengths and weaknesses for interrogating the proteome. In this review, we will discuss the advantages and disadvantages of bottom-up and top-down MS for protein identification, quantification, and analysis of post-translational modifications, as well as highlight how both of these strategies have contributed to our understanding of the molecular and cellular mechanisms underlying HF. Additionally, the challenges associated with both proteomics approaches will be discussed and insights will be offered regarding the future of MS-based proteomics in HF research.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
131
|
Gault J, Malosse C, Machata S, Millien C, Podglajen I, Ploy MC, Costello CE, Duménil G, Chamot-Rooke J. Complete posttranslational modification mapping of pathogenic Neisseria meningitidis pilins requires top-down mass spectrometry. Proteomics 2014; 14:1141-51. [PMID: 24459079 DOI: 10.1002/pmic.201300394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/04/2013] [Accepted: 10/11/2013] [Indexed: 12/13/2022]
Abstract
In pathogenic bacteria, posttranslationally modified proteins have been found to promote bacterial survival, replication, and evasion from the host immune system. In the human pathogen Neisseria meningitidis, the protein PilE (15-18 kDa) is the major building block of type IV pili, extracellular filamentous organelles that play a major role in mediating pathogenesis. Previous reports have shown that PilE can be expressed as a number of different proteoforms, each harboring its own set of PTMs and that specific proteoforms are key in promoting bacterial virulence. Efficient tools that allow complete PTM mapping of proteins involved in bacterial infection are therefore strongly needed. As we show in this study, a simple combination of mass profiling and bottom-up proteomics is fundamentally unable to achieve this goal when more than two proteoforms are present simultaneously. In a N. meningitidis strain isolated from a patient with meningitis, mass profiling revealed the presence of four major proteoforms of PilE, in a 1:1:1:1 ratio. Due to the complexity of the sample, a top-down approach was required to achieve complete PTM mapping for all four proteoforms, highlighting an unprecedented extent of glycosylation. Top-down MS therefore appears to be a promising tool for the analysis of highly posttranslationally modified proteins involved in bacterial virulence.
Collapse
Affiliation(s)
- Joseph Gault
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France; Laboratoire des Mécanismes Réactionnels (DCMR), Département de Chimie, École Polytechnique, CNRS, Palaiseau, France
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
The most common markers for monitoring patients with diabetes are glucose and HbA1c, but additional markers such as glycated human serum albumin (HSA) have been identified that could address the glycation gap and bridge the time scales of glycemia between transient and 2-3 months. However, there is currently no technical platform that could measure these markers concurrently in a cost-effective manner. We have developed a new assay that is able to measure glucose, HbA1c, glycated HSA, and glycated apolipoprotein A-I (apoA-I) for monitoring of individual blood glycemia, as well as cysteinylated HSA, S-nitrosylated HbA, and methionine-oxidized apoA-I for gauging oxidative stress and cardiovascular risks, all in 5 μL of blood. The assay utilizes our proprietary multinozzle emitter array chip technology to enable the analysis of small volumes of blood, without complex sample preparation prior to the online and on-chip liquid chromatography-nanoelectrospray ionization mass spectrometry. Importantly, the assay employs top-down proteomics for more accurate quantitation of protein levels and for identification of post-translational modifications. Further, the assay provides multimarker, multitime-scale, and multicompartment monitoring of blood glycemia. Our assay readily segregates healthy controls from Type 2 diabetes patients and may have the potential to enable better long-term monitoring and disease management of diabetes.
Collapse
Affiliation(s)
- Pan Mao
- Newomics Inc. , 5980 Horton Street, Suite 525, Emeryville, California 94608, United States
| | | |
Collapse
|
133
|
Rhoads TW, Rose CM, Bailey DJ, Riley NM, Molden RC, Nestler AJ, Merrill AE, Smith LM, Hebert AS, Westphall MS, Pagliarini DJ, Garcia BA, Coon JJ. Neutron-encoded mass signatures for quantitative top-down proteomics. Anal Chem 2014; 86:2314-9. [PMID: 24475910 PMCID: PMC3983007 DOI: 10.1021/ac403579s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ability to acquire highly accurate quantitative data is an increasingly important part of any proteomics experiment, whether shotgun or top-down approaches are used. We recently developed a quantitation strategy for peptides based on neutron encoding, or NeuCode SILAC, which uses closely spaced heavy isotope-labeled amino acids and high-resolution mass spectrometry to provide quantitative data. We reasoned that the strategy would also be applicable to intact proteins and could enable robust, multiplexed quantitation for top-down experiments. We used yeast lysate labeled with either (13)C6(15)N2-lysine or (2)H8-lysine, isotopologues of lysine that are spaced 36 mDa apart. Proteins having such close spacing cannot be distinguished during a medium resolution scan, but upon acquiring a high-resolution scan, the two forms of the protein with each amino acid are resolved and the quantitative information revealed. An additional benefit NeuCode SILAC provides for top down is that the spacing of the isotope peaks indicates the number of lysines present in the protein, information that aids in identification. We used NeuCode SILAC to quantify several hundred isotope distributions, manually identify and quantify proteins from 1:1, 3:1, and 5:1 mixed ratios, and demonstrate MS(2)-based quantitation using ETD.
Collapse
Affiliation(s)
- Timothy W Rhoads
- Department of Chemistry, ‡Department of Biomolecular Chemistry, §Genome Center, and ∇Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Zhang Z, Wu S, Stenoien DL, Paša-Tolić L. High-throughput proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:427-454. [PMID: 25014346 DOI: 10.1146/annurev-anchem-071213-020216] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.
Collapse
|
135
|
Petriz BA, Franco OL. Application of Cutting-Edge Proteomics Technologies for Elucidating Host–Bacteria Interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:1-24. [DOI: 10.1016/b978-0-12-800453-1.00001-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
136
|
Lamichhane-Khadka R, Benoit SL, Maier SE, Maier RJ. A link between gut community metabolism and pathogenesis: molecular hydrogen-stimulated glucarate catabolism aids Salmonella virulence. Open Biol 2013; 3:130146. [PMID: 24307595 PMCID: PMC3877842 DOI: 10.1098/rsob.130146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Glucarate, an oxidized product of glucose, is a major serum organic acid in humans. Still, its role as a carbon source for a pathogen colonizing hosts has not been studied. We detected high-level expression of a potential glucarate permease encoding gene gudT when Salmonella enterica serovar Typhimurium are exposed to hydrogen gas (H2), a gaseous by-product of gut commensal metabolism. A gudT strain of Salmonella is deficient in glucarate-dependent growth, however, it can still use other monosaccharides, such as glucose or galactose. Complementation of the gudT mutant with a plasmid harbouring gudT restored glucarate-dependent growth to wild-type (WT) levels. The gudT mutant exhibits attenuated virulence: the mean time of death for mice inoculated with WT strain was 2 days earlier than for mice inoculated with the gudT strain. At 4 days postinoculation, liver and spleen homogenates from mice inoculated with a gudT strain contained significantly fewer viable Salmonella than homogenates from animals inoculated with the parent. The parent strain grew well H2-dependently in a minimal medium with amino acids and glucarate provided as the sole carbon sources, whereas the gudT strain achieved approximately 30% of the parent strain's yield. Glucarate-mediated growth of a mutant strain unable to produce H2 was stimulated by H2 addition, presumably owing to the positive transcriptional response to H2. Gut microbiota-produced molecular hydrogen apparently signals Salmonella to catabolize an alternative carbon source available in the host. Our results link a gut microbiome-produced diffusible metabolite to augmenting bacterial pathogenesis.
Collapse
|
137
|
Catherman AD, Durbin KR, Ahlf DR, Early BP, Fellers RT, Tran JC, Thomas PM, Kelleher NL. Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol Cell Proteomics 2013; 12:3465-73. [PMID: 24023390 PMCID: PMC3861700 DOI: 10.1074/mcp.m113.030114] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/05/2013] [Indexed: 01/25/2023] Open
Abstract
Top-down proteomics is emerging as a viable method for the routine identification of hundreds to thousands of proteins. In this work we report the largest top-down study to date, with the identification of 1,220 proteins from the transformed human cell line H1299 at a false discovery rate of 1%. Multiple separation strategies were utilized, including the focused isolation of mitochondria, resulting in significantly improved proteome coverage relative to previous work. In all, 347 mitochondrial proteins were identified, including ~50% of the mitochondrial proteome below 30 kDa and over 75% of the subunits constituting the large complexes of oxidative phosphorylation. Three hundred of the identified proteins were found to be integral membrane proteins containing between 1 and 12 transmembrane helices, requiring no specific enrichment or modified LC-MS parameters. Over 5,000 proteoforms were observed, many harboring post-translational modifications, including over a dozen proteins containing lipid anchors (some previously unknown) and many others with phosphorylation and methylation modifications. Comparison between untreated and senescent H1299 cells revealed several changes to the proteome, including the hyperphosphorylation of HMGA2. This work illustrates the burgeoning ability of top-down proteomics to characterize large numbers of intact proteoforms in a high-throughput fashion.
Collapse
Affiliation(s)
- Adam D. Catherman
- From the ‡Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208
| | - Kenneth R. Durbin
- From the ‡Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208
| | - Dorothy R. Ahlf
- From the ‡Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208
| | - Bryan P. Early
- From the ‡Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208
| | - Ryan T. Fellers
- From the ‡Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208
| | - John C. Tran
- From the ‡Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208
| | - Paul M. Thomas
- From the ‡Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208
| | - Neil L. Kelleher
- From the ‡Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, the Proteomics Center of Excellence, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
138
|
Pastore A, Piemonte F. Protein glutathionylation in cardiovascular diseases. Int J Mol Sci 2013; 14:20845-76. [PMID: 24141185 PMCID: PMC3821647 DOI: 10.3390/ijms141020845] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 02/07/2023] Open
Abstract
The perturbation of thiol-disulfide homeostasis is an important consequence of many diseases, with redox signals implicated in several physio-pathological processes. A prevalent form of cysteine modification is the reversible formation of protein mixed disulfides with glutathione (S-glutathionylation). The abundance of glutathione in cells and the ready conversion of sulfenic acids to S-glutathione mixed disulfides supports the reversible protein S-glutathionylation as a common feature of redox signal transduction, able to regulate the activities of several redox sensitive proteins. In particular, protein S-glutathionylation is emerging as a critical signaling mechanism in cardiovascular diseases, because it regulates numerous physiological processes involved in cardiovascular homeostasis, including myocyte contraction, oxidative phosphorylation, protein synthesis, vasodilation, glycolytic metabolism and response to insulin. Thus, perturbations in protein glutathionylation status may contribute to the etiology of many cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy and atherosclerosis. Various reports show the importance of oxidative cysteine modifications in modulating cardiovascular function. In this review, we illustrate tools and strategies to monitor protein S-glutathionylation and describe the proteins so far identified as glutathionylated in myocardial contraction, hypertrophy and inflammation.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; E-Mail:
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
139
|
Ahlf DR, Thomas PM, Kelleher NL. Developing top down proteomics to maximize proteome and sequence coverage from cells and tissues. Curr Opin Chem Biol 2013; 17:787-94. [PMID: 23988518 DOI: 10.1016/j.cbpa.2013.07.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/01/2013] [Accepted: 07/29/2013] [Indexed: 12/25/2022]
Abstract
Mass spectrometry based proteomics generally seeks to identify and characterize protein molecules with high accuracy and throughput. Recent speed and quality improvements to the independent steps of integrated platforms have removed many limitations to the robust implementation of top down proteomics (TDP) for proteins below 70 kDa. Improved intact protein separations coupled to high-performance instruments have increased the quality and number of protein and proteoform identifications. To date, TDP applications have shown >1000 protein identifications, expanding to an average of ∼3-4 more proteoforms for each protein detected. In the near future, increased fractionation power, new mass spectrometers and improvements in proteoform scoring will combine to accelerate the application and impact of TDP to this century's biomedical problems.
Collapse
Affiliation(s)
- Dorothy R Ahlf
- Department of Chemistry and Biochemistry and the Harper Cancer Institute, University of Notre Dame, Notre Dame, IN, United States
| | | | | |
Collapse
|
140
|
Schmidt BJ, Ebrahim A, Metz TO, Adkins JN, Palsson BØ, Hyduke DR. GIM3E: condition-specific models of cellular metabolism developed from metabolomics and expression data. ACTA ACUST UNITED AC 2013; 29:2900-8. [PMID: 23975765 DOI: 10.1093/bioinformatics/btt493] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION Genome-scale metabolic models have been used extensively to investigate alterations in cellular metabolism. The accuracy of these models to represent cellular metabolism in specific conditions has been improved by constraining the model with omics data sources. However, few practical methods for integrating metabolomics data with other omics data sources into genome-scale models of metabolism have been developed. RESULTS GIM(3)E (Gene Inactivation Moderated by Metabolism, Metabolomics and Expression) is an algorithm that enables the development of condition-specific models based on an objective function, transcriptomics and cellular metabolomics data. GIM(3)E establishes metabolite use requirements with metabolomics data, uses model-paired transcriptomics data to find experimentally supported solutions and provides calculations of the turnover (production/consumption) flux of metabolites. GIM(3)E was used to investigate the effects of integrating additional omics datasets to create increasingly constrained solution spaces of Salmonella Typhimurium metabolism during growth in both rich and virulence media. This integration proved to be informative and resulted in a requirement of additional active reactions (12 in each case) or metabolites (26 or 29, respectively). The addition of constraints from transcriptomics also impacted the allowed solution space, and the cellular metabolites with turnover fluxes that were necessarily altered by the change in conditions increased from 118 to 271 of 1397. AVAILABILITY GIM(3)E has been implemented in Python and requires a COBRApy 0.2.x. The algorithm and sample data described here are freely available at: http://opencobra.sourceforge.net/ CONTACTS brianjamesschmidt@gmail.com
Collapse
Affiliation(s)
- Brian J Schmidt
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | | | | | | | | |
Collapse
|