101
|
Zhou J, Ou MH, Wei XL, Lan BY, Chen WJ, Song SJ, Chen WX. The role of different macrophages-derived conditioned media in dental pulp tissue regeneration. Tissue Cell 2022; 79:101944. [DOI: 10.1016/j.tice.2022.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
|
102
|
Abstract
Monocytes/macrophages are key components of the body's innate ability to restore tissue function after injury. In most tissues, both embryo-derived tissue-resident macrophages and recruited blood monocyte-derived macrophages contribute to the injury response. The developmental origin of injury-associated macrophages has a major impact on the outcome of the healing process. Macrophages are abundant at all stages of repair and coordinate the progression through the different phases of healing. They are highly plastic cells that continuously adapt to their environment and acquire phase-specific activation phenotypes. Advanced omics methodologies have revealed a vast heterogeneity of macrophage activation phenotypes and metabolic status at injury sites in different organs. In this review, we highlight the role of the developmental origin, the link between the wound phase-specific activation state and metabolic reprogramming as well as the fate of macrophages during the resolution of the wounding response.
Collapse
Affiliation(s)
| | - Louise Injarabian
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
103
|
Bölük A, Yavuz M, Demircan T. Axolotl: A resourceful vertebrate model for regeneration and beyond. Dev Dyn 2022; 251:1914-1933. [PMID: 35906989 DOI: 10.1002/dvdy.520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 01/30/2023] Open
Abstract
The regenerative capacity varies significantly among the animal kingdom. Successful regeneration program in some animals results in the functional restoration of tissues and lost structures. Among the highly regenerative animals, axolotl provides multiple experimental advantages with its many extraordinary characteristics. It has been positioned as a regeneration model organism due to its exceptional renewal capacity, including the internal organs, central nervous system, and appendages, in a scar-free manner. In addition to this unique regeneration ability, the observed low cancer incidence, its resistance to carcinogens, and the reversing effect of its cell extract on neoplasms strongly suggest its usability in cancer research. Axolotl's longevity and efficient utilization of several anti-aging mechanisms underline its potential to be employed in aging studies.
Collapse
Affiliation(s)
- Aydın Bölük
- School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mervenur Yavuz
- Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Turan Demircan
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
104
|
Angileri KM, Bagia NA, Feschotte C. Transposon control as a checkpoint for tissue regeneration. Development 2022; 149:dev191957. [PMID: 36440631 PMCID: PMC10655923 DOI: 10.1242/dev.191957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022]
Abstract
Tissue regeneration requires precise temporal control of cellular processes such as inflammatory signaling, chromatin remodeling and proliferation. The combination of these processes forms a unique microenvironment permissive to the expression, and potential mobilization of, transposable elements (TEs). Here, we develop the hypothesis that TE activation creates a barrier to tissue repair that must be overcome to achieve successful regeneration. We discuss how uncontrolled TE activity may impede tissue restoration and review mechanisms by which TE activity may be controlled during regeneration. We posit that the diversification and co-evolution of TEs and host control mechanisms may contribute to the wide variation in regenerative competency across tissues and species.
Collapse
Affiliation(s)
- Krista M. Angileri
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Nornubari A. Bagia
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY 14850, USA
| |
Collapse
|
105
|
Sipka T, Park SA, Ozbilgic R, Balas L, Durand T, Mikula K, Lutfalla G, Nguyen-Chi M. Macrophages undergo a behavioural switch during wound healing in zebrafish. Free Radic Biol Med 2022; 192:200-212. [PMID: 36162743 DOI: 10.1016/j.freeradbiomed.2022.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 12/24/2022]
Abstract
In response to wound signals, macrophages are immediately recruited to the injury where they acquire distinct phenotypes and functions, playing crucial roles both in host defense and healing process. Although macrophage phenotypes have been intensively studied during wound healing, mostly using markers and expression profiles, the impact of the wound environment on macrophage shape and behaviour, and the underlying mechanisms deserve more in-depth investigation. Here, we sought to characterize the dynamics of macrophage recruitment and behaviour during aseptic wounding of the caudal fin fold of the zebrafish larva. Using a photo-conversion approach, we demonstrated that macrophages are recruited to the wounded fin fold as a single wave where they switch their phenotype. Intravital imaging of macrophage shape and trajectories revealed that wound-macrophages display a highly stereotypical set of behaviours and change their shape from amoeboid to elongated shape as wound healing proceeds. Using a pharmacological inhibitor of 15-lipoxygenase and protectin D1, a specialized pro-resolving lipid, we investigated the role of polyunsaturated fatty acid metabolism in macrophage behaviour. While inhibition of 15-lipoxygenase using PD146176 or Nordihydroguaiaretic acid (NDGA) decreases the switch from amoeboid to elongated shape, protectin D1 accelerates macrophage reverse migration and favours elongated morphologies. Altogether, our findings suggest that individual macrophages at the wound switch their phenotype leading to important changes in behaviour and shape to adapt to changing environment, and highlight the crucial role of lipid metabolism in the control of macrophage behaviour plasticity during inflammation in vivo.
Collapse
Affiliation(s)
- Tamara Sipka
- LPHI, Univ Montpellier, CNRS, Montpellier, France
| | - Seol Ah Park
- Department of Mathematics and Descriptive Geometry, Slovak University of Technology in Bratislava, Slovakia
| | | | - Laurence Balas
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- IBMM, UMR5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Karol Mikula
- Department of Mathematics and Descriptive Geometry, Slovak University of Technology in Bratislava, Slovakia
| | | | | |
Collapse
|
106
|
Ding T, Ge S. Metabolic regulation of type 2 immune response during tissue repair and regeneration. J Leukoc Biol 2022; 112:1013-1023. [PMID: 35603496 DOI: 10.1002/jlb.3mr0422-665r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Type 2 immune responses are mediated by the cytokines interleukin (IL)-4, IL-5, IL-10, and IL-13 and associated cell types, including T helper (Th)2 cells, group 2 innate lymphoid cells (ILC2s), basophils, mast cells, eosinophils, and IL-4- and IL-13-activated macrophages. It can suppress type 1-driven autoimmune diseases, promote antihelminth immunity, maintain cellular metabolic homeostasis, and modulate tissue repair pathways following injury. However, when type 2 immune responses become dysregulated, they can be a significant pathogenesis of many allergic and fibrotic diseases. As such, there is an intense interest in studying the pathways that modulate type 2 immune response so as to identify strategies of targeting and controlling these responses for tissue healing. Herein, we review recent literature on the metabolic regulation of immune cells initiating type 2 immunity and immune cells involved in the effector phase, and talk about how metabolic regulation of immune cell subsets contribute to tissue repair. At last, we discuss whether these findings can provide a novel prospect for regenerative medicine.
Collapse
Affiliation(s)
- Tian Ding
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
107
|
Patel JH, Wills AE. Gradient expectations: Revisiting Charles Manning Child's theory of metabolic regionalisation in developmental patterning and regeneration. Wound Repair Regen 2022; 30:617-622. [PMID: 35142418 PMCID: PMC9363521 DOI: 10.1111/wrr.12998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022]
Abstract
Charles Manning Child introduced one of several early models to explain how an organism can both establish and re-establish positional identity during embryogenesis and regeneration. In his gradient theory model, tissues along an axis exhibit graded levels of metabolic activity demonstrated through their differential susceptibility to metabolic inhibitors. While Child's work was difficult to place in a mechanistic framework in his own time, technological advances and recent discoveries in both embryos and regenerating organisms make his early work on redox signalling as a positional cue newly pertinent.
Collapse
Affiliation(s)
- Jeet H. Patel
- Department of Biochemistry, University of Washington School of Medicine, Seattle
- Program in Molecular and Cell Biology, University of Washington, Seattle
| | - Andrea E. Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle
| |
Collapse
|
108
|
Aztekin C, Storer MA. To regenerate or not to regenerate: Vertebrate model organisms of regeneration-competency and -incompetency. Wound Repair Regen 2022; 30:623-635. [PMID: 35192230 PMCID: PMC7613846 DOI: 10.1111/wrr.13000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022]
Abstract
Why only certain species can regenerate their appendages (e.g. tails and limbs) remains one of the biggest mysteries of nature. Unlike anuran tadpoles and salamanders, humans and other mammals cannot regenerate their limbs, but can only regrow lost digit tips under specific circumstances. Numerous hypotheses have been postulated to explain regeneration-incompetency in mammals. By studying model organisms that show varying regenerative abilities, we now have more opportunities to uncover what contributes to regeneration-incompetency and functionally test which perturbations restore appendage regrowth. Particularly, Xenopus laevis tail and limb, and mouse digit tip model systems exhibit naturally occurring variations in regenerative capacities. Here, we discuss major hypotheses that are suggested to contribute to regeneration-incompetency, and how species with varying regenerative abilities reflect on these hypotheses.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life SciencesSwiss Federal Institute of Technology Lausanne (EPFL)Lausanne
| | - Mekayla A. Storer
- Department of Physiology, Development and Neuroscience and Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridge
| |
Collapse
|
109
|
Abstract
The efficacy of implanted biomaterials is largely dependent on the response of the host's immune and stromal cells. Severe foreign body response (FBR) can impede the integration of the implant into the host tissue and compromise the intended mechanical and biochemical function. Many features of FBR, including late-stage fibrotic encapsulation of implants, parallel the formation of fibrotic scar tissue after tissue injury. Regenerative organisms like zebrafish and salamanders can avoid fibrosis after injury entirely, but FBR in these research organisms is rarely investigated because their immune competence is much lower than humans. The recent characterization of a regenerative mammal, the spiny mouse (Acomys), has inspired us to take a closer look at cellular regulation in regenerative organisms across the animal kingdom for insights into avoiding FBR in humans. Here, we highlight how major features of regeneration, such as blastema formation, macrophage polarization, and matrix composition, can be modulated across a range of regenerative research organisms to elucidate common features that may be harnessed to minimize FBR. Leveraging a deeper understanding of regenerative biology for biomaterial design may help to reduce FBR and improve device integration and performance.
Collapse
Affiliation(s)
- Sunaina Sapru
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Michele N Dill
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
110
|
Hu Y, Pan X, Shi Y, Qiu Y, Wang L, Murawala P, Liu Y, Xing W, Tanaka EM, Fei JF. Muscles are barely required for the patterning and cell dynamics in axolotl limb regeneration. Front Genet 2022; 13:1036641. [PMID: 36299593 PMCID: PMC9589296 DOI: 10.3389/fgene.2022.1036641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Regeneration of a complex appendage structure such as limb requires upstream and downstream coordination of multiple types of cells. Given type of cell may sit at higher upstream position to control the activities of other cells. Muscles are one of the major cell masses in limbs. However, the subtle functional relationship between muscle and other cells in vertebrate complex tissue regeneration are still not well established. Here, we use Pax7 mutant axolotls, in which the limb muscle is developmentally lost, to investigate limb regeneration in the absence of skeletal muscle. We find that the pattern of regenerated limbs is relative normal in Pax7 mutants compared to the controls, but the joint is malformed in the Pax7 mutants. Lack of muscles do not affect the early regeneration responses, specifically the recruitment of macrophages to the wound, as well as the proliferation of fibroblasts, another major population in limbs. Furthermore, using single cell RNA-sequencing, we show that, other than muscle lineage that is mostly missing in Pax7 mutants, the composition and the status of other cell types in completely regenerated limbs of Pax7 mutants are similar to that in the controls. Our study reveals skeletal muscle is barely required for the guidance of other cells, as well the patterning in complex tissue regeneration in axolotls, and provides refined views of the roles of muscle cell in vertebrate appendage regeneration.
Collapse
Affiliation(s)
- Yan Hu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiangyu Pan
- Department of Medical Research, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu Shi
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Yuanhui Qiu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Liqun Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Prayag Murawala
- MDI Biological Laboratory, Bar Harbor, ME, United States
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Wanjin Xing, ; Elly M. Tanaka, ; Ji-Feng Fei,
| | - Elly M. Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- *Correspondence: Wanjin Xing, ; Elly M. Tanaka, ; Ji-Feng Fei,
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Wanjin Xing, ; Elly M. Tanaka, ; Ji-Feng Fei,
| |
Collapse
|
111
|
Zhou S, Liu Z, Kawakami A. A PI3Kγ signal regulates macrophage recruitment to injured tissue for regenerative cell survival. Dev Growth Differ 2022; 64:433-445. [PMID: 36101496 PMCID: PMC9826243 DOI: 10.1111/dgd.12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023]
Abstract
The interaction between immune cells and injured tissues is crucial for regeneration. Previous studies have shown that macrophages attenuate inflammation caused by injuries to support the survival of primed regenerative cells. Macrophage loss in zebrafish mutants like cloche (clo) causes extensive apoptosis in the regenerative cells of the amputated larval fin fold. However, the mechanism of interaction between macrophage and injured tissue is poorly understood. Here, we show that a phosphoinositide 3-kinase gamma (PI3Kγ)-mediated signal is essential for recruiting macrophages to the injured tissue. PI3Kγ inhibition by the PI3Kγ-specific inhibitor, 5-quinoxalin-6-ylmethylene-thiazolidine-2,4-dione (AS605240 or AS), displayed a similar apoptosis phenotype with that observed in clo mutants. We further show that PI3Kγ function during the early regenerative stage is necessary for macrophage recruitment to the injured site. Additionally, protein kinase B (Akt) overexpression in the AS-treated larvae suggested that Akt is not the direct downstream mediator of PI3Kγ for macrophage recruitment, while it independently plays a role for the survival of regenerative cells. Together, our study reveals that PI3Kγ plays a role for recruiting macrophages in response to regeneration.
Collapse
Affiliation(s)
- Siyu Zhou
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Zhengcheng Liu
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Atsushi Kawakami
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
112
|
Galili U, Goldufsky JW, Schaer GL. α-Gal Nanoparticles Mediated Homing of Endogenous Stem Cells for Repair and Regeneration of External and Internal Injuries by Localized Complement Activation and Macrophage Recruitment. Int J Mol Sci 2022; 23:ijms231911490. [PMID: 36232789 PMCID: PMC9569695 DOI: 10.3390/ijms231911490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
This review discusses a novel experimental approach for the regeneration of original tissue structure by recruitment of endogenous stem-cells to injured sites following administration of α-gal nanoparticles, which harness the natural anti-Gal antibody. Anti-Gal is produced in large amounts in all humans, and it binds the multiple α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) presented on α-gal nanoparticles. In situ binding of anti-Gal to α-gal nanoparticles activates the complement system and generates complement cleavage chemotactic-peptides that rapidly recruit macrophages. Macrophages reaching anti-Gal coated α-gal nanoparticles bind them via Fc/Fc receptor interaction and polarize into M2 pro-reparative macrophages. These macrophages secrete various cytokines that orchestrate regeneration of the injured tissue, including VEGF inducing neo-vascularization and cytokines directing homing of stem-cells to injury sites. Homing of stem-cells is also directed by interaction of complement cleavage peptides with their corresponding receptors on the stem-cells. Application of α-gal nanoparticles to skin wounds of anti-Gal producing mice results in decrease in healing time by half. Furthermore, α-gal nanoparticles treated wounds restore the normal structure of the injured skin without fibrosis or scar formation. Similarly, in a mouse model of occlusion/reperfusion myocardial-infarction, near complete regeneration after intramyocardial injection of α-gal nanoparticles was demonstrated, whereas hearts injected with saline display ~20% fibrosis and scar formation of the left ventricular wall. It is suggested that recruitment of stem-cells following anti-Gal/α-gal nanoparticles interaction in injured tissues may result in induction of localized regeneration facilitated by conducive microenvironments generated by pro-reparative macrophage secretions and “cues” provided by the extracellular matrix in the injury site.
Collapse
|
113
|
Yu Y, Yue Z, Xu M, Zhang M, Shen X, Ma Z, Li J, Xie X. Macrophages play a key role in tissue repair and regeneration. PeerJ 2022; 10:e14053. [PMID: 36196399 PMCID: PMC9527023 DOI: 10.7717/peerj.14053] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/24/2022] [Indexed: 01/19/2023] Open
Abstract
Tissue regeneration after body injury has always been a complex problem to resolve for mammals. In adult mammals, the repair process after tissue injury is often accompanied by continuous and extensive fibrosis, which leads to scars. This process has been shown to severely hinder regeneration. Macrophages, as widely distributed innate immune cells, not only play an important role in various pathological processes, but also participate in the repair process before tissue regeneration and coordinate the regeneration process after repair. This review will discuss the various forms and indispensability of macrophages involved in repair and regeneration, and how macrophages play a role in the repair and regeneration of different tissues.
Collapse
Affiliation(s)
- Yajie Yu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zhongyu Yue
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Mengli Xu
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Meiling Zhang
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xue Shen
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Zihan Ma
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Juan Li
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Xin Xie
- College of Life Science, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
114
|
The Stimulation of Macrophages by Systematical Administration of GM-CSF Can Accelerate Adult Wound Healing Process. Int J Mol Sci 2022; 23:ijms231911287. [PMID: 36232590 PMCID: PMC9570225 DOI: 10.3390/ijms231911287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Skin wound repair remains a major challenge in clinical care, and various strategies have been employed to improve the repair process. Recently, it has been reported that macrophages are important for the regeneration of various tissues and organs. However, their influence on wound repair is unclear. Here, we aimed to explore whether macrophages would participate in the wound healing process and to explore new possibilities of treatment for skin defects. We firstly created a mouse full-thickness skin defect model to observe the distribution of macrophages in the regenerating tissue and then detected the influence of macrophages on skin defect repair in both macrophage-depletion and macrophage-mobilization models. We found that the number of macrophages increased significantly after skin defect and persisted during the process of wound repair. The regeneration process was significantly prolonged in macrophage-depleted animals. RT-qPCR and ELISA assays further demonstrated that the expression of growth factors was perturbed in the regenerating tissue. The activation of macrophages by granulocyte-macrophage colony-stimulating factor (GM-CSF) injection could significantly improve wound healing, accompanied with an upregulation of the expression of various growth factors. In conclusion, the current study demonstrated that macrophages are critical for skin regeneration and that GM-CSF exhibited therapeutic potential for wound healing.
Collapse
|
115
|
Denans N, Tran NTT, Swall ME, Diaz DC, Blanck J, Piotrowski T. An anti-inflammatory activation sequence governs macrophage transcriptional dynamics during tissue injury in zebrafish. Nat Commun 2022; 13:5356. [PMID: 36127326 PMCID: PMC9489698 DOI: 10.1038/s41467-022-33015-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages are essential for tissue repair and regeneration. Yet, the molecular programs, as well as the timing of their activation during and after tissue injury are poorly defined. Using a high spatio-temporal resolution single cell analysis of macrophages coupled with live imaging after sensory hair cell death in zebrafish, we find that the same population of macrophages transitions through a sequence of three major anti-inflammatory activation states. Macrophages first show a signature of glucocorticoid activation, then IL-10 signaling and finally the induction of oxidative phosphorylation by IL-4/Polyamine signaling. Importantly, loss-of-function of glucocorticoid and IL-10 signaling shows that each step of the sequence is independently activated. Lastly, we show that IL-10 and IL-4 signaling act synergistically to promote synaptogenesis between hair cells and efferent neurons during regeneration. Our results show that macrophages, in addition to a switch from M1 to M2, sequentially and independently transition though three anti-inflammatory pathways in vivo during tissue injury in a regenerating organ.
Collapse
Affiliation(s)
- Nicolas Denans
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA.
| | - Nhung T T Tran
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA
| | - Madeleine E Swall
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA
| | - Daniel C Diaz
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA
- Parse Biosciences, 201 Elliott Ave W, Suite 290, Seattle, WA, 98119, USA
| | - Jillian Blanck
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, 1000 east 50th street, Kansas City, MO, 64110, USA.
| |
Collapse
|
116
|
Zhang J, Chang J, Beg MA, Huang W, Zhao Y, Dai W, Wu X, Cui W, Pillai SS, Lakhani HV, Sodhi K, Shapiro JI, Sahoo D, Zheng Z, Silverstein RL, Chen Y. Na/K-ATPase suppresses LPS-induced pro-inflammatory signaling through Lyn. iScience 2022; 25:104963. [PMID: 36072548 PMCID: PMC9442361 DOI: 10.1016/j.isci.2022.104963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Na/K-ATPase (NKA), besides its ion transporter function, is a signal transducer by regulating Src family kinases (SFK). The signaling NKA contributes to oxidized LDL-induced macrophage foam cell formation and interacts with TLR4. However, its role in lipopolysaccharides (LPS)-induced signaling and glycolytic switch in macrophages remains unclear. Using peritoneal macrophages from NKA α1 haploinsufficient mice (NKA α1+/-), we found that NKA α1 haploinsufficiency led to enhanced LPS-stimulated NF-κB pathway, ROS signaling, and pro-inflammatory cytokines. Intraperitoneal injection of LPS resulted in more severe lung inflammation and injury with lower survival rate in NKA α1+/- mice. Additionally, LPS induced a higher extent of the metabolic switch from oxidative phosphorylation to glycolysis. Mechanistically, NKA α1 interacted with TLR4 and Lyn. The presence of NKA α1 in this complex attenuated Lyn activation by LPS, which subsequently restricted the downstream ROS and NF-κB signaling. In conclusion, we demonstrated that NKA α1 suppresses LPS-induced macrophage pro-inflammatory signaling through Lyn.
Collapse
Affiliation(s)
- Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Jackie Chang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | - Wenxin Huang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Yiqiong Zhao
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Xiaopeng Wu
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sneha S. Pillai
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Hari Vishal Lakhani
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Roy L. Silverstein
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
117
|
Carbonell-M B, Zapata Cardona J, Delgado JP. Post-amputation reactive oxygen species production is necessary for axolotls limb regeneration. Front Cell Dev Biol 2022; 10:921520. [PMID: 36092695 PMCID: PMC9458980 DOI: 10.3389/fcell.2022.921520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction: Reactive oxygen species (ROS) represent molecules of great interest in the field of regenerative biology since several animal models require their production to promote and favor tissue, organ, and appendage regeneration. Recently, it has been shown that the production of ROS such as hydrogen peroxide (H2O2) is required for tail regeneration in Ambystoma mexicanum. However, to date, it is unknown whether ROS production is necessary for limb regeneration in this animal model. Methods: forelimbs of juvenile animals were amputated proximally and the dynamics of ROS production was determined using 2′7- dichlorofluorescein diacetate (DCFDA) during the regeneration process. Inhibition of ROS production was performed using the NADPH oxidase inhibitor apocynin. Subsequently, a rescue assay was performed using exogenous hydrogen peroxide (H2O2). The effect of these treatments on the size and skeletal structures of the regenerated limb was evaluated by staining with alcian blue and alizarin red, as well as the effect on blastema formation, cell proliferation, immune cell recruitment, and expression of genes related to proximal-distal identity. Results: our results show that inhibition of post-amputation limb ROS production in the A. mexicanum salamander model results in the regeneration of a miniature limb with a significant reduction in the size of skeletal elements such as the ulna, radius, and overall autopod. Additionally, other effects such as decrease in the number of carpals, defective joint morphology, and failure of integrity between the regenerated structure and the remaining tissue were identified. In addition, this treatment affected blastema formation and induced a reduction in the levels of cell proliferation in this structure, as well as a reduction in the number of CD45+ and CD11b + immune system cells. On the other hand, blocking ROS production affected the expression of proximo-distal identity genes such as Aldha1a1, Rarβ, Prod1, Meis1, Hoxa13, and other genes such as Agr2 and Yap1 in early/mid blastema. Of great interest, the failure in blastema formation, skeletal alterations, as well as the expression of the genes evaluated were rescued by the application of exogenous H2O2, suggesting that ROS/H2O2 production is necessary from the early stages for proper regeneration and patterning of the limb.
Collapse
Affiliation(s)
- Belfran Carbonell-M
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Belfran Carbonell-M, ; Jean Paul Delgado,
| | - Juliana Zapata Cardona
- Grupo de Investigación en Patobiología Quiron, Escuela de MedicinaVeterinaria, Universidad de Antioquia, Medellín, Colombia
| | - Jean Paul Delgado
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
- *Correspondence: Belfran Carbonell-M, ; Jean Paul Delgado,
| |
Collapse
|
118
|
Torres-Dimas E, Cruz-Ramírez A, Bermúdez-Cruz RM. Cancer in Amphibia, a rare phenomenon? Cell Biol Int 2022; 46:1992-1998. [PMID: 35979661 DOI: 10.1002/cbin.11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 08/06/2022] [Indexed: 11/08/2022]
Abstract
Compared to other animals, the spontaneous occurrence of tumors in wild amphibians is relatively rare, generally limited to specific populations or species. The number of reports of spontaneous tumors in amphibians known up to 1986 was 491 cases in anurans and about 253 cases in urodeles. Similarly, there have been many, unsuccessful attempts to chemically or biologically induce tumors in amphibians. With these considerations, it is inevitable to wonder: do urodeles and anurans have an inherent resistance to cancer? Here, we review the spontaneous and induced occurrence of tumors in amphibians in a timeline, as well as failed attempts to induce tumors in these amphibians. Indeed, recent studies seem to indicate that there is a relationship between regeneration and cancer because regenerating tissues seem to resist tumorigenesis, as opposed to nonregenerative tissues of the same amphibian models. Although the mechanisms that allow regenerating tissues to resist tumorigenesis have not been elucidated, it is worth to note that, in addition to the apparent relationship between regeneration and cancer, amphibians possess characteristics that could contribute to their ability to resist the development of neoplastic events. The implications of these features in cancer susceptibility are discussed.
Collapse
Affiliation(s)
- Esteban Torres-Dimas
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato, México
| | - Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
119
|
Hui SP, Sugimoto K, Sheng DZ, Kikuchi K. Regulatory T cells regulate blastemal proliferation during zebrafish caudal fin regeneration. Front Immunol 2022; 13:981000. [PMID: 36059461 PMCID: PMC9429828 DOI: 10.3389/fimmu.2022.981000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
The role of T cells in appendage regeneration remains unclear. In this study, we revealed an important role for regulatory T cells (Tregs), a subset of T cells that regulate tolerance and tissue repair, in the epimorphic regeneration of zebrafish caudal fin tissue. Upon amputation, fin tissue-resident Tregs infiltrate into the blastema, a population of progenitor cells that produce new fin tissues. Conditional genetic ablation of Tregs attenuates blastemal cell proliferation during fin regeneration. Blastema-infiltrating Tregs upregulate the expression of igf2a and igf2b, and pharmacological activation of IGF signaling restores blastemal proliferation in Treg-ablated zebrafish. These findings further extend our understandings of Treg function in tissue regeneration and repair.
Collapse
Affiliation(s)
- Subhra P. Hui
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, West Bengal, India
- *Correspondence: Subhra P. Hui, ; Kazu Kikuchi,
| | - Kotaro Sugimoto
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Delicia Z. Sheng
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St. Vincent’s Clinical School, University of New South Wales, Kensington, NSW, Australia
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- *Correspondence: Subhra P. Hui, ; Kazu Kikuchi,
| |
Collapse
|
120
|
Abstract
Salamanders are an important group of living amphibians and model organisms for understanding locomotion, development, regeneration, feeding, and toxicity in tetrapods. However, their origin and early radiation remain poorly understood, with early fossil stem-salamanders so far represented by larval or incompletely known taxa. This poor record also limits understanding of the origin of Lissamphibia (i.e., frogs, salamanders, and caecilians). We report fossils from the Middle Jurassic of Scotland representing almost the entire skeleton of the enigmatic stem-salamander Marmorerpeton. We use computed tomography to visualize high-resolution three-dimensional anatomy, describing morphologies that were poorly characterized in early salamanders, including the braincase, scapulocoracoid, and lower jaw. We use these data in the context of a phylogenetic analysis intended to resolve the relationships of early and stem-salamanders, including representation of important outgroups alongside data from high-resolution imaging of extant species. Marmorerpeton is united with Karaurus, Kokartus, and others from the Middle Jurassic-Lower Cretaceous of Asia, providing evidence for an early radiation of robustly built neotenous stem-salamanders. These taxa display morphological specializations similar to the extant cryptobranchid "giant" salamanders. Our analysis also demonstrates stem-group affinities for a larger sample of Jurassic species than previously recognized, highlighting an unappreciated diversity of stem-salamanders and cautioning against the use of single species (e.g., Karaurus) as exemplars for stem-salamander anatomy. These phylogenetic findings, combined with knowledge of the near-complete skeletal anatomy of Mamorerpeton, advance our understanding of evolutionary changes on the salamander stem-lineage and provide important data on early salamanders and the origins of Batrachia and Lissamphibia.
Collapse
|
121
|
Vieira S, Silva-Correia J, Reis RL, Oliveira JM. Engineering Hydrogels for Modulation of Material-Cell Interactions. Macromol Biosci 2022; 22:e2200091. [PMID: 35853666 DOI: 10.1002/mabi.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/29/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels are a recurrent platform for Tissue Engineering (TE) strategies. Their versatility and the variety of available methods for tuning their properties highly contribute to hydrogels' success. As a result, the design of advanced hydrogels has been thoroughly studied, in the quest for better solutions not only for drugs- and cell-based therapies but also for more fundamental studies. The wide variety of sources, crosslinking strategies, and functionalization methods, and mostly the resemblance of hydrogels to the natural extracellular matrix, make this 3D hydrated structures an excellent tool for TE approaches. The state-of-the-art information regarding hydrogel design, processing methods, and the influence of different hydrogel formulations on the final cell-biomaterial interactions are overviewed herein. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sílvia Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
122
|
Sinigaglia C, Almazán A, Lebel M, Sémon M, Gillet B, Hughes S, Edsinger E, Averof M, Paris M. Distinct gene expression dynamics in developing and regenerating crustacean limbs. Proc Natl Acad Sci U S A 2022; 119:e2119297119. [PMID: 35776546 PMCID: PMC9271199 DOI: 10.1073/pnas.2119297119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/14/2022] [Indexed: 01/03/2023] Open
Abstract
Regenerating animals have the ability to reproduce body parts that were originally made in the embryo and subsequently lost due to injury. Understanding whether regeneration mirrors development is an open question in most regenerative species. Here, we take a transcriptomics approach to examine whether leg regeneration shows similar temporal patterns of gene expression as leg development in the embryo, in the crustacean Parhyale hawaiensis. We find that leg development in the embryo shows stereotypic temporal patterns of gene expression. In contrast, the dynamics of gene expression during leg regeneration show a higher degree of variation related to the physiology of individual animals. A major driver of this variation is the molting cycle. We dissect the transcriptional signals of individual physiology and regeneration to obtain clearer temporal signals marking distinct phases of leg regeneration. Comparing the transcriptional dynamics of development and regeneration we find that, although the two processes use similar sets of genes, the temporal patterns in which these genes are deployed are different and cannot be systematically aligned.
Collapse
Affiliation(s)
- Chiara Sinigaglia
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Alba Almazán
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Marie Lebel
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Marie Sémon
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, 69364 Lyon, France
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Eric Edsinger
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| | - Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon, CNRS, École Normale Supérieure de Lyon, and Université Claude Bernard Lyon-1, Lyon 69007, France
| |
Collapse
|
123
|
Xue Y, Reddy SK, Garza LA. Toward Understanding Wound Immunology for High-Fidelity Skin Regeneration. Cold Spring Harb Perspect Biol 2022; 14:a041241. [PMID: 35667792 PMCID: PMC9248820 DOI: 10.1101/cshperspect.a041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Effective tissue repair is vital for the survival of organisms. Yet, how the immune system coordinates with tissue stem cells (SCs) to effect postnatal tissue restoration remains elusive. This review presents current knowledge surrounding wound-induced SC and immune signaling that favors tissue repair, including wound healing and regeneration. We discuss factors that affect regenerative capacities among organisms and the dynamics of local immune cells and SCs during reepithelialization. We also present recent insights into how immune niches communicate with SCs or other body systems to restore the epithelial architecture. Additionally, we summarize our findings on functional wound regeneration, specifically how alarmin (double-stranded RNA [dsRNA])-activated Toll-like receptor signaling and host-microbe interaction-related immune pathways alter the regenerative property of skin SCs. Last, we touch on mechanisms by which known immunologic cellular and molecular signaling might boost the skin's regenerative property. Overall, this review will provide insights into how therapeutically modulating immune signaling could enhance postnatal tissue regeneration.
Collapse
Affiliation(s)
| | - Sashank K Reddy
- Department of Plastic and Reconstructive Surgery
- Department of Biomedical Engineering
- Institute for NanoBioTechnology
| | - Luis A Garza
- Department of Dermatology
- Department of Cell Biology
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland 21231, USA
| |
Collapse
|
124
|
Alharbi KS, Almalki WH, Alzarea SI, Kazmi I, Al-Abbasi FA, Afzal O, Alfawaz Altamimi AS, Singh SK, Dua K, Gupta G. A narrative review on the biology of piezo1 with platelet-rich plasma in cardiac cell regeneration. Chem Biol Interact 2022; 363:110011. [PMID: 35728671 DOI: 10.1016/j.cbi.2022.110011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Cardiomyocyte regeneration following cardiac damage is challenging to study because of the inflammatory process, the multiplication of cells in the stroma, and the creation of scar tissue. In addition to the initial damage, the subsequent decrease in cardiac myocytes adds to heart failure. Piezo1 is remarkably understudied in the heart, which may be related to its recent discovery. Despite this, Piezo1 is expressed in a variety of cardiovascular cell populations, notably epithelial cells (EC), cardiac fibroblasts (CF), and cardiac myocytes (CM), in both animal and human samples, with fibroblasts expressing more than myocytes. Researchers have recently shown that disrupting Piezo1 signaling causes defects in zebrafish developing the outflow tract (OFT) and aortic valves. Platelet plasma membranes may provide lipid substrates, such as phosphatidylinositol bisphosphate, that aid in activating the piezo 1 ion channel in the cardiovascular system. In addition, CXC chemokine ligand 8/CXC chemokine receptor 1/2 (CXCL8-CXCR1/2) signaling was identified to establish the proliferation of coronary endothelial cells during cardiac regeneration. Notably, all these pathways are calcium-dependent, and cell proliferation and angiogenesis were necessary to recover myocardial cells. This review will examine the most current findings to understand further how platelet-rich plasma (PRP) and the piezo 1 channel might aid in cardiomyocyte regeneration.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
125
|
Cho E, Cheon S, Ding M, Lim K, Park SW, Park C, Lee TH. Identification of Novel Genes for Cell Fusion during Osteoclast Formation. Int J Mol Sci 2022; 23:ijms23126421. [PMID: 35742859 PMCID: PMC9224196 DOI: 10.3390/ijms23126421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Osteoclasts are derived from hematopoietic stem cells. Monocyte preosteoclasts obtain resorbing activity via cell–cell fusion to generate multinucleated cells. However, the mechanisms and molecules involved in the fusion process are poorly understood. In this study, we performed RNA sequencing with single nucleated cells (SNCs) and multinucleated cells (MNCs) to identify the fusion-specific genes. The SNCs and MNCs were isolated under the same conditions during osteoclastogenesis with the receptor activator of nuclear factor-κB ligand (RANKL) administration. Based on this analysis, the expression of seven genes was found to be significantly increased in MNCs but decreased in SNCs, compared to that in bone marrow-derived macrophages (BMMs). We then generated knockout macrophage cell lines using a CRISPR-Cas9 genome-editing tool to examine their function during osteoclastogenesis. Calcrl-, Marco-, or Ube3a-deficient cells could not develop multinucleated giant osteoclasts upon RANKL stimulation. However, Tmem26-deficient cells fused more efficiently than control cells. Our findings demonstrate that Calcrl, Marco, and Ube3a are novel determinants of osteoclastogenesis, especially with respect to cell fusion, and highlight potential targets for osteoporosis therapy.
Collapse
Affiliation(s)
- Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (E.C.); (S.-W.P.)
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (S.C.); (C.P.)
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Mina Ding
- Biomedical Sciences Graduate Program, School of Medical, Chonnam National University, Gwangju 61186, Korea;
| | - Kayeong Lim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Korea;
| | - Sang-Wook Park
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (E.C.); (S.-W.P.)
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea; (S.C.); (C.P.)
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea; (E.C.); (S.-W.P.)
- Correspondence:
| |
Collapse
|
126
|
Mohammadi S, Ravanbakhsh H, Taheri S, Bao G, Mongeau L. Immunomodulatory Microgels Support Proregenerative Macrophage Activation and Attenuate Fibroblast Collagen Synthesis. Adv Healthc Mater 2022; 11:e2102366. [PMID: 35122412 DOI: 10.1002/adhm.202102366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Indexed: 11/05/2022]
Abstract
Scars composed of fibrous connective tissues are natural consequences of injury upon incisional wound healing in soft tissues. Hydrogels that feature a sustained presentation of immunomodulatory cytokines are known to modulate wound healing. However, existing immunomodulatory hydrogels lack interconnected micropores to promote cell ingrowth. Other limitations include invasive delivery procedures and harsh synthesis conditions that are incompatible with drug molecules. Here, hybrid nanocomposite microgels containing interleukin-10 (IL-10) are reported to modulate tissue macrophage phenotype during wound healing. The intercalation of laponite nanoparticles in the polymer network yields microgels with tissue-mimetic elasticity (Young's modulus in the range of 2-6 kPa) and allows the sustained release of IL-10 to promote the differentiation of macrophages toward proregenerative phenotypes. The porous interstitial spaces between microgels promote fibroblast proliferation and fast trafficking (an average speed of ≈14.4 µm h-1 ). The incorporation of hyaluronic acid further enhances macrophage infiltration. The coculture of macrophages and fibroblasts treated with transforming growth factor-beta 1 resulted in a twofold reduction in collagen-I production for microgels releasing IL-10 compared to the IL-10 free group. The new microgels show potential toward regenerative healing by harnessing the antifibrotic behavior of host macrophages.
Collapse
Affiliation(s)
- Sepideh Mohammadi
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Hossein Ravanbakhsh
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Sareh Taheri
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Guangyu Bao
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Luc Mongeau
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| |
Collapse
|
127
|
McCusker C, Whited J, Monaghan J. Salamander models for elucidating mechanisms of developmental biology, evolution, and regeneration: Part two. Dev Dyn 2022; 251:903-905. [PMID: 35647817 DOI: 10.1002/dvdy.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Catherine McCusker
- College of Science and Mathematics, Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jessica Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - James Monaghan
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
128
|
Mengli Xu, Su J, Yue Z, Yu Y, Zhao X, Xie X. Inflammation and Limb Regeneration: The Role of the Chemokines. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
129
|
Xin L, Wei C, Tong X, Dai Y, Huang D, Chen J, Ma L, Zhang S. In situ delivery of apoptotic bodies derived from mesenchymal stem cells via a hyaluronic acid hydrogel: A therapy for intrauterine adhesions. Bioact Mater 2022; 12:107-119. [PMID: 35087967 PMCID: PMC8777284 DOI: 10.1016/j.bioactmat.2021.10.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based and stem cell-derived exosome-based therapies have shown promising potential for endometrial regeneration and the clinical treatment of intrauterine adhesions (IUAs). Evidence shows that apoptosis occurs in a majority of grafted stem cells, and apoptotic bodies (ABs) play a critical role in compensatory tissue regeneration. However, the therapeutic potential of AB-based therapy and its mechanism have not been explored in detail. Here, a cell-free therapeutic strategy was developed by incorporating mesenchymal stem cell-derived ABs into a hyaluronic acid (HA) hydrogel to achieve endometrial regeneration and fertility restoration. Specifically, we found that the ABs could induce macrophage immunomodulation, cell proliferation, and angiogenesis in vitro. The HA hydrogel promoted the retention of ABs and facilitated their continuous release. In a murine model of acute endometrial damage and a rat model of IUAs, in situ injection of the AB-laden HA hydrogel could efficiently reduce fibrosis and promote endometrial regeneration, resulting in the fertility restoration. Consequently, ABs show good potential as therapeutic vesicles, and the AB-laden HA hydrogel appears to be a clinically feasible and cell-free alternative for endometrial regeneration and IUA treatment. Human umbilical cord derived apoptotic bodies induce macrophage immunomodulation, cell proliferation and angiogenesis A strategy of apoptotic bodies associated with hyaluronic acid hydrogel promotes apoptotic bodies retention and continuous release The implantation of the apoptotic body-laden hyaluronic acid hydrogel into uterine cavity effectively promoted endometrial regeneration and fertility restoration in a rodent model of intrauterine adhesion
Collapse
|
130
|
Bohaud C, Cruz JDL, Terraza C, Barthelaix A, Laplace-Builhé B, Jorgensen C, Arribat Y, Djouad F. Lactate metabolism coordinates macrophage response and regeneration in zebrafish. Theranostics 2022; 12:3995-4009. [PMID: 35664055 PMCID: PMC9131269 DOI: 10.7150/thno.65235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/27/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Macrophages are multifunctional cells with a pivotal role on tissue development, homeostasis and regeneration. Indeed, in response to tissue injury and the ensuing regeneration process, macrophages are challenged and undergo massive metabolic adaptations and changes. However, the control of this metabolic reprogramming by macrophage microenvironment has never been deciphered in vivo. Methods: In this study, we used zebrafish model and caudal fin resection as a robust regeneration system. We explored specific changes in gene expression after tissue amputation via single-cell RNA sequencing analysis and whole-tissue transcriptomic analysis. Based on the identification of key modifications, we confirmed the role of the lactate pathway in macrophage response and fin regeneration, through the combination of chemical and genetic inhibitors of this pathway. Results: Single cell RNA sequencing revealed the upregulation of different genes associated with glycolysis and lactate metabolism in macrophages, upon fin regeneration. Hence, using chemical inhibitors of the LDH enzyme, we confirmed the role of lactate in macrophage recruitment and polarization, to promote a pro-inflammatory phenotype and enhance fin regeneration. The genetic modulation of monocarboxylate transporters illustrated a complex regulation of lactate levels, based on both intracellular and extracellular supplies. Commonly, the different sources of lactate resulted in macrophage activation with an increased expression level of inflammatory cytokines such as TNFa during the first 24 hours of regeneration. Transcriptomic analyses confirmed that lactate induced a global modification of gene expression in macrophages. Conclusion: Altogether, our findings highlight the crucial role of lactate at the onset of macrophage differentiation toward a pro-inflammatory phenotype. The deep modifications of macrophage phenotype mediated by lactate and downstream effectors play a key role to coordinate inflammatory response and tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- CHU Montpellier, Montpellier, F-34295 France
| | - Yoan Arribat
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | |
Collapse
|
131
|
Lucas CD, Medina CB, Bruton FA, Dorward DA, Raymond MH, Tufan T, Etchegaray JI, Barron B, Oremek ME, Arandjelovic S, Farber E, Onngut-Gumuscu S, Ke E, Whyte MKB, Rossi AG, Ravichandran KS. Pannexin 1 drives efficient epithelial repair after tissue injury. Sci Immunol 2022; 7:eabm4032. [PMID: 35559667 PMCID: PMC7612772 DOI: 10.1126/sciimmunol.abm4032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Epithelial tissues such as lung and skin are exposed to the environment and therefore particularly vulnerable to damage during injury or infection. Rapid repair is therefore essential to restore function and organ homeostasis. Dysregulated epithelial tissue repair occurs in several human disease states, yet how individual cell types communicate and interact to coordinate tissue regeneration is incompletely understood. Here, we show that pannexin 1 (Panx1), a cell membrane channel activated by caspases in dying cells, drives efficient epithelial regeneration after tissue injury by regulating injury-induced epithelial proliferation. Lung airway epithelial injury promotes the Panx1-dependent release of factors including ATP, from dying epithelial cells, which regulates macrophage phenotype after injury. This process, in turn, induces a reparative response in tissue macrophages that includes the induction of the soluble mitogen amphiregulin, which promotes injury-induced epithelial proliferation. Analysis of regenerating lung epithelium identified Panx1-dependent induction of Nras and Bcas2, both of which positively promoted epithelial proliferation and tissue regeneration in vivo. We also established that this role of Panx1 in boosting epithelial repair after injury is conserved between mouse lung and zebrafish tailfin. These data identify a Panx1-mediated communication circuit between epithelial cells and macrophages as a key step in promoting epithelial regeneration after injury.
Collapse
Affiliation(s)
- Christopher D. Lucas
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
- Institute for Regeneration and Repair, Edinburgh BioQuarter, UK
| | - Christopher B. Medina
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Finnius A. Bruton
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
| | - David A. Dorward
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
| | - Michael H. Raymond
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Turan Tufan
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - J. Iker Etchegaray
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Brady Barron
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Magdalena E.M. Oremek
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
| | - Sanja Arandjelovic
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Suna Onngut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Eugene Ke
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Moira KB Whyte
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
| | - Adriano G. Rossi
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, UK
| | - Kodi S. Ravichandran
- Center for Cell Clearance, Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Inflammation Research Centre, VIB, and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
132
|
Avalos PN, Forsthoefel DJ. An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Front Cell Dev Biol 2022; 10:849905. [PMID: 35646926 PMCID: PMC9130466 DOI: 10.3389/fcell.2022.849905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regeneration requires cellular proliferation, differentiation, and other processes that are regulated by secreted cues originating from cells in the local environment. Recent studies suggest that signaling by extracellular vesicles (EVs), another mode of paracrine communication, may also play a significant role in coordinating cellular behaviors during regeneration. EVs are nanoparticles composed of a lipid bilayer enclosing proteins, nucleic acids, lipids, and other metabolites, and are secreted by most cell types. Upon EV uptake by target cells, EV cargo can influence diverse cellular behaviors during regeneration, including cell survival, immune responses, extracellular matrix remodeling, proliferation, migration, and differentiation. In this review, we briefly introduce the history of EV research and EV biogenesis. Then, we review current understanding of how EVs regulate cellular behaviors during regeneration derived from numerous studies of stem cell-derived EVs in mammalian injury models. Finally, we discuss the potential of other established and emerging research organisms to expand our mechanistic knowledge of basic EV biology, how injury modulates EV biogenesis, cellular sources of EVs in vivo, and the roles of EVs in organisms with greater regenerative capacity.
Collapse
Affiliation(s)
- Priscilla N. Avalos
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - David J. Forsthoefel
- Department of Cell Biology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
133
|
A cardioimmunologist's toolkit: genetic tools to dissect immune cells in cardiac disease. Nat Rev Cardiol 2022; 19:395-413. [PMID: 35523863 DOI: 10.1038/s41569-022-00701-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Cardioimmunology is a field that encompasses the immune cells and pathways that modulate cardiac function in homeostasis and regulate the temporal balance between tissue injury and repair in disease. Over the past two decades, genetic fate mapping and high-dimensional sequencing techniques have defined increasing functional heterogeneity of innate and adaptive immune cell populations in the heart and other organs, revealing a complexity not previously appreciated and challenging established frameworks for the immune system. Given these rapid advances, understanding how to use these tools has become crucial. However, cardiovascular biologists without immunological expertise might not be aware of the strengths and caveats of immune-related tools and how they can be applied to examine the pathogenesis of myocardial diseases. In this Review, we guide readers through case-based examples to demonstrate how tool selection can affect data quality and interpretation and we provide critical analysis of the experimental tools that are currently available, focusing on their use in models of ischaemic heart injury and heart failure. The goal is to increase the use of relevant immunological tools and strategies among cardiovascular researchers to improve the precision, translatability and consistency of future studies of immune cells in cardiac disease.
Collapse
|
134
|
Feuerer N, Carvajal Berrio DA, Billing F, Segan S, Weiss M, Rothbauer U, Marzi J, Schenke-Layland K. Raman Microspectroscopy Identifies Biochemical Activation Fingerprints in THP-1- and PBMC-Derived Macrophages. Biomedicines 2022; 10:989. [PMID: 35625726 PMCID: PMC9139061 DOI: 10.3390/biomedicines10050989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/24/2022] Open
Abstract
(1) The monocytic leukemia cell line THP-1 and primary monocyte-derived macrophages (MDMs) are popular in vitro model systems to study human innate immunity, wound healing, and tissue regeneration. However, both cell types differ significantly in their origin and response to activation stimuli. (2) Resting THP-1 and MDMs were stimulated with lipopolysaccharide (LPS) and interferon γ (IFNγ) and analyzed by Raman microspectroscopy (RM) before and 48 h after activation. Raman data were subsequently analyzed using principal component analysis. (3) We were able to resolve and analyze the spatial distribution and molecular composition of proteins, nucleic acids, and lipids in resting and activated THP-1 and MDMs. Our findings reveal that proinflammatory activation-induced significant spectral alterations at protein and phospholipid levels in THP-1. In MDMs, we identified that nucleic acid and non-membrane-associated intracellular lipid composition were also affected. (4) Our results show that it is crucial to carefully choose the right cell type for an in vitro model as the nature of the cells itself may impact immune cell polarization or activation results. Moreover, we demonstrated that RM is a sensitive tool for investigating cell-specific responses to activation stimuli and monitoring molecular changes in subcellular structures.
Collapse
Affiliation(s)
- Nora Feuerer
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (N.F.); (D.A.C.B.); (K.S.-L.)
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
| | - Daniel A. Carvajal Berrio
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (N.F.); (D.A.C.B.); (K.S.-L.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Florian Billing
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
| | - Sören Segan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
| | - Martin Weiss
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
- Department of Women’s Health, Research Institute of Women’s Health, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ulrich Rothbauer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (N.F.); (D.A.C.B.); (K.S.-L.)
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; (N.F.); (D.A.C.B.); (K.S.-L.)
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany; (F.B.); (S.S.); (M.W.); (U.R.)
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Department of Medicine/Cardiology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
135
|
Arinda BN, Innabi YA, Grasis JA, Oviedo NJ. Non-traditional roles of immune cells in regeneration: an evolutionary perspective. Development 2022; 149:275269. [PMID: 35502784 PMCID: PMC9124569 DOI: 10.1242/dev.199903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune cells are known to engage in pathogen defense. However, emerging research has revealed additional roles for immune cells, which are independent of their function in the immune response. Here, we underscore the ability of cells outside of the adaptive immune system to respond to recurring infections through the lens of evolution and cellular memory. With this in mind, we then discuss the bidirectional crosstalk between the immune cells and stem cells and present examples where these interactions regulate tissue repair and regeneration. We conclude by suggesting that comprehensive analyses of the immune system may enable biomedical applications in stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Beryl N Arinda
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Yacoub A Innabi
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Juris A Grasis
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
136
|
Abstract
The immune system is fundamental to tissue homeostasis and is the first line of defense following infection, injury or disease. In the damaged heart, large numbers of immune cells are recruited to the site of injury. These cells play an integral part in both repair by scar formation and the initiation of tissue regeneration. They initially assume inflammatory phenotypes, releasing pro-inflammatory cytokines and removing dead and dying tissue, before entering a reparative stage, replacing dead muscle tissue with a non-contractile scar. In this Review, we present an overview of the innate and adaptive immune response to heart injury. We explore the kinetics of immune cell mobilization following cardiac injury and how the different innate and adaptive immune cells interact with one another and with the damaged tissue. We draw on key findings from regenerative models, providing insight into how to support a robust immune response permissible for cardiac regeneration. Finally, we consider how the latest technological developments can offer opportunities for a deeper and unbiased functional understanding of the immune response to heart disease, highlighting the importance of such knowledge as the basis for promoting regeneration following cardiac injury in human patients.
Collapse
Affiliation(s)
- Filipa C. Simões
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford,Oxford, OxfordshireOX3 9DS, UK
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
| | - Paul R. Riley
- Institute of Developmental and Regenerative Medicine, Old Road Campus, Oxford, OxfordshireOX3 7DQ, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OxfordshireOX1 3PT, UK
| |
Collapse
|
137
|
Bando T, Okumura M, Bando Y, Hagiwara M, Hamada Y, Ishimaru Y, Mito T, Kawaguchi E, Inoue T, Agata K, Noji S, Ohuchi H. Toll signalling promotes blastema cell proliferation during cricket leg regeneration via insect macrophages. Development 2022; 149:272415. [PMID: 34622924 DOI: 10.1242/dev.199916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
Hemimetabolous insects, such as the two-spotted cricket Gryllus bimaculatus, can recover lost tissues, in contrast to the limited regenerative abilities of human tissues. Following cricket leg amputation, the wound surface is covered by the wound epidermis, and plasmatocytes, which are insect macrophages, accumulate in the wound region. Here, we studied the function of Toll-related molecules identified by comparative RNA sequencing during leg regeneration. Of the 11 Toll genes in the Gryllus genome, expression of Toll2-1, Toll2-2 and Toll2-5 was upregulated during regeneration. RNA interference (RNAi) of Toll, Toll2-1, Toll2-2, Toll2-3 or Toll2-4 produced regeneration defects in more than 50% of crickets. RNAi of Toll2-2 led to a decrease in the ratio of S- and M-phase cells, reduced expression of JAK/STAT signalling genes, and reduced accumulation of plasmatocytes in the blastema. Depletion of plasmatocytes in crickets using clodronate also produced regeneration defects, as well as fewer proliferating cells in the regenerating legs. Plasmatocyte depletion also downregulated the expression of Toll and JAK/STAT signalling genes in the regenerating legs. These results suggest that Spz-Toll-related signalling in plasmatocytes promotes leg regeneration through blastema cell proliferation by regulating the Upd-JAK/STAT signalling pathway.
Collapse
Affiliation(s)
- Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Misa Okumura
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Yuki Bando
- Faculty of Medicine, Okayama University Medical School, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Marou Hagiwara
- Faculty of Medicine, Okayama University Medical School, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Yoshimasa Hamada
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Eri Kawaguchi
- Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Takeshi Inoue
- Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Kiyokazu Agata
- Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama city, Okayama 700-8558, Japan
| |
Collapse
|
138
|
Paul S, Balakrishnan S, Arumugaperumal A, Lathakumari S, Syamala SS, Vijayan V, Durairaj SCJ, Arumugaswami V, Sivasubramaniam S. Importance of clitellar tissue in the regeneration ability of earthworm Eudrilus eugeniae. Funct Integr Genomics 2022; 22:1-32. [PMID: 35416560 DOI: 10.1007/s10142-022-00849-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.
Collapse
Affiliation(s)
- Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, 560065, India
| | | | - Arun Arumugaperumal
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Saranya Lathakumari
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Sandhya Soman Syamala
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Vijithkumar Vijayan
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India
| | - Selvan Christyraj Jackson Durairaj
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.,Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600 119, India
| | | | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, 627012, India.
| |
Collapse
|
139
|
Alibardi L. Immunohistochemistry Indicates That Persistent Inflammation Determines Failure of Tail, Limb and Finger Regeneration in the Lizard Podarcis muralis. Ann Anat 2022; 243:151940. [PMID: 35390473 DOI: 10.1016/j.aanat.2022.151940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The presence of white blood inflammatory cells in injured tissues and their effect on the process of organ regeneration in lizards has been assessed on tail, limb and digits. METHODS The present immunohistochemical survey analyzes the occurrence of CD68-labeled cells in lizard organs uncapable of regenerating tissues that exhibit strong inflammatory activity. RESULTS This marker mainly identifies macrophages and mast cells present in large number within tissues of injured limbs and digits. Also a high inflammation is associated with amputated tails that do not regenerate, derived from cauterization or infection of tissues of the tail stump. In the healing limbs and fingers at 12-20 days post-amputation, numerous CD68-labeled cells, most likely macrophages, are seen among superficial connective tissues and injured muscles and bones. These cells likely stimulate and give rise to scarring tissues and no regeneration of limb and fingers occurs. In the cauterized or in the infected tail stump a strong accumulation of CD68-positive mast cells and macrophages is observed, where they likely evoke epidermal coagulation, formation of scarring connective tissue, and loss of regeneration. CONCLUSIONS The present observations provide further cytological evidence that support the notion that a strong and lasting inflammatory condition impedes organ regeneration in specifically lizards and, more generally other vertebrates as well.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Dipartimento di Biologia, University of Bologna, via Selmi 3, 40126, BO, Italy
| |
Collapse
|
140
|
Tan ZH, Dharmadhikari S, Liu L, Wolter G, Shontz KM, Reynolds SD, Johnson J, Breuer CK, Chiang T. Tracheal Macrophages During Regeneration and Repair of Long-Segment Airway Defects. Laryngoscope 2022; 132:737-746. [PMID: 34153127 PMCID: PMC8688581 DOI: 10.1002/lary.29698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES/HYPOTHESIS Tissue-engineered tracheal grafts (TETGs) offer a potential solution for repair of long-segment airway defects. However, preclinical and clinical TETGs have been associated with chronic inflammation and macrophage infiltration. Macrophages express great phenotypic heterogeneity (generally characterized as classically activated [M1] vs. alternatively activated [M2]) and can influence tracheal repair and regeneration. We quantified and characterized infiltrating host macrophages using mouse microsurgical tracheal replacement models. STUDY DESIGN Translational research, animal model. METHODS We assessed macrophage infiltration and phenotype in animals implanted with syngeneic tracheal grafts, synthetic TETGs, or partially decellularized tracheal scaffolds (DTSs). RESULTS Macrophage infiltration was observed following tracheal replacement with syngeneic trachea. Both M1 and M2 macrophages were present in native trachea and increased during early tracheal repair (P = .014), with an M1/M2 ratio of 0.48 ± 0.15. In contrast, orthotopic implantation of synthetic TETGs resulted in a shift to M1 predominant macrophage phenotype with an increased M1/M2 ratio of 1.35 ± 0.41 by 6 weeks following implant (P = .035). Modulation of the synthetic scaffold with the addition of polyglycolic acid (PGA) resulted in a reduction of M1/M2 ratio due to an increase in M2 macrophages (P = .006). Using systemic macrophage depletion, the M1/M2 ratio reverted to native values in synthetic TETG recipients and was associated with an increase in graft epithelialization. Macrophage ratios seen in DTSs were similar to native values. CONCLUSIONS M1 and M2 macrophages are present during tracheal repair. Poor epithelialization with synthetic TETG is associated with an elevation of the M1/M2 ratio. Macrophage phenotype can be altered with scaffold composition and host-directed systemic therapies. DTSs exhibit M1/M2 ratios similar to those seen in native trachea and syngeneic tracheal replacement. LEVEL OF EVIDENCE NA Laryngoscope, 132:737-746, 2022.
Collapse
Affiliation(s)
- Zheng Hong Tan
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sayali Dharmadhikari
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lumei Liu
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Gabrielle Wolter
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kimberly M Shontz
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | - Christopher K Breuer
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
141
|
Seifert AW, Temple-Smith P. A remarkable rodent: Regeneration and reproduction in spiny mice (Acomys). Curr Top Dev Biol 2022; 147:659-707. [PMID: 35337466 DOI: 10.1016/bs.ctdb.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although certain organisms are chosen and employed to better understand a specific problem in biology (so-called model organisms), sometimes an animal model reveals its' biomedical importance by happenstance. In many ways, the advent of spiny mice (Acomys) as an emerging model to study regeneration and menstruation stands as a case study in scientific pseudoserendipity (Diaz de Chumaceiro, 1995). As we recount in this chapter, the discovery of these phenotypes, while not entirely accidental, was nonetheless unexpected. In addition to recounting how we uncovered these unusual mammalian traits, we outline recent work by our groups and others that has begun to outline the cellular and genetic mechanisms underlying bonafide mammalian tissue regeneration and a human-like mode of reproduction in spiny mice.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States; Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya.
| | - Peter Temple-Smith
- Department of Obstetrics & Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
142
|
Hu S, Yang M, Huang S, Zhong S, Zhang Q, Ding H, Xiong X, Hu Z, Yang Y. Different Roles of Resident and Non-resident Macrophages in Cardiac Fibrosis. Front Cardiovasc Med 2022; 9:818188. [PMID: 35330948 PMCID: PMC8940216 DOI: 10.3389/fcvm.2022.818188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiac fibrosis is a key pathological link of various cardiovascular diseases to heart failure. It is of great significance to deeply understand the development process of cardiac fibrosis and the cellular and molecular mechanisms involved. Macrophages play a special role in promoting heart development, maintaining myocardial cell homeostasis and heart function. They are involved in the whole process from inflammatory to cardiac fibrosis. This article summarizes the relationship between inflammation and fibrosis, discusses the bidirectional regulation of cardiac fibrosis by macrophages and analyses the functional heterogeneity of macrophages from different sources. It is believed that CCR2– cardiac resident macrophages can promote cardiac function, but the recruitment and infiltration of CCR2+ cardiac non-resident macrophages aggravate cardiac dysfunction and heart remodeling. After heart injury, damage associated molecular patterns (DAMPs) are released in large quantities, and the inflammatory signal mediated by macrophage chemoattractant protein-1 (MCP-1) promotes the infiltration of CCR2+ monocytes and transforms into macrophages in the heart. These CCR2+ non-resident macrophages not only replace part of the CCR2– resident macrophage subpopulation in the heart, but also cause cardiac homeostasis and hypofunction, and release a large number of mediators that promote fibroblast activation to cause cardiac fibrosis. This article reveals the cell biology mechanism of resident and non-resident macrophages in regulating cardiac fibrosis. It is believed that inhibiting the infiltration of cardiac non-resident macrophages and promoting the proliferation and activation of cardiac resident macrophages are the key to improving cardiac fibrosis and improving cardiac function.
Collapse
Affiliation(s)
- Siyuan Hu
- School of Sports Art, Hunan University of Chinese Medicine, Changsha, China.,College of Health Science, Wuhan Sports University, Wuhan, China
| | - Meng Yang
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Shumin Huang
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Senjie Zhong
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Qian Zhang
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Haichao Ding
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiajun Xiong
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China.,Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Zhixi Hu
- Institute of Chinese Medicine Diagnosis, Hunan University of Chinese Medicine, Changsha, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
143
|
Bohaud C, Johansen MD, Varga B, Contreras-Lopez R, Barthelaix A, Hamela C, Sapède D, Cloitre T, Gergely C, Jorgensen C, Kremer L, Djouad F. Exploring Macrophage-Dependent Wound Regeneration During Mycobacterial Infection in Zebrafish. Front Immunol 2022; 13:838425. [PMID: 35401552 PMCID: PMC8987025 DOI: 10.3389/fimmu.2022.838425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
The molecular and cellular mechanisms associated with tissue degradation or regeneration in an infectious context are poorly defined. Herein, we explored the role of macrophages in orchestrating either tissue regeneration or degradation in zebrafish embryos pre-infected with the fish pathogen Mycobacterium marinum. Zebrafish were inoculated with different infectious doses of M. marinum prior to fin resection. While mild infection accelerated fin regeneration, moderate or severe infection delayed this process by reducing blastemal cell proliferation and impeding tissue morphogenesis. This was correlated with impaired macrophage recruitment at the wound of the larvae receiving high infectious doses. Macrophage activation characterized, in part, by a high expression level of tnfa was exacerbated in severely infected fish during the early phase of the regeneration process, leading to macrophage necrosis and their complete absence in the later phase. Our results demonstrate how a mycobacterial infection influences the macrophage response and tissue regenerative processes.
Collapse
Affiliation(s)
| | - Matt D. Johansen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- Centre for Inflammation, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Béla Varga
- L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | | | - Claire Hamela
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Dora Sapède
- IRMB, Univ Montpellier, INSERM, Montpellier, France
| | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Department of Rheumatology, Lapeyronie University Hospital, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| | - Farida Djouad
- IRMB, Univ Montpellier, INSERM, Montpellier, France
- *Correspondence: Farida Djouad,
| |
Collapse
|
144
|
Niu X, Lai Z, Chen X, Lu F, Gao J, Yuan Y. A Short-Term High-Fat Diet Improved the Survival of Fat Grafts in Mice by Promoting Macrophage Infiltration and Angiogenesis. Front Cell Dev Biol 2022; 10:856839. [PMID: 35372358 PMCID: PMC8968084 DOI: 10.3389/fcell.2022.856839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Adipose tissue is an ideal filler material that is widely used for soft tissue defects. But the low survival rate and complications associated with such grafts pose a serious challenge, which limits their clinical application. Adipose tissue is a metabolic diet-responsive tissue; however, the influence of diets on fat grafting remains ambiguous. Methods: We extracted inguinal fat pads from C57/BL6 male mice, and transplanted them into the dorsal region of recipient mice (0.3 ml). Post-fat-grafting, mice (n = 54) were randomized into three groups, namely normal diet (ND), high carbohydrate diet (HC), and high-fat diet (HF). Structural changes were assessed by histological staining. Lipolysis activity and vascular regeneration of grafts on day 30 were analyzed using real-time polymerase chain reaction, immunofluorescence, and western blotting. Results: The grafts of mice on HC and HF diets exhibited significantly fewer oil cysts and larger volume retention (0.18 ± 0.01, 0.21 ± 0.01, and 0.25 ± 0.01 ml, for ND, HC, and HF group, respectively, p < 0.05) on day 90. In comparison, grafts for the mice belonging to the HF groups exhibited higher expression of lipolysis-related genes, including adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and carnitine palmitoyltransferase 1 (CPT1), on day 30. Furthermore, increased infiltration of macrophages (F4/80+) and the higher expression of angiogenesis genes were reported in the HF groups. Conclusion: Altogether, the administration of short-term HF diet remarkably enhanced angiogenesis and improved the quality of fat grafts, which was characterized by fewer oil cysts and higher long-term volume retention. The possible mechanisms may be due to the increased macrophage infiltration, and the promoted angiogenesis in HF grafts.
Collapse
Affiliation(s)
| | | | | | - Feng Lu
- *Correspondence: Yi Yuan, ; Jianhua Gao, ; Feng Lu,
| | - Jianhua Gao
- *Correspondence: Yi Yuan, ; Jianhua Gao, ; Feng Lu,
| | - Yi Yuan
- *Correspondence: Yi Yuan, ; Jianhua Gao, ; Feng Lu,
| |
Collapse
|
145
|
Study of the immunologic response of marine-derived collagen and gelatin extracts for tissue engineering applications. Acta Biomater 2022; 141:123-131. [PMID: 35017072 DOI: 10.1016/j.actbio.2022.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
The host immunologic response to a specific material is a critical aspect when considering it for clinical implementation. Collagen and gelatin extracted from marine sources have been proposed as biomaterials for tissue engineering applications, but there is a lack of information in the literature about their immunogenicity. In this work, we evaluated the immune response to collagen and/or gelatin from blue shark and codfish, previously extracted and characterized. After endotoxin evaluation, bone marrow-derived macrophages were exposed to the materials and a panel of pro- and anti-inflammatory cytokines were evaluated both for protein quantification and gene expression. Then, the impact of those materials in the host was evaluated through peritoneal injection in C57BL/6 mice. The results suggested shark collagen as the less immunogenic material, inducing low expression of pro-inflammatory cytokines as well as inducible nitric oxide synthase (encoded by Nos2) and high expression of Arginase 1 (encoded by Arg1). Although shark gelatin appeared to be the material with higher pro-inflammatory expression, it also presents a high expression of IL-10 (anti-inflammatory cytokine) and Arginase (both markers for M2-like macrophages). When injected in the peritoneal cavity of mice, our materials demonstrated a transient recruitment of neutrophil, being almost non-existent after 24 hours of injection. Based on these findings, the studied collagenous materials can be considered interesting biomaterial candidates for regenerative medicine as they may induce an activation of the M2-like macrophage population, which is involved in suppressing the inflammatory processes promoting tissue remodeling. STATEMENT OF SIGNIFICANCE: Marine-origin biomaterials are emerging in the biomedical arena, namely the ones based in marine-derived collagen/gelatin proposed as cell templates for tissue regeneration. Nevertheless, although the major cause of implant rejection in clinical practice is the host's negative immune response, there is a lack of information in the literature about the immunological impact of these marine collagenous materials. This work aims to contribute with knowledge about the immunologic response to collagen/gelatin extracted from blue shark and codfish skins. The results demonstrated that despite some differences observed, all the materials can induce a macrophage phenotype related with anti-inflammation resolution and then act as immuno-modulators and anti-inflammatory inducible materials.
Collapse
|
146
|
Silberman J, Boehlein J, Abbate T, Moore E. A Biomaterial Model to Assess the Effects of Age in Vascularization. Cells Tissues Organs 2022; 212:74-83. [PMID: 35249009 PMCID: PMC9440956 DOI: 10.1159/000523859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
As humans age, there is an increased risk for developing age-associated diseases. Many of these diseases, such as cardiovascular disease, involve dysfunction in the vasculature. Cardiovascular disease stems from endothelial cell dysfunction and reduction in vascularization. Macrophages, prominent innate immune cells involved in orchestrating inflammation and wound healing, have a significant influence on vascularization. While much recent work has investigated the crosstalk between endothelial cells and macrophages, it is still not well defined. The interactions between the cell types are even less understood in specific disease states such as advanced age. Understanding how age influences macrophage/endothelial cell interaction is essential for understanding cardiovascular disease development in the elderly. In the polyethylene glycol (PEG)-based hydrogel system, we model the effects of age on vascularization by encapsulating endothelial cells, pericytes, and human donor macrophages. We created a biomaterial model system in which macrophages, either from young (<35 years old) or old (>65 years old) donors, interact with the modeled vasculature, termed microvessels. Confocal image analysis of vessel density, vessel length, and branch points were used to quantify microvessel growth depending on the age of the macrophage donor. Alongside this, soluble factor secretion and gene expression were evaluated using ELISA and NanoString to showcase biological mechanisms based on the age of each donor. Endothelial cells cultured with macrophages from old donors have reduced microvessel density. There also is reduced soluble factor secretion by the macrophages from old donors, which likely influenced microvessel growth. Altogether, we establish our PEG-based hydrogel vascular model as a system to evaluate patient-specific cell function as well as proposed mechanisms for how age influences microvessels.
Collapse
Affiliation(s)
- Justin Silberman
- Materials Science and Engineering, University of Florida, Gainesville, FL 32611
| | - Jessica Boehlein
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| | - Talia Abbate
- Materials Science and Engineering, University of Florida, Gainesville, FL 32611
| | - Erika Moore
- Materials Science and Engineering, University of Florida, Gainesville, FL 32611
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
| |
Collapse
|
147
|
Patel JH, Schattinger PA, Takayoshi EE, Wills AE. Hif1α and Wnt are required for posterior gene expression during Xenopus tropicalis tail regeneration. Dev Biol 2022; 483:157-168. [PMID: 35065905 PMCID: PMC8881967 DOI: 10.1016/j.ydbio.2022.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/16/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Abstract
Regeneration of complex tissues is initiated by an injury-induced stress response, eventually leading to activation of developmental signaling pathways such as Wnt signaling. How early injury cues are interpreted and coupled to activation of these developmental signals and their targets is not well understood. Here, we show that Hif1α, a stress induced transcription factor, is required for tail regeneration in Xenopus tropicalis. We find that Hif1α is required for regeneration of differentiated axial tissues, including axons and muscle. Using RNA-sequencing, we find that Hif1α and Wnt converge on a broad set of genes required for posterior specification and differentiation, including the posterior hox genes. We further show that Hif1α is required for transcription via a Wnt-responsive element, a function that is conserved in both regeneration and early neural patterning. Our findings indicate that Hif1α has regulatory roles in Wnt target gene expression across multiple tissue contexts.
Collapse
Affiliation(s)
- Jeet H. Patel
- Department of Biochemistry, University of Washington, Seattle WA,Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle WA
| | | | | | - Andrea E. Wills
- Department of Biochemistry, University of Washington, Seattle WA,Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle WA,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle WA,To whom correspondence should be addressed:
| |
Collapse
|
148
|
Dolan CP, Imholt F, Yan M, Yang TJ, Gregory J, Qureshi O, Zimmel K, Sherman KM, Smith HM, Falck A, Leininger E, Yu L, Brunauer R, Suva LJ, Gaddy D, Dawson LA, Muneoka K. Digit specific denervation does not inhibit mouse digit tip regeneration. Dev Biol 2022; 486:71-80. [DOI: 10.1016/j.ydbio.2022.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
|
149
|
Leigh ND, Currie JD. Re-building limbs, one cell at a time. Dev Dyn 2022; 251:1389-1403. [PMID: 35170828 PMCID: PMC9545806 DOI: 10.1002/dvdy.463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
New techniques for visualizing and interrogating single cells hold the key to unlocking the underlying mechanisms of salamander limb regeneration.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, Sweden
| | - Joshua D Currie
- Department of Biology, Wake Forest University, 455 Vine Street, Winston-Salem, USA
| |
Collapse
|
150
|
Yang J, Zhang X, Chen J, Heng BC, Jiang Y, Hu X, Ge Z. Macrophages promote cartilage regeneration in a time- and phenotype-dependent manner. J Cell Physiol 2022; 237:2258-2270. [PMID: 35147979 DOI: 10.1002/jcp.30694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/29/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
Immune regulation of osteochondral defect regeneration has not yet been rigorously characterized. Although macrophages have been demonstrated to regulate the regeneration process in various tissues, their direct contribution to cartilage regeneration remains to be investigated, particularly the functions of polarized macrophage subpopulations. In this study, we investigated the origins and functions of macrophages during healing of osteochondral injury in the murine model. Upon osteochondral injury, joint macrophages are predominantly derived from circulating monocytes. Macrophages are essential for spontaneous cartilage regeneration in juvenile C57BL/6 mice, by modulating proliferation and apoptosis around the injury site. Exogeneous macrophages also exhibit therapeutic potential in promoting cartilage regeneration in adult mice with poor regenerative capacity, possibly via regulation of PDGFRα+ stem cells, with this process being influenced by initial phenotype and administration timing. Only M2c macrophages are able to promote regeneration of both cartilage tissues and subchondral bone. Overall, we reveal the direct link between macrophages and osteochondral regeneration and highlight the key roles of relevant immunological niches in successful regeneration.
Collapse
Affiliation(s)
- Jiabei Yang
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Xuewei Zhang
- Department of Biomedical Engineering, Peking University, Beijing, China
| | - Jiaqing Chen
- Department of Biomedical Engineering, Peking University, Beijing, China
| | | | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Centre for Life Sciences, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Zigang Ge
- Department of Biomedical Engineering, Peking University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|