101
|
Majer C, Schüssler JM, König R. Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies. Med Microbiol Immunol 2019; 208:513-529. [PMID: 30879196 DOI: 10.1007/s00430-019-00593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023]
Abstract
SAMHD1 was initially described for its ability to efficiently restrict HIV-1 replication in myeloid cells and resting CD4+ T cells. However, a growing body of evidence suggests that SAMHD1-mediated restriction is by far not limited to lentiviruses, but seems to be a general concept that applies to most retroviruses and at least a number of DNA viruses. SAMHD1 anti-viral activity was long believed to be solely due to its ability to deplete cellular dNTPs by enzymatic degradation. However, since its discovery, several new functions have been attributed to SAMHD1. It has been demonstrated to bind nucleic acids, to modulate innate immunity, as well as to participate in the DNA damage response and resolution of stalled replication forks. Consequently, it is likely that SAMHD1-mediated anti-viral activity is not or not exclusively mediated through its dNTPase activity. Therefore, in this review, we summarize current knowledge on SAMHD1 cellular functions and systematically discuss how these functions could contribute to the restriction of a broad range of viruses besides retroviruses: herpesviruses, poxviruses and hepatitis B virus. Furthermore, we aim to highlight different ways how viruses counteract SAMHD1-mediated restriction to bypass the SAMHD1-mediated block to viral infection.
Collapse
Affiliation(s)
- Catharina Majer
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | | | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany. .,Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany.
| |
Collapse
|
102
|
Plitnik T, Sharkey ME, Mahboubi B, Kim B, Stevenson M. Incomplete Suppression of HIV-1 by SAMHD1 Permits Efficient Macrophage Infection. Pathog Immun 2018; 3:197-223. [PMID: 30656243 PMCID: PMC6333473 DOI: 10.20411/pai.v3i2.263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Sterile alpha motif and histidine/aspartic acid domain-containing protein (SAMHD1) is a dNTP triphosphorylase that reduces cellular dNTP levels in non-dividing cells, such as macrophages. Since dNTPs are required for reverse transcription, HIV-2 and most SIVs encode a Vpx protein that promotes proteasomal degradation of SAMHD1. It is unclear how HIV-1, which does not appear to harbor a SAMHD1 escape mechanism, is able to infect macrophages in the face of SAMHD1 restriction. Methods: To assess whether HIV-1 had a mechanism to negate SAMHD1 activity, we compared SAMHD1 and dNTP levels in macrophages infected by HIV-1 and SIV. We examined whether macrophages infected by HIV-1 still harbored antiviral levels of SAMHD1 by assessing their susceptibility to superinfection by vpx-deleted SIV. Finally, to assess whether HIV-1 reverse transcriptase (RT) has adapted to a low dNTP environment, we evaluated SAMHD1 sensitivity of chimeric HIV-1 and SIV variants in which the RT regions were functionally exchanged. Results: Here, we demonstrate that HIV-1 efficiently infects macrophages without modulating SAMHD1 activity or cellular dNTP levels, and that macrophages permissive to HIV-1 infection remained refractory to superinfection by vpx-deleted SIV. Furthermore, through the use of chimeric HIV/SIV, we demonstrate that the differential sensitivity of HIV-1 and SIV to SAMHD1 restriction is not dictated by RT. Conclusions: Our study reveals fundamental differences between HIV-1 and SIV in the strategy used to evade restriction by SAMHD1 and suggests a degree of resistance of HIV-1 to the antiviral environment created by SAMHD1. Understanding how these cellular restrictions antagonize viral replication will be important for the design of novel antiviral strategies.
Collapse
Affiliation(s)
- Timothy Plitnik
- Department of Microbiology & Immunology; Miller School of Medicine, University of Miami; Miami, Florida
| | - Mark E Sharkey
- Department of Medicine; Miller School of Medicine, University of Miami; Miami, Florida
| | - Bijan Mahboubi
- Department of Pediatrics, Emory University; Atlanta, Georgia.,Center for Drug Discovery, Children's Healthcare of Atlanta; Atlanta, Georgia
| | - Baek Kim
- Department of Pediatrics, Emory University; Atlanta, Georgia.,Center for Drug Discovery, Children's Healthcare of Atlanta; Atlanta, Georgia.,Department of Pharmacy, Kyung-Hee University; Seoul; South Korea
| | - Mario Stevenson
- Department of Microbiology & Immunology; Miller School of Medicine, University of Miami; Miami, Florida.,Department of Medicine; Miller School of Medicine, University of Miami; Miami, Florida
| |
Collapse
|
103
|
Kodigepalli KM, Li M, Bonifati S, Panfil AR, Green PL, Liu SL, Wu L. SAMHD1 inhibits epithelial cell transformation in vitro and affects leukemia development in xenograft mice. Cell Cycle 2018; 17:2564-2576. [PMID: 30474474 DOI: 10.1080/15384101.2018.1550955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase (dNTPase) and functions as a negative regulator in the efficacy of cytarabine treatment of acute myeloid leukemia (AML). We have reported that SAMHD1 knockout (KO) increased the activity of phosphoinositide 3-kinase (PI3K) in AML-derived THP-1 cells and attenuated their ability to form subcutaneous tumors in xenografted immunodeficient mice. However, the functional significance of SAMHD1 in controlling AML leukemogenesis remains unclear. Previous studies show that in vitro transformation of Madin-Darby canine kidney (MDCK) epithelial cells by the Jaagsiekte sheep retrovirus (JSRV) envelope protein requires activation of the PI3K/Akt oncogenic signaling pathway. Using this cell transformation model, we demonstrated that ectopic expression of wild-type human SAMHD1 or a dNTPase-defective SAMHD1 mutant (HD/AA) significantly inhibited MDCK cell transformation, but did not affect cell proliferation. To visualize and quantify THP-1 cell growth and metastasis in xenografted immunodeficient mice, we generated luciferase-expressing stable SAMHD1 KO THP-1 cells and control THP-1 cells, which were injected intravenously into immunodeficient mice. Bioluminescence imaging and quantification analysis of xenografted mice revealed that SAMHD1 KO cell-derived tumors had similar growth and metastatic potential compared with control cells at 35 days post-injection. However, mice xenografted with SAMHD1 KO cells showed greater survival compared with mice injected with control cells. Our data suggest that exogenous SAMHD1 expression suppresses in vitro cell transformation independently of its dNTPase activity, and that endogenous SAMHD1 affects AML tumorigenicity and disease progression in vivo.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Minghua Li
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Serena Bonifati
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Amanda R Panfil
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Patrick L Green
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,b Department of Cancer Biology and Genetics , The Ohio State University , Columbus , OH , USA.,c Comprehensive Cancer Center, The Ohio State University , Columbus , OH , USA
| | - Shan-Lu Liu
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,d Department of Microbial Infection and Immunity , The Ohio State University , Columbus , OH , USA
| | - Li Wu
- a Center for Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,c Comprehensive Cancer Center, The Ohio State University , Columbus , OH , USA.,d Department of Microbial Infection and Immunity , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
104
|
Mauney CH, Perrino FW, Hollis T. Identification of Inhibitors of the dNTP Triphosphohydrolase SAMHD1 Using a Novel and Direct High-Throughput Assay. Biochemistry 2018; 57:6624-6636. [PMID: 30380297 DOI: 10.1021/acs.biochem.8b01038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dNTP triphosphohydrolase SAMHD1 is a regulator of cellular dNTP pools. Given its central role in nucleotide metabolism, SAMHD1 performs important functions in cellular homeostasis, cell cycle regulation, and innate immunity. It therefore represents a high-profile target for small molecule drug design. SAMHD1 has a complex mechanism of catalytic activation that makes the design of an activating compound challenging. However, an inhibitor of SAMHD1 could serve multiple therapeutic roles, including the potentiation of antiviral and anticancer drug regimens. The lack of high-throughput screens that directly measure SAMHD1 catalytic activity has impeded efforts to identify inhibitors of SAMHD1. Here we describe a novel high-throughput screen that directly measures SAMHD1 catalytic activity. This assay results in a colorimetric end point that can be read spectrophotometrically and utilizes bis(4-nitrophenyl) phosphate as the substrate and Mn2+ as the activating cation that facilitates catalysis. When used to screen a library of Food and Drug Administration-approved drugs, this HTS identified multiple novel compounds that inhibited SAMHD1 dNTPase activity at micromolar concentrations.
Collapse
Affiliation(s)
- Christopher H Mauney
- Center for Structural Biology, Department of Biochemistry , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - Fred W Perrino
- Center for Structural Biology, Department of Biochemistry , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| | - Thomas Hollis
- Center for Structural Biology, Department of Biochemistry , Wake Forest School of Medicine , Winston-Salem , North Carolina 27157 , United States
| |
Collapse
|
105
|
Knecht KM, Buzovetsky O, Schneider C, Thomas D, Srikanth V, Kaderali L, Tofoleanu F, Reiss K, Ferreirós N, Geisslinger G, Batista VS, Ji X, Cinatl J, Keppler OT, Xiong Y. The structural basis for cancer drug interactions with the catalytic and allosteric sites of SAMHD1. Proc Natl Acad Sci U S A 2018; 115:E10022-E10031. [PMID: 30305425 PMCID: PMC6205433 DOI: 10.1073/pnas.1805593115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) that depletes cellular dNTPs in noncycling cells to promote genome stability and to inhibit retroviral and herpes viral replication. In addition to being substrates, cellular nucleotides also allosterically regulate SAMHD1 activity. Recently, it was shown that high expression levels of SAMHD1 are also correlated with significantly worse patient responses to nucleotide analog drugs important for treating a variety of cancers, including acute myeloid leukemia (AML). In this study, we used biochemical, structural, and cellular methods to examine the interactions of various cancer drugs with SAMHD1. We found that both the catalytic and the allosteric sites of SAMHD1 are sensitive to sugar modifications of the nucleotide analogs, with the allosteric site being significantly more restrictive. We crystallized cladribine-TP, clofarabine-TP, fludarabine-TP, vidarabine-TP, cytarabine-TP, and gemcitabine-TP in the catalytic pocket of SAMHD1. We found that all of these drugs are substrates of SAMHD1 and that the efficacy of most of these drugs is affected by SAMHD1 activity. Of the nucleotide analogs tested, only cladribine-TP with a deoxyribose sugar efficiently induced the catalytically active SAMHD1 tetramer. Together, these results establish a detailed framework for understanding the substrate specificity and allosteric activation of SAMHD1 with regard to nucleotide analogs, which can be used to improve current cancer and antiviral therapies.
Collapse
Affiliation(s)
- Kirsten M Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Olga Buzovetsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Constanze Schneider
- Institute of Medical Virology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Goethe University of Frankfurt, 60590 Frankfurt, Germany
- Zentrum für Arzneimittelforschung, -entwicklung, und -sicherheit, Goethe University of Frankfurt, 60590 Frankfurt, Germany
| | - Vishok Srikanth
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Florentina Tofoleanu
- Department of Chemistry, Yale University, New Haven, CT 06520
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT 06520
| | - Nerea Ferreirós
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Goethe University of Frankfurt, 60590 Frankfurt, Germany
- Zentrum für Arzneimittelforschung, -entwicklung, und -sicherheit, Goethe University of Frankfurt, 60590 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, Goethe University of Frankfurt, 60590 Frankfurt, Germany
- Zentrum für Arzneimittelforschung, -entwicklung, und -sicherheit, Goethe University of Frankfurt, 60590 Frankfurt, Germany
- Project Group Translational Medicine and Pharmacology, Frauenhofer Institute for Molecular Biology and Applied Ecology, 60590 Frankfurt, Germany
| | | | - Xiaoyun Ji
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 Jiangsu, China
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Oliver T Keppler
- Max von Pettenkofer-Institute, Department of Virology, Ludwig Maximilians University, 80336 Munich, Germany
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520;
| |
Collapse
|
106
|
Chen S, Bonifati S, Qin Z, St Gelais C, Wu L. SAMHD1 Suppression of Antiviral Immune Responses. Trends Microbiol 2018; 27:254-267. [PMID: 30336972 DOI: 10.1016/j.tim.2018.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/18/2022]
Abstract
SAMHD1 is a host triphosphohydrolase that degrades intracellular deoxynucleoside triphosphates (dNTPs) to a lower level that restricts viral DNA synthesis, and thus prevents replication of diverse viruses in nondividing cells. Recent progress indicates that SAMHD1 negatively regulates antiviral innate immune responses and inflammation through interacting with various key proteins in immune signaling and DNA damage-repair pathways. SAMHD1 can also modulate antibody production in adaptive immune responses. In this review, we summarize how SAMHD1 regulates antiviral immune responses through distinct mechanisms, and discuss the implications of these new functions of SAMHD1. Furthermore, we propose important new questions and future directions that can advance functional and mechanistic studies of SAMHD1-mediated immune regulation during viral infections.
Collapse
Affiliation(s)
- Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, PR China; Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Serena Bonifati
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Zhihua Qin
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Corine St Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
107
|
Coquel F, Neumayer C, Lin YL, Pasero P. SAMHD1 and the innate immune response to cytosolic DNA during DNA replication. Curr Opin Immunol 2018; 56:24-30. [PMID: 30292848 DOI: 10.1016/j.coi.2018.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Cytosolic DNA of endogenous or exogenous origin is sensed by the cGAS-STING pathway to activate innate immune responses. Besides microbial DNA, this pathway detects self-DNA in the cytoplasm of damaged or abnormal cells and plays a central role in antitumor immunity. The mechanism by which cytosolic DNA accumulates under genotoxic stress conditions is currently unclear, but recent studies on factors mutated in the Aicardi-Goutières syndrome cells, such as SAMHD1, RNase H2 and TREX1, are shedding new light on this key process. In particular, these studies indicate that the rupture of micronuclei and the release of ssDNA fragments during the processing of stalled replication forks and chromosome breaks represent potent inducers of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Flavie Coquel
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier France
| | - Christoph Neumayer
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier France.
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier France.
| |
Collapse
|
108
|
From APOBEC to ZAP: Diverse mechanisms used by cellular restriction factors to inhibit virus infections. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:382-394. [PMID: 30290238 PMCID: PMC6334645 DOI: 10.1016/j.bbamcr.2018.09.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/28/2018] [Accepted: 09/23/2018] [Indexed: 12/30/2022]
Abstract
Antiviral restriction factors are cellular proteins that inhibit the entry, replication, or spread of viruses. These proteins are critical components of the innate immune system and function to limit the severity and host range of virus infections. Here we review the current knowledge on the mechanisms of action of several restriction factors that affect multiple viruses at distinct stages of their life cycles. For example, APOBEC3G deaminates cytosines to hypermutate reverse transcribed viral DNA; IFITM3 alters membranes to inhibit virus membrane fusion; MXA/B oligomerize on viral protein complexes to inhibit virus replication; SAMHD1 decreases dNTP intracellular concentrations to prevent reverse transcription of retrovirus genomes; tetherin prevents release of budding virions from cells; Viperin catalyzes formation of a nucleoside analogue that inhibits viral RNA polymerases; and ZAP binds virus RNAs to target them for degradation. We also discuss countermeasures employed by specific viruses against these restriction factors, and mention secondary functions of several of these factors in modulating immune responses. These important examples highlight the diverse strategies cells have evolved to combat virus infections.
Collapse
|
109
|
Kimoloi S. Modulation of the de novo purine nucleotide pathway as a therapeutic strategy in mitochondrial myopathy. Pharmacol Res 2018; 138:37-42. [PMID: 30267763 DOI: 10.1016/j.phrs.2018.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
Mitochondrial myopathy (MM) is characterised by muscle weakness, exercise intolerance and various histopathological changes. Recently, a subset of MM has also been associated with aberrant activation of mammalian target of rapamycin complex 1 (mTORC1) in skeletal muscle. This aberrant mTORC1 activation promotes increased de novo nucleotide synthesis, which contributes to abnormal expansion and imbalance of skeletal muscle deoxyribonucleoside triphosphates (dNTP) pools. However, the exact mechanism via which mTORC1-stimulated de novo nucleotide biosynthesis ultimately disturbs muscle dNTP pools remains unclear. In this article, it is proposed that mTORC1-stimulated de novo nucleotide synthesis in skeletal muscle cells with respiratory chain dysfunction promotes an asymmetric increase of purine nucleotides, probably due to NAD+ deficiency. This in turn could disrupt purine nucleotide-dependent allosteric feedback regulatory mechanisms, ultimately leading to dNTP pools aberration. Pharmacological down-modulation of aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) activity is also proposed as a potential therapeutic strategy in MM exhibiting mTORC1-driven abnormal metabolic reprogramming, including aberrant dNTPs pools.
Collapse
Affiliation(s)
- Sammy Kimoloi
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Robert Koch Street 39, Cologne, Germany; Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, P.O Box 190-50100, Kakamega, Kenya.
| |
Collapse
|
110
|
USP18 (UBP43) Abrogates p21-Mediated Inhibition of HIV-1. J Virol 2018; 92:JVI.00592-18. [PMID: 30068654 DOI: 10.1128/jvi.00592-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
The host intrinsic innate immune system drives antiviral defenses and viral restriction, which includes the production of soluble factors, such as type I and III interferon (IFN), and activation of restriction factors, including SAMHD1, a deoxynucleoside triphosphohydrolase. Interferon-stimulated gene 15 (ISG15)-specific ubiquitin-like protease 43 (USP18) abrogates IFN signaling pathways. The cyclin-dependent kinase inhibitor p21 (CIP1/WAF1), which is involved in the differentiation and maturation of monocytes, inhibits human immunodeficiency virus type 1 (HIV-1) in macrophages and dendritic cells. p21 inhibition of HIV-1 replication is thought to occur at the reverse transcription step, likely by suppressing cellular deoxynucleoside triphosphate (dNTP) biosynthesis and increasing the amount of antivirally active form of SAMHD1. SAMHD1 strongly inhibits HIV-1 replication in myeloid and resting CD4+ T cells. Here, we studied how USP18 influences HIV-1 replication in human myeloid THP-1 cells. We found that USP18 has the novel ability to inhibit the antiviral function of p21 in differentiated THP-1 cells. USP18 enhanced reverse transcription of HIV-1 by downregulating p21 expression and upregulating intracellular dNTP levels. p21 downregulation by USP18 was associated with the active form of SAMHD1, phosphorylated at T592. USP18 formed a complex with the E3 ubiquitin ligase recognition factor SKP2 (S-phase kinase associated protein 2) and SAMHD1. CRISPR-Cas9 knockout of USP18 increased p21 protein expression and blocked HIV-1 replication. Overall, we propose USP18 as a regulator of p21 antiviral function in differentiated myeloid THP-1 cells.IMPORTANCE Macrophages and dendritic cells are usually the first point of contact with pathogens, including lentiviruses. Host restriction factors, including SAMHD1, mediate the innate immune response against these viruses. However, HIV-1 has evolved to circumvent the innate immune response and establishes disseminated infection. The cyclin-dependent kinase inhibitor p21, which is involved in differentiation and maturation of monocytes, blocks HIV-1 replication at the reverse transcription step. p21 is thought to suppress key enzymes involved in dNTP biosynthesis and activates SAMHD1 antiviral function. We report here that the human USP18 protein is a novel factor potentially contributing to HIV replication by blocking the antiviral function of p21 in differentiated human myeloid cells. USP18 downregulates p21 protein expression, which correlates with upregulated intracellular dNTP levels and the antiviral inactive form of SAMHD1. Depletion of USP18 stabilizes p21 protein expression, which correlates with dephosphorylated SAMHD1 and a block to HIV-1 replication.
Collapse
|
111
|
|
112
|
Suárez H, Rocha-Perugini V, Álvarez S, Yáñez-Mó M. Tetraspanins, Another Piece in the HIV-1 Replication Puzzle. Front Immunol 2018; 9:1811. [PMID: 30127789 PMCID: PMC6088189 DOI: 10.3389/fimmu.2018.01811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the great research effort placed during the last decades in HIV-1 study, still some aspects of its replication cycle remain unknown. All this powerful research has succeeded in developing different drugs for AIDS treatment, but none of them can completely remove the virus from infected patients, who require life-long medication. The classical approach was focused on the study of virus particles as the main target, but increasing evidence highlights the importance of host cell proteins in HIV-1 cycle. In this context, tetraspanins have emerged as critical players in different steps of the viral infection cycle. Through their association with other molecules, including membrane receptors, cytoskeletal proteins, and signaling molecules, tetraspanins organize specialized membrane microdomains called tetraspanin-enriched microdomains (TEMs). Within these microdomains, several tetraspanins have been described to regulate HIV-1 entry, assembly, and transfer between cells. Interestingly, the importance of tetraspanins CD81 and CD63 in the early steps of viral replication has been recently pointed out. Indeed, CD81 can control the turnover of the HIV-1 restriction factor SAMHD1. This deoxynucleoside triphosphate triphosphohydrolase counteracts HIV-1 reverse transcription (RT) in resting cells via its dual function as dNTPase, catalyzing deoxynucleotide triphosphates into deoxynucleosides and inorganic triphosphate, and as exonuclease able to degrade single-stranded RNAs. SAMHD1 has also been related with the detection of viral nucleic acids, regulating the innate immune response and would promote viral latency. New evidences demonstrating the ability of CD81 to control SAMHD1 expression, and as a consequence, HIV-1 RT activity, highlight the importance of TEMs for viral replication. Here, we will briefly review how tetraspanins modulate HIV-1 infection, focusing on the latest findings that link TEMs to viral replication.
Collapse
Affiliation(s)
- Henar Suárez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Susana Álvarez
- Servicio de Inmunobiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Yáñez-Mó
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
| |
Collapse
|
113
|
Antonucci JM, Kim SH, St Gelais C, Bonifati S, Li TW, Buzovetsky O, Knecht KM, Duchon AA, Xiong Y, Musier-Forsyth K, Wu L. SAMHD1 Impairs HIV-1 Gene Expression and Negatively Modulates Reactivation of Viral Latency in CD4 + T Cells. J Virol 2018; 92:e00292-18. [PMID: 29793958 PMCID: PMC6052313 DOI: 10.1128/jvi.00292-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/15/2018] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) replication in nondividing cells by degrading intracellular deoxynucleoside triphosphates (dNTPs). SAMHD1 is highly expressed in resting CD4+ T cells, which are important for the HIV-1 reservoir and viral latency; however, whether SAMHD1 affects HIV-1 latency is unknown. Recombinant SAMHD1 binds HIV-1 DNA or RNA fragments in vitro, but the function of this binding remains unclear. Here we investigate the effect of SAMHD1 on HIV-1 gene expression and reactivation of viral latency. We found that endogenous SAMHD1 impaired HIV-1 long terminal repeat (LTR) activity in monocytic THP-1 cells and HIV-1 reactivation in latently infected primary CD4+ T cells. Overexpression of wild-type (WT) SAMHD1 suppressed HIV-1 LTR-driven gene expression at a transcriptional level. Tat coexpression abrogated SAMHD1-mediated suppression of HIV-1 LTR-driven luciferase expression. SAMHD1 overexpression also suppressed the LTR activity of human T-cell leukemia virus type 1 (HTLV-1), but not that of murine leukemia virus (MLV), suggesting specific suppression of retroviral LTR-driven gene expression. WT SAMHD1 bound to proviral DNA and impaired reactivation of HIV-1 gene expression in latently infected J-Lat cells. In contrast, a nonphosphorylated mutant (T592A) and a dNTP triphosphohydrolase (dNTPase) inactive mutant (H206D R207N [HD/RN]) of SAMHD1 failed to efficiently suppress HIV-1 LTR-driven gene expression and reactivation of latent virus. Purified recombinant WT SAMHD1, but not the T592A and HD/RN mutants, bound to fragments of the HIV-1 LTR in vitro These findings suggest that SAMHD1-mediated suppression of HIV-1 LTR-driven gene expression potentially regulates viral latency in CD4+ T cells.IMPORTANCE A critical barrier to developing a cure for HIV-1 infection is the long-lived viral reservoir that exists in resting CD4+ T cells, the main targets of HIV-1. The viral reservoir is maintained through a variety of mechanisms, including regulation of the HIV-1 LTR promoter. The host protein SAMHD1 restricts HIV-1 replication in nondividing cells, but its role in HIV-1 latency remains unknown. Here we report a new function of SAMHD1 in regulating HIV-1 latency. We found that SAMHD1 suppressed HIV-1 LTR promoter-driven gene expression and reactivation of viral latency in cell lines and primary CD4+ T cells. Furthermore, SAMHD1 bound to the HIV-1 LTR in vitro and in a latently infected CD4+ T-cell line, suggesting that the binding may negatively modulate reactivation of HIV-1 latency. Our findings indicate a novel role for SAMHD1 in regulating HIV-1 latency, which enhances our understanding of the mechanisms regulating proviral gene expression in CD4+ T cells.
Collapse
Affiliation(s)
- Jenna M Antonucci
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Sun Hee Kim
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Corine St Gelais
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Serena Bonifati
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Tai-Wei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Olga Buzovetsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kirsten M Knecht
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Alice A Duchon
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Karin Musier-Forsyth
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Li Wu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
114
|
Tramentozzi E, Ferraro P, Hossain M, Stillman B, Bianchi V, Pontarin G. The dNTP triphosphohydrolase activity of SAMHD1 persists during S-phase when the enzyme is phosphorylated at T592. Cell Cycle 2018; 17:1102-1114. [PMID: 30039733 PMCID: PMC6110608 DOI: 10.1080/15384101.2018.1480216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/01/2018] [Accepted: 05/16/2018] [Indexed: 01/31/2023] Open
Abstract
SAMHD1 is the major catabolic enzyme regulating the intracellular concentrations of DNA precursors (dNTPs). The S-phase kinase CDK2-cyclinA phosphorylates SAMHD1 at Thr-592. How this modification affects SAMHD1 function is highly debated. We investigated the role of endogenous SAMHD1 phosphorylation during the cell cycle. Thr-592 phosphorylation occurs first at the G1/S border and is removed during mitotic exit parallel with Thr-phosphorylations of most CDK1 targets. Differential sensitivity to the phosphatase inhibitor okadaic acid suggested different involvement of the PP1 and PP2 families dependent upon the time of the cell cycle. SAMHD1 turn-over indicates that Thr-592 phosphorylation does not cause rapid protein degradation. Furthermore, SAMHD1 influenced the size of the four dNTP pools independently of its phosphorylation. Our findings reveal that SAMHD1 is active during the entire cell cycle and performs an important regulatory role during S-phase by contributing with ribonucleotide reductase to maintain dNTP pool balance for proper DNA replication.
Collapse
Affiliation(s)
| | - Paola Ferraro
- Department of Biology, University of Padova, Padova, Italy
| | - Manzar Hossain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Vera Bianchi
- Department of Biology, University of Padova, Padova, Italy
| | - Giovanna Pontarin
- Department of Biology, University of Padova, Padova, Italy
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
115
|
Kodigepalli KM, Bonifati S, Tirumuru N, Wu L. SAMHD1 modulates in vitro proliferation of acute myeloid leukemia-derived THP-1 cells through the PI3K-Akt-p27 axis. Cell Cycle 2018; 17:1124-1137. [PMID: 29911928 DOI: 10.1080/15384101.2018.1480218] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase that acts as a negative regulator in the efficacy of cytarabine treatment against acute myeloid leukemia (AML). However, the role of SAMHD1 in AML development and progression remains unknown. We have reported that SAMHD1 knockout (KO) in the AML-derived THP-1 cells results in enhanced proliferation and reduced apoptosis, but the underlying mechanisms are unclear. Here we show that SAMHD1 KO in THP-1 cells increased PI3K activity and reduced expression of the tumor suppressor PTEN. Pharmacological inhibition of PI3K activity reduced cell proliferation specifically in SAMHD1 KO cells, suggesting that SAMHD1 KO-induced cell proliferation is mediated via enhanced PI3K signaling. However, PI3K inhibition did not significantly affect SAMHD1 KO-reduced apoptosis, implicating the involvement of additional mechanisms. SAMHD1 KO also led to enhanced phosphorylation of p27 at residue T157 and its mis-localization to the cytoplasm. Inhibition of PI3K activity reversed these effects, indicating that SAMHD1 KO-induced changes in p27 phosphorylation and localization is mediated via PI3K-Akt signaling. While SAMHD1 KO significantly enhanced THP-1 cell migration in vitro, SAMHD1 KO attenuated the ability of THP-1 cells to form subcutaneous tumors in xenografted immunodeficient mice. This effect correlated with significantly increased expression of tumor necrosis factor α (TNF-α) in tumors, which may suggest that TNF-α-mediated inflammation could account for the decreased tumorigenicity in vivo. Our findings implicate that SAMHD1 can regulate AML cell proliferation via modulation of the PI3K-Akt-p27 signaling axis, and that SAMHD1 may affect tumorigenicity by downregulating inflammation.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- a Center of Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,b Center for Cardiovascular Research , Nationwide Children's Hospital Research Institute , Columbus , OH , USA
| | - Serena Bonifati
- a Center of Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Nagaraja Tirumuru
- a Center of Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA
| | - Li Wu
- a Center of Retrovirus Research, Department of Veterinary Biosciences , The Ohio State University , Columbus , OH , USA.,c Department of Microbial Infection and Immunity , The Ohio State University , Columbus , OH , USA.,d Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
116
|
Schott K, Fuchs NV, Derua R, Mahboubi B, Schnellbächer E, Seifried J, Tondera C, Schmitz H, Shepard C, Brandariz-Nuñez A, Diaz-Griffero F, Reuter A, Kim B, Janssens V, König R. Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55α holoenzymes during mitotic exit. Nat Commun 2018; 9:2227. [PMID: 29884836 PMCID: PMC5993806 DOI: 10.1038/s41467-018-04671-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/15/2018] [Indexed: 12/20/2022] Open
Abstract
SAMHD1 is a critical restriction factor for HIV-1 in non-cycling cells and its antiviral activity is regulated by T592 phosphorylation. Here, we show that SAMHD1 dephosphorylation at T592 is controlled during the cell cycle, occurring during M/G1 transition in proliferating cells. Using several complementary proteomics and biochemical approaches, we identify the phosphatase PP2A-B55α responsible for rendering SAMHD1 antivirally active. SAMHD1 is specifically targeted by PP2A-B55α holoenzymes during mitotic exit, in line with observations that PP2A-B55α is a key mitotic exit phosphatase in mammalian cells. Strikingly, as HeLa or activated primary CD4+ T cells enter the G1 phase, pronounced reduction of RT products is observed upon HIV-1 infection dependent on the presence of dephosphorylated SAMHD1. Moreover, PP2A controls SAMHD1 pT592 level in non-cycling monocyte-derived macrophages (MDMs). Thus, the PP2A-B55α holoenzyme is a key regulator to switch on the antiviral activity of SAMHD1.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, 3000, Leuven, Belgium.,Facility for Systems Biology based Mass Spectrometry (SYBIOMA), KU Leuven, 3000, Leuven, Belgium
| | - Bijan Mahboubi
- Center for Drug Discovery, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | | | - Janna Seifried
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Christiane Tondera
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Heike Schmitz
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Caitlin Shepard
- Center for Drug Discovery, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Alberto Brandariz-Nuñez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andreas Reuter
- Division of Allergology, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA.,Department of Pharmacy, Kyung-Hee University, 2447, Seoul, South Korea
| | - Veerle Janssens
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, 3000, Leuven, Belgium
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany.
| |
Collapse
|
117
|
SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination. Cell Rep 2018; 20:1921-1935. [PMID: 28834754 DOI: 10.1016/j.celrep.2017.08.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/05/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.
Collapse
|
118
|
Mauney CH, Hollis T. SAMHD1: Recurring roles in cell cycle, viral restriction, cancer, and innate immunity. Autoimmunity 2018; 51:96-110. [PMID: 29583030 PMCID: PMC6117824 DOI: 10.1080/08916934.2018.1454912] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Sterile alpha motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) is a deoxynucleotide triphosphate (dNTP) hydrolase that plays an important role in the homeostatic balance of cellular dNTPs. Its emerging role as an effector of innate immunity is affirmed by mutations in the SAMHD1 gene that cause the severe autoimmune disease, Aicardi-Goutieres syndrome (AGS) and that are linked to cancer. Additionally, SAMHD1 functions as a restriction factor for retroviruses, such as HIV. Here, we review the current biochemical and biological properties of the enzyme including its structure, activity, and regulation by post-translational modifications in the context of its cellular function. We outline open questions regarding the biology of SAMHD1 whose answers will be important for understanding its function as a regulator of cell cycle progression, genomic integrity, and in autoimmunity.
Collapse
Affiliation(s)
- Christopher H Mauney
- a Department of Biochemistry , Center for Structural Biology, Wake Forest School of Medicine , Winston Salem , NC , USA
| | - Thomas Hollis
- a Department of Biochemistry , Center for Structural Biology, Wake Forest School of Medicine , Winston Salem , NC , USA
| |
Collapse
|
119
|
SAMHD1 enhances immunoglobulin hypermutation by promoting transversion mutation. Proc Natl Acad Sci U S A 2018; 115:4921-4926. [PMID: 29669924 DOI: 10.1073/pnas.1719771115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activation-induced deaminase (AID) initiates hypermutation of Ig genes in activated B cells by converting C:G into U:G base pairs. G1-phase variants of uracil base excision repair (BER) and mismatch repair (MMR) then deploy translesion polymerases including REV1 and Pol η, which exacerbates mutation. dNTP paucity may contribute to hypermutation, because dNTP levels are reduced in G1 phase to inhibit viral replication. To derestrict G1-phase dNTP supply, we CRISPR-inactivated SAMHD1 (which degrades dNTPs) in germinal center B cells. Samhd1 inactivation increased B cell virus susceptibility, increased transition mutations at C:G base pairs, and substantially decreased transversion mutations at A:T and C:G base pairs in both strands. We conclude that SAMHD1's restriction of dNTP supply enhances AID's mutagenicity and that the evolution of Ig hypermutation included the repurposing of antiviral mechanisms based on dNTP starvation.
Collapse
|
120
|
SAMHD1 acts at stalled replication forks to prevent interferon induction. Nature 2018; 557:57-61. [PMID: 29670289 DOI: 10.1038/s41586-018-0050-1] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 03/07/2018] [Indexed: 01/20/2023]
Abstract
SAMHD1 was previously characterized as a dNTPase that protects cells from viral infections. Mutations in SAMHD1 are implicated in cancer development and in a severe congenital inflammatory disease known as Aicardi-Goutières syndrome. The mechanism by which SAMHD1 protects against cancer and chronic inflammation is unknown. Here we show that SAMHD1 promotes degradation of nascent DNA at stalled replication forks in human cell lines by stimulating the exonuclease activity of MRE11. This function activates the ATR-CHK1 checkpoint and allows the forks to restart replication. In SAMHD1-depleted cells, single-stranded DNA fragments are released from stalled forks and accumulate in the cytosol, where they activate the cGAS-STING pathway to induce expression of pro-inflammatory type I interferons. SAMHD1 is thus an important player in the replication stress response, which prevents chronic inflammation by limiting the release of single-stranded DNA from stalled replication forks.
Collapse
|
121
|
Medeiros AC, Soares CS, Coelho PO, Vieira NA, Baqui MMA, Teixeira FR, Gomes MD. DNA damage response signaling does not trigger redistribution of SAMHD1 to nuclear foci. Biochem Biophys Res Commun 2018; 499:790-796. [PMID: 29614270 DOI: 10.1016/j.bbrc.2018.03.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 11/16/2022]
Abstract
SAMHD1 (Sterile alpha motif and histidine-aspartic acid (HD) domain containing protein 1) is a deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase (dNTPase) that restricts viral replication in infected cells. This protein is also involved in DNA repair by assisting in DNA end resection by homologous recombination (HR) after DNA double-strand break (DSB) induction with camptothecin (CPT) or etoposide (ETO). We showed that a monoclonal anti-SAMHD1 antibody produced against the full-length protein detected an unspecific 50 kDa protein that colocalized with dot-like structures after CPT treatment in HeLa cells. In contrast, a polyclonal anti-SAMHD1 antibody raised against the N-terminus of this protein specifically detected SAMHD1, as shown in Jurkat, HAP1KO and HEK293T SAMHD1-siRNA cell lysates compared with their respective controls. Our findings showed that SAMHD1 is not localized in dot-like structures under DSB induction in HeLa cells.
Collapse
Affiliation(s)
- Ana Carla Medeiros
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Claudia S Soares
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Priscila O Coelho
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Nichelle A Vieira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Munira M A Baqui
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Felipe R Teixeira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil; Ribeirao Preto Medical School, University of São Paulo, and Department of Genetics and Evolution, Federal University of Sao Carlos, Brazil.
| | - Marcelo D Gomes
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| |
Collapse
|
122
|
Li T, Chen ZJ. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 2018; 215:1287-1299. [PMID: 29622565 PMCID: PMC5940270 DOI: 10.1084/jem.20180139] [Citation(s) in RCA: 845] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
The cGAS–cGAMP–STING pathway mediates immune and inflammatory responses to cytosolic DNA. This review summarizes recent findings on how genomic instability leads to cGAS activation and how this pathway critically connects DNA damage to autoinflammatory diseases, cellular senescence, and cancer. Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)–adenosine monophosphate (AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.
Collapse
Affiliation(s)
- Tuo Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX .,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX .,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX.,Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
123
|
SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-κB and interferon pathways. Proc Natl Acad Sci U S A 2018; 115:E3798-E3807. [PMID: 29610295 DOI: 10.1073/pnas.1801213115] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.
Collapse
|
124
|
Herrmann A, Wittmann S, Thomas D, Shepard CN, Kim B, Ferreirós N, Gramberg T. The SAMHD1-mediated block of LINE-1 retroelements is regulated by phosphorylation. Mob DNA 2018; 9:11. [PMID: 29610582 PMCID: PMC5872582 DOI: 10.1186/s13100-018-0116-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
Background The restriction factor SAMHD1 regulates intracellular nucleotide level by degrading dNTPs and blocks the replication of retroviruses and DNA viruses in non-cycling cells, like macrophages or dendritic cells. In patients, inactivating mutations in samhd1 are associated with the autoimmune disease Aicardi-Goutières Syndrome (AGS). The accumulation of intracellular nucleic acids derived from endogenous retroelements thriving in the absence of SAMHD1 has been discussed as potential trigger of the autoimmune reaction. In vitro, SAMHD1 has been found to restrict endogenous retroelements, like LINE-1 elements (L1). The mechanism, however, by which SAMHD1 blocks endogenous retroelements, is still unclear. Results Here, we show that SAMHD1 inhibits the replication of L1 and other endogenous retroelements in cycling cells. By applying GFP- and neomycin-based reporter assays we found that the anti-L1 activity of SAMHD1 is regulated by phosphorylation at threonine 592 (T592). Similar to the block of HIV, the cofactor binding site and the enzymatic active HD domain of SAMHD1 proofed to be essential for restriction of L1 elements. However, phosphorylation at T592 did not correlate with the dNTP hydrolase activity of SAMHD1 in cycling 293T cells suggesting an alternative mechanism of regulation. Interestingly, we found that SAMHD1 binds to ORF2 protein of L1 and that this interaction is regulated by T592 phosphorylation. Together with the finding that the block is also active in cycling cells, our results suggest that the SAMHD1-mediated inhibition of L1 is similar but not identical to HIV restriction. Conclusion Our findings show conclusively that SAMHD1 restricts the replication of endogenous retroelements in vitro. The results suggest that SAMHD1 is important for maintaining genome integrity and support the idea of an enhanced replication of endogenous retroelements in the absence of SAMHD1 in vivo, potentially triggering autoimmune diseases like AGS. Our analysis also contributes to the better understanding of the activities of SAMHD1 in antiviral defense and nucleotide metabolism. The finding that the phosphorylation of SAMHD1 at T592 regulates its activity against retroelements but not necessarily intracellular dNTP level suggests that the dNTP hydrolase activity might not be the only function of SAMHD1 important for its antiviral activity and for controlling autoimmunity. Electronic supplementary material The online version of this article (10.1186/s13100-018-0116-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Herrmann
- 1Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Sabine Wittmann
- 1Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Dominique Thomas
- 2pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Caitlin N Shepard
- 3Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, GA 30322 USA
| | - Baek Kim
- 3Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, Atlanta, GA 30322 USA.,4College of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Nerea Ferreirós
- 2pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Thomas Gramberg
- 1Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|
125
|
Shi B, Sharifi HJ, DiGrigoli S, Kinnetz M, Mellon K, Hu W, de Noronha CMC. Inhibition of HIV early replication by the p53 and its downstream gene p21. Virol J 2018; 15:53. [PMID: 29587790 PMCID: PMC5870690 DOI: 10.1186/s12985-018-0959-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 03/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background The tumor suppressor gene p53 has been found to suppress HIV infection by various mechanisms, but the inhibition of HIV at an early stage of replication by host cell p53 and its downstream gene p21 has not been well studied. Method VSV-G pseudotyped HIV-1 or HIV-2 viruses with GFP or luciferase reporter gene were used to infect HCT116 p53+/+ cells, HCT116 p53−/− cells and hMDMs. The infections were detected by flow cytometry or measured by luciferase assay. Reverse transcription products were quantified by a TaqMan real time PCR. siRNA knockdown experiments were applied to study potential roles of p53 and p21 genes in their restriction to HIV infection. Western blot experiments were used to analyze changes in gene expression. Results The infection of HIV-1 was inhibited in HCT116 p53+/+ cells in comparison to HCT116 p53−/− cells. The fold of inhibition was largely increased when cell cycle switched from cycling to non-cycling status. Further analysis showed that both p53 and p21 expressions were upregulated in non-cycling HCT116 p53+/+ cells and HIV-1 reverse transcription was subsequently inhibited. siRNA knockdown of either p53 or p21 rescued HIV-1 reverse transcription from the inhibition in non-cycling HCT116 p53+/+ cells. It was identified that the observed restrictions by p53 and p21 were associated with the suppression of RNR2 expression and phosphorylation of SAMHD1. These observations were confirmed by using siRNA knockdown experiments. In addition, p53 also inhibited HIV-2 infection in HCT116 p53+/+ cells and siRNA knockdown of p21 increased HIV-2 infection in hMDMs. Finally the expressions of p53 and p21 were found to be induced in hMDMs shortly after HIV-1 infection. Conclusions The p53 and its downstream gene p21 interfere with HIV early stage of replication in non-cycling cells and hMDMs.
Collapse
Affiliation(s)
- Binshan Shi
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA.
| | - Hamayun J Sharifi
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Sara DiGrigoli
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Michaela Kinnetz
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Katie Mellon
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, 106 New Scotland Ave, Albany, NY, 12208, USA
| | - Wenwei Hu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, 08903, USA
| | - Carlos M C de Noronha
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, Albany, NY, 12208, USA
| |
Collapse
|
126
|
A Cyclin-Binding Motif in Human SAMHD1 Is Required for Its HIV-1 Restriction, dNTPase Activity, Tetramer Formation, and Efficient Phosphorylation. J Virol 2018; 92:JVI.01787-17. [PMID: 29321329 DOI: 10.1128/jvi.01787-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) regulates intracellular deoxynucleoside triphosphate (dNTP) levels and functions as a retroviral restriction factor through its dNTP triphosphohydrolase (dNTPase) activity. Human SAMHD1 interacts with cell cycle regulatory proteins cyclin A2, cyclin-dependent kinase 1 (CDK1), and CDK2. This interaction mediates phosphorylation of SAMHD1 at threonine 592 (T592), which negatively regulates HIV-1 restriction. We previously reported that the interaction is mediated, at least in part, through a cyclin-binding motif (RXL, amino acids [aa] 451 to 453). To understand the role of the RXL motif in regulating SAMHD1 activity, we performed structural and functional analyses of RXL mutants and the effect on HIV-1 restriction. We found that the RXL mutation (R451A and L453A, termed RL/AA) disrupted SAMHD1 tetramer formation and abolished its dNTPase activity in vitro and in cells. Compared to wild-type (WT) SAMHD1, the RL/AA mutant failed to restrict HIV-1 infection and had reduced binding to cyclin A2. WT SAMHD1 and RL/AA mutant proteins were degraded by Vpx from HIV-2 but were not spontaneously ubiquitinated in the absence of Vpx. Analysis of proteasomal and autophagy degradation revealed that WT and RL/AA SAMHD1 protein levels were enhanced only when both pathways of degradation were simultaneously inhibited. Our results demonstrate that the RXL motif of human SAMHD1 is required for its HIV-1 restriction, tetramer formation, dNTPase activity, and efficient phosphorylation at T592. These findings identify a new functional domain of SAMHD1 important for its structural integrity, enzyme activity, phosphorylation, and HIV-1 restriction.IMPORTANCE SAMHD1 is the first mammalian dNTPase identified as a restriction factor that inhibits HIV-1 replication by decreasing the intracellular dNTP pool in nondividing cells, although the critical mechanisms regulating SAMHD1 function remain unclear. We previously reported that mutations of a cyclin-binding RXL motif in human SAMHD1 significantly affect protein expression levels, half-life, nuclear localization, and phosphorylation, suggesting an important role of this motif in modulating SAMHD1 functions in cells. To further understand the significance and mechanisms of the RXL motif in regulating SAMHD1 activity, we performed structural and functional analyses of the RXL motif mutation and its effect on HIV-1 restriction. Our results indicate that the RXL motif is critical for tetramer formation, dNTPase activity, and HIV-1 restriction. These findings help us understand SAMHD1 interactions with other host proteins and the mechanisms regulating SAMHD1 structure and functions in cells.
Collapse
|
127
|
Dezzutti CS, Park SY, Marks KM, Lawlor SE, Russo JR, Macio I, Chappell CA, Bunge KE. Heterogeneity of HIV-1 Replication in Ectocervical and Vaginal Tissue Ex Vivo. AIDS Res Hum Retroviruses 2018; 34:185-192. [PMID: 28982249 DOI: 10.1089/aid.2017.0107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In clinical trials evaluating HIV-1 prevention products, ex vivo exposure of mucosal tissue to HIV-1 is performed to inform drug levels needed to suppress viral infection. Understanding assay and participant variables that influence HIV-1 replication will help with assay implementation. Demographic and behavioral data were obtained from 61 healthy women aged 21-45. Paired cervical tissue (CT) and vaginal tissue (VT) biopsies were collected and treated with HIV-1BaL or HIV-1JR-CSF, washed, and cultured. On days 3, 7, and/or 11, culture supernatant was collected, and viral replication was monitored by p24 ELISA. Tissue was extracted at study end, and HIV-1 relative RNA copies were determined by polymerase chain reaction. Cumulative p24 and RNA were log-transformed and analyzed using a linear mixed model, t-test, and an intraclass correlation coefficient (ICC). HIV replication was similar between CT and VT for each virus, but HIV-1BaL had 1.5 log10 and 0.9 log10 higher levels of p24 than HIV-1JR-CSF in CT and VT, respectively (p < .001), which correlated with HIV-1 relative RNA copies. Cumulative p24 and RNA copies in both tissues demonstrated low intraperson correlation for both viruses (ICC ≤0.513 HIV-1BaL; ICC ≤0.419 HIV-1JR-CSF). Enrollment into previous clinical studies in which genital biopsies were collected modestly decreased the HIV-1BaL cumulative p24 for CT, but not for VT. To improve the ex vivo challenge assay, viruses should be evaluated for replication in mucosal tissue before study implementation, baseline mucosal tissue is not needed if a placebo/no treatment group is included within the clinical trial, and previous biopsy sites should be avoided.
Collapse
Affiliation(s)
- Charlene S. Dezzutti
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Seo Young Park
- Department of Medicine Bio Statisics, and Clinical and Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | - Julie R. Russo
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Ingrid Macio
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Catherine A. Chappell
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Katherine E. Bunge
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
128
|
Mauney CH, Rogers LC, Harris RS, Daniel LW, Devarie-Baez NO, Wu H, Furdui CM, Poole LB, Perrino FW, Hollis T. The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch. Antioxid Redox Signal 2017; 27:1317-1331. [PMID: 28398823 PMCID: PMC5655415 DOI: 10.1089/ars.2016.6888] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Proliferative signaling involves reversible posttranslational oxidation of proteins. However, relatively few molecular targets of these modifications have been identified. We investigate the role of protein oxidation in regulation of SAMHD1 catalysis. RESULTS Here we report that SAMHD1 is a major target for redox regulation of nucleotide metabolism and cell cycle control. SAMHD1 is a triphosphate hydrolase, whose function involves regulation of deoxynucleotide triphosphate pools. We demonstrate that the redox state of SAMHD1 regulates its catalytic activity. We have identified three cysteine residues that constitute an intrachain disulfide bond "redox switch" that reversibly inhibits protein tetramerization and catalysis. We show that proliferative signals lead to SAMHD1 oxidation in cells and oxidized SAMHD1 is localized outside of the nucleus. Innovation and Conclusions: SAMHD1 catalytic activity is reversibly regulated by protein oxidation. These data identify a previously unknown mechanism for regulation of nucleotide metabolism by SAMHD1. Antioxid. Redox Signal. 27, 1317-1331.
Collapse
Affiliation(s)
- Christopher H Mauney
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - LeAnn C Rogers
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Reuben S Harris
- 2 Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, Howard Hughes Medical Institute, University of Minnesota , Minneapolis, Minnesota
| | - Larry W Daniel
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina.,3 Center for Molecular Communication and Signaling , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Nelmi O Devarie-Baez
- 4 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Hanzhi Wu
- 4 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Cristina M Furdui
- 3 Center for Molecular Communication and Signaling , Wake Forest School of Medicine, Winston-Salem, North Carolina.,4 Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine , Winston-Salem, North Carolina
| | - Leslie B Poole
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina.,3 Center for Molecular Communication and Signaling , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Fred W Perrino
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Thomas Hollis
- 1 Department of Biochemistry, Center for Structural Biology , Wake Forest School of Medicine, Winston-Salem, North Carolina.,3 Center for Molecular Communication and Signaling , Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
129
|
Antonucci JM, St Gelais C, Wu L. The Dynamic Interplay between HIV-1, SAMHD1, and the Innate Antiviral Response. Front Immunol 2017; 8:1541. [PMID: 29176984 PMCID: PMC5686096 DOI: 10.3389/fimmu.2017.01541] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/30/2017] [Indexed: 01/03/2023] Open
Abstract
The innate immune response constitutes the first cellular line of defense against initial HIV-1 infection. Immune cells sense invading virus and trigger signaling cascades that induce antiviral defenses to control or eliminate infection. Professional antigen-presenting cells located in mucosal tissues, including dendritic cells and macrophages, are critical for recognizing HIV-1 at the site of initial exposure. These cells are less permissive to HIV-1 infection compared to activated CD4+ T-cells, which is mainly due to host restriction factors that serve an immediate role in controlling the establishment or spread of viral infection. However, HIV-1 can exploit innate immune cells and their cellular factors to avoid detection and clearance by the host immune system. Sterile alpha motif and HD-domain containing protein 1 (SAMHD1) is the mammalian deoxynucleoside triphosphate triphosphohydrolase responsible for regulating intracellular dNTP pools and restricting the replication of HIV-1 in non-dividing myeloid cells and quiescent CD4+ T-cells. Here, we review and analyze the latest literature on the antiviral function of SAMHD1, including the mechanism of HIV-1 restriction and the ability of SAMHD1 to regulate the innate immune response to viral infection. We also provide an overview of the dynamic interplay between HIV-1, SAMHD1, and the cell-intrinsic antiviral response to elucidate how SAMHD1 modulates HIV-1 infection in non-dividing immune cells. A more complete understanding of SAMHD1’s role in the innate immune response to HIV-1 infection may help develop stratagems to enhance its antiviral effects and to more efficiently block HIV-1 replication and avoid the pathogenic result of viral infection.
Collapse
Affiliation(s)
- Jenna M Antonucci
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Corine St Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
130
|
Rocha-Perugini V, Suárez H, Álvarez S, López-Martín S, Lenzi GM, Vences-Catalán F, Levy S, Kim B, Muñoz-Fernández MA, Sánchez-Madrid F, Yáñez-Mó M. CD81 association with SAMHD1 enhances HIV-1 reverse transcription by increasing dNTP levels. Nat Microbiol 2017; 2:1513-1522. [PMID: 28871089 PMCID: PMC5660623 DOI: 10.1038/s41564-017-0019-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
In this study, we report that the tetraspanin CD81 enhances human immunodeficiency virus (HIV)-1 reverse transcription in HIV-1-infected cells. This is enabled by the direct interaction of CD81 with the deoxynucleoside triphosphate phosphohydrolase SAMHD1. This interaction prevents endosomal accumulation and favours the proteasome-dependent degradation of SAMHD1. Consequently, CD81 depletion results in SAMHD1 increased expression, decreasing the availability of deoxynucleoside triphosphates (dNTP) and thus HIV-1 reverse transcription. Conversely, CD81 overexpression, but not the expression of a CD81 carboxy (C)-terminal deletion mutant, increases cellular dNTP content and HIV-1 reverse transcription. Our results demonstrate that the interaction of CD81 with SAMHD1 controls the metabolic rate of HIV-1 replication by tuning the availability of building blocks for reverse transcription, namely dNTPs. Together with its role in HIV-1 entry and budding into host cells, the data herein indicate that HIV-1 uses CD81 as a rheostat that controls different stages of the infection.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, 28006, Spain
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, 28029, Spain
| | - Henar Suárez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Centro de Biología Molecular Severo Ochoa, Madrid, 28049, Spain
| | - Susana Álvarez
- Servicio de Inmunobiología Molecular del Hospital Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Soraya López-Martín
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Centro de Biología Molecular Severo Ochoa, Madrid, 28049, Spain
| | - Gina M Lenzi
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Felipe Vences-Catalán
- Division of Oncology, Center for Clinical Sciences Research, Stanford University, Stanford, CA, 94305-5151, USA
| | - Shoshana Levy
- Division of Oncology, Center for Clinical Sciences Research, Stanford University, Stanford, CA, 94305-5151, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - María A Muñoz-Fernández
- Servicio de Inmunobiología Molecular del Hospital Universitario Gregorio Marañón, Madrid, 28007, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, 28006, Spain
- Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, 28029, Spain
- CIBER Cardiovascular, Madrid, Spain
| | - Maria Yáñez-Mó
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Centro de Biología Molecular Severo Ochoa, Madrid, 28049, Spain.
| |
Collapse
|
131
|
Liao H, Ji F, Geng X, Xing M, Li W, Chen Z, Shen H, Ying S. CDK1 promotes nascent DNA synthesis and induces resistance of cancer cells to DNA-damaging therapeutic agents. Oncotarget 2017; 8:90662-90673. [PMID: 29207595 PMCID: PMC5710876 DOI: 10.18632/oncotarget.21730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/20/2017] [Indexed: 12/01/2022] Open
Abstract
Cyclin dependent kinase 1 (CDK1) is essential for cell viability and plays a vital role in many biological events including cell cycle control, DNA damage repair, and checkpoint activation. Here, we identify an unanticipated role for CDK1 in promoting nascent DNA synthesis during S-phase. We report that a short duration of CDK1 inhibition, which does not perturb cell cycle progression, triggers a replication-associated DNA damage response (DDR). This DDR is associated with a disruption of replication fork progression and leads to genome instability. Moreover, we show that compromised CDK1 activity dramatically increases the efficacy of chemotherapeutic agents that kill cancer cells through perturbing DNA replication, including Olaparib, an FDA approved PARP inhibitor. Our study has revealed an important role for CDK1 in the DNA replication program, and suggests that the therapeutic targeting CDK1 may be a novel approach for combination chemotherapy.
Collapse
Affiliation(s)
- Hongwei Liao
- Department of Respiratory and Critical Care Medicine of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Ji
- Department of Respiratory and Critical Care Medicine of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinwei Geng
- Department of Respiratory and Critical Care Medicine of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Meichun Xing
- Department of Respiratory and Critical Care Medicine of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Li
- Department of Respiratory and Critical Care Medicine of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Chen
- Department of Respiratory and Critical Care Medicine of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huahao Shen
- Department of Respiratory and Critical Care Medicine of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
132
|
Irwin CR, Hitt MM, Evans DH. Targeting Nucleotide Biosynthesis: A Strategy for Improving the Oncolytic Potential of DNA Viruses. Front Oncol 2017; 7:229. [PMID: 29018771 PMCID: PMC5622948 DOI: 10.3389/fonc.2017.00229] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
The rapid growth of tumors depends upon elevated levels of dNTPs, and while dNTP concentrations are tightly regulated in normal cells, this control is often lost in transformed cells. This feature of cancer cells has been used to advantage to develop oncolytic DNA viruses. DNA viruses employ many different mechanisms to increase dNTP levels in infected cells, because the low concentration of dNTPs found in non-cycling cells can inhibit virus replication. By disrupting the virus-encoded gene(s) that normally promote dNTP biosynthesis, one can assemble oncolytic versions of these agents that replicate selectively in cancer cells. This review covers the pathways involved in dNTP production, how they are dysregulated in cancer cells, and the various approaches that have been used to exploit this biology to improve the tumor specificity of oncolytic viruses. In particular, we compare and contrast the ways that the different types of oncolytic virus candidates can directly modulate these processes. We limit our review to the large DNA viruses that naturally encode homologs of the cellular enzymes that catalyze dNTP biogenesis. Lastly, we consider how this knowledge might guide future development of oncolytic viruses.
Collapse
Affiliation(s)
- Chad R Irwin
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Mary M Hitt
- Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - David H Evans
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Faculty of Medicine and Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
133
|
Lee EJ, Seo JH, Park JH, Vo TTL, An S, Bae SJ, Le H, Lee HS, Wee HJ, Lee D, Chung YH, Kim JA, Jang MK, Ryu SH, Yu E, Jang SH, Park ZY, Kim KW. SAMHD1 acetylation enhances its deoxynucleotide triphosphohydrolase activity and promotes cancer cell proliferation. Oncotarget 2017; 8:68517-68529. [PMID: 28978134 PMCID: PMC5620274 DOI: 10.18632/oncotarget.19704] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
SAM domain and HD domain containing protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase (dNTPase) that inhibits retroviruses by depleting intracellular deoxynucleotide triphosphates (dNTPs) in non-cycling myeloid cells. Although SAMHD1 is expressed ubiquitously throughout the human body, the molecular mechanisms regulating its enzymatic activity and function in non-immune cells are relatively unexplored. Here, we demonstrate that the dNTPase activity of SAMHD1 is regulated by acetylation, which promotes cell cycle progression in cancer cells. SAMHD1 is acetylated at residue lysine 405 (K405) in vitro and in vivo by an acetylatransferase, arrest defective protein 1 (ARD1). Acetylated SAMHD1 wildtype proteins have enhanced dNTPase activity in vitro, whereas non-acetylated arginine substituted mutants (K405R) do not. K405R mutant expressing cancer cells have reduced G1/S transition and slower proliferation compared to wildtype. SAMHD1 acetylation levels are strongest during the G1 phase, indicating a role during G1 phase. Collectively, these findings suggest that SAMHD1 acetylation enhances its dNTPase activity and promotes cancer cell proliferation. Therefore, SAMHD1 acetylation may be a potent therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Eun Ji Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Ji-Hyeon Park
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Tam Thuy Lu Vo
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Sunho An
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Jin Bae
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hoang Le
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hye Shin Lee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Hee-Jun Wee
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
| | - Danbi Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Young-Hwa Chung
- Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | | | - Myoung-Kuk Jang
- Department of Internal Medicine, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Korea
| | - Soo Hyung Ryu
- Department of Internal Medicine, Inje University College of Medicine, Seoul Paik Hospital, Seoul 04551, Korea
| | - Ensil Yu
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| | - Se Hwan Jang
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju 61005, Korea
| | - Zee Yong Park
- School of Life Sciences, Gwangju Institute of Science & Technology, Gwangju 61005, Korea
| | - Kyu-Won Kim
- SNU-Harvard NeuroVascular Protection Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
134
|
The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18:535-550. [DOI: 10.1038/nrg.2017.46] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
135
|
Herold N, Rudd SG, Sanjiv K, Kutzner J, Myrberg IH, Paulin CBJ, Olsen TK, Helleday T, Henter JI, Schaller T. With me or against me: Tumor suppressor and drug resistance activities of SAMHD1. Exp Hematol 2017; 52:32-39. [PMID: 28502830 DOI: 10.1016/j.exphem.2017.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 01/04/2023]
Abstract
Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1) is a (deoxy)guanosine triphosphate (dGTP/GTP)-activated deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase involved in cellular dNTP homoeostasis. Mutations in SAMHD1 have been associated with the hyperinflammatory disease Aicardi-Goutières syndrome (AGS). SAMHD1 also limits cells' permissiveness to infection with diverse viruses, including human immunodeficiency virus (HIV-1), and controls endogenous retroviruses. Increasing evidence supports the role of SAMHD1 as a tumor suppressor. However, SAMHD1 also can act as a resistance factor to nucleoside-based chemotherapies by hydrolyzing their active triphosphate metabolites, thereby reducing response of various malignancies to these anticancer drugs. Hence, informed cancer therapies must take into account the ambiguous properties of SAMHD1 as both an inhibitor of uncontrolled proliferation and a resistance factor limiting the efficacy of anticancer treatments. Here, we provide evidence that SAMHD1 is a double-edged sword for patients with acute myelogenous leukemia (AML). Our time-dependent analyses of The Cancer Genome Atlas (TCGA) AML cohort indicate that high expression of SAMHD1, even though it critically limits the efficacy of high-dose ara-C therapy, might be associated with more favorable disease progression.
Collapse
Affiliation(s)
- Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Theme of Children's and Women's Health, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| | - Sean G Rudd
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juliane Kutzner
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ida Hed Myrberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Cynthia B J Paulin
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Theme of Children's and Women's Health, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Torsten Schaller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
136
|
Corrà S, Salvadori R, Bee L, Barbieri V, Mognato M. Analysis of DNA-damage response to ionizing radiation in serum-shock synchronized human fibroblasts. Cell Biol Toxicol 2017; 33:373-388. [PMID: 28466226 PMCID: PMC5493713 DOI: 10.1007/s10565-017-9394-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Many aspects of cellular physiology, including cellular response to genotoxic stress, are related to the circadian rhythmicity induced by the molecular clock. The current study investigated if the cellular response to DNA damage is in relation to endogenous expression levels of the PER2 protein, a key component of the molecular regulatory system that confers rhythmicity in mammalian cells. Human normal fibroblasts (CCD-34Lu) were subjected to serum shock to induce circadian oscillations of the PER2 protein and then irradiated with γ- rays at times corresponding to the trough and peak expression of the PER2 protein. To better examine cellular response to DNA damage, the experiments performed in this study were carried out in non-proliferating CCD-34Lu fibroblasts in order to maintain the cell and circadian cycles separated while they were being exposed to genotoxic stress. Study results demonstrated that clonogenic cell survival, double-strand break repair kinetics, and TP53 protein levels were affected in the cells irradiated at the trough than in those irradiated at peak expression of the PER2 protein.
Collapse
Affiliation(s)
- Samantha Corrà
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy
| | - Riccardo Salvadori
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy
| | - Leonardo Bee
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy.,Menarini Silicon Biosystems, 10355 Science Center Dr #210, San Diego, CA, 92121, USA
| | - Vito Barbieri
- Department of Surgical, Oncological and Gastroenteric Sciences, University of Padova, via Giustiniani 2, Padova, Italy
| | - Maddalena Mognato
- Department of Biology, School of Sciences, University of Padova, via U. Bassi 58 B, 35131, Padova, Italy.
| |
Collapse
|
137
|
Li M, Zhang D, Zhu M, Shen Y, Wei W, Ying S, Korner H, Li J. Roles of SAMHD1 in antiviral defense, autoimmunity and cancer. Rev Med Virol 2017; 27. [PMID: 28444859 DOI: 10.1002/rmv.1931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/26/2017] [Accepted: 03/13/2017] [Indexed: 01/02/2023]
Abstract
The enzyme, sterile α motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) diminishes infection of human immunodeficiency virus type 1 (HIV-1) by hydrolyzing intracellular deoxynucleotide triphosphates (dNTPs) in myeloid cells and resting CD4+ T cells. This dNTP degradation reduces the dNTP concentration to a level insufficient for viral cDNA synthesis, thereby inhibiting retroviral replication. This antiviral enzymatic activity can be inhibited by viral protein X (Vpx). The HIV-2/SIV Vpx causes degradation of SAMHD1, thus interfering with the SAMHD1-mediated restriction of retroviral replication. Recently, SAMHD1 has been suggested to restrict HIV-1 infection by directly digesting genomic HIV-1 RNA through a still controversial RNase activity. Here, we summarize the current knowledge about structure, antiviral mechanisms, intracellular localization, interferon-regulated expression of SAMHD1. We also describe SAMHD1-deficient animal models and an antiviral drug on the basis of disrupting proteasomal degradation of SAMHD1. In addition, the possible roles of SAMHD1 in regulating innate immune sensing, Aicardi-Goutières syndrome and cancer are discussed in this review.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Dong Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China.,School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Mengying Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Yuxian Shen
- School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui Province, PR China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China.,School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Heinrich Korner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui Province, PR China.,Menzies Institute for Medical Research Tasmania, Hobart, Tasmania, Australia
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, PR China
| |
Collapse
|
138
|
Herold N, Rudd SG, Sanjiv K, Kutzner J, Bladh J, Paulin CBJ, Helleday T, Henter JI, Schaller T. SAMHD1 protects cancer cells from various nucleoside-based antimetabolites. Cell Cycle 2017; 16:1029-1038. [PMID: 28436707 PMCID: PMC5499833 DOI: 10.1080/15384101.2017.1314407] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, we demonstrated that sterile α motif and HD domain containing protein 1 (SAMHD1) is a major barrier in acute myelogenous leukemia (AML) cells to the cytotoxicity of cytarabine (ara-C), the most important drug in AML treatment. Ara-C is intracellularly converted by the canonical dNTP synthesis pathway to ara-CTP, which serves as a substrate but not an allosteric activator of SAMHD1. Using an AML mouse model, we show here that wild type but not catalytically inactive SAMHD1 reduces ara-C treatment efficacy in vivo. Expanding the clinically relevant substrates of SAMHD1, we demonstrate that THP-1 CRISPR/Cas9 cells lacking a functional SAMHD1 gene showed increased sensitivity to the antimetabolites nelarabine, fludarabine, decitabine, vidarabine, clofarabine, and trifluridine. Within this Extra View, we discuss and build upon both these and our previously reported findings, and propose SAMHD1 is likely active against a variety of nucleoside analog antimetabolites present in anti-cancer chemotherapies. Thus, SAMHD1 may constitute a promising target to improve a wide range of therapies for both hematological and non-haematological malignancies.
Collapse
Affiliation(s)
- Nikolas Herold
- a Childhood Cancer Research Unit, Department of Women's and Children's Health , Karolinska Institutet , Stockholm , Sweden.,b Theme of Children's and Women's Health , Astrid Lindgren Children's Hospital, Karolinska University Hospital , Stockholm , Sweden
| | - Sean G Rudd
- c Science for Life Laboratory, Division of Translational Medicine and Chemical Biology , Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Kumar Sanjiv
- c Science for Life Laboratory, Division of Translational Medicine and Chemical Biology , Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Juliane Kutzner
- d Department of Infectious Diseases, Virology , University Hospital Heidelberg , Heidelberg , Germany
| | - Julia Bladh
- a Childhood Cancer Research Unit, Department of Women's and Children's Health , Karolinska Institutet , Stockholm , Sweden
| | - Cynthia B J Paulin
- c Science for Life Laboratory, Division of Translational Medicine and Chemical Biology , Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Thomas Helleday
- c Science for Life Laboratory, Division of Translational Medicine and Chemical Biology , Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Stockholm , Sweden
| | - Jan-Inge Henter
- a Childhood Cancer Research Unit, Department of Women's and Children's Health , Karolinska Institutet , Stockholm , Sweden.,b Theme of Children's and Women's Health , Astrid Lindgren Children's Hospital, Karolinska University Hospital , Stockholm , Sweden
| | - Torsten Schaller
- d Department of Infectious Diseases, Virology , University Hospital Heidelberg , Heidelberg , Germany
| |
Collapse
|
139
|
Ordonez P, Kunzelmann S, Groom HCT, Yap MW, Weising S, Meier C, Bishop KN, Taylor IA, Stoye JP. SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells. Sci Rep 2017; 7:42824. [PMID: 28220857 PMCID: PMC5318888 DOI: 10.1038/srep42824] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 11/17/2022] Open
Abstract
SAMHD1 is an intracellular enzyme that specifically degrades deoxynucleoside triphosphates into component nucleoside and inorganic triphosphate. In myeloid-derived dendritic cells and macrophages as well as resting T-cells, SAMHD1 blocks HIV-1 infection through this dNTP triphosphohydrolase activity by reducing the cellular dNTP pool to a level that cannot support productive reverse transcription. We now show that, in addition to this direct effect on virus replication, manipulating cellular SAMHD1 activity can significantly enhance or decrease the anti-HIV-1 efficacy of nucleotide analogue reverse transcription inhibitors presumably as a result of modulating dNTP pools that compete for recruitment by viral polymerases. Further, a variety of other nucleotide-based analogues, not normally considered antiretrovirals, such as the anti-herpes drugs Aciclovir and Ganciclovir and the anti-cancer drug Clofarabine are now revealed as potent anti-HIV-1 agents, under conditions of low dNTPs. This in turn suggests novel uses for nucleotide analogues to inhibit HIV-1 in differentiated cells low in dNTPs.
Collapse
Affiliation(s)
- Paula Ordonez
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Harriet C. T. Groom
- Infection and Replication of Retroviruses Laboratory, The Francis Crick Institute, London, UK
| | - Melvyn W. Yap
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Simon Weising
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Germany
| | - Kate N. Bishop
- Infection and Replication of Retroviruses Laboratory, The Francis Crick Institute, London, UK
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Jonathan P. Stoye
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
140
|
A defective dNTP pool hinders DNA replication in cell cycle-reactivated terminally differentiated muscle cells. Cell Death Differ 2017; 24:774-784. [PMID: 28186504 DOI: 10.1038/cdd.2017.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/02/2017] [Accepted: 01/10/2017] [Indexed: 02/06/2023] Open
Abstract
Terminally differentiated cells are defined by their inability to proliferate. When forced to re-enter the cell cycle, they generally cannot undergo long-term replication. Our previous work with myotubes has shown that these cells fail to proliferate because of their intrinsic inability to complete DNA replication. Moreover, we have reported pronounced modifications of deoxynucleotide metabolism during myogenesis. Here we investigate the causes of incomplete DNA duplication in cell cycle-reactivated myotubes (rMt). We find that rMt possess extremely low levels of thymidine triphosphate (dTTP), resulting in very slow replication fork rates. Exogenous administration of thymidine or forced expression of thymidine kinase increases deoxynucleotide availability, allowing extended and faster DNA replication. Inadequate dTTP levels are caused by selective, differentiation-dependent, cell cycle-resistant suppression of genes encoding critical synthetic enzymes, chief among which is thymidine kinase 1. We conclude that lack of dTTP is at least partially responsible for the inability of myotubes to proliferate and speculate that it constitutes an emergency barrier against unwarranted DNA replication in terminally differentiated cells.
Collapse
|
141
|
Pai CC, Kearsey SE. A Critical Balance: dNTPs and the Maintenance of Genome Stability. Genes (Basel) 2017; 8:genes8020057. [PMID: 28146119 PMCID: PMC5333046 DOI: 10.3390/genes8020057] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/24/2017] [Indexed: 01/14/2023] Open
Abstract
A crucial factor in maintaining genome stability is establishing deoxynucleoside triphosphate (dNTP) levels within a range that is optimal for chromosomal replication. Since DNA replication is relevant to a wide range of other chromosomal activities, these may all be directly or indirectly affected when dNTP concentrations deviate from a physiologically normal range. The importance of understanding these consequences is relevant to genetic disorders that disturb dNTP levels, and strategies that inhibit dNTP synthesis in cancer chemotherapy and for treatment of other disorders. We review here how abnormal dNTP levels affect DNA replication and discuss the consequences for genome stability.
Collapse
Affiliation(s)
- Chen-Chun Pai
- CRUK-MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| |
Collapse
|
142
|
Schneider C, Oellerich T, Baldauf HM, Schwarz SM, Thomas D, Flick R, Bohnenberger H, Kaderali L, Stegmann L, Cremer A, Martin M, Lohmeyer J, Michaelis M, Hornung V, Schliemann C, Berdel WE, Hartmann W, Wardelmann E, Comoglio F, Hansmann ML, Yakunin AF, Geisslinger G, Ströbel P, Ferreirós N, Serve H, Keppler OT, Cinatl J. SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia. Nat Med 2016; 23:250-255. [PMID: 27991919 DOI: 10.1038/nm.4255] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/15/2016] [Indexed: 11/09/2022]
Abstract
The nucleoside analog cytarabine (Ara-C) is an essential component of primary and salvage chemotherapy regimens for acute myeloid leukemia (AML). After cellular uptake, Ara-C is converted into its therapeutically active triphosphate metabolite, Ara-CTP, which exerts antileukemic effects, primarily by inhibiting DNA synthesis in proliferating cells. Currently, a substantial fraction of patients with AML fail to respond effectively to Ara-C therapy, and reliable biomarkers for predicting the therapeutic response to Ara-C are lacking. SAMHD1 is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase that cleaves physiological dNTPs into deoxyribonucleosides and inorganic triphosphate. Although it has been postulated that SAMHD1 sensitizes cancer cells to nucleoside-analog derivatives through the depletion of competing dNTPs, we show here that SAMHD1 reduces Ara-C cytotoxicity in AML cells. Mechanistically, dGTP-activated SAMHD1 hydrolyzes Ara-CTP, which results in a drastic reduction of Ara-CTP in leukemic cells. Loss of SAMHD1 activity-through genetic depletion, mutational inactivation of its triphosphohydrolase activity or proteasomal degradation using specialized, virus-like particles-potentiates the cytotoxicity of Ara-C in AML cells. In mouse models of retroviral AML transplantation, as well as in retrospective analyses of adult patients with AML, the response to Ara-C-containing therapy was inversely correlated with SAMHD1 expression. These results identify SAMHD1 as a potential biomarker for the stratification of patients with AML who might best respond to Ara-C-based therapy and as a target for treating Ara-C-refractory AML.
Collapse
Affiliation(s)
| | - Thomas Oellerich
- Department of Medicine II, Hematology and Oncology, Goethe University of Frankfurt, Frankfurt, Germany.,Cambridge University Department of Haematology, Cambridge Institute of Medical Research, Cambridge, UK.,German Cancer Consortium partner site, German Cancer Research Center, Heidelberg, Germany
| | - Hanna-Mari Baldauf
- Institute of Medical Virology, University of Frankfurt, Frankfurt, Germany.,Max von Pettenkofer Institute, Department of Virology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Dominique Thomas
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University of Frankfurt, Frankfurt, Germany
| | - Robert Flick
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | | | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Lena Stegmann
- Institute of Medical Virology, University of Frankfurt, Frankfurt, Germany
| | - Anjali Cremer
- Department of Medicine II, Hematology and Oncology, Goethe University of Frankfurt, Frankfurt, Germany
| | - Margarethe Martin
- Institute of Medical Virology, University of Frankfurt, Frankfurt, Germany
| | - Julian Lohmeyer
- Department of Medicine II, Hematology and Oncology, Goethe University of Frankfurt, Frankfurt, Germany
| | - Martin Michaelis
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury, UK
| | - Veit Hornung
- Institute of Molecular Medicine, University Hospital Bonn, Bonn, Germany.,Gene Center and Department of Biochemistry, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christoph Schliemann
- Department of Medicine A (Hematology, Oncology), University Hospital Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A (Hematology, Oncology), University Hospital Münster, Germany
| | - Wolfgang Hartmann
- Gerhard Domagk Institute for Pathology, University Hospital Münster, Germany
| | - Eva Wardelmann
- Gerhard Domagk Institute for Pathology, University Hospital Münster, Germany
| | - Federico Comoglio
- Cambridge University Department of Haematology, Cambridge Institute of Medical Research, Cambridge, UK
| | - Martin-Leo Hansmann
- Senckenberg Institute of Pathology, University of Frankfurt, Frankfurt, Germany
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Gerd Geisslinger
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University of Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Translational Medicine and Pharmacology (TMP), Frankfurt, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Nerea Ferreirós
- Pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University of Frankfurt, Frankfurt, Germany
| | - Hubert Serve
- Department of Medicine II, Hematology and Oncology, Goethe University of Frankfurt, Frankfurt, Germany.,German Cancer Consortium partner site, German Cancer Research Center, Heidelberg, Germany
| | - Oliver T Keppler
- Institute of Medical Virology, University of Frankfurt, Frankfurt, Germany.,Max von Pettenkofer Institute, Department of Virology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
143
|
Kodigepalli KM, Li M, Liu SL, Wu L. Exogenous expression of SAMHD1 inhibits proliferation and induces apoptosis in cutaneous T-cell lymphoma-derived HuT78 cells. Cell Cycle 2016; 16:179-188. [PMID: 27929746 DOI: 10.1080/15384101.2016.1261226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Sterile α motif and HD domain-containing protein 1 (SAMHD1) is a mammalian dNTP hydrolase (dNTPase) that regulates intracellular dNTP balance. We have previously reported that SAMHD1 mRNA and protein levels are significantly downregulated in CD4+ T-cells of patients with cutaneous T-cell lymphoma (CTCL), a disease characterized by infiltration of neoplastic CD4+ T-lymphocytes into the skin. However, functional significance of SAMHD1 in CTCL development and progression remains unknown. Here we investigate the mechanism by which SAMHD1 induces apoptosis in CTCL-derived CD4+ T-cells. We stably expressed exogenous SAMHD1 in the CTCL-derived HuT78 T-cell line containing a very low level of endogenous SAMHD1 protein. We found that low-level exogenous expression of SAMHD1 led to a significant reduction in HuT78 cell growth, proliferation, and colony formation. Exogenous SAMHD1 expression in HuT78 cells also resulted in increased spontaneous and Fas ligand (Fas-L)-induced apoptosis levels via activation of the extrinsic pathway, including caspase-8, -3 and -7. Additionally, increased SAMHD1 significantly reduced the protein and mRNA expression of the short isoform of cFLIP (cFLIPS), an important negative regulator of Fas-L-mediated apoptotic signaling. Our results indicate that exogenous SAMHD1 expression inhibits HuT78 cell growth and proliferation in part by increasing apoptosis. These findings implicate that SAMHD1 acts as an inhibitor in CTCL cell growth, suggesting that downregulation of SAMHD1 expression in neoplastic T-cells can facilitate uncontrolled cell proliferation.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- a Center of Retrovirus Research, Department of Veterinary Biosciences ; The Ohio State University , Columbus , OH , USA
| | - Minghua Li
- a Center of Retrovirus Research, Department of Veterinary Biosciences ; The Ohio State University , Columbus , OH , USA
| | - Shan-Lu Liu
- a Center of Retrovirus Research, Department of Veterinary Biosciences ; The Ohio State University , Columbus , OH , USA
| | - Li Wu
- a Center of Retrovirus Research, Department of Veterinary Biosciences ; The Ohio State University , Columbus , OH , USA.,b Comprehensive Cancer Center, The Ohio State University , Columbus , OH , USA.,c Department of Microbial Infection and Immunity , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
144
|
Bloch N, Gläsker S, Sitaram P, Hofmann H, Shepard CN, Schultz ML, Kim B, Landau NR. A Highly Active Isoform of Lentivirus Restriction Factor SAMHD1 in Mouse. J Biol Chem 2016; 292:1068-1080. [PMID: 27920203 DOI: 10.1074/jbc.m116.743740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/01/2016] [Indexed: 11/06/2022] Open
Abstract
The triphosphohydrolase SAMHD1 (sterile α motif and histidine-aspartate domain-containing protein 1) restricts HIV-1 replication in nondividing myeloid cells by depleting the dNTP pool, preventing reverse transcription. SAMHD1 is also reported to have ribonuclease activity that degrades the virus genomic RNA. Human SAMHD1 is regulated by phosphorylation of its carboxyl terminus at Thr-592, which abrogates its antiviral function yet has only a small effect on its phosphohydrolase activity. In the mouse, SAMHD1 is expressed as two isoforms (ISF1 and ISF2) that differ at the carboxyl terminus due to alternative splicing of the last coding exon. In this study we characterized the biochemical and antiviral properties of the two mouse isoforms of SAMHD1. Both are antiviral in nondividing cells. Mass spectrometry analysis showed that SAMHD1 is phosphorylated at several amino acid residues, one of which (Thr-634) is homologous to Thr-592. Phosphomimetic mutation at Thr-634 of ISF1 ablates its antiviral activity yet has little effect on phosphohydrolase activity in vitro dGTP caused ISF1 to tetramerize, activating its catalytic activity. In contrast, ISF2, which lacks the phosphorylation site, was significantly more active, tetramerized, and was active without added dGTP. Neither isoform nor human SAMHD1 had detectable RNase activity in vitro or affected HIV-1 genomic RNA stability in newly infected cells. These data support a model in which SAMHD1 catalytic activity is regulated through tetramer stabilization by the carboxyl-terminal tail, phosphorylation destabilizing the complexes and inactivating the enzyme. ISF2 may serve to reduce the dNTP pool to very low levels as a means of restricting virus replication.
Collapse
Affiliation(s)
- Nicolin Bloch
- From the Department of Microbiology, New York School of Medicine, New York, New York 10016
| | - Sabine Gläsker
- From the Department of Microbiology, New York School of Medicine, New York, New York 10016
| | - Poojitha Sitaram
- From the Department of Microbiology, New York School of Medicine, New York, New York 10016
| | - Henning Hofmann
- From the Department of Microbiology, New York School of Medicine, New York, New York 10016
| | - Caitlin N Shepard
- the Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, and
| | - Megan L Schultz
- From the Department of Microbiology, New York School of Medicine, New York, New York 10016
| | - Baek Kim
- the Center for Drug Discovery, Department of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, and.,the School of Pharmacy, Kyunghee University, Seoul 02447, South Korea
| | - Nathaniel R Landau
- From the Department of Microbiology, New York School of Medicine, New York, New York 10016,
| |
Collapse
|
145
|
Riess M, Fuchs NV, Idica A, Hamdorf M, Flory E, Pedersen IM, König R. Interferons Induce Expression of SAMHD1 in Monocytes through Down-regulation of miR-181a and miR-30a. J Biol Chem 2016; 292:264-277. [PMID: 27909056 DOI: 10.1074/jbc.m116.752584] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/29/2016] [Indexed: 01/01/2023] Open
Abstract
SAMHD1 is a phosphohydrolase maintaining cellular dNTP homeostasis but also acts as a critical regulator in innate immune responses due to its antiviral activity and association with autoimmune disease, leading to aberrant activation of interferon. SAMHD1 expression is differentially regulated by interferon in certain primary cells, but the underlying mechanism is not understood. Here, we report a detailed characterization of the promotor region, the 5'- and 3'-untranslated region (UTR) of SAMHD1, and the mechanism responsible for the cell type-dependent up-regulation of SAMHD1 protein by interferon. We demonstrate that induction of SAMHD1 by type I and II interferons depends on 3'-UTR post-transcriptional regulation, whereas the promoter drives basal expression levels. We reveal novel functional target sites for the microRNAs miR-181a, miR-30a, and miR-155 in the SAMHD1 3'-UTR. Furthermore, we demonstrate that down-regulation of endogenous miR-181a and miR-30a levels inversely correlates with SAMHD1 protein up-regulation upon type I and II interferon stimulation in primary human monocytes. These miRNAs are not modulated by interferon in macrophages or dendritic cells, and consequently protein levels of SAMHD1 remain unchanged. These results suggest that SAMHD1 is a non-classical interferon-stimulated gene regulated through cell type-dependent down-regulation of miR-181a and miR-30a in innate sentinel cells.
Collapse
Affiliation(s)
| | | | - Adam Idica
- the Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Matthias Hamdorf
- the Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Egbert Flory
- the Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Irene Munk Pedersen
- the Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Renate König
- From the Host-Pathogen Interactions Group and .,the Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, and.,the German Center for Infection Research (DZIF), 63225 Langen, Germany
| |
Collapse
|
146
|
St Gelais C, Kim SH, Ding L, Yount JS, Ivanov D, Spearman P, Wu L. A Putative Cyclin-binding Motif in Human SAMHD1 Contributes to Protein Phosphorylation, Localization, and Stability. J Biol Chem 2016; 291:26332-26342. [PMID: 27815502 DOI: 10.1074/jbc.m116.753947] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
SAMHD1 (sterile α motif and HD domain-containing protein 1) is a mammalian protein that regulates intracellular dNTP levels through its hydrolysis of dNTPs. SAMHD1 functions as an important retroviral restriction factor through a mechanism relying on its dNTPase activity. We and others have reported that human SAMHD1 interacts with the cell cycle regulatory proteins cyclin A, CDK1, and CDK2, which mediates phosphorylation of SAMHD1 at threonine 592, a post-translational modification that has been implicated in abrogating SAMHD1 restriction function and ability to form stable tetramers. Utilizing co-immunoprecipitation and co-localization approaches, we show that endogenous SAMHD1 is able to interact with the cyclin A-CDK1-CDK2 complexin monocytic THP-1 cells and primary monocyte-derived macrophages. Sequence analysis of SAMHD1 identifies a putative cyclin-binding motif found in many cyclin-CDK complex substrates. Using a mutagenesis-based approach, we demonstrate that the conserved residues in the putative cyclin-binding motif are important for protein expression, protein half-life, and optimal phosphorylation of SAMHD1 at Thr592 Furthermore, we observed that SAMHD1 mutants of the cyclin-binding motif mislocalized to a nuclear compartment and had reduced ability to interact with cyclin A-CDK complexes and to form the tetramer. These findings help define the mechanisms by which SAMHD1 is phosphorylated and suggest the contribution of cyclin binding to SAMHD1 expression and stability in dividing cells.
Collapse
Affiliation(s)
- Corine St Gelais
- From the Center of Retrovirus Research, Department of Veterinary Biosciences and
| | - Sun Hee Kim
- From the Center of Retrovirus Research, Department of Veterinary Biosciences and
| | - Lingmei Ding
- the Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Jacob S Yount
- the Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio 43210
| | - Dmitri Ivanov
- the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Paul Spearman
- the Department of Pediatrics, Emory University, Atlanta, Georgia 30322.,Children's Healthcare of Atlanta, Atlanta, Georgia 30322, and
| | - Li Wu
- From the Center of Retrovirus Research, Department of Veterinary Biosciences and .,the Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
147
|
Ahn J. Functional organization of human SAMHD1 and mechanisms of HIV-1 restriction. Biol Chem 2016; 397:373-9. [PMID: 26733158 DOI: 10.1515/hsz-2015-0260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022]
Abstract
Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) is a triphosphohydrolase that catalyzes the conversion of deoxyribonucleoside triphosphate to deoxyribonucleoside and triphosphate. SAMHD1 has been a recent focus of study since it was identified as a potent human immunodeficiency virus-1 (HIV-1) restriction factor in the intrinsic antiviral immune system. Recent biochemical and biological studies have suggested that SAMHD1 restricts HIV-1 infection in non-cycling cells by limiting the pool of deoxyribonucleoside triphosphates, thereby interfering with HIV-1 reverse transcription. SAMHD1 also possesses single-stranded DNA and RNA binding activity, with reported nuclease activity, conferring additional HIV-1 restriction function. This review summarizes current knowledge regarding the structure of SAMHD1 and the regulation of its function in HIV-1 restriction.
Collapse
|
148
|
Seamon KJ, Bumpus NN, Stivers JT. Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer. Biochemistry 2016; 55:6087-6099. [PMID: 27775344 DOI: 10.1021/acs.biochem.6b00986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sterile alpha motif and HD domain protein 1 (SAMHD1) is a unique enzyme that plays important roles in nucleic acid metabolism, viral restriction, and the pathogenesis of autoimmune diseases and cancer. Although much attention has been focused on its dNTP triphosphohydrolase activity in viral restriction and disease, SAMHD1 also binds to single-stranded RNA and DNA. Here we utilize a UV cross-linking method using 5-bromodeoxyuridine-substituted oligonucleotides coupled with high-resolution mass spectrometry to identify the binding site for single-stranded nucleic acids (ssNAs) on SAMHD1. Mapping cross-linked amino acids on the surface of existing crystal structures demonstrated that the ssNA binding site lies largely along the dimer-dimer interface, sterically blocking the formation of the homotetramer required for dNTPase activity. Surprisingly, the disordered C-terminus of SAMHD1 (residues 583-626) was also implicated in ssNA binding. An interaction between this region and ssNA was confirmed in binding studies using the purified SAMHD1 583-626 peptide. Despite a recent report that SAMHD1 possesses polyribonucleotide phosphorylase activity, we did not detect any such activity in the presence of inorganic phosphate, indicating that nucleic acid binding is unrelated to this proposed activity. These data suggest an antagonistic regulatory mechanism in which the mutually exclusive oligomeric state requirements for ssNA binding and dNTP hydrolase activity modulate these two functions of SAMHD1 within the cell.
Collapse
Affiliation(s)
- Kyle J Seamon
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine , 725 North Wolfe Street, WBSB 314, Baltimore, Maryland 21205, United States
| | - Namandjé N Bumpus
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Biophysics 307, Baltimore, Maryland 21205, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine , 725 North Wolfe Street, WBSB 314, Baltimore, Maryland 21205, United States
| |
Collapse
|
149
|
Lam MMW, Mapletoft JP, Miller MS. Abnormal regulation of the antiviral response in neurological/neurodegenerative diseases. Cytokine 2016; 88:251-258. [PMID: 27697702 DOI: 10.1016/j.cyto.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis are a few examples of debilitating neurological/neurodegenerative diseases for which there are currently no curative treatments. Recent evidence has strongly suggested a role for neuroinflammation in both the onset and progression of these diseases. However, the mechanisms that initiate neuroinflammation are presently unclear. Mounting evidence suggests that environmental factors are likely involved. One proposed mechanism linking both genetic and environmental factors is dysregulation of the antiviral response. Indeed, many mutations that have been linked to neurological conditions occur in genes related to the antiviral response. Although the products of these genes may have potent antiviral activities - they can also have deleterious effects when their expression is not appropriately regulated. For that reason, expression of antiviral genes is a tightly controlled process. Herein, we review the various antiviral genes that have been linked to neurological conditions. We focus specifically on type I interferonopathies, the symptoms of which are often evident at birth, and neurodegenerative diseases, which frequently onset later in life.
Collapse
Affiliation(s)
- Mannie Man Wai Lam
- Department of Biochemistry and Biomedical Sciences, Institute of Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Ontario, Canada
| | - Jonathan P Mapletoft
- Department of Biochemistry and Biomedical Sciences, Institute of Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Ontario, Canada
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Institute of Infectious Diseases Research, McMaster Immunology Research Centre, McMaster University, Ontario, Canada.
| |
Collapse
|
150
|
Jang S, Zhou X, Ahn J. Substrate Specificity of SAMHD1 Triphosphohydrolase Activity Is Controlled by Deoxyribonucleoside Triphosphates and Phosphorylation at Thr592. Biochemistry 2016; 55:5635-5646. [PMID: 27588835 DOI: 10.1021/acs.biochem.6b00627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sterile alpha motif (SAM) and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) constitute a triphosphohydrolase that converts deoxyribonucleoside triphosphates (dNTPs) into deoxyribonucleosides and triphosphates. SAMHD1 exists in multiple states. The monomer and apo- or GTP-bound dimer are catalytically inactive. Binding of dNTP at allosteric site 2 (AS2), adjacent to GTP-binding allosteric site 1 (AS1), induces formation of the tetramer, the catalytically active form. We have developed an enzyme kinetic assay, tailored to control specific dNTP binding at each site, allowing us to determine the kinetic binding parameters of individual dNTPs at both the AS2 and catalytic sites for all possible combinations of dNTP binding at both sites. Here, we show that the apparent Km values of dNTPs at AS2 vary in the order of dCTP < dGTP < dATP < dTTP. Interestingly, dCTP binding at AS2 significantly reduces the dCTP hydrolysis rate, which is restored to a rate comparable to that of other dNTPs upon dGTP, dATP, or dTTP binding at AS2. Strikingly, a phosphomimetic mutant, Thr592Asp SAMHD1 as well as phospho-Thr592, show a significantly altered substrate specificity, with the rate of dCTP hydrolysis being selectively reduced regardless of which dNTP binds at AS2. Furthermore, cyclin A2 binding at the C-terminus of SAMHD1 induces the disassembly of the SAMHD1 tetramer, suggesting an additional layer of SAMHD1 activity modulation by cyclin A2/CDK2 kinase. Together, our results reveal multiple allosteric mechanisms for controlling the rate of dNTP destruction by SAMHD1.
Collapse
Affiliation(s)
- Sunbok Jang
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Xiaohong Zhou
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|