101
|
Dluzewska J, Szymanska M, Ziolkowski PA. Where to Cross Over? Defining Crossover Sites in Plants. Front Genet 2018; 9:609. [PMID: 30619450 PMCID: PMC6299014 DOI: 10.3389/fgene.2018.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
It is believed that recombination in meiosis serves to reshuffle genetic material from both parents to increase genetic variation in the progeny. At the same time, the number of crossovers is usually kept at a very low level. As a consequence, many organisms need to make the best possible use from the one or two crossovers that occur per chromosome in meiosis. From this perspective, the decision of where to allocate rare crossover events becomes an important issue, especially in self-pollinating plant species, which experience limited variation due to inbreeding. However, the freedom in crossover allocation is significantly limited by other, genetic and non-genetic factors, including chromatin structure. Here we summarize recent progress in our understanding of those processes with a special emphasis on plant genomes. First, we focus on factors which influence the distribution of recombination initiation sites and discuss their effects at both, the single hotspot level and at the chromosome scale. We also briefly explain the aspects of hotspot evolution and their regulation. Next, we analyze how recombination initiation sites translate into the development of crossovers and their location. Moreover, we provide an overview of the sequence polymorphism impact on crossover formation and chromosomal distribution.
Collapse
Affiliation(s)
- Julia Dluzewska
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Maja Szymanska
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Piotr A Ziolkowski
- Department of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
102
|
Park D, Park SH, Kim YS, Choi BS, Kim JK, Kim NS, Choi IY. NGS sequencing reveals that many of the genetic variations in transgenic rice plants match the variations found in natural rice population. Genes Genomics 2018; 41:213-222. [PMID: 30406575 DOI: 10.1007/s13258-018-0754-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/15/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND As the transformation process can induce mutations in host plants, molecular characterization of the associated genomic changes is important not only for practical food safety but also for understanding the fundamental theories of genome evolution. OBJECTIVES To investigate a population-scale comparative study of the genome-wide spectrum of sequence variants in the transgenic genome with the variations present in 3000 rice varieties. RESULTS On average, we identified 19,273 SNPs (including Indels) per transgenic line in which 10,729 SNPs were at the identical locations in the three transgenic rice plants. We found that these variations were predominantly present in specific regions in chromosomes 8 and 10. Majority (88%) of the identified variations were detected at the same genomic locations as those in natural rice population, implying that the transgenic induced mutations had a tendency to be common alleles. CONCLUSION Genomic variations in transgenic rice plants frequently occurred at the same sites as the major alleles found in the natural rice population, which implies that the sequence variations occur within the limits of a biological system to ensure survival.
Collapse
Affiliation(s)
- Doori Park
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, South Korea
| | - Su-Hyun Park
- Graduate School of International Agricultural Technology and Crop Biotech Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, South Korea
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Youn Shic Kim
- Graduate School of International Agricultural Technology and Crop Biotech Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | | | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotech Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, South Korea.
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, South Korea.
- Institute of Bioscience and Biomedical Sciences, Kangwon National University, Chuncheon, South Korea.
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
103
|
Poriswanish N, Neumann R, Wetton JH, Wagstaff J, Larmuseau MHD, Jobling MA, May CA. Recombination hotspots in an extended human pseudoautosomal domain predicted from double-strand break maps and characterized by sperm-based crossover analysis. PLoS Genet 2018; 14:e1007680. [PMID: 30296256 PMCID: PMC6193736 DOI: 10.1371/journal.pgen.1007680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/18/2018] [Accepted: 09/05/2018] [Indexed: 01/11/2023] Open
Abstract
The human X and Y chromosomes are heteromorphic but share a region of homology at the tips of their short arms, pseudoautosomal region 1 (PAR1), that supports obligate crossover in male meiosis. Although the boundary between pseudoautosomal and sex-specific DNA has traditionally been regarded as conserved among primates, it was recently discovered that the boundary position varies among human males, due to a translocation of ~110 kb from the X to the Y chromosome that creates an extended PAR1 (ePAR). This event has occurred at least twice in human evolution. So far, only limited evidence has been presented to suggest this extension is recombinationally active. Here, we sought direct proof by examining thousands of gametes from each of two ePAR-carrying men, for two subregions chosen on the basis of previously published male X-chromosomal meiotic double-strand break (DSB) maps. Crossover activity comparable to that seen at autosomal hotspots was observed between the X and the ePAR borne on the Y chromosome both at a distal and a proximal site within the 110-kb extension. Other hallmarks of classic recombination hotspots included evidence of transmission distortion and GC-biased gene conversion. We observed good correspondence between the male DSB clusters and historical recombination activity of this region in the X chromosomes of females, as ascertained from linkage disequilibrium analysis; this suggests that this region is similarly primed for crossover in both male and female germlines, although sex-specific differences may also exist. Extensive resequencing and inference of ePAR haplotypes, placed in the framework of the Y phylogeny as ascertained by both Y microsatellites and single nucleotide polymorphisms, allowed us to estimate a minimum rate of crossover over the entire ePAR region of 6-fold greater than genome average, comparable with pedigree estimates of PAR1 activity generally. We conclude ePAR very likely contributes to the critical crossover function of PAR1. 95% of our genome is contained in 22 pairs of chromosomes shared by all humans. However, women and men differ in their sex chromosomes: while women have two X chromosomes, men have an X and a smaller, sex-determining Y chromosome. To ensure correct partition of X and Y into sperm, genetic exchange (crossover) must occur between these very different chromosomes in a short, shared region. The location of the boundary of this region was thought to have been conserved since before the divergence from old world monkeys at least 27 million years ago, but recently it has been shown that some human males carry an extended version on their Y chromosomes, thanks to the transposition of a piece of DNA from the X chromosome. Here, we asked if genetic exchange occurs in this newly extended region. To do this, we used previously published information that signposted the positions within the X chromosome segment which exhibit the hallmarks of crossover initiation. We then sought direct evidence of crossover in the sperm of men carrying the extension. This work showed that the signposts were accurate, pointing to frequent crossover in this novel shared sex-chromosomal domain.
Collapse
Affiliation(s)
- Nitikorn Poriswanish
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Forensic Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rita Neumann
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jon H. Wetton
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
| | - John Wagstaff
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Maarten H. D. Larmuseau
- Laboratory of Forensic Genetics and Molecular Archaeology, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Mark A. Jobling
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Celia A. May
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
104
|
Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc Natl Acad Sci U S A 2018; 115:E8688-E8697. [PMID: 30150418 PMCID: PMC6140516 DOI: 10.1073/pnas.1806002115] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a heterozygous diploid yeast that is a commensal of the human gastrointestinal tract and a prevalent opportunistic pathogen. Here, whole-genome sequencing was performed on multiple C. albicans isolates passaged both in vitro and in vivo to characterize the complete spectrum of mutations arising in laboratory culture and in the mammalian host. We establish that, independent of culture niche, microevolution is primarily driven by de novo base substitutions and frequent short-tract loss-of-heterozygosity events. An average base-substitution rate of ∼1.2 × 10-10 per base pair per generation was observed in vitro, with higher rates inferred during host infection. Large-scale chromosomal changes were relatively rare, although chromosome 7 trisomies frequently emerged during passaging in a gastrointestinal model and was associated with increased fitness for this niche. Multiple chromosomal features impacted mutational patterns, with mutation rates elevated in repetitive regions, subtelomeric regions, and in gene families encoding cell surface proteins involved in host adhesion. Strikingly, de novo mutation rates were more than 800-fold higher in regions immediately adjacent to emergent loss-of-heterozygosity tracts, indicative of recombination-induced mutagenesis. Furthermore, genomes showed biased patterns of mutations suggestive of extensive purifying selection during passaging. These results reveal how both cell-intrinsic and cell-extrinsic factors influence C. albicans microevolution, and provide a quantitative picture of genome dynamics in this heterozygous diploid species.
Collapse
|
105
|
Pouyet F, Aeschbacher S, Thiéry A, Excoffier L. Background selection and biased gene conversion affect more than 95% of the human genome and bias demographic inferences. eLife 2018; 7:e36317. [PMID: 30125248 PMCID: PMC6177262 DOI: 10.7554/elife.36317] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
Disentangling the effect on genomic diversity of natural selection from that of demography is notoriously difficult, but necessary to properly reconstruct the history of species. Here, we use high-quality human genomic data to show that purifying selection at linked sites (i.e. background selection, BGS) and GC-biased gene conversion (gBGC) together affect as much as 95% of the variants of our genome. We find that the magnitude and relative importance of BGS and gBGC are largely determined by variation in recombination rate and base composition. Importantly, synonymous sites and non-transcribed regions are also affected, albeit to different degrees. Their use for demographic inference can lead to strong biases. However, by conditioning on genomic regions with recombination rates above 1.5 cM/Mb and mutation types (C↔G, A↔T), we identify a set of SNPs that is mostly unaffected by BGS or gBGC, and that avoids these biases in the reconstruction of human history.
Collapse
Affiliation(s)
- Fanny Pouyet
- Computational and Molecular Population Genetics, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Simon Aeschbacher
- Computational and Molecular Population Genetics, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Alexandre Thiéry
- Computational and Molecular Population Genetics, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Laurent Excoffier
- Computational and Molecular Population Genetics, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
106
|
Abstract
During meiosis, maternal and paternal chromosomes undergo exchanges by homologous recombination. This is essential for fertility and contributes to genome evolution. In many eukaryotes, sites of meiotic recombination, also called hotspots, are regions of accessible chromatin, but in many vertebrates, their location follows a distinct pattern and is specified by PR domain-containing protein 9 (PRDM9). The specification of meiotic recombination hotspots is achieved by the different activities of PRDM9: DNA binding, histone methyltransferase, and interaction with other proteins. Remarkably, PRDM9 activity leads to the erosion of its own binding sites and the rapid evolution of its DNA-binding domain. PRDM9 may also contribute to reproductive isolation, as it is involved in hybrid sterility potentially due to a reduction of its activity in specific heterozygous contexts.
Collapse
Affiliation(s)
- Corinne Grey
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Bernard de Massy
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| |
Collapse
|
107
|
Arbeithuber B, Heissl A, Tiemann-Boege I. Haplotyping of Heterozygous SNPs in Genomic DNA Using Long-Range PCR. Methods Mol Biol 2018; 1551:3-22. [PMID: 28138838 DOI: 10.1007/978-1-4939-6750-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
To study meiotic recombination products, cis- or trans-association of disease polymorphisms, or allele-specific expression patterns, it is necessary to phase heterozygous polymorphisms separated by several kilobases. Haplotyping using long-range polymerase chain reaction (PCR) is a powerful, cost-effective method to directly obtain the phase of multiple heterozygous sites with standard laboratory equipment in a handful of loci for many samples. The method is based on the amplification of large genomic DNA regions (up to ~40 kb) with a reaction mixture that combines a proofreading polymerase with allele-specific primer pairs that preferentially amplify matched templates. The analysis of two heterozygous SNPs requires four reactions, each containing one of the four possible allele-specific primer combinations (two forward and two reverse primers), with the mismatches occurring at the 3' ends of the primers. The two correct primer combinations will more efficiently elongate the matching alleles than the alternative alleles, and the difference in amplification efficiency can be monitored with real-time PCR.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria
| | - Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University, Gruberstraße 40, Linz, 4020, Austria.
| |
Collapse
|
108
|
Johnston SE, Huisman J, Pemberton JM. A Genomic Region Containing REC8 and RNF212B Is Associated with Individual Recombination Rate Variation in a Wild Population of Red Deer ( Cervus elaphus). G3 (BETHESDA, MD.) 2018; 8:2265-2276. [PMID: 29764960 PMCID: PMC6027875 DOI: 10.1534/g3.118.200063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recombination is a fundamental feature of sexual reproduction, ensuring proper disjunction, preventing mutation accumulation and generating new allelic combinations upon which selection can act. However it is also mutagenic, and breaks up favorable allelic combinations previously built up by selection. Identifying the genetic drivers of recombination rate variation is a key step in understanding the causes and consequences of this variation, how loci associated with recombination are evolving and how they affect the potential of a population to respond to selection. However, to date, few studies have examined the genetic architecture of recombination rate variation in natural populations. Here, we use pedigree data from ∼ 2,600 individuals genotyped at ∼ 38,000 SNPs to investigate the genetic architecture of individual autosomal recombination rate in a wild population of red deer (Cervus elaphus). Female red deer exhibited a higher mean and phenotypic variance in autosomal crossover counts (ACC). Animal models fitting genomic relatedness matrices showed that ACC was heritable in females ([Formula: see text] = 0.12) but not in males. A regional heritability mapping approach showed that almost all heritable variation in female ACC was explained by a genomic region on deer linkage group 12 containing the candidate loci REC8 and RNF212B, with an additional region on linkage group 32 containing TOP2B approaching genome-wide significance. The REC8/RNF212B region and its paralogue RNF212 have been associated with recombination in cattle, mice, humans and sheep. Our findings suggest that mammalian recombination rates have a relatively conserved genetic architecture in both domesticated and wild systems, and provide a foundation for understanding the association between recombination loci and individual fitness within this population.
Collapse
Affiliation(s)
- Susan E Johnston
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Jisca Huisman
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| |
Collapse
|
109
|
Abstract
Recombination often differs markedly between males and females. Here we present the first analysis of sex-specific recombination in Gasterosteus sticklebacks. Using whole-genome sequencing of 15 crosses between G. aculeatus and G. nipponicus, we localized 698 crossovers with a median resolution of 2.3 kb. We also used a bioinformatic approach to infer historical sex-averaged recombination patterns for both species. Recombination is greater in females than males on all chromosomes, and overall map length is 1.64 times longer in females. The locations of crossovers differ strikingly between sexes. Crossovers cluster toward chromosome ends in males, but are distributed more evenly across chromosomes in females. Suppression of recombination near the centromeres in males causes crossovers to cluster at the ends of long arms in acrocentric chromosomes, and greatly reduces crossing over on short arms. The effect of centromeres on recombination is much weaker in females. Genomic differentiation between G. aculeatus and G. nipponicus is strongly correlated with recombination rate, and patterns of differentiation along chromosomes are strongly influenced by male-specific telomere and centromere effects. We found no evidence for fine-scale correlations between recombination and local gene content in either sex. We discuss hypotheses for the origin of sexual dimorphism in recombination and its consequences for sexually antagonistic selection and sex chromosome evolution.
Collapse
|
110
|
Forsdyke DR. The chromosomal basis of species initiation: Prdm9 as an anti-speciation gene. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
111
|
Janzen T, Nolte AW, Traulsen A. The breakdown of genomic ancestry blocks in hybrid lineages given a finite number of recombination sites. Evolution 2018; 72:735-750. [PMID: 29411878 PMCID: PMC5947311 DOI: 10.1111/evo.13436] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/16/2018] [Indexed: 01/03/2023]
Abstract
When a lineage originates from hybridization genomic blocks of contiguous ancestry from different ancestors are fragmented through genetic recombination. The resulting blocks are delineated by so called junctions, which accumulate with every generation that passes. Modeling the accumulation of ancestry block junctions can elucidate processes and timeframes of genomic admixture. Previous models have not addressed ancestry block dynamics for chromosomes that consist of a finite number of recombination sites. However, genomic data typically consist of informative markers that are interspersed with fragments for which no ancestry information is available. Hence, repeated recombination events may occur between markers, effectively removing existing junctions. Here, we present an analytical treatment of the dynamics of the mean number of junctions over time, taking into account the number of recombination sites per chromosome, population size, genetic map length, and the frequency of the ancestral species in the founding hybrid swarm. We describe the expected number of junctions using equidistant molecular markers and estimate the number of junctions using random markers. This extended theory of junctions thus reflects properties of empirical data and can serve to study the genomic patterns following admixture.
Collapse
Affiliation(s)
- Thijs Janzen
- Carl von Ossietzky UniversityCarl‐von‐Ossietzky‐Str. 9‐1126111OldenburgGermany
- Max‐Planck‐Institute for Evolutionary BiologyAugust‐Thienemann‐Straße 224306PlönGermany
| | - Arne W. Nolte
- Carl von Ossietzky UniversityCarl‐von‐Ossietzky‐Str. 9‐1126111OldenburgGermany
| | - Arne Traulsen
- Max‐Planck‐Institute for Evolutionary BiologyAugust‐Thienemann‐Straße 224306PlönGermany
| |
Collapse
|
112
|
Lloyd A, Morgan C, H Franklin FC, Bomblies K. Plasticity of Meiotic Recombination Rates in Response to Temperature in Arabidopsis. Genetics 2018; 208:1409-1420. [PMID: 29496746 PMCID: PMC5887139 DOI: 10.1534/genetics.117.300588] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/02/2018] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination shuffles genetic information from sexual species into gametes to create novel combinations in offspring. Thus, recombination is an important factor in inheritance, adaptation, and responses to selection. However, recombination is not a static parameter; meiotic recombination rate is sensitive to variation in the environment, especially temperature. That recombination rates change in response to both increases and decreases in temperature was reported in Drosophila a century ago, and since then in several other species. But it is still unclear what the underlying mechanism is, and whether low- and high-temperature effects are mechanistically equivalent. Here, we show that, as in Drosophila, both high and low temperatures increase meiotic crossovers in Arabidopsis thaliana We show that, from a nadir at 18°, both lower and higher temperatures increase recombination through additional class I (interfering) crossovers. However, the increase in crossovers at high and low temperatures appears to be mechanistically at least somewhat distinct, as they differ in their association with the DNA repair protein MLH1. We also find that, in contrast to what has been reported in barley, synaptonemal complex length is negatively correlated with temperature; thus, an increase in chromosome axis length may account for increased crossovers at low temperature in A. thaliana, but cannot explain the increased crossovers observed at high temperature. The plasticity of recombination has important implications for evolution and breeding, and also for the interpretation of observations of recombination rate variation among natural populations.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, 78000 Versailles, France
| | - Chris Morgan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Kirsten Bomblies
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
113
|
Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence. Nat Genet 2018; 50:487-492. [PMID: 29507425 DOI: 10.1038/s41588-018-0071-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/29/2018] [Indexed: 11/08/2022]
Abstract
Clustering of mutations has been observed in cancer genomes as well as for germline de novo mutations (DNMs). We identified 1,796 clustered DNMs (cDNMs) within whole-genome-sequencing data from 1,291 parent-offspring trios to investigate their patterns and infer a mutational mechanism. We found that the number of clusters on the maternal allele was positively correlated with maternal age and that these clusters consisted of more individual mutations with larger intermutational distances than those of paternal clusters. More than 50% of maternal clusters were located on chromosomes 8, 9 and 16, in previously identified regions with accelerated maternal mutation rates. Maternal clusters in these regions showed a distinct mutation signature characterized by C>G transversions. Finally, we found that maternal clusters were associated with processes involving double-strand-breaks (DSBs), such as meiotic gene conversions and de novo deletion events. This result suggested accumulation of DSB-induced mutations throughout oocyte aging as the mechanism underlying the formation of maternal mutation clusters.
Collapse
|
114
|
Smith TCA, Arndt PF, Eyre-Walker A. Large scale variation in the rate of germ-line de novo mutation, base composition, divergence and diversity in humans. PLoS Genet 2018; 14:e1007254. [PMID: 29590096 PMCID: PMC5891062 DOI: 10.1371/journal.pgen.1007254] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/09/2018] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
It has long been suspected that the rate of mutation varies across the human genome at a large scale based on the divergence between humans and other species. However, it is now possible to directly investigate this question using the large number of de novo mutations (DNMs) that have been discovered in humans through the sequencing of trios. We investigate a number of questions pertaining to the distribution of mutations using more than 130,000 DNMs from three large datasets. We demonstrate that the amount and pattern of variation differs between datasets at the 1MB and 100KB scales probably as a consequence of differences in sequencing technology and processing. In particular, datasets show different patterns of correlation to genomic variables such as replication time. Never-the-less there are many commonalities between datasets, which likely represent true patterns. We show that there is variation in the mutation rate at the 100KB, 1MB and 10MB scale that cannot be explained by variation at smaller scales, however the level of this variation is modest at large scales-at the 1MB scale we infer that ~90% of regions have a mutation rate within 50% of the mean. Different types of mutation show similar levels of variation and appear to vary in concert which suggests the pattern of mutation is relatively constant across the genome. We demonstrate that variation in the mutation rate does not generate large-scale variation in GC-content, and hence that mutation bias does not maintain the isochore structure of the human genome. We find that genomic features explain less than 40% of the explainable variance in the rate of DNM. As expected the rate of divergence between species is correlated to the rate of DNM. However, the correlations are weaker than expected if all the variation in divergence was due to variation in the mutation rate. We provide evidence that this is due the effect of biased gene conversion on the probability that a mutation will become fixed. In contrast to divergence, we find that most of the variation in diversity can be explained by variation in the mutation rate. Finally, we show that the correlation between divergence and DNM density declines as increasingly divergent species are considered.
Collapse
Affiliation(s)
| | - Peter F. Arndt
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
115
|
Alves I, Houle AA, Hussin JG, Awadalla P. The impact of recombination on human mutation load and disease. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160465. [PMID: 29109227 PMCID: PMC5698626 DOI: 10.1098/rstb.2016.0465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Recombination promotes genomic integrity among cells and tissues through double-strand break repair, and is critical for gamete formation and fertility through a strict regulation of the molecular mechanisms associated with proper chromosomal disjunction. In humans, congenital defects and recurrent structural abnormalities can be attributed to aberrant meiotic recombination. Moreover, mutations affecting genes involved in recombination pathways are directly linked to pathologies including infertility and cancer. Recombination is among the most prominent mechanism shaping genome variation, and is associated with not only the structuring of genomic variability, but is also tightly linked with the purging of deleterious mutations from populations. Together, these observations highlight the multiple roles of recombination in human genetics: its ability to act as a major force of evolution, its molecular potential to maintain genome repair and integrity in cell division and its mutagenic cost impacting disease evolution.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Isabel Alves
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, Canada M5G 0A3
| | - Armande Ang Houle
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, Canada M5G 0A3
- Department of Molecular Genetics, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Julie G Hussin
- Montreal Heart Institute, Department of Medicine, University of Montreal, 5000 Rue Bélanger, Montréal, Quebec, Canada H1T 1C8
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Philip Awadalla
- Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, Ontario, Canada M5G 0A3
- Department of Molecular Genetics, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
116
|
Tiemann-Boege I, Schwarz T, Striedner Y, Heissl A. The consequences of sequence erosion in the evolution of recombination hotspots. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160462. [PMID: 29109225 PMCID: PMC5698624 DOI: 10.1098/rstb.2016.0462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
Meiosis is initiated by a double-strand break (DSB) introduced in the DNA by a highly controlled process that is repaired by recombination. In many organisms, recombination occurs at specific and narrow regions of the genome, known as recombination hotspots, which overlap with regions enriched for DSBs. In recent years, it has been demonstrated that conversions and mutations resulting from the repair of DSBs lead to a rapid sequence evolution at recombination hotspots eroding target sites for DSBs. We still do not fully understand the effect of this erosion in the recombination activity, but evidence has shown that the binding of trans-acting factors like PRDM9 is affected. PRDM9 is a meiosis-specific, multi-domain protein that recognizes DNA target motifs by its zinc finger domain and directs DSBs to these target sites. Here we discuss the changes in affinity of PRDM9 to eroded recognition sequences, and explain how these changes in affinity of PRDM9 can affect recombination, leading sometimes to sterility in the context of hybrid crosses. We also present experimental data showing that DNA methylation reduces PRDM9 binding in vitro Finally, we discuss PRDM9-independent hotspots, posing the question how these hotspots evolve and change with sequence erosion.This article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Theresa Schwarz
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Angelika Heissl
- Institute of Biophysics, Johannes Kepler University, Linz, Gruberstraße 40, 4020 Linz, Austria
| |
Collapse
|
117
|
Wang L, Zhang Y, Qin C, Tian D, Yang S, Hurst LD. Mutation rate analysis via parent-progeny sequencing of the perennial peach. II. No evidence for recombination-associated mutation. Proc Biol Sci 2017; 283:rspb.2016.1785. [PMID: 27798307 PMCID: PMC5095386 DOI: 10.1098/rspb.2016.1785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/29/2016] [Indexed: 12/30/2022] Open
Abstract
Mutation rates and recombination rates vary between species and between regions within a genome. What are the determinants of these forms of variation? Prior evidence has suggested that the recombination might be mutagenic with an excess of new mutations in the vicinity of recombination break points. As it is conjectured that domesticated taxa have higher recombination rates than wild ones, we expect domesticated taxa to have raised mutation rates. Here, we use parent–offspring sequencing in domesticated and wild peach to ask (i) whether recombination is mutagenic, and (ii) whether domesticated peach has a higher recombination rate than wild peach. We find no evidence that domesticated peach has an increased recombination rate, nor an increased mutation rate near recombination events. If recombination is mutagenic in this taxa, the effect is too weak to be detected by our analysis. While an absence of recombination-associated mutation might explain an absence of a recombination–heterozygozity correlation in peach, we caution against such an interpretation.
Collapse
Affiliation(s)
- Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yanchun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chao Qin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
118
|
Frequent nonallelic gene conversion on the human lineage and its effect on the divergence of gene duplicates. Proc Natl Acad Sci U S A 2017; 114:12779-12784. [PMID: 29138319 DOI: 10.1073/pnas.1708151114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene conversion is the copying of a genetic sequence from a "donor" region to an "acceptor." In nonallelic gene conversion (NAGC), the donor and the acceptor are at distinct genetic loci. Despite the role NAGC plays in various genetic diseases and the concerted evolution of gene families, the parameters that govern NAGC are not well characterized. Here, we survey duplicate gene families and identify converted tracts in 46% of them. These conversions reflect a large GC bias of NAGC. We develop a sequence evolution model that leverages substantially more information in duplicate sequences than used by previous methods and use it to estimate the parameters that govern NAGC in humans: a mean converted tract length of 250 bp and a probability of [Formula: see text] per generation for a nucleotide to be converted (an order of magnitude higher than the point mutation rate). Despite this high baseline rate, we show that NAGC slows down as duplicate sequences diverge-until an eventual "escape" of the sequences from its influence. As a result, NAGC has a small average effect on the sequence divergence of duplicates. This work improves our understanding of the NAGC mechanism and the role that it plays in the evolution of gene duplicates.
Collapse
|
119
|
Assaf ZJ, Tilk S, Park J, Siegal ML, Petrov DA. Deep sequencing of natural and experimental populations of Drosophila melanogaster reveals biases in the spectrum of new mutations. Genome Res 2017; 27:1988-2000. [PMID: 29079675 PMCID: PMC5741049 DOI: 10.1101/gr.219956.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 10/20/2017] [Indexed: 11/25/2022]
Abstract
Mutations provide the raw material of evolution, and thus our ability to study evolution depends fundamentally on having precise measurements of mutational rates and patterns. We generate a data set for this purpose using (1) de novo mutations from mutation accumulation experiments and (2) extremely rare polymorphisms from natural populations. The first, mutation accumulation (MA) lines are the product of maintaining flies in tiny populations for many generations, therefore rendering natural selection ineffective and allowing new mutations to accrue in the genome. The second, rare genetic variation from natural populations allows the study of mutation because extremely rare polymorphisms are relatively unaffected by the filter of natural selection. We use both methods in Drosophila melanogaster, first generating our own novel data set of sequenced MA lines and performing a meta-analysis of all published MA mutations (∼2000 events) and then identifying a high quality set of ∼70,000 extremely rare (≤0.1%) polymorphisms that are fully validated with resequencing. We use these data sets to precisely measure mutational rates and patterns. Highlights of our results include: a high rate of multinucleotide mutation events at both short (∼5 bp) and long (∼1 kb) genomic distances, showing that mutation drives GC content lower in already GC-poor regions, and using our precise context-dependent mutation rates to predict long-term evolutionary patterns at synonymous sites. We also show that de novo mutations from independent MA experiments display similar patterns of single nucleotide mutation and well match the patterns of mutation found in natural populations.
Collapse
Affiliation(s)
- Zoe June Assaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA.,Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Susanne Tilk
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Jane Park
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Mark L Siegal
- Department of Biology, New York University, New York, New York 10003, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
120
|
Hillmer M, Summerer A, Mautner VF, Högel J, Cooper DN, Kehrer-Sawatzki H. Consideration of the haplotype diversity at nonallelic homologous recombination hotspots improves the precision of rearrangement breakpoint identification. Hum Mutat 2017; 38:1711-1722. [PMID: 28862369 DOI: 10.1002/humu.23319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/07/2017] [Accepted: 08/26/2017] [Indexed: 01/30/2023]
Abstract
Precise characterization of nonallelic homologous recombination (NAHR) breakpoints is key to identifying those features that influence NAHR frequency. Until now, analysis of NAHR-mediated rearrangements has generally been performed by comparison of the breakpoint-spanning sequences with the human genome reference sequence. We show here that the haplotype diversity of NAHR hotspots may interfere with breakpoint-mapping. We studied the transmitting parents of individuals with germline type-1 NF1 deletions mediated by NAHR within the paralogous recombination site 1 (PRS1) or paralogous recombination site 2 (PRS2) hotspots. Several parental wild-type PRS1 and PRS2 haplotypes were identified that exhibited considerable sequence differences with respect to the reference sequence, which also affected the number of predicted PRDM9-binding sites. Sequence comparisons between the parental wild-type PRS1 or PRS2 haplotypes and the deletion breakpoint-spanning sequences from the patients (method #2) turned out to be an accurate means to assign NF1 deletion breakpoints and proved superior to crude reference sequence comparisons that neglect to consider haplotype diversity (method #1). The mean length of the deletion breakpoint regions assigned by method #2 was 269-bp in contrast to 502-bp by method #1. Our findings imply that paralog-specific haplotype diversity of NAHR hotspots (such as PRS2) and population-specific haplotype diversity must be taken into account in order to accurately ascertain NAHR-mediated rearrangement breakpoints.
Collapse
Affiliation(s)
- Morten Hillmer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Anna Summerer
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | | |
Collapse
|
121
|
Pouyet F, Mouchiroud D, Duret L, Sémon M. Recombination, meiotic expression and human codon usage. eLife 2017; 6:27344. [PMID: 28826480 PMCID: PMC5576983 DOI: 10.7554/elife.27344] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
Synonymous codon usage (SCU) varies widely among human genes. In particular, genes involved in different functional categories display a distinct codon usage, which was interpreted as evidence that SCU is adaptively constrained to optimize translation efficiency in distinct cellular states. We demonstrate here that SCU is not driven by constraints on tRNA abundance, but by large-scale variation in GC-content, caused by meiotic recombination, via the non-adaptive process of GC-biased gene conversion (gBGC). Expression in meiotic cells is associated with a strong decrease in recombination within genes. Differences in SCU among functional categories reflect differences in levels of meiotic transcription, which is linked to variation in recombination and therefore in gBGC. Overall, the gBGC model explains 70% of the variance in SCU among genes. We argue that the strong heterogeneity of SCU induced by gBGC in mammalian genomes precludes any optimization of the tRNA pool to the demand in codon usage.
Collapse
Affiliation(s)
- Fanny Pouyet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard, Villeurbanne, France
| | - Dominique Mouchiroud
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard, Villeurbanne, France
| | - Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard, Villeurbanne, France
| | - Marie Sémon
- Laboratory of Biology and Modelling of the Cell, UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France
| |
Collapse
|
122
|
Burri R. Interpreting differentiation landscapes in the light of long-term linked selection. Evol Lett 2017. [DOI: 10.1002/evl3.14] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Reto Burri
- Department of Population Ecology; Friedrich Schiller University Jena; Dornburger Strasse 159 D-07743 Jena Germany
| |
Collapse
|
123
|
Evolutionary forces affecting synonymous variations in plant genomes. PLoS Genet 2017; 13:e1006799. [PMID: 28531201 PMCID: PMC5460877 DOI: 10.1371/journal.pgen.1006799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/06/2017] [Accepted: 05/04/2017] [Indexed: 01/04/2023] Open
Abstract
Base composition is highly variable among and within plant genomes, especially at third codon positions, ranging from GC-poor and homogeneous species to GC-rich and highly heterogeneous ones (particularly Monocots). Consequently, synonymous codon usage is biased in most species, even when base composition is relatively homogeneous. The causes of these variations are still under debate, with three main forces being possibly involved: mutational bias, selection and GC-biased gene conversion (gBGC). So far, both selection and gBGC have been detected in some species but how their relative strength varies among and within species remains unclear. Population genetics approaches allow to jointly estimating the intensity of selection, gBGC and mutational bias. We extended a recently developed method and applied it to a large population genomic dataset based on transcriptome sequencing of 11 angiosperm species spread across the phylogeny. We found that at synonymous positions, base composition is far from mutation-drift equilibrium in most genomes and that gBGC is a widespread and stronger process than selection. gBGC could strongly contribute to base composition variation among plant species, implying that it should be taken into account in plant genome analyses, especially for GC-rich ones. In protein coding genes, base composition strongly varies within and among plant genomes, especially at positions where changes do not alter the coded protein (synonymous variations). Some species, such as the model plant Arabidopsis thaliana, are relatively GC-poor and homogeneous while others, such as grasses, are highly heterogeneous and GC-rich. The causes of these variations are still debated: are they mainly due to selective or neutral processes? Answering to this question is important to correctly infer whether variations in base composition may have functional roles or not. We extended a population genetics method to jointly estimate the different forces that may affect synonymous variations and applied it to genomic datasets in 11 flowering plant species. We found that GC-biased gene conversion, a neutral process associated with recombination that mimics selection by favouring G and C bases, is a widespread and stronger process than selection and that it could explain the large variation in base composition observed in plant genomes. Our results bear implications for analysing plant genomes and for correctly interpreting what could be functional or not.
Collapse
|
124
|
Terekhanova NV, Seplyarskiy VB, Soldatov RA, Bazykin GA. Evolution of Local Mutation Rate and Its Determinants. Mol Biol Evol 2017; 34:1100-1109. [PMID: 28138076 PMCID: PMC5850301 DOI: 10.1093/molbev/msx060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutation rate varies along the human genome, and part of this variation is explainable by measurable local properties of the DNA molecule. Moreover, mutation rates differ between orthologous genomic regions of different species, but the drivers of this change are unclear. Here, we use data on human divergence from chimpanzee, human rare polymorphism, and human de novo mutations to predict the substitution rate at orthologous regions of non-human mammals. We show that the local mutation rates are very similar between human and apes, implying that their variation has a strong underlying cryptic component not explainable by the known genomic features. Mutation rates become progressively less similar in more distant species, and these changes are partially explainable by changes in the local genomic features of orthologous regions, most importantly, in the recombination rate. However, they are much more rapid, implying that the cryptic component underlying the mutation rate is more ephemeral than the known genomic features. These findings shed light on the determinants of mutation rate evolution. Key words local mutation rate, molecular evolution, recombination rate.
Collapse
Affiliation(s)
- Nadezhda V. Terekhanova
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir B. Seplyarskiy
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
| | - Ruslan A. Soldatov
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Georgii A. Bazykin
- Sector for Molecular Evolution, Institute for Information Transmission Problems of the RAS (Kharkevich Institute), Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| |
Collapse
|
125
|
Weissensteiner MH, Pang AWC, Bunikis I, Höijer I, Vinnere-Petterson O, Suh A, Wolf JBW. Combination of short-read, long-read, and optical mapping assemblies reveals large-scale tandem repeat arrays with population genetic implications. Genome Res 2017; 27:697-708. [PMID: 28360231 PMCID: PMC5411765 DOI: 10.1101/gr.215095.116] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 03/10/2017] [Indexed: 12/27/2022]
Abstract
Accurate and contiguous genome assembly is key to a comprehensive understanding of the processes shaping genomic diversity and evolution. Yet, it is frequently constrained by constitutive heterochromatin, usually characterized by highly repetitive DNA. As a key feature of genome architecture associated with centromeric and subtelomeric regions, it locally influences meiotic recombination. In this study, we assess the impact of large tandem repeat arrays on the recombination rate landscape in an avian speciation model, the Eurasian crow. We assembled two high-quality genome references using single-molecule real-time sequencing (long-read assembly [LR]) and single-molecule optical maps (optical map assembly [OM]). A three-way comparison including the published short-read assembly (SR) constructed for the same individual allowed assessing assembly properties and pinpointing misassemblies. By combining information from all three assemblies, we characterized 36 previously unidentified large repetitive regions in the proximity of sequence assembly breakpoints, the majority of which contained complex arrays of a 14-kb satellite repeat or its 1.2-kb subunit. Using whole-genome population resequencing data, we estimated the population-scaled recombination rate (ρ) and found it to be significantly reduced in these regions. These findings are consistent with an effect of low recombination in regions adjacent to centromeric or subtelomeric heterochromatin and add to our understanding of the processes generating widespread heterogeneity in genetic diversity and differentiation along the genome. By combining three different technologies, our results highlight the importance of adding a layer of information on genome structure that is inaccessible to each approach independently.
Collapse
Affiliation(s)
- Matthias H Weissensteiner
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | | | - Ignas Bunikis
- SciLife Lab Uppsala, Uppsala University SE-751 85 Uppsala, Sweden
| | - Ida Höijer
- SciLife Lab Uppsala, Uppsala University SE-751 85 Uppsala, Sweden
| | | | - Alexander Suh
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Jochen B W Wolf
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
126
|
Romiguier J, Roux C. Analytical Biases Associated with GC-Content in Molecular Evolution. Front Genet 2017; 8:16. [PMID: 28261263 PMCID: PMC5309256 DOI: 10.3389/fgene.2017.00016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/06/2017] [Indexed: 12/19/2022] Open
Abstract
Molecular evolution is being revolutionized by high-throughput sequencing allowing an increased amount of genome-wide data available for multiple species. While base composition summarized by GC-content is one of the first metrics measured in genomes, its genomic distribution is a frequently neglected feature in downstream analyses based on DNA sequence comparisons. Here, we show how base composition heterogeneity among loci and taxa can bias common molecular evolution analyses such as phylogenetic tree reconstruction, detection of natural selection and estimation of codon usage. We then discuss the biological, technical and methodological causes of these GC-associated biases and suggest approaches to overcome them.
Collapse
Affiliation(s)
- Jonathan Romiguier
- Department of Ecology and Evolution, University of Lausanne Lausanne, Switzerland
| | - Camille Roux
- Department of Ecology and Evolution, University of Lausanne Lausanne, Switzerland
| |
Collapse
|
127
|
X-Chromosome Control of Genome-Scale Recombination Rates in House Mice. Genetics 2017; 205:1649-1656. [PMID: 28159751 PMCID: PMC5378119 DOI: 10.1534/genetics.116.197533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
Sex differences in recombination are widespread in mammals, but the causes of this pattern are poorly understood. Previously, males from two interfertile subspecies of house mice, Mus musculus musculus and M. m. castaneus, were shown to exhibit a ∼30% difference in their global crossover frequencies. Much of this crossover rate divergence is explained by six autosomal loci and a large-effect locus on the X chromosome. Intriguingly, the allelic effects at this X-linked locus are transgressive, with the allele conferring increased crossover rate being transmitted by the low crossover rate M. m. castaneus parent. Despite the pronounced divergence between males, females from these subspecies exhibit similar crossover rates, raising the question of how recombination is genetically controlled in this sex. Here, I analyze publicly available genotype data from early generations of the Collaborative Cross, an eight-way panel of recombinant inbred strains, to estimate crossover frequencies in female mice with sex-chromosome genotypes of diverse subspecific origins. Consistent with the transgressive influence of the X chromosome in males, I show that females inheriting an M. m. castaneus X possess higher average crossover rates than females lacking the M. m. castaneus X chromosome. The differential inheritance of the X chromosome in males and females provides a simple genetic explanation for sex-limited evolution of this trait. Further, the presence of X-linked and autosomal crossover rate modifiers with antagonistic effects hints at an underlying genetic conflict fueled by selection for distinct crossover rate optima in males and females.
Collapse
|
128
|
Striedner Y, Schwarz T, Welte T, Futschik A, Rant U, Tiemann-Boege I. The long zinc finger domain of PRDM9 forms a highly stable and long-lived complex with its DNA recognition sequence. Chromosome Res 2017; 25:155-172. [PMID: 28155083 PMCID: PMC5440498 DOI: 10.1007/s10577-017-9552-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/09/2017] [Accepted: 01/18/2017] [Indexed: 01/23/2023]
Abstract
PR domain containing protein 9 (PRDM9) is a meiosis-specific, multi-domain protein that regulates the location of recombination hotspots by targeting its DNA recognition sequence for double-strand breaks (DSBs). PRDM9 specifically recognizes DNA via its tandem array of zinc fingers (ZnFs), epigenetically marks the local chromatin by its histone methyltransferase activity, and is an important tether that brings the DNA into contact with the recombination initiation machinery. A strong correlation between PRDM9-ZnF variants and specific DNA motifs at recombination hotspots has been reported; however, the binding specificity and kinetics of the ZnF domain are still obscure. Using two in vitro methods, gel mobility shift assays and switchSENSE, a quantitative biophysical approach that measures binding rates in real time, we determined that the PRDM9-ZnF domain forms a highly stable and long-lived complex with its recognition sequence, with a dissociation halftime of many hours. The ZnF domain exhibits an equilibrium dissociation constant (K D) in the nanomolar (nM) range, with polymorphisms in the recognition sequence directly affecting the binding affinity. We also determined that alternative sequences (15-16 nucleotides in length) can be specifically bound by different subsets of the ZnF domain, explaining the binding plasticity of PRDM9 for different sequences. Finally, longer binding targets are preferred than predicted from the numbers of ZnFs contacting the DNA. Functionally, a long-lived complex translates into an enzymatically active PRDM9 at specific DNA-binding sites throughout meiotic prophase I that might be relevant in stabilizing the components of the recombination machinery to a specific DNA target until DSBs are initiated by Spo11.
Collapse
Affiliation(s)
- Yasmin Striedner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Theresa Schwarz
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria
| | - Thomas Welte
- Dynamic Biosensors GmbH, 82152, Planegg, Germany
| | - Andreas Futschik
- Department of Applied Statistics, Johannes Kepler University, 4040, Linz, Austria
| | - Ulrich Rant
- Dynamic Biosensors GmbH, 82152, Planegg, Germany
| | - Irene Tiemann-Boege
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020, Linz, Austria.
| |
Collapse
|
129
|
Ziolkowski PA, Henderson IR. Interconnections between meiotic recombination and sequence polymorphism in plant genomes. THE NEW PHYTOLOGIST 2017; 213:1022-1029. [PMID: 27861941 DOI: 10.1111/nph.14265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
1022 I. 1022 II. 1023 III. 1023 IV. 1025 V. 1026 1027 References 1027 SUMMARY: Meiosis is fundamental to sexual reproduction and creates genetic variation in progeny. During meiosis paired homologous chromosomes undergo recombination, which can result in reciprocal crossovers. This process can recombine independently arising mutations onto the same chromosome. Recombination locations are highly variable between meioses, although total crossover numbers are tightly regulated. In addition to the effect of meiosis on genetic variation, sequence polymorphisms between homologous chromosomes can feedback onto the recombination pathways. Here we review the major crossover pathways in plants and some of the known homeostatic mechanisms that act during meiotic recombination. We then examine how sequence polymorphisms between homologous chromosomes, that is, heterozygosity, can influence meiotic recombination pathways in cis and trans. Finally, we provide a brief perspective on the relevance of these interconnections for natural selection and adaptation in plants.
Collapse
Affiliation(s)
- Piotr A Ziolkowski
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
- Department of Biotechnology, Adam Mickiewicz University, Umultowska 89, Poznan, 61-614, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
130
|
Abstract
Sequencing the entire genome of single sperm cells can provide valuable information of the distribution of meiotic recombination events in eukaryotic genomes. Here, we provide a description of the experimental work flow for isolating single sperm cells from the microcrustacean Daphnia pulex using fluorescence-activated cell sorting. Moreover, we describe the application of a whole-genome amplification technique (i.e., Multiple Annealing and Looping Based Amplification Cycles method) to single sperm of Daphnia to generate enough DNA for library preparation of next-generation sequencing.
Collapse
Affiliation(s)
- Sen Xu
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, Life Science Building, Arlington, TX, 76019, USA.
| | - Kim Young
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
131
|
Liu H, Jia Y, Sun X, Tian D, Hurst LD, Yang S. Direct Determination of the Mutation Rate in the Bumblebee Reveals Evidence for Weak Recombination-Associated Mutation and an Approximate Rate Constancy in Insects. Mol Biol Evol 2017; 34:119-130. [PMID: 28007973 PMCID: PMC5854123 DOI: 10.1093/molbev/msw226] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Accurate knowledge of the mutation rate provides a base line for inferring expected rates of evolution, for testing evolutionary hypotheses and for estimation of key parameters. Advances in sequencing technology now permit direct estimates of the mutation rate from sequencing of close relatives. Within insects there have been three prior such estimates, two in nonsocial insects (Drosophila: 2.8 × 10-9 per bp per haploid genome per generation; Heliconius: 2.9 × 10-9) and one in a social species, the honeybee (3.4 × 10-9). Might the honeybee's rate be ∼20% higher because it has an exceptionally high recombination rate and recombination may be directly or indirectly mutagenic? To address this possibility, we provide a direct estimate of the mutation rate in the bumblebee (Bombus terrestris), this being a close relative of the honeybee but with a much lower recombination rate. We confirm that the crossover rate of the bumblebee is indeed much lower than honeybees (8.7 cM/Mb vs. 37 cM/Mb). Importantly, we find no significant difference in the mutation rates: we estimate for bumblebees a rate of 3.6 × 10-9 per haploid genome per generation (95% confidence intervals 2.38 × 10-9 and 5.37 × 10-9) which is just 5% higher than the estimate that of honeybees. Both genomes have approximately one new mutation per haploid genome per generation. While we find evidence for a direct coupling between recombination and mutation (also seen in honeybees), the effect is so weak as to leave almost no footprint on any between-species differences. The similarity in mutation rates suggests an approximate constancy of the mutation rate in insects.
Collapse
Affiliation(s)
- Haoxuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanxiao Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoguang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Laurence D Hurst
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
132
|
Choi K, Yelina NE, Serra H, Henderson IR. Quantification and Sequencing of Crossover Recombinant Molecules from Arabidopsis Pollen DNA. Methods Mol Biol 2017; 1551:23-57. [PMID: 28138839 DOI: 10.1007/978-1-4939-6750-6_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During meiosis, homologous chromosomes undergo recombination, which can result in formation of reciprocal crossover molecules. Crossover frequency is highly variable across the genome, typically occurring in narrow hotspots, which has a significant effect on patterns of genetic diversity. Here we describe methods to measure crossover frequency in plants at the hotspot scale (bp-kb), using allele-specific PCR amplification from genomic DNA extracted from the pollen of F1 heterozygous plants. We describe (1) titration methods that allow amplification, quantification and sequencing of single crossover molecules, (2) quantitative PCR methods to more rapidly measure crossover frequency, and (3) application of high-throughput sequencing for study of crossover distributions within hotspots. We provide detailed descriptions of key steps including pollen DNA extraction, prior identification of hotspot locations, allele-specific oligonucleotide design, and sequence analysis approaches. Together, these methods allow the rate and recombination topology of plant hotspots to be robustly measured and compared between varied genetic backgrounds and environmental conditions.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Nataliya E Yelina
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Heïdi Serra
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| |
Collapse
|
133
|
Hwang HY, Wang J. Effect of mutation mechanisms on variant composition and distribution in Caenorhabditis elegans. PLoS Comput Biol 2017; 13:e1005369. [PMID: 28135268 PMCID: PMC5305269 DOI: 10.1371/journal.pcbi.1005369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/13/2017] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
Genetic diversity is maintained by continuing generation and removal of variants. While examining over 800,000 DNA variants in wild isolates of Caenorhabditis elegans, we made a discovery that the proportions of variant types are not constant across the C. elegans genome. The variant proportion is defined as the fraction of a specific variant type (e.g. single nucleotide polymorphism (SNP) or indel) within a broader set of variants (e.g. all variants or all non-SNPs). The proportions of most variant types show a correlation with the recombination rate. These correlations can be explained as a result of a concerted action of two mutation mechanisms, which we named Morgan and Sanger mechanisms. The two proposed mechanisms act according to the distinct components of the recombination rate, specifically the genetic and physical distance. Regression analysis was used to explore the characteristics and contributions of the two mutation mechanisms. According to our model, ~20-40% of all mutations in C. elegans wild populations are derived from programmed meiotic double strand breaks, which precede chromosomal crossovers and thus may be the point of origin for the Morgan mechanism. A substantial part of the known correlation between the recombination rate and variant distribution appears to be caused by the mutations generated by the Morgan mechanism. Mathematically integrating the mutation model with background selection model gives a more complete depiction of how the variant landscape is shaped in C. elegans. Similar analysis should be possible in other species by examining the correlation between the recombination rate and variant landscape within the context of our mutation model.
Collapse
Affiliation(s)
- Ho-Yon Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
134
|
Seplyarskiy VB, Andrianova MA, Bazykin GA. APOBEC3A/B-induced mutagenesis is responsible for 20% of heritable mutations in the TpCpW context. Genome Res 2016; 27:175-184. [PMID: 27940951 PMCID: PMC5287224 DOI: 10.1101/gr.210336.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
Abstract
APOBEC3A/B cytidine deaminase is responsible for the majority of cancerous mutations in a large fraction of cancer samples. However, its role in heritable mutagenesis remains very poorly understood. Recent studies have demonstrated that both in yeast and in human cancerous cells, most APOBEC3A/B-induced mutations occur on the lagging strand during replication and on the nontemplate strand of transcribed regions. Here, we use data on rare human polymorphisms, interspecies divergence, and de novo mutations to study germline mutagenesis and to analyze mutations at nucleotide contexts prone to attack by APOBEC3A/B. We show that such mutations occur preferentially on the lagging strand and on nontemplate strands of transcribed regions. Moreover, we demonstrate that APOBEC3A/B-like mutations tend to produce strand-coordinated clusters, which are also biased toward the lagging strand. Finally, we show that the mutation rate is increased 3' of C→G mutations to a greater extent than 3' of C→T mutations, suggesting pervasive trans-lesion bypass of the APOBEC3A/B-induced damage. Our study demonstrates that 20% of C→T and C→G mutations in the TpCpW context-where W denotes A or T, segregating as polymorphisms in human population-or 1.4% of all heritable mutations are attributable to APOBEC3A/B activity.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Maria A Andrianova
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Lomonosov Moscow State University, Moscow 119234, Russia
| | - Georgii A Bazykin
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow 127994, Russia.,Pirogov Russian National Research Medical University, Moscow 117997, Russia.,Lomonosov Moscow State University, Moscow 119234, Russia.,Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
| |
Collapse
|
135
|
Harpak A, Bhaskar A, Pritchard JK. Mutation Rate Variation is a Primary Determinant of the Distribution of Allele Frequencies in Humans. PLoS Genet 2016; 12:e1006489. [PMID: 27977673 PMCID: PMC5157949 DOI: 10.1371/journal.pgen.1006489] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
The site frequency spectrum (SFS) has long been used to study demographic history and natural selection. Here, we extend this summary by examining the SFS conditional on the alleles found at the same site in other species. We refer to this extension as the "phylogenetically-conditioned SFS" or cSFS. Using recent large-sample data from the Exome Aggregation Consortium (ExAC), combined with primate genome sequences, we find that human variants that occurred independently in closely related primate lineages are at higher frequencies in humans than variants with parallel substitutions in more distant primates. We show that this effect is largely due to sites with elevated mutation rates causing significant departures from the widely-used infinite sites mutation model. Our analysis also suggests substantial variation in mutation rates even among mutations involving the same nucleotide changes. In summary, we show that variable mutation rates are key determinants of the SFS in humans.
Collapse
Affiliation(s)
- Arbel Harpak
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Anand Bhaskar
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Jonathan K. Pritchard
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| |
Collapse
|
136
|
Variation and Evolution of the Meiotic Requirement for Crossing Over in Mammals. Genetics 2016; 205:155-168. [PMID: 27838628 PMCID: PMC5223500 DOI: 10.1534/genetics.116.192690] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/03/2016] [Indexed: 01/08/2023] Open
Abstract
The segregation of homologous chromosomes at the first meiotic division is dependent on the presence of at least one well-positioned crossover per chromosome. In some mammalian species, however, the genomic distribution of crossovers is consistent with a more stringent baseline requirement of one crossover per chromosome arm. Given that the meiotic requirement for crossing over defines the minimum frequency of recombination necessary for the production of viable gametes, determining the chromosomal scale of this constraint is essential for defining crossover profiles predisposed to aneuploidy and understanding the parameters that shape patterns of recombination rate evolution across species. Here, I use cytogenetic methods for in situ imaging of crossovers in karyotypically diverse house mice (Mus musculus domesticus) and voles (genus Microtus) to test how chromosome number and configuration constrain the distribution of crossovers in a genome. I show that the global distribution of crossovers in house mice is thresholded by a minimum of one crossover per chromosome arm, whereas the crossover landscape in voles is defined by a more relaxed requirement of one crossover per chromosome. I extend these findings in an evolutionary metaanalysis of published recombination and karyotype data for 112 mammalian species and demonstrate that the physical scale of the genomic crossover distribution has undergone multiple independent shifts from one crossover per chromosome arm to one per chromosome during mammalian evolution. Together, these results indicate that the chromosomal scale constraint on crossover rates is itself a trait that evolves among species, a finding that casts light on an important source of crossover rate variation in mammals.
Collapse
|
137
|
Bell CG. Insights in human epigenomic dynamics through comparative primate analysis. Genomics 2016; 108:115-125. [DOI: 10.1016/j.ygeno.2016.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/03/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
|
138
|
Phung TN, Huber CD, Lohmueller KE. Determining the Effect of Natural Selection on Linked Neutral Divergence across Species. PLoS Genet 2016; 12:e1006199. [PMID: 27508305 PMCID: PMC4980041 DOI: 10.1371/journal.pgen.1006199] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/25/2016] [Indexed: 11/18/2022] Open
Abstract
A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only if more of the genome is under purifying selection than currently believed. Our work has implications for understanding the evolution of genomes and interpreting patterns of genetic variation. Genetic variation at neutral sites can be reduced through linkage to nearby selected sites. This pattern has been used to show the widespread effects of natural selection at shaping patterns of genetic diversity across genomes from a variety of species. However, it is not entirely clear whether natural selection has an effect on neutral divergence between species. Here we show that putatively neutral divergence between closely related species (human and chimp) and between distantly related pairs of species (humans and mice) show signatures consistent with having been affected by linkage to selected sites. Further, our theoretical models and simulations show that natural selection indirectly affecting linked neutral sites can generate these patterns. Unless substantially more of the genome is under the direct effects of purifying selection than currently believed, our results argue that natural selection has played an important role in shaping variation in levels of putatively neutral sequence divergence across the genome. Our findings further suggest that divergence-based estimates of neutral mutation rate variation across the genome as well as certain estimators of population history may be confounded by linkage to selected sites.
Collapse
Affiliation(s)
- Tanya N. Phung
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Christian D. Huber
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Kirk E. Lohmueller
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
139
|
Huang J, Copenhaver GP, Ma H, Wang Y. New insights into the role of DNA synthesis in meiotic recombination. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1126-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
140
|
Arbeithuber B, Makova KD, Tiemann-Boege I. Artifactual mutations resulting from DNA lesions limit detection levels in ultrasensitive sequencing applications. DNA Res 2016; 23:547-559. [PMID: 27477585 PMCID: PMC5144678 DOI: 10.1093/dnares/dsw038] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/25/2016] [Indexed: 11/13/2022] Open
Abstract
The need in cancer research or evolutionary biology to detect rare mutations or variants present at very low frequencies (<10−5) poses an increasing demand on lowering the detection limits of available methods. Here we demonstrated that amplifiable DNA lesions introduce important error sources in ultrasensitive technologies such as single molecule PCR (smPCR) applications (e.g. droplet-digital PCR), or next-generation sequencing (NGS) based methods. Using templates with known amplifiable lesions (8-oxoguanine, deaminated 5-methylcytosine, uracil, and DNA heteroduplexes), we assessed with smPCR and duplex sequencing that templates with these lesions were amplified very efficiently by proofreading polymerases (except uracil), leading to G->T, and to a lesser extent, to unreported G->C substitutions at 8-oxoguanine lesions, and C->T transitions in amplified uracil containing templates. Long heat incubations common in many DNA extraction protocols significantly increased the number of G->T substitutions. Moreover, in ∼50-80% smPCR reactions we observed the random amplification preference of only one of both DNA strands explaining the known ‘PCR jackpot effect’, with the result that a lesion became indistinguishable from a true mutation or variant. Finally, we showed that artifactual mutations derived from uracil and 8-oxoguanine could be significantly reduced by DNA repair enzymes.
Collapse
Affiliation(s)
- Barbara Arbeithuber
- Institute of Biophysics, Johannes Kepler University, Linz 4020, Austria.,Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
141
|
Choi K, Reinhard C, Serra H, Ziolkowski PA, Underwood CJ, Zhao X, Hardcastle TJ, Yelina NE, Griffin C, Jackson M, Mézard C, McVean G, Copenhaver GP, Henderson IR. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLoS Genet 2016; 12:e1006179. [PMID: 27415776 PMCID: PMC4945094 DOI: 10.1371/journal.pgen.1006179] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Carsten Reinhard
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Heïdi Serra
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Piotr A. Ziolkowski
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Charles J. Underwood
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Xiaohui Zhao
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Thomas J. Hardcastle
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Nataliya E. Yelina
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Jackson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles, France
| | - Gil McVean
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ian R. Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
142
|
Abstract
Genetic polymorphism varies among species and within genomes, and has important implications for the evolution and conservation of species. The determinants of this variation have been poorly understood, but population genomic data from a wide range of organisms now make it possible to delineate the underlying evolutionary processes, notably how variation in the effective population size (Ne) governs genetic diversity. Comparative population genomics is on its way to providing a solution to 'Lewontin's paradox' - the discrepancy between the many orders of magnitude of variation in population size and the much narrower distribution of diversity levels. It seems that linked selection plays an important part both in the overall genetic diversity of a species and in the variation in diversity within the genome. Genetic diversity also seems to be predictable from the life history of a species.
Collapse
|
143
|
Genome-wide resequencing of KRICE_CORE reveals their potential for future breeding, as well as functional and evolutionary studies in the post-genomic era. BMC Genomics 2016; 17:408. [PMID: 27229151 PMCID: PMC4882841 DOI: 10.1186/s12864-016-2734-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/12/2016] [Indexed: 11/10/2022] Open
Abstract
Background Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remains challenging, it is important to establish practical methods to manage them. A core collection, by definition, refers to a subset of the entire population that preserves the majority of genetic diversity, enhancing the efficiency of germplasm utilization. Results Here, we report whole-genome resequencing of the 137 rice mini core collection or Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in the Korean genebank of the Rural Development Administration (RDA). We implemented the Illumina HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8 depths using Nipponbare as a reference. Comparisons of the sequences with the reference genome yielded more than 15 million (M) single nucleotide polymorphisms (SNPs) and 1.3 M INDELs. Phylogenetic and population analyses using 2,046,529 high-quality SNPs successfully assigned rice accessions to the relevant rice subgroups, suggesting that these SNPs capture evolutionary signatures that have accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for four exemplary agronomic traits in the KRIC_CORE manifest the utility of KRICE_CORE; that is, identifying previously defined genes or novel genetic factors that potentially regulate important phenotypes. Conclusion This study provides strong evidence that the size of KRICE_CORE is small but contains high genetic and functional diversity across the genome. Thus, our resequencing results will be useful for future breeding, as well as functional and evolutionary studies, in the post-genomic era. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2734-y) contains supplementary material, which is available to authorized users.
Collapse
|
144
|
Smeds L, Mugal CF, Qvarnström A, Ellegren H. High-Resolution Mapping of Crossover and Non-crossover Recombination Events by Whole-Genome Re-sequencing of an Avian Pedigree. PLoS Genet 2016; 12:e1006044. [PMID: 27219623 PMCID: PMC4878770 DOI: 10.1371/journal.pgen.1006044] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/19/2016] [Indexed: 01/04/2023] Open
Abstract
Recombination is an engine of genetic diversity and therefore constitutes a key process in evolutionary biology and genetics. While the outcome of crossover recombination can readily be detected as shuffled alleles by following the inheritance of markers in pedigreed families, the more precise location of both crossover and non-crossover recombination events has been difficult to pinpoint. As a consequence, we lack a detailed portrait of the recombination landscape for most organisms and knowledge on how this landscape impacts on sequence evolution at a local scale. To localize recombination events with high resolution in an avian system, we performed whole-genome re-sequencing at high coverage of a complete three-generation collared flycatcher pedigree. We identified 325 crossovers at a median resolution of 1.4 kb, with 86% of the events localized to <10 kb intervals. Observed crossover rates were in excellent agreement with data from linkage mapping, were 52% higher in male (3.56 cM/Mb) than in female meiosis (2.28 cM/Mb), and increased towards chromosome ends in male but not female meiosis. Crossover events were non-randomly distributed in the genome with several distinct hot-spots and a concentration to genic regions, with the highest density in promoters and CpG islands. We further identified 267 non-crossovers, whose location was significantly associated with crossover locations. We detected a significant transmission bias (0.18) in favour of 'strong' (G, C) over 'weak' (A, T) alleles at non-crossover events, providing direct evidence for the process of GC-biased gene conversion in an avian system. The approach taken in this study should be applicable to any species and would thereby help to provide a more comprehensive portray of the recombination landscape across organism groups.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Carina F. Mugal
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
145
|
Stevison LS, Woerner AE, Kidd JM, Kelley JL, Veeramah KR, McManus KF, Bustamante CD, Hammer MF, Wall JD. The Time Scale of Recombination Rate Evolution in Great Apes. Mol Biol Evol 2016; 33:928-45. [PMID: 26671457 PMCID: PMC5870646 DOI: 10.1093/molbev/msv331] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We present three linkage-disequilibrium (LD)-based recombination maps generated using whole-genome sequence data from 10 Nigerian chimpanzees, 13 bonobos, and 15 western gorillas, collected as part of the Great Ape Genome Project (Prado-Martinez J, et al. 2013. Great ape genetic diversity and population history. Nature 499:471-475). We also identified species-specific recombination hotspots in each group using a modified LDhot framework, which greatly improves statistical power to detect hotspots at varying strengths. We show that fewer hotspots are shared among chimpanzee subspecies than within human populations, further narrowing the time scale of complete hotspot turnover. Further, using species-specific PRDM9 sequences to predict potential binding sites (PBS), we show higher predicted PRDM9 binding in recombination hotspots as compared to matched cold spot regions in multiple great ape species, including at least one chimpanzee subspecies. We found that correlations between broad-scale recombination rates decline more rapidly than nucleotide divergence between species. We also compared the skew of recombination rates at centromeres and telomeres between species and show a skew from chromosome means extending as far as 10-15 Mb from chromosome ends. Further, we examined broad-scale recombination rate changes near a translocation in gorillas and found minimal differences as compared to other great ape species perhaps because the coordinates relative to the chromosome ends were unaffected. Finally, on the basis of multiple linear regression analysis, we found that various correlates of recombination rate persist throughout the African great apes including repeats, diversity, and divergence. Our study is the first to analyze within- and between-species genome-wide recombination rate variation in several close relatives.
Collapse
Affiliation(s)
- Laurie S Stevison
- Institute for Human Genetics, University of California San Francisco Department of Biological Sciences, Auburn University
| | - August E Woerner
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona Department of Genetics, University of Arizona
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Department of Computational Medicine & Bioinformatics, University of Michigan
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University Department of Genetics, Stanford University
| | - Krishna R Veeramah
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona Department of Ecology and Evolution, Stony Brook University
| | - Kimberly F McManus
- Department of Biology, Stanford University Department of Biomedical Informatics, Stanford University
| | | | - Michael F Hammer
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona Department of Ecology and Evolutionary Biology, University of Arizona Department of Anthropology, University of Arizona
| | - Jeffrey D Wall
- Institute for Human Genetics, University of California San Francisco Department of Epidemiology & Biostatistics, University of California San Francisco
| |
Collapse
|
146
|
Maddamsetti R. Gene flow in microbial communities could explain unexpected patterns of synonymous variation in the Escherichia coli core genome. Mob Genet Elements 2016; 6:e1137380. [PMID: 27066306 PMCID: PMC4802760 DOI: 10.1080/2159256x.2015.1137380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 11/27/2022] Open
Abstract
Researchers contest the importance of gene flow in bacterial core genomes, as traditionalists view microbes as predominantly clonal, asexually reproducing organisms. Contrary to the traditional perspective, Escherichia coli core genes vary greatly in their levels of synonymous genetic diversity. This observation indicates that the relative importance of evolutionary forces such as mutation, selection, and recombination varies from gene to gene. In this paper, I highlight why the synonymous diversity observation is broadly relevant to researchers interested in the evolutionary dynamics of microbial populations and communities. I explain how a model of evolution called the coalescent relates neutral diversity (i.e. mutations with negligible fitness effects) to mutation rates, evolutionary time, and a parameter called effective population size. I then describe the possible ways in which mutation, selection, and recombination can explain observed patterns of synonymous diversity in E. coli. Finally, I describe a model for E. coli genome evolution in which different loci are subject to varying levels of gene flow among co-occurring microbes and viruses in the environment. Researchers can falsify the gene flow hypothesis by sequencing genes and strains isolated from stable microbiomes or by carrying out evolution experiments that trace gene genealogies in real-time.
Collapse
Affiliation(s)
- Rohan Maddamsetti
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA; Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA; BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
147
|
Termolino P, Cremona G, Consiglio MF, Conicella C. Insights into epigenetic landscape of recombination-free regions. Chromosoma 2016; 125:301-8. [PMID: 26801812 PMCID: PMC4830869 DOI: 10.1007/s00412-016-0574-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 11/29/2022]
Abstract
Genome architecture is shaped by gene-rich and repeat-rich regions also known as euchromatin and heterochromatin, respectively. Under normal conditions, the repeat-containing regions undergo little or no meiotic crossover (CO) recombination. COs within repeats are risky for the genome integrity. Indeed, they can promote non-allelic homologous recombination (NAHR) resulting in deleterious genomic rearrangements associated with diseases in humans. The assembly of heterochromatin is driven by the combinatorial action of many factors including histones, their modifications, and DNA methylation. In this review, we discuss current knowledge dealing with the epigenetic signatures of the major repeat regions where COs are suppressed. Then we describe mutants for epiregulators of heterochromatin in different organisms to find out how chromatin structure influences the CO rate and distribution.
Collapse
Affiliation(s)
- Pasquale Termolino
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Gaetana Cremona
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Maria Federica Consiglio
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy
| | - Clara Conicella
- CNR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division Portici, Via Università 133, 80055, Portici, Italy.
| |
Collapse
|
148
|
Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates. Am J Hum Genet 2015; 97:775-89. [PMID: 26581902 DOI: 10.1016/j.ajhg.2015.10.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 10/13/2015] [Indexed: 12/29/2022] Open
Abstract
The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 × 10(-8) per base per generation and a rate of 1.26 × 10(-9) for <20 bp indels. By quantifying how estimates varied as a function of allele frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 × 10(-6). We found that recombination does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based demographic reconstruction.
Collapse
|
149
|
Hillmer M, Wagner D, Summerer A, Daiber M, Mautner VF, Messiaen L, Cooper DN, Kehrer-Sawatzki H. Fine mapping of meiotic NAHR-associated crossovers causing large NF1 deletions. Hum Mol Genet 2015; 25:484-96. [PMID: 26614388 DOI: 10.1093/hmg/ddv487] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Large deletions encompassing the NF1 gene and its flanking regions belong to the group of genomic disorders caused by copy number changes that are mediated by the local genomic architecture. Although nonallelic homologous recombination (NAHR) is known to be a major mutational mechanism underlying such genomic copy number changes, the sequence determinants of NAHR location and frequency are still poorly understood since few high-resolution mapping studies of NAHR hotspots have been performed to date. Here, we have characterized two NAHR hotspots, PRS1 and PRS2, separated by 20 kb and located within the low-copy repeats NF1-REPa and NF1-REPc, which flank the human NF1 gene region. High-resolution mapping of the crossover sites identified in 78 type 1 NF1 deletions mediated by NAHR indicated that PRS2 is a much stronger NAHR hotspot than PRS1 since 80% of these deletions exhibited crossovers within PRS2, whereas 20% had crossovers within PRS1. The identification of the most common strand exchange regions of these 78 deletions served to demarcate the cores of the PRS1 and PRS2 hotspots encompassing 1026 and 1976 bp, respectively. Several sequence features were identified that may influence hotspot intensity and direct the positional preference of NAHR to the hotspot cores. These features include regions of perfect sequence identity encompassing 700 bp at the hotspot core, the presence of PRDM9 binding sites perfectly matching the consensus motif for the most common PRDM9 variant, specific pre-existing patterns of histone modification and open chromatin conformations that are likely to facilitate PRDM9 binding.
Collapse
Affiliation(s)
- Morten Hillmer
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - David Wagner
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Anna Summerer
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Michaela Daiber
- Institute of Human Genetics, University of Ulm, 89081 Ulm, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Ludwine Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35242, USA and
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | |
Collapse
|
150
|
Abstract
The study of homologous recombination has its historical roots in meiosis. In this context, recombination occurs as a programmed event that culminates in the formation of crossovers, which are essential for accurate chromosome segregation and create new combinations of parental alleles. Thus, meiotic recombination underlies both the independent assortment of parental chromosomes and genetic linkage. This review highlights the features of meiotic recombination that distinguish it from recombinational repair in somatic cells, and how the molecular processes of meiotic recombination are embedded and interdependent with the chromosome structures that characterize meiotic prophase. A more in-depth review presents our understanding of how crossover and noncrossover pathways of meiotic recombination are differentiated and regulated. The final section of this review summarizes the studies that have defined defective recombination as a leading cause of pregnancy loss and congenital disease in humans.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology & Molecular Genetics, Department of Molecular & Cellular Biology, Department of Cell Biology & Human Anatomy, University of California Davis, Davis, California 95616
| |
Collapse
|