101
|
Gaspar PA, Bustamante ML, Silva H, Aboitiz F. Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications. J Neurochem 2009; 111:891-900. [PMID: 19686383 DOI: 10.1111/j.1471-4159.2009.06325.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Early models for the etiology of schizophrenia focused on dopamine neurotransmission because of the powerful anti-psychotic action of dopamine antagonists. Nevertheless, recent evidence increasingly supports a primarily glutamatergic dysfunction in this condition, where dopaminergic disbalance is a secondary effect. A current model for the pathophysiology of schizophrenia involves a dysfunctional mechanism by which the NMDA receptor (NMDAR) hypofunction leads to a dysregulation of GABA fast- spiking interneurons, consequently disinhibiting pyramidal glutamatergic output and disturbing the signal-to-noise ratio. This mechanism might explain better than other models some cognitive deficits observed in this disease, as well as the dopaminergic alterations and therapeutic effect of anti-psychotics. Although the modulation of glutamate activity has, in principle, great therapeutic potential, a side effect of NMDAR overactivation is neurotoxicity, which accelerates neuropathological alterations in this illness. We propose that metabotropic glutamate receptors can have a modulatory effect over the NMDAR and regulate excitotoxity mechanisms. Therefore, in our view metabotropic glutamate receptors constitute a highly promising target for future drug treatment in this disease.
Collapse
Affiliation(s)
- Pablo A Gaspar
- Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Casilla, Santiago, Chile.
| | | | | | | |
Collapse
|
102
|
Ng MYM, Levinson DF, Faraone SV, Suarez BK, DeLisi LE, Arinami T, Riley B, Paunio T, Pulver AE, Irmansyah, Holmans PA, Escamilla M, Wildenauer DB, Williams NM, Laurent C, Mowry BJ, Brzustowicz LM, Maziade M, Sklar P, Garver DL, Abecasis GR, Lerer B, Fallin MD, Gurling HMD, Gejman PV, Lindholm E, Moises HW, Byerley W, Wijsman EM, Forabosco P, Tsuang MT, Hwu HG, Okazaki Y, Kendler KS, Wormley B, Fanous A, Walsh D, O’Neill FA, Peltonen L, Nestadt G, Lasseter VK, Liang KY, Papadimitriou GM, Dikeos DG, Schwab SG, Owen MJ, O’Donovan MC, Norton N, Hare E, Raventos H, Nicolini H, Albus M, Maier W, Nimgaonkar VL, Terenius L, Mallet J, Jay M, Godard S, Nertney D, Alexander M, Crowe RR, Silverman JM, Bassett AS, Roy MA, Mérette C, Pato CN, Pato MT, Roos JL, Kohn Y, Amann-Zalcenstein D, Kalsi G, McQuillin A, Curtis D, Brynjolfson J, Sigmundsson T, Petursson H, Sanders AR, Duan J, Jazin E, Myles-Worsley M, Karayiorgou M, Lewis CM. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 2009; 14:774-85. [PMID: 19349958 PMCID: PMC2715392 DOI: 10.1038/mp.2008.135] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 11/11/2008] [Indexed: 02/07/2023]
Abstract
A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (P(SR)) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for 'aggregate' genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies.
Collapse
Affiliation(s)
- MYM Ng
- King’s College London, Department of Medical and Molecular Genetics, London, UK
| | - DF Levinson
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - SV Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - BK Suarez
- Washington University in St Louis, St Louis, MO, USA
| | - LE DeLisi
- Department of Psychiatry, The New York University Langone Medical Center, New York, NY, USA
- Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - T Arinami
- Department of Medical Genetics, University of Tsukuba, Tsukuba, Japan
| | - B Riley
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - T Paunio
- National Public Health Institute, Helsinki, Finland
- Department of Psychiatry, Helsinki University Central Hospital, Helsinki, Finland
| | - AE Pulver
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irmansyah
- Department of Psychiatry, University of Indonesia, Jakarta, Indonesia
| | - PA Holmans
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - M Escamilla
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - DB Wildenauer
- Center for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia
| | - NM Williams
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - C Laurent
- Department of Child Psychiatry, Université Pierre et Marie Curie and Hôpital de la Pitiè-Salpêtrière, Paris, France
| | - BJ Mowry
- Queensland Centre for Mental Health Research and University of Queensland, Brisbane, QLD, Australia
| | - LM Brzustowicz
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - M Maziade
- Department of Psychiatry, Laval University & Centre de recherche Université Laval Robert-Giffard, Québec, QC, Canada
| | - P Sklar
- Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - DL Garver
- VA Medical Center, Asheville, NC, USA
| | - GR Abecasis
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - B Lerer
- Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - MD Fallin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - HMD Gurling
- Department of Mental Health Sciences, University College London, London, UK
| | - PV Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem Research Institute and Northwestern University, Evanston, IL, USA
| | - E Lindholm
- Department of Development & Genetics, Uppsala University, Uppsala, Sweden
| | | | - W Byerley
- University of California, San Francisco, CA, USA
| | - EM Wijsman
- Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - P Forabosco
- King’s College London, Department of Medical and Molecular Genetics, London, UK
| | - MT Tsuang
- Center for Behavioral Genomics and Department of Psychiatry, University of California, San Diego, CA, USA
- Harvard Institute of Psychiatric Epidemiology & Genetics, Boston, MA, USA
| | - H-G Hwu
- National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Y Okazaki
- Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - KS Kendler
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - B Wormley
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - A Fanous
- Washington VA Medical Center, Washington, DC, USA
- Department of Psychiatry, Georgetown University Medical Center, Virginia Commonwealth University, Richmond, VA, USA
| | - D Walsh
- The Health Research Board, Dublin, Ireland
| | - FA O’Neill
- Department of Psychiatry, Queens University, Belfast, Northern Ireland
| | - L Peltonen
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- The Broad Institute, MIT, Boston, MA, USA
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - G Nestadt
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - VK Lasseter
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - KY Liang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - GM Papadimitriou
- 1st Department of Psychiatry, University of Athens Medical School, and University Mental Health Research Institute, Athens, Greece
| | - DG Dikeos
- 1st Department of Psychiatry, University of Athens Medical School, and University Mental Health Research Institute, Athens, Greece
| | - SG Schwab
- Western Australian Institute for Medical Research, University of Western Australia, Perth, WA, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, WA, Australia
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - MJ Owen
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - MC O’Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - N Norton
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - E Hare
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - H Raventos
- School of Biology and CIBCM, University of Costa Rica, San Jose, Costa Rica
| | - H Nicolini
- Carracci Medical Group and Universidad Autonoma de la Ciudad de Mexico, Mexico City, Mexico
| | - M Albus
- State Mental Hospital, Haar, Germany
| | - W Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - VL Nimgaonkar
- Departments of Psychiatry and Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - L Terenius
- Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
| | - J Mallet
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Centre National de la Recherche Scientifique, Hôpital de la Pitié Salpêtrière, Paris, France
| | - M Jay
- Department of Child Psychiatry, Université Pierre et Marie Curie and Hôpital de la Pitiè-Salpêtrière, Paris, France
| | - S Godard
- INSERM, Institut de Myologie, Hôpital de la Pitiè-Salpêtrière, Paris, France
| | - D Nertney
- Queensland Centre for Mental Health Research and University of Queensland, Brisbane, QLD, Australia
| | - M Alexander
- Department of Psychiatry, Stanford University, Stanford, CA, USA
| | - RR Crowe
- Department of Psychiatry, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - JM Silverman
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | - AS Bassett
- Clinical Genetics Research Program, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - M-A Roy
- Department of Psychiatry, Laval University & Centre de recherche Université Laval Robert-Giffard, Québec, QC, Canada
| | - C Mérette
- Department of Psychiatry, Laval University & Centre de recherche Université Laval Robert-Giffard, Québec, QC, Canada
| | - CN Pato
- Center for Genomic Psychiatry, University of Southern California, Los Angeles, CA, USA
| | - MT Pato
- Center for Genomic Psychiatry, University of Southern California, Los Angeles, CA, USA
| | - J Louw Roos
- Department of Psychiatry, University of Pretoria, Weskoppies Hospital, Pretoria, Republic of South Africa
| | - Y Kohn
- Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - D Amann-Zalcenstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - G Kalsi
- Department of Mental Health Sciences, University College London, London, UK
| | - A McQuillin
- Department of Mental Health Sciences, University College London, London, UK
| | - D Curtis
- Department of Psychological Medicine, St Bartholomew’s and Royal London School of Medicine and Dentistry, London, UK
| | - J Brynjolfson
- Department of Psychiatry, General Hospital, Reykjavik, Iceland
| | - T Sigmundsson
- Department of Psychiatry, General Hospital, Reykjavik, Iceland
| | - H Petursson
- Department of Psychiatry, General Hospital, Reykjavik, Iceland
| | - AR Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem Research Institute and Northwestern University, Evanston, IL, USA
| | - J Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem Research Institute and Northwestern University, Evanston, IL, USA
| | - E Jazin
- Department of Development & Genetics, Uppsala University, Uppsala, Sweden
| | - M Myles-Worsley
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - M Karayiorgou
- Departments of Psychiatry and Genetics & Development, Columbia University Medical Center, New York, NY, USA
| | - CM Lewis
- King’s College London, Department of Medical and Molecular Genetics, London, UK
- King’s College London, MRC SGDP Centre, Institute of Psychiatry, London, UK
| |
Collapse
|
103
|
Kilka S, Erdmann F, Migdoll A, Fischer G, Weiwad M. The proline-rich N-terminal sequence of calcineurin Abeta determines substrate binding. Biochemistry 2009; 48:1900-10. [PMID: 19154138 DOI: 10.1021/bi8019355] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three different genes of catalytic subunit A of the Ca(2+)-dependent serine/threonine protein phosphatase calcineurin (CaN) are encoded in the human genome forming heterodimers with regulatory subunit B. Even though physiological roles of CaN have been investigated extensively, less is known about the specific functions of the different catalytic isoforms. In this study, all human CaN holoenzymes containing either the alpha, beta, or gamma isoform of the catalytic subunit (CaN alpha, beta, or gamma, respectively) were expressed for the first time. Comparative kinetic analysis of the dephosphorylation of five specific CaN substrates provided evidence that the distinct isoforms of the catalytic subunit confer substrate specificities to the holoenzymes. CaN alpha dephosphorylates the transcription factor Elk-1 with 7- and 2-fold higher catalytic efficiencies than the beta and gamma isoforms, respectively. CaN gamma exhibits the highest k(cat)/K(m) value for DARPP-32, whereas the catalytic efficiencies for the dephosphorylation of NFAT and RII peptide were 3- and 5-fold lower, respectively, when compared with the other isoforms. Elk-1 and NFAT reporter gene activity measurements revealed even more pronounced substrate preferences of CaNA isoforms. Moreover, kinetic analysis demonstrated that CaN beta exhibits for all tested protein substrates the lowest K(m) values. Enzymatic characterization of the CaN beta(P14G/P18G) variant as well as the N-terminal truncated form CaN beta(22-524) revealed that the proline-rich sequence of CaN beta is involved in substrate recognition. CaN beta(22-524) exhibits an at least 4-fold decreased substrate affinity and a 5-fold increased turnover number. Since this study demonstrates that all CaN isoforms display the same cytoplasmic subcellular distribution and are expressed in each tested cell line, differences in substrate specificities may determine specific physiological functions of the distinct isoforms.
Collapse
Affiliation(s)
- Susann Kilka
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle/Saale, Germany
| | | | | | | | | |
Collapse
|
104
|
Donohoe DR, Jarvis RA, Weeks K, Aamodt EJ, Dwyer DS. Behavioral adaptation in C. elegans produced by antipsychotic drugs requires serotonin and is associated with calcium signaling and calcineurin inhibition. Neurosci Res 2009; 64:280-9. [PMID: 19447297 PMCID: PMC2692945 DOI: 10.1016/j.neures.2009.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/09/2009] [Accepted: 03/26/2009] [Indexed: 11/18/2022]
Abstract
Chronic administration of antipsychotic drugs produces adaptive responses at the cellular and molecular levels that may be responsible for both the main therapeutic effects and rebound psychosis, which is often observed upon discontinuation of these drugs. Here we show that some antipsychotic drugs produce significant functional changes in serotonergic neurons that directly impact feeding behavior in the model organism, Caenorhabditis elegans. In particular, antipsychotic drugs acutely suppress pharyngeal pumping, which is regulated by serotonin from the NSM neurons. By contrast, withdrawal from food and drug is accompanied by a striking recovery and overshoot in the rate of pharyngeal pumping. This rebound response is absent or diminished in mutant strains that lack tryptophan hydroxylase (TPH-1) or the serotonin receptors SER-7 and SER-1, and is blocked by serotonin antagonists, which implicates serotonergic mechanisms in this adaptive response. Consistent with this, continuous drug exposure stimulates an increase in serotonin and the number of varicosities along the NSM processes. Cyclosporin A and calcineurin mutant strains mimic the effects of the antipsychotic drugs and reveal a potential role for the calmodulin-calcineurin signaling pathway in the response of serotonergic neurons. Similar molecular and cellular changes may contribute to the long-term adaptive response to antipsychotic drugs in patients.
Collapse
Affiliation(s)
- Dallas R. Donohoe
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Raymond A. Jarvis
- Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Kathrine Weeks
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Eric J. Aamodt
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Donard S. Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
- Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
105
|
Tanda K, Nishi A, Matsuo N, Nakanishi K, Yamasaki N, Sugimoto T, Toyama K, Takao K, Miyakawa T. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice. Mol Brain 2009; 2:19. [PMID: 19538708 PMCID: PMC2711944 DOI: 10.1186/1756-6606-2-19] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/18/2009] [Indexed: 12/26/2022] Open
Abstract
Background Neuronal nitric oxide synthase (nNOS) is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO) mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.
Collapse
Affiliation(s)
- Koichi Tanda
- Genetic Engineering and Functional Genomics Group, Horizontal Medical Research Organization, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Tabarés-Seisdedos R, Rubenstein JLR. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 2009; 14:563-89. [PMID: 19204725 DOI: 10.1038/mp.2009.2] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Defects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.
Collapse
Affiliation(s)
- R Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, CIBER-SAM, University of Valencia, Valencia, Spain.
| | | |
Collapse
|
107
|
Matsuo N, Tanda K, Nakanishi K, Yamasaki N, Toyama K, Takao K, Takeshima H, Miyakawa T. Comprehensive behavioral phenotyping of ryanodine receptor type 3 (RyR3) knockout mice: decreased social contact duration in two social interaction tests. Front Behav Neurosci 2009; 3:3. [PMID: 19503748 PMCID: PMC2691151 DOI: 10.3389/neuro.08.003.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/06/2009] [Indexed: 11/13/2022] Open
Abstract
Dynamic regulation of the intracellular Ca2+ concentration is crucial for various neuronal functions such as synaptic transmission and plasticity, and gene expression. Ryanodine receptors (RyRs) are a family of intracellular calcium release channels that mediate calcium-induced calcium release from the endoplasmic reticulum. Among the three RyR isoforms, RyR3 is preferentially expressed in the brain especially in the hippocampus and striatum. To investigate the behavioral effects of RyR3 deficiency, we subjected RyR3 knockout (RyR3–/–) mice to a battery of behavioral tests. RyR3–/– mice exhibited significantly decreased social contact duration in two different social interaction tests, where two mice can freely move and make contacts with each other. They also exhibited hyperactivity and mildly impaired prepulse inhibition and latent inhibition while they did not show significant abnormalities in motor function and working and reference memory tests. These results indicate that RyR3 has an important role in locomotor activity and social behavior.
Collapse
Affiliation(s)
- Naoki Matsuo
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Antipsychotics affect multiple calcium calmodulin dependent proteins. Neuroscience 2009; 161:877-86. [PMID: 19289156 DOI: 10.1016/j.neuroscience.2009.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 02/10/2009] [Accepted: 03/09/2009] [Indexed: 11/22/2022]
Abstract
Calcineurin is a calmodulin (CaM) dependent protein phosphatase recently found to be altered in the brains of patients suffering from schizophrenia and by repeated antipsychotic treatment in rats. Some data suggest, however, that antipsychotics and schizophrenia may have a more widespread effect on the CaM signaling axis than calcineurin alone. In the current study, the effects of selected psychoactive drugs were investigated using Western blotting, in situ hybridization and immunocytochemistry to determine if they target CaM, calmodulin-dependent protein kinases (CaMK) or calcineurin. Results indicated that repeated treatment with haloperidol, clozapine or risperidone increased CaM protein and CaMII mRNA levels but decreased calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) IV (CaMKIV), kinase alpha (CaMKKalpha), kinase beta (CaMKKbeta) and calcineurin protein levels in the striatum of Sprague-Dawley rats (Rattus Norvegicus). Closer examination of CaMKIV, CaMKKalpha and CaMKKbeta revealed that the observed decreases in protein levels were short-lived following antipsychotic treatment and reversed (i.e. upregulated) 24 h post-treatment similar to what was previously reported for calcineurin. The D(2)/D(3)dopamine receptor antagonist raclopride mimicked the decreases in CaMKIV, CaMKKalpha, CaMKKbeta and calcineurin observed following antipsychotic treatment whereas increases in these proteins were observed in an amphetamine model of the positive symptoms of schizophrenia. Mood stabilizers such as lithium and valproic acid or the antidepressant fluoxetine had no effect on CaMKIV, CaMKKalpha, CaMKKbeta and calcineurin with the exception of an increase in CaMKKbeta following lithium treatment. The results collectively suggest that antipsychotic specifically target several proteins associated with CaM signaling.
Collapse
|
109
|
Targeting the hippocampal mossy fiber synapse for the treatment of psychiatric disorders. Mol Neurobiol 2009; 39:24-36. [PMID: 19130314 DOI: 10.1007/s12035-008-8049-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 12/12/2008] [Indexed: 01/09/2023]
Abstract
It is widely known that new neurons are continuously generated in the dentate gyrus of the hippocampus in the adult mammalian brain. This neurogenesis has been implicated in depression and antidepressant treatments. Recent evidence also suggests that the dentate gyrus is involved in the neuropathology and pathophysiology of schizophrenia and other related psychiatric disorders. Especially, abnormal neuronal development in the dentate gyrus may be a plausible risk factor for the diseases. The synapse made by the mossy fiber, the output fiber of the dentate gyrus, plays a critical role in regulating neuronal activity in its target CA3 area. The mossy fiber synapse is characterized by remarkable activity-dependent short-term synaptic plasticity that is established during the postnatal development and is supposed to be central to the functional role of the mossy fiber. Any defects, including developmental abnormalities, in the dentate gyrus and drugs acting on the dentate gyrus can modulate the mossy fiber-CA3 synaptic transmission, which may eventually affect hippocampal functions. In this paper, I review recent evidence for involvement of the dentate gyrus and mossy fiber synapse in psychiatric disorders and discuss potential importance of drugs targeting the mossy fiber synapse either directly or indirectly in the therapeutic treatments of psychiatric disorders.
Collapse
|
110
|
|
111
|
Paz RD, Tardito S, Atzori M, Tseng KY. Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. Eur Neuropsychopharmacol 2008; 18:773-86. [PMID: 18650071 PMCID: PMC2831778 DOI: 10.1016/j.euroneuro.2008.06.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/27/2008] [Accepted: 06/17/2008] [Indexed: 01/02/2023]
Abstract
The underlying cellular mechanisms leading to frontal cortical hypofunction (i.e., hypofrontality) in schizophrenia remain unclear. Both hypoactive and hyperreactive prefrontal cortical (PFC) states have been reported in schizophrenia patients. Recent proton magnetic resonance spectroscopy studies revealed that antipsychotic-naïve patients with first psychotic episode exhibit a hyperactive PFC. Conversely, PFC activity seems to be diminished in patients chronically exposed to conventional antipsychotic treatments, an effect that could reflect the therapeutic action as well as some of the impairing side effects induced by long-term blockade of dopamine transmission. In this review, we will provide an evolving picture of the pathophysiology of schizophrenia moving from dopamine to a more glutamatergic-centered hypothesis. We will discuss how alternative antipsychotic strategies may emerge by using drugs that reduce excessive glutamatergic response without altering the balance of synaptic and extrasynaptic normal glutamatergic neurotransmission. Preclinical studies indicate that acamprosate, a FDA approved drug for relapse prevention in detoxified alcoholic patients, reduces the glutamatergic hyperactivity triggered by ethanol withdrawal without depressing normal glutamatergic transmission. Whether this effect is mediated by a direct modulation of NMDA receptors or by antagonism of metabotropic glutamate receptor remains to be determined. We hypothesize that drugs with similar pharmacological actions to acamprosate may provide a better and safer approach to reverse psychotic symptoms and cognitive deficits without altering the balance of excitation and inhibition of the corticolimbic dopamine-PFC system. It is predicted that schizophrenia patients treated with acamprosate-like compounds will not exhibit progressive cortical atrophy associated with the anti-dopaminergic effect of classical antipsychotic exposure.
Collapse
Affiliation(s)
- Rodrigo D. Paz
- Departamento de Psiquiatría y Neurociencias, Universidad Diego Portales, Santiago, Chile
- Instituto Psiquiátrico José Horwitz Barak, Santiago, Chile
| | - Sonia Tardito
- Instituto Psiquiátrico José Horwitz Barak, Santiago, Chile
| | - Marco Atzori
- University of Texas at Dallas, School for Behavioral and Brain Sciences, Richardson, Texas, USA
| | - Kuei Y. Tseng
- Department of Cellular & Molecular Pharmacology, RFUMS/The Chicago Medical School, North Chicago, Illinois, USA
| |
Collapse
|
112
|
Takao K, Toyama K, Nakanishi K, Hattori S, Takamura H, Takeda M, Miyakawa T, Hashimoto R. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Mol Brain 2008; 1:11. [PMID: 18945333 PMCID: PMC2584096 DOI: 10.1186/1756-6606-1-11] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/22/2008] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. RESULTS In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. CONCLUSION Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.
Collapse
Affiliation(s)
- Keizo Takao
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
- Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Japan Science and Technology Agency, CREST (Core Research for Evolutionary Science and Technology), Kawaguchi, Saitama, Japan
- Japan Science and Technology Agency, BIRD (Institute for Bioinformatics Research and Development), Kawaguchi, Saitama, Japan
| | - Keiko Toyama
- Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Japan Science and Technology Agency, CREST (Core Research for Evolutionary Science and Technology), Kawaguchi, Saitama, Japan
- Japan Science and Technology Agency, BIRD (Institute for Bioinformatics Research and Development), Kawaguchi, Saitama, Japan
| | - Kazuo Nakanishi
- Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Japan Science and Technology Agency, BIRD (Institute for Bioinformatics Research and Development), Kawaguchi, Saitama, Japan
| | - Satoko Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hironori Takamura
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masatoshi Takeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Suita, Osaka, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
- Genetic Engineering and Functional Genomics Unit, Frontier Technology Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Japan Science and Technology Agency, CREST (Core Research for Evolutionary Science and Technology), Kawaguchi, Saitama, Japan
- Japan Science and Technology Agency, BIRD (Institute for Bioinformatics Research and Development), Kawaguchi, Saitama, Japan
| | - Ryota Hashimoto
- Japan Science and Technology Agency, CREST (Core Research for Evolutionary Science and Technology), Kawaguchi, Saitama, Japan
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Suita, Osaka, Japan
| |
Collapse
|
113
|
Kinoshita Y, Ikeda M, Ujike H, Kitajima T, Yamanouchi Y, Aleksic B, Kishi T, Kawashima K, Ohkouchi T, Ozaki N, Inada T, Harano M, Komiyama T, Hori T, Yamada M, Sekine Y, Iyo M, Sora I, Iwata N. Association Study of the Calcineurin A Gamma Subunit Gene (PPP3CC) and Methamphetamine-Use Disorder in a Japanese Population. Ann N Y Acad Sci 2008; 1139:57-62. [DOI: 10.1196/annals.1432.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
114
|
Donohoe DR, Phan T, Weeks K, Aamodt EJ, Dwyer DS. Antipsychotic drugs up-regulate tryptophan hydroxylase in ADF neurons of Caenorhabditis elegans: role of calcium-calmodulin-dependent protein kinase II and transient receptor potential vanilloid channel. J Neurosci Res 2008; 86:2553-63. [PMID: 18438926 DOI: 10.1002/jnr.21684] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Antipsychotic drugs produce acute behavioral effects through antagonism of dopamine and serotonin receptors, and long-term adaptive responses that are not well understood. The goal of the study presented here was to use Caenorhabditis elegans to investigate the molecular mechanism or mechanisms that contribute to adaptive responses produced by antipsychotic drugs. First-generation antipsychotics, trifluoperazine and fluphenazine, and second-generation drugs, clozapine and olanzapine, increased the expression of tryptophan hydroxylase-1::green fluorescent protein (TPH-1::GFP) and serotonin in the ADF neurons of C. elegans. This response was absent or diminished in mutant strains lacking the transient receptor potential vanilloid channel (TRPV; osm-9) or calcium/calmodulin-dependent protein kinase II (CaMKII; unc-43). The role of calcium signaling was further implicated by the finding that a selective antagonist of calmodulin and a calcineurin inhibitor also enhanced TPH-1::GFP expression. The ADF neurons modulate foraging behavior (turns/reversals off food) through serotonin production. We found that short-term exposure to the antipsychotic drugs altered the frequency of turns/reversals off food. This response was mediated through dopamine and serotonin receptors and was abolished in serotonin-deficient mutants (tph-1) and strains lacking the SER-1 and MOD-1 serotonin receptors. Consistent with the increase in serotonin in the ADF neurons induced by the drugs, drug withdrawal after 24-hr treatment was accompanied by a rebound in the number of turns/reversals, which demonstrates behavioral adaptation in serotonergic systems. Characterization of the cellular, molecular, and behavioral adaptations to continuous exposure to antipsychotic drugs may provide insight into the long-term clinical effects of these medications.
Collapse
Affiliation(s)
- Dallas R Donohoe
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130, USA
| | | | | | | | | |
Collapse
|
115
|
Yamasaki N, Maekawa M, Kobayashi K, Kajii Y, Maeda J, Soma M, Takao K, Tanda K, Ohira K, Toyama K, Kanzaki K, Fukunaga K, Sudo Y, Ichinose H, Ikeda M, Iwata N, Ozaki N, Suzuki H, Higuchi M, Suhara T, Yuasa S, Miyakawa T. Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain 2008; 1:6. [PMID: 18803808 PMCID: PMC2562999 DOI: 10.1186/1756-6606-1-6] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 09/10/2008] [Indexed: 01/01/2023] Open
Abstract
Elucidating the neural and genetic factors underlying psychiatric illness is hampered by current methods of clinical diagnosis. The identification and investigation of clinical endophenotypes may be one solution, but represents a considerable challenge in human subjects. Here we report that mice heterozygous for a null mutation of the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha-CaMKII+/-) have profoundly dysregulated behaviours and impaired neuronal development in the dentate gyrus (DG). The behavioral abnormalities include a severe working memory deficit and an exaggerated infradian rhythm, which are similar to symptoms seen in schizophrenia, bipolar mood disorder and other psychiatric disorders. Transcriptome analysis of the hippocampus of these mutants revealed that the expression levels of more than 2000 genes were significantly changed. Strikingly, among the 20 most downregulated genes, 5 had highly selective expression in the DG. Whereas BrdU incorporated cells in the mutant mouse DG was increased by more than 50 percent, the number of mature neurons in the DG was dramatically decreased. Morphological and physiological features of the DG neurons in the mutants were strikingly similar to those of immature DG neurons in normal rodents. Moreover, c-Fos expression in the DG after electric footshock was almost completely and selectively abolished in the mutants. Statistical clustering of human post-mortem brains using 10 genes differentially-expressed in the mutant mice were used to classify individuals into two clusters, one of which contained 16 of 18 schizophrenic patients. Nearly half of the differentially-expressed probes in the schizophrenia-enriched cluster encoded genes that are involved in neurogenesis or in neuronal migration/maturation, including calbindin, a marker for mature DG neurons. Based on these results, we propose that an "immature DG" in adulthood might induce alterations in behavior and serve as a promising candidate endophenotype of schizophrenia and other human psychiatric disorders.
Collapse
Affiliation(s)
- Nobuyuki Yamasaki
- Frontier Technology Center, Kyoto University Graduate School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Iida T, Egusa H, Saeki M, Yatani H, Kamisaki Y. PICK1 binds to calcineurin B and modulates the NFAT activity in PC12 cells. Biochem Biophys Res Commun 2008; 375:655-9. [PMID: 18755154 DOI: 10.1016/j.bbrc.2008.08.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/18/2008] [Indexed: 12/30/2022]
Abstract
In the central nervous system, calcineurin has been implicated in a number of Ca2+-sensitive pathways, including the regulation of neurotransmitter release and modulation of synaptic plasticity. PDZ domain-containing proteins also play an important role in the targeting and clustering of synaptic proteins. Using a yeast two-hybrid screen, we herein identified the PDZ domain-containing protein PICK1 as a specific interactor of calcineurin B. The interaction of calcineurin B and PICK1 was confirmed by GST pull-down assay in HEK293 cells and immunoprecipitation using rat brain lysate. Calcineurin B contains the consensus C-terminal peptide sequence required for interacting with the PDZ domain. The deletion of this sequence was sufficient to abolish the interaction between calcineurin B and PICK1. In addition, the knockdown of PICK1 by RNA interference inhibited the calcineurin-dependent activation of NFAT in PC12 cells. These results suggest that PICK1 may be a positive regulator of calcineurin in the central nervous system.
Collapse
Affiliation(s)
- Tsutomu Iida
- Department of Pharmacology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
117
|
Cattaneo D, Baldelli S, Perico N. Pharmacogenetics of immunosuppressants: progress, pitfalls and promises. Am J Transplant 2008; 8:1374-83. [PMID: 18510642 DOI: 10.1111/j.1600-6143.2008.02263.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Most of the immunosuppressants used in organ transplantation are characterized by a narrow therapeutic index, whereby underdosing is associated with increased risk of rejection episodes and overdosing may exacerbate drug-related toxicity. Pharmacogenetics--complementary to pharmacokinetics--holds the potential to allow individualized dosing of immunosuppressive agents to optimize their therapeutic actions while minimizing adverse effects. Most of the studies have focused on polymorphisms of genes involved in drug metabolism and distribution, but as of now, only thiopurine-S-methyltransferase and cytochrome P 450 3A5 genotypes appear to have sufficiently large influence to have potentialities in guiding drug dosing. This may reflect the fact that available information from other polymorphisms derives almost exclusively from retrospective observations or from studies with important methodological biases. Active investigations aimed at identifying allelic variants of gene encoding for the pharmacologic targets are now ongoing. Recent studies have demonstrated that also donor genotype may play a significant role in immunosuppressive drug pharmacokinetics and pharmacodynamics. As one of the main future tasks, it is mandatory to develop mathematical models able to incorporate multiple gene polymorphisms with pharmacokinetic data and other critical information, providing algorithms able to individualize the best immunosuppressive therapy for each patient before transplantation.
Collapse
Affiliation(s)
- D Cattaneo
- Department of Medicine and Transplantation, Azienda Ospedaliera Ospedali Riuniti, Bergamo and Mario Negri Institute for Pharmacological Research, Bergamo, Italy.
| | | | | |
Collapse
|
118
|
Murata M, Tsunoda M, Sumiyoshi T, Sumiyoshi C, Matsuoka T, Suzuki M, Ito M, Kurachi M. Calcineurin A gamma and B gene expressions in the whole blood in Japanese patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1000-4. [PMID: 18343007 DOI: 10.1016/j.pnpbp.2008.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/18/2008] [Accepted: 01/19/2008] [Indexed: 01/26/2023]
Abstract
Calcineurin (CaN) has been regarded as a candidate gene for vulnerability of schizophrenia. Although CaN gene expression has been investigated with postmortem brain specimens or in association studies, little information is available about CaN gene expression levels in peripheral sources. We obtained whole blood samples from 16 patients with schizophrenia and 16 controls, and total RNA was extracted. CaN A gamma and CaN B genes were analyzed by quantitative RT-PCR. In the patient group, expression levels of both genes were correlated with psychopathology, as measured by the Brief Psychiatric Rating Scale (BPRS), and neuroleptic dose. No significant differences in CaN A gamma or CaN B gene expression were observed between patients with schizophrenia and normal controls. Linear regression analysis revealed that the CaN A gamma gene expression level was associated with the BPRS score but not with neuroleptic dose. Neither of the clinical variables was associated with the CaN B gene expression level. The results of this study suggest that the CaN A gamma gene may be an effective predictor of the progression of psychosis. The effect of medications on expression of CaN genes requires further study.
Collapse
Affiliation(s)
- Masahiko Murata
- Department of Psychiatry, National Hokuriku Hospital, 5963 Nobusue, Nanto, Toyama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Colantuoni C, Hyde TM, Mitkus S, Joseph A, Sartorius L, Aguirre C, Creswell J, Johnson E, Deep-Soboslay A, Herman MM, Lipska BK, Weinberger DR, Kleinman JE. Age-related changes in the expression of schizophrenia susceptibility genes in the human prefrontal cortex. Brain Struct Funct 2008; 213:255-71. [PMID: 18470533 DOI: 10.1007/s00429-008-0181-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 04/06/2008] [Indexed: 12/31/2022]
Abstract
The molecular basis of complex neuropsychiatric disorders most likely involves many genes. In recent years, specific genetic variations influencing risk for schizophrenia and other neuropsychiatric disorders have been reported. We have used custom DNA microarrays and qPCR to investigate the expression of putative schizophrenia susceptibility genes and related genes of interest in the normal human brain. Expression of 31 genes was measured in Brodmann's area 10 (BA10) in the prefrontal cortex of 72 postmortem brain samples spanning half a century of human aging (18-67 years), each without history of neuropsychiatric illness, neurological disease, or drug abuse. Examination of expression across age allowed the identification of genes whose expression patterns correlate with age, as well as genes that share common expression patterns and that possibly participate in common cellular mechanisms related to the emergence of schizophrenia in early adult life. The expression of GRM3 and RGS4 decreased across the entire age range surveyed, while that of PRODH and DARPP-32 was shown to increase with age. NRG1, ERBB3, and NGFR show expression changes during the years of greatest risk for the development of schizophrenia. Expression of FEZ1, GAD1, and RGS4 showed especially high correlation with one another, in addition to the strongest mean levels of absolute correlation with all other genes studied here. All microarray data are available at NCBI's Gene Expression Omnibus: GEO Series accession number GSE11546 (http://www.ncbi.nlm.nih.gov/geo) [corrected]
Collapse
Affiliation(s)
- Carlo Colantuoni
- Clinical Brain Disorders Branch, Genes Cognition and Psychosis Program, IRP, NIMH, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Gallitano-Mendel A, Wozniak DF, Pehek EA, Milbrandt J. Mice lacking the immediate early gene Egr3 respond to the anti-aggressive effects of clozapine yet are relatively resistant to its sedating effects. Neuropsychopharmacology 2008; 33:1266-75. [PMID: 17637609 PMCID: PMC4621766 DOI: 10.1038/sj.npp.1301505] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immediate early genes (IEGs) of the early growth response gene (Egr) family are activated in the brain in response to stress, social stimuli, and administration of psycho-active medications. However, little is known about the role of these genes in the biological or behavioral response to these stimuli. Here we show that mice lacking the IEG transcription factor Egr3 (Egr3-/- mice) display increased aggression, and a decreased latency to attack, in response to the stressful social stimulus of a foreign intruder. Together with our findings of persistent and intrusive olfactory-mediated social investigation of conspecifics, these results suggest increased impulsivity in Egr3-/- mice. We also show that the aggression of Egr3-/- mice is significantly inhibited with chronic administration of the antipsychotic medication clozapine. Despite their sensitivity to this therapeutic effect of clozapine, Egr3-/- mice display a marked resistance to the sedating effects of acute clozapine compared with WT littermate controls. This indicates that the therapeutic, anti-aggressive action of clozapine is separable from its sedating activity, and that the biological abnormality resulting from loss of Egr3 distinguishes these different mechanisms. Thus Egr3-/- mice may provide an important tool for elucidating the mechanism of action of clozapine, as well as for understanding the biology underlying aggressive behavior. Notably, schizophrenia patients display a similar decreased susceptibility to the side effects of antipsychotic medications compared to non-psychiatric controls, despite the medications producing a therapeutic response. This suggests the possibility that Egr3-/- mice may provide insight into the neurobiological abnormalities underlying schizophrenia.
Collapse
Affiliation(s)
- Amelia Gallitano-Mendel
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
- Department of Basic Medical Sciences, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, USA
- Correspondence: Dr A Gallitano-Mendel, Department of Basic Medical Sciences, University of Arizona College of MedicineFPhoenix, 550 East Van Buren, Phoenix, AZ 85004-2230, USA, Tel: + 1 602 827 111, Fax: + 1 602 827 2144, or Dr J Milbrandt, Department of Pathology, Washington University School of Medicine, Campus Box 8118, St Louis, MO 63110, USA, Tel: + 1 314 362 4650, Fax: + 1 314 362 8756,
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Elizabeth A Pehek
- Departments of Psychiatry and Neurosciences, Case Western Reserve University and Louis Stokes Cleveland DVA Medical Center, Cleveland, OH, USA
| | - Jeffrey Milbrandt
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA
- Correspondence: Dr A Gallitano-Mendel, Department of Basic Medical Sciences, University of Arizona College of MedicineFPhoenix, 550 East Van Buren, Phoenix, AZ 85004-2230, USA, Tel: + 1 602 827 111, Fax: + 1 602 827 2144, or Dr J Milbrandt, Department of Pathology, Washington University School of Medicine, Campus Box 8118, St Louis, MO 63110, USA, Tel: + 1 314 362 4650, Fax: + 1 314 362 8756,
| |
Collapse
|
121
|
Millan MJ, Brocco M. Cognitive Impairment in Schizophrenia: a Review of Developmental and Genetic Models, and Pro-cognitive Profile of the Optimised D3 > D2 Antagonist, S33138. Therapie 2008; 63:187-229. [DOI: 10.2515/therapie:2008041] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2008] [Indexed: 01/23/2023]
|
122
|
Ye Q, Wang H, Zheng J, Wei Q, Jia Z. The complex structure of calmodulin bound to a calcineurin peptide. Proteins 2008; 73:19-27. [DOI: 10.1002/prot.22032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
123
|
Huang K, Shi Y, Tang W, Tang R, Guo S, Xu Y, Meng J, Li X, Feng G, He L. No association found between the promoter variants of ADRA1A and schizophrenia in the Chinese population. J Psychiatr Res 2008; 42:384-388. [PMID: 17408692 DOI: 10.1016/j.jpsychires.2007.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/10/2007] [Accepted: 02/01/2007] [Indexed: 11/17/2022]
Abstract
Schizophrenia is a chronic psychiatry disorder with a strong genetic component. A recent association study of alpha(1A)-adrenoceptor gene (ADRA1A) involving an isolated Spanish population, focusing on the promoter region of the ADRA1A, genotyped eight single SNPs at the promoter region of ADRA1A and found that two SNPs, -563G/A and -9625G/A, were associated with schizophrenia and schizoaffective disorders. We were interested in the two positive sites reported and selected five variants among the promoter region of ADRA1A, namely -563G/A, -9625G/A, -2760C/A, -4155G/C and a new substitution we detected between -508bp and -530bp upstream of the translation initiation site. Our sample consisted of 480 schizophrenia and 480 control subjects. All recruits were Han Chinese in Shanghai origin. However, neither individual SNP nor any haplotype was associated with schizophrenia in our study. These results suggest that the variants among the promoter of ADRA1A gene are unlikely to play a major role in the susceptibility to schizophrenia in the Chinese population.
Collapse
Affiliation(s)
- Ke Huang
- Bio-X Life Science Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Cheng MC, Liao DL, Hsiung CA, Chen CY, Liao YC, Chen CH. Chronic treatment with aripiprazole induces differential gene expression in the rat frontal cortex. Int J Neuropsychopharmacol 2008; 11:207-16. [PMID: 17868501 DOI: 10.1017/s1461145707008048] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Chronic treatment of antipsychotic drugs can modulate gene expression in the brain, which may underscore their clinical efficacy. Aripiprazole is the first approved antipsychotic drug of the class of dopamine D2 receptor partial agonist, which has been shown to have similar efficacy and favourable side-effects profile compared to other antipsychotic drugs. This study aimed to identify differential gene expression induced by chronic treatment of aripiprazole. We used microarray-based gene expression profiling technology, real-time quantitative PCR and Western blot analysis to identify differentially expressed genes in the frontal cortex of rats under 4 wk treatment of aripiprazole (10 mg/kg). We were able to detect ten up-regulated genes, including early growth response gene 1, 2, 4 (Egr1, Egr2, Egr4), chromobox homolog 7 (Cbx7), cannabinoid receptor (Cnr1), catechol-O-methyltransferase (Comt), protein phosphatase 2c, magnesium dependent (Ppm2c), tachykinin receptor 3 (Tacr3), Wiscott-Aldrich syndrome-like gene (Wasl) and DNA methyltransferase 3a (Dnmt3a). Our data indicate that chronic administration of aripiprazole can induce differential expression of genes involved in transcriptional regulation and chromatin remodelling and genes implicated in the pathogenesis of psychosis.
Collapse
Affiliation(s)
- Min-Chih Cheng
- Institute of Medical Sciences, Tzu-Chi University, Hualien City, Taiwan
| | | | | | | | | | | |
Collapse
|
125
|
Ossification of the posterior longitudinal ligament in dizygotic twins with schizophrenia: a case report. Mod Rheumatol 2008; 18:277-80. [PMID: 18306978 DOI: 10.1007/s10165-008-0036-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
Abstract
The pathogenesis of ossification of the posterior longitudinal ligaments (OPLL) has not been clarified. We here report dizygotic twin sisters with OPLL of the cervical spine and propose a new pathogenesis of OPLL. This is the first report of dizygotic twins with OPLL. The twins suffered from schizophrenia, which might be related to the pathogenesis of OPLL. In addition, we investigated the occurrence of OPLL in 30 patients with schizophrenia who had been admitted to a mental hospital. OPLL of the cervical spine was found in six (20%) of them, with an incidence almost five times higher than the incidence of OPLL among the general population in Japan. Schizophrenia may have a increased susceptibility to OPLL.
Collapse
|
126
|
Herzog CJ, Miot S, Mansuy IM, Giros B, Tzavara ET. Chronic valproate normalizes behavior in mice overexpressing calcineurin. Eur J Pharmacol 2008; 580:153-60. [DOI: 10.1016/j.ejphar.2007.10.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 10/12/2007] [Accepted: 10/18/2007] [Indexed: 11/28/2022]
|
127
|
Mathieu F, Miot S, Etain B, El Khoury MA, Chevalier F, Bellivier F, Leboyer M, Giros B, Tzavara ET. Association between the PPP3CC gene, coding for the calcineurin gamma catalytic subunit, and bipolar disorder. Behav Brain Funct 2008; 4:2. [PMID: 18201382 PMCID: PMC2267477 DOI: 10.1186/1744-9081-4-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 01/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calcineurin is a neuron-enriched phosphatase that regulates synaptic plasticity and neuronal adaptation. Activation of calcineurin, overall, antagonizes the effects of the cyclic AMP activated protein/kinase A. Thus, kinase/phosphatase dynamic balance seems to be critical for transition to long-term cellular responses in neurons, and disruption of this equilibrium should induce behavioral impairments in animal models. Genetic animal models, as well as post-mortem studies in humans have implicated calcineurin dependent calcium and cyclic AMP regulated phosphorylation/dephosphorylation in both affective responses and psychosis. Recently, genetic association between schizophrenia and genetic variation of the human calcineurin A gamma subunit gene (PPP3CC) has been reported. METHODS Based on the assumption of the common underlying genetic factor in schizophrenia and bipolar affective disorder (BPAD), we performed association analysis of CC33 and CCS3 polymorphisms of the PPP3CC gene reported to be associated with schizophrenia in a French sample of 115 BPAD patients and 97 healthy controls. RESULTS Carrying 'CT' or 'TT' genotypes of the PPP3CC-CC33 polymorphism increased risk to develop BPAD comparing to carry 'CC' genotype (OR = 1.8 [1.01-3.0]; p = 0.05). For the PPP3CC-CCS3 polymorphism, 'AG' or 'GG' carriers have an increased risk to develop BPAD than 'AA' carriers (OR = 2.8 [1.5-5.2]). The CC33 and CCS3 polymorphisms were observed in significant linkage disequilibrium (D' = 0.91, r2 = 0.72). Haplotype frequencies were significantly different in BPAD patients than in controls (p = 0.03), with a significant over-transmission of the 'TG' haplotype in BPAD patients (p = 0.001). CONCLUSION We suggest that the PPP3CC gene might be a susceptibility gene for BPAD, in accordance with current neurobiological hypotheses that implicate dysregulation of signal-transduction pathways, such as those regulated by calcineurin, in the etiology of affective disorders.
Collapse
Affiliation(s)
- Flavie Mathieu
- INSERM U-513, Faculté de Médecine, 8 rue de Général Sarrail, 94000, Créteil, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Hayashi T, Su TP. An update on the development of drugs for neuropsychiatric disorders: focusing on the sigma 1 receptor ligand. Expert Opin Ther Targets 2008; 12:45-58. [PMID: 18076369 DOI: 10.1517/14728222.12.1.45] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The sigma1 receptor is an intracellular molecule that shares no homology with any mammalian proteins. sigma1 receptors normally localize at the endoplasmic reticulum and regulate a variety of signal transductions including intracellular Ca2+ dynamics and neurotrophic factor signaling. In the brain, sigma1 receptors are known to regulate the activity of diverse ion channels via protein-protein interactions. Accumulated evidences strongly indicate that the activation/upregulation of sigma1 receptors promotes the neuronal differentiation as well as a robust antiapoptotic action. In animals, sigma1 receptor agonists exhibit an antidepressant-like action. Furthermore, the agonists enhanced neuronal survival eventhough they were administered several hours after a brain ischemia. Thus, primary clinical targets of sigma1 receptor ligands are proposed to include stroke, neurodegenerative disorders and depression. Ligands for the sigma1 receptor may constitute a new class of therapeutic drugs targeting an endoplasmic reticular protein.
Collapse
Affiliation(s)
- Teruo Hayashi
- IRP, NIDA-NIH, Cellular Pathobiology Unit, Development and Plasticity Section, Cellular Neurobiology Research Branch, Room 3418, Triad building, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
129
|
Abstract
Experiences, whether they be learning in a classroom, a stressful event, or ingestion of a psychoactive substance, impact the brain by modifying the activity and organization of specific neural circuitry. A major mechanism by which the neural activity generated by an experience modifies brain function is via modifications of synaptic transmission; that is, synaptic plasticity. Here, we review current understanding of the mechanisms of the major forms of synaptic plasticity at excitatory synapses in the mammalian brain. We also provide examples of the possible developmental and behavioral functions of synaptic plasticity and how maladaptive synaptic plasticity may contribute to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ami Citri
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University School of Medicine, Palo Alto, CA 94304-5485, USA
| | | |
Collapse
|
130
|
|
131
|
Zaninetti R, Tacchi S, Erriquez J, Distasi C, Maggi R, Cariboni A, Condorelli F, Canonico PL, Genazzani AA. Calcineurin primes immature gonadotropin-releasing hormone-secreting neuroendocrine cells for migration. Mol Endocrinol 2007; 22:729-36. [PMID: 18032695 DOI: 10.1210/me.2007-0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During development, many neurons display calcium-dependent migration, but the role of this messenger in regulating gene expression leading to this event has not yet been elucidated. Among the decoders of calcium signals is calcineurin, a Ca(2+)/calmodulin serine/threonine phosphatase that has been involved in both short-term and long-term cellular changes. By using immortalized GnRH-secreting neurons, we now show that, in vitro, Ca(2+)-dependent gene expression, proceeding via calcineurin and the transcription factor nuclear factor of activated T cells, is a key player controlling the chemomigratory potential of developing GnRH-secreting neurons. Furthermore, our data highlight the switch nature of this phosphatase, whose activation or inactivation guides cells to proceed from one genetic program to the next.
Collapse
Affiliation(s)
- R Zaninetti
- Dipartimento di Scienze Chimiche, Alimentari, Farmaceutiche e Farmacologiche and Drug and Food Biotechnology Center, Università degli Studi del Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Liu YL, Fann CSJ, Liu CM, Chang CC, Yang WC, Hung SI, Yu SL, Hwang TJ, Hsieh MH, Liu CC, Tsuang MM, Wu JY, Jou YS, Faraone SV, Tsuang MT, Chen WJ, Hwu HG. More evidence supports the association of PPP3CC with schizophrenia. Mol Psychiatry 2007; 12:966-74. [PMID: 17339875 DOI: 10.1038/sj.mp.4001977] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcineurin is a calcium/calmodulin-dependent protein phosphatase composed of two subunits, a regulatory subunit of calcineurin B (CNB) and a catalytic subunit of calcineurin A (CNA). PPP3CC is the gamma isoform of CNA located at the chromosome 8p21.3 region. To evaluate the association between PPP3CC and schizophrenia in the Taiwanese population, 10 single nucleotide polymorphism (SNP) markers across the gene were genotyped by the method of MALDI-TOF in 218 schizophrenia families with at least two affected siblings. One SNP (rs2272080) located around the exon 1 untranslated region was nominally associated with schizophrenia (P=0.024) and significantly associated with the expression of PPP3CC in lymphoblast cell line; the TT and TG genotype had significantly higher relative expression levels than the GG genotype (P=0.0012 and 0.015, respectively). In further endophenotype stratification, the single locus of rs2272080 and the haplotypes of both two-SNP haplotype (rs7833266-rs2272080) and seven-SNP haplotype (rs2461491-rs2469758-rs2461489-rs2469770-rs2449340-rs1482337-rs2252471) showed significant associations with the subgroup of schizophrenia with deficits of the sustained attention as tested by the continuous performance test (CPT, P<0.05) and the executive functioning as tested by the Wisconsin Card Sorting Test (WCST, P<0.05). The results suggest that PPP3CC gene may be a true susceptibility gene for schizophrenia.
Collapse
Affiliation(s)
- Y L Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Horiuchi Y, Ishiguro H, Koga M, Inada T, Iwata N, Ozaki N, Ujike H, Muratake T, Someya T, Arinami T. Support for association of the PPP3CC gene with schizophrenia. Mol Psychiatry 2007; 12:891-3. [PMID: 17895921 DOI: 10.1038/sj.mp.4002019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
134
|
Abstract
This article summarizes the rationale, methods, and results of gene discovery programs in schizophrenia research and describes functional methods of investigating potential candidate genes. It focuses next on the most prominent current candidate genes and describes (1) evidence for their association with schizophrenia and research into the function of each gene; (2) investigation of the clinical phenotypes and endophenotypes associated with each gene, at the levels of psychopathologic, neurocognitive, electrophysiologic, neuroimaging, and neuropathologic findings; and (3) research into the ethologic, cognitive, social, and psychopharmacologic phenotype of mutants with targeted deletion of each gene. It examines gene-gene and gene-environment interactions. Finally, it looks at future directions for research.
Collapse
|
135
|
Hu JX, Yu L, Shi YY, Zhao XZ, Meng JW, He G, Xu YF, Feng GY, He L. An association study between PPP1R1B gene and schizophrenia in the Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:1303-1306. [PMID: 17618027 DOI: 10.1016/j.pnpbp.2007.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/29/2007] [Accepted: 05/29/2007] [Indexed: 12/11/2022]
Abstract
Schizophrenia has been linked with dysfunctions of glutamatergic, dopaminergic, and serotonergic neurotransmission. Dopamine- and cAMP-regulated phosphoprotein of relative molecular mass 32 kDa (DARPP-32), encoded by PPP1R1B (protein phosphatase 1, regulatory/inhibitor subunit 1B) gene, is enriched in neostriatal medium spiny neurons. It plays a key regulator role in dopaminergic and glutamatergic signaling pathways. The combined evidence from reduced DARPP-32 expression in the dorsolateral prefrontal cortex (DLPFC) in schizophrenic patients and from abnormalities in mice with a genetic deletion of DARPP-32 or with point mutations in phosphorylation sites of DARPP-32 suggested that it would be worthwhile to investigate the association between DARPP-32 and schizophrenia. In the present study, we genotyped five single nucleotide polymorphisms (SNPs) in the PPP1R1B gene and conducted a case-control study involving 520 schizophrenic patients and 386 healthy subjects drawn from the Chinese population. No allelic, genotypic or haplotypic association was found. However, our results do not preclude the possibility that the PPP1R1B is a susceptibility gene for schizophrenia in the Chinese population, since, as a central molecular switch, PPP1R1B may contribute to schizophrenia by interacting with other genes. Further functional analysis and genetic association studies are needed to determine the potential roles of PPP1R1B and other related genes in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Jian-Xin Hu
- Bio-X Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Agbas A, Hui D, Wang X, Tek V, Zaidi A, Michaelis E. Activation of brain calcineurin (Cn) by Cu-Zn superoxide dismutase (SOD1) depends on direct SOD1-Cn protein interactions occurring in vitro and in vivo. Biochem J 2007; 405:51-9. [PMID: 17324120 PMCID: PMC1925239 DOI: 10.1042/bj20061202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cn (calcineurin) activity is stabilized by SOD1 (Cu-Zn superoxide dismutase), a phenomenon attributed to protection from superoxide (O2*-). The effects of O2*- on Cn are still controversial. We found that O2*-, generated either in vitro or in vivo did not affect Cn activity. Yet native bovine, recombinant human or rat, and two chimaeras of human SOD1-rat SOD1, all activated Cn, but SOD2 (Mn-superoxide dismutase) did not affect Cn activity. There was also a poor correlation between SOD1 dismutase activity and Cn activation. A chimaera of human N-terminal SOD1 and rat C-terminal SOD1 had little detectable dismutase activity, yet stimulated Cn activity the same as full-length human or rat SOD1. Nevertheless, there was evidence that the active site of SOD1 was involved in Cn activation based on the loss of activation following chelation of Cu from the active site of SOD1. Also, SOD1 engaged in the catalysis of O2*- dismutation was ineffective in activating Cn. SOD1 activation of Cn resulted from a 90-fold decrease in phosphatase K(m) without a change in V(max). A possible mechanism for the activation of Cn was identified in our studies as the prevention of Fe and Zn losses from the active site of Cn, suggesting a conformation-dependent SOD1-Cn interaction. In neurons, SOD1 and Cn were co-localized in cytoplasm and membranes, and SOD1 co-immunoprecipitated with Cn from homogenates of brain hippocampus and was present in immunoprecipitates as large multimers. Pre-incubation of pure SOD1 with Cn caused SOD1 multimer formation, an indication of an altered conformational state in SOD1 upon interaction with Cn.
Collapse
Affiliation(s)
- Abdulbaki Agbas
- Department of Pharmacology and Toxicology and Center for Neurobiology and Immunology Research, University of Kansas, Lawrence, KS 66045, U.S.A
| | - Dongwei Hui
- Department of Pharmacology and Toxicology and Center for Neurobiology and Immunology Research, University of Kansas, Lawrence, KS 66045, U.S.A
| | - Xinsheng Wang
- Department of Pharmacology and Toxicology and Center for Neurobiology and Immunology Research, University of Kansas, Lawrence, KS 66045, U.S.A
| | - Vekalet Tek
- Department of Pharmacology and Toxicology and Center for Neurobiology and Immunology Research, University of Kansas, Lawrence, KS 66045, U.S.A
| | - Asma Zaidi
- Department of Pharmacology and Toxicology and Center for Neurobiology and Immunology Research, University of Kansas, Lawrence, KS 66045, U.S.A
| | - Elias K. Michaelis
- Department of Pharmacology and Toxicology and Center for Neurobiology and Immunology Research, University of Kansas, Lawrence, KS 66045, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
137
|
Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 2007; 8:413-26. [PMID: 17514195 DOI: 10.1038/nrn2153] [Citation(s) in RCA: 876] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The number and subunit composition of synaptic N-methyl-D-aspartate receptors (NMDARs) are not static, but change in a cell- and synapse-specific manner during development and in response to neuronal activity and sensory experience. Neuronal activity drives not only NMDAR synaptic targeting and incorporation, but also receptor retrieval, differential sorting into the endosomal-lysosomal pathway and lateral diffusion between synaptic and extrasynaptic sites. An emerging concept is that activity-dependent, bidirectional regulation of NMDAR trafficking provides a dynamic and potentially powerful mechanism for the regulation of synaptic efficacy and remodelling, which, if dysregulated, can contribute to neuropsychiatric disorders such as cocaine addiction, Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- C Geoffrey Lau
- Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
138
|
Yamada K, Yoshikawa T. From the EGR gene family to common pathways in schizophrenia: single genes versus convergent pathways. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.4.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Kazuo Yamada
- RIKEN Brain Science Institute, Laboratory for Molecular Psychiatry, Wako, Saitama 351-0198, Japan
| | - Takeo Yoshikawa
- RIKEN Brain Science Institute, Laboratory for Molecular Psychiatry, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| |
Collapse
|
139
|
Takao K, Yamasaki N, Miyakawa T. Impact of brain-behavior phenotypying of genetically-engineered mice on research of neuropsychiatric disorders. Neurosci Res 2007; 58:124-32. [PMID: 17524507 DOI: 10.1016/j.neures.2007.02.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/11/2007] [Accepted: 02/13/2007] [Indexed: 11/30/2022]
Abstract
Despite massive research efforts, the exact pathogenesis and pathophysiology of psychiatric disorders, such as schizophrenia and bipolar disorder, remain largely unknown. Animal models can serve as essential tools for investigating the etiology and treatment of such disorders. Since the introduction of gene targeting techniques, the functions of more than 10% of all known mouse genes have been investigated by creating mutant mice. Some of these mutant mouse strains were found to exhibit behavioral abnormalities reminiscent of human psychiatric disorders. In this review, we discuss the general requirements for animal models of human psychiatric disorders. We also outline our unique approach of extrapolating findings in mice to humans, and present studies on forebrain-specific calcineurin knockout mice as an example. We also discuss the impact of a large-scale mouse phenotyping on studies of psychiatric disorders and the potential utility of an "animal-model-array" of psychiatric disorders for the development of suitable therapeutic agents.
Collapse
Affiliation(s)
- Keizo Takao
- Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
140
|
Bjarnadottir M, Misner DL, Haverfield-Gross S, Bruun S, Helgason VG, Stefansson H, Sigmundsson A, Firth DR, Nielsen B, Stefansdottir R, Novak TJ, Stefansson K, Gurney ME, Andresson T. Neuregulin1 (NRG1) signaling through Fyn modulates NMDA receptor phosphorylation: differential synaptic function in NRG1+/- knock-outs compared with wild-type mice. J Neurosci 2007; 27:4519-29. [PMID: 17460065 PMCID: PMC6672983 DOI: 10.1523/jneurosci.4314-06.2007] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We previously identified Neuregulin1 (NRG1) as a gene contributing to the risk of developing schizophrenia. Furthermore, we showed that NRG1+/- mutant mice display behavioral abnormalities that are reversed by clozapine, an atypical antipsychotic drug used for the treatment of schizophrenia. We now present evidence that ErbB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4), the tyrosine kinase receptor for NRG1 in hippocampal neurons, interacts with two nonreceptor tyrosine kinases, Fyn and Pyk2 (proline-rich tyrosine kinase 2). NRG1 stimulation of cells expressing ErbB4 and Fyn leads to the association of Fyn with ErbB4 and consequent activation. Furthermore, we show that NRG1 signaling, through activation of Fyn and Pyk2 kinases, stimulates phosphorylation of Y1472 on the NR2B subunit of the NMDA receptor (NMDAR), a key regulatory site that modulates channel properties. NR2B Y1472 is hypophosphorylated in NRG1+/- mutant mice, and this defect can be reversed by clozapine at a dose that reverses their behavioral abnormalities. We also demonstrate that short-term synaptic plasticity is altered and theta-burst long-term potentiation is impaired in NRG1+/- mutant mice, and incubation of hippocampal slices from these mice with NRG1 reversed those effects. Attenuated NRG1 signaling through ErbB4 may contribute to the pathophysiology of schizophrenia through dysfunction of NMDAR modulation. Thus, our data support the glutamate hypothesis of schizophrenia.
Collapse
|
141
|
Anantharam V, Lehrmann E, Kanthasamy A, Yang Y, Banerjee P, Becker KG, Freed WJ, Kanthasamy AG. Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: relevance to oxidative damage in Parkinson's disease. Neurochem Int 2007; 50:834-47. [PMID: 17397968 PMCID: PMC1950670 DOI: 10.1016/j.neuint.2007.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 01/18/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Oxidative stress and apoptotic cell death have been implicated in the dopaminergic cell loss that characterizes Parkinson's disease. While factors contributing to apoptotic cell death are not well characterized, oxidative stress is known to activate an array of cell signaling molecules that participate in apoptotic cell death mechanisms. We investigated oxidative stress-induced cytotoxicity of hydrogen peroxide (H2O2) in three cell lines, the dopaminergic mesencephalon-derived N27 cell line, the GABAergic striatum-derived M213-20 cell line, and the hippocampal HN2-5 cell line. N27 cells were more sensitive to H2O2-induced cell death than M213-20 and HN2-5 cells. H2O2 induced significantly greater increases in caspase-3 activity in N27 cells than in M213-20 cells. H2O2-induced apoptotic cell death in N27 cells was mediated by caspase-3-dependent proteolytic activation of PKCdelta. Gene expression microarrays were employed to examine the specific transcriptional changes in N27 cells exposed to 100 microM H2O2 for 4 h. Changes in genes encoding pro- or anti-apoptotic proteins included up-regulation of BIK, PAWR, STAT5B, NPAS2, Jun B, MEK4, CCT7, PPP3CC, and PSDM3, while key down-regulated genes included BNIP3, NPTXR, RAGA, STK6, YWHAH, and MAP2K1. Overall, the changes indicate a modulation of transcriptional activity, chaperone activity, kinase activity, and apoptotic activity that appears highly specific, coordinated and relevant to cell survival. Utilizing this in vitro model to identify novel oxidative stress-regulated genes may be useful in unraveling the molecular mechanisms underlying dopaminergic degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Elin Lehrmann
- Cellular Neurobiology Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Arthi Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Yongjie Yang
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Probal Banerjee
- City University of New York Staten Island, Department of Chemistry and Neuroscience Program, Staten Island, NY, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, Research Resources Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - William J. Freed
- Cellular Neurobiology Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Anumantha G. Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
142
|
Abstract
PURPOSE OF REVIEW The field of molecular genetics has now provided new technology to discover causes, mechanisms and targets for the development of treatments for even the complex inherited disorders, such as schizophrenia and other major psychiatric diseases. RECENT FINDINGS As of the end of the year 2006, schizophrenia research has advanced a long way from epidemiological family surveys to examining the sequenced whole human genome. SUMMARY Whether entering a new era of the genome will lead to prevention and/or cures will depend on our ability to make sense of the many positive and confusing findings that are now emerging, several of which will not stand the test of time. Going beyond genetic linkage and association studies to pathways, mechanisms and what changes gene expression will be the key.
Collapse
|
143
|
Yamada K, Gerber DJ, Iwayama Y, Ohnishi T, Ohba H, Toyota T, Aruga J, Minabe Y, Tonegawa S, Yoshikawa T. Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia. Proc Natl Acad Sci U S A 2007; 104:2815-20. [PMID: 17360599 PMCID: PMC1815264 DOI: 10.1073/pnas.0610765104] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Indexed: 01/05/2023] Open
Abstract
The calcineurin cascade is central to neuronal signal transduction, and genes in this network are intriguing candidate schizophrenia susceptibility genes. To replicate and extend our previously reported association between the PPP3CC gene, encoding the calcineurin catalytic gamma-subunit, and schizophrenia, we examined 84 SNPs from 14 calcineurin-related candidate genes for genetic association by using 124 Japanese schizophrenic pedigrees. Four of these genes (PPP3CC, EGR2, EGR3, and EGR4) showed nominally significant association with schizophrenia. In a postmortem brain study, EGR1, EGR2, and EGR3 transcripts were shown to be down-regulated in the prefrontal cortex of schizophrenic, but not bipolar, patients. These findings raise a potentially important role for EGR genes in schizophrenia pathogenesis. Because EGR3 is an attractive candidate gene based on its chromosomal location close to PPP3CC within 8p21.3 and its functional link to dopamine, glutamate, and neuregulin signaling, we extended our analysis by resequencing the entire EGR3 genomic interval and detected 15 SNPs. One of these, IVS1 + 607A-->G SNP, displayed the strongest evidence for disease association, which was confirmed in 1,140 independent case-control samples. An in vitro promoter assay detected a possible expression-regulatory effect of this SNP. These findings support the previous genetic association of altered calcineurin signaling with schizophrenia pathogenesis and identify EGR3 as a compelling susceptibility gene.
Collapse
Affiliation(s)
| | - David J. Gerber
- Howard Hughes Medical Institute and RIKEN–MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | | | - Jun Aruga
- Comparative Neural Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshio Minabe
- Laboratories for *Molecular Psychiatry and
- Department of Psychiatry and Neurology, Kanazawa University School of Medicine, Ishikawa 920-8641, Japan; and
| | - Susumu Tonegawa
- Howard Hughes Medical Institute and RIKEN–MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Takeo Yoshikawa
- Laboratories for *Molecular Psychiatry and
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
144
|
Crozatier C, Farley S, Mansuy IM, Dumas S, Giros B, Tzavara ET. Calcineurin (protein phosphatase 2B) is involved in the mechanisms of action of antidepressants. Neuroscience 2007; 144:1470-6. [PMID: 17207580 DOI: 10.1016/j.neuroscience.2006.11.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 10/23/2022]
Abstract
Calcineurin (PP2B) is a Ca(2+)-dependent protein phosphatase enriched in the brain that takes part in intracellular signaling pathways regulating synaptic plasticity and neuronal functions. Calcineurin-dependent pathways are important for complex brain functions such as learning and memory. More recently, they have been suggested to play a role in the processing of emotional information. The aim of this study was to investigate whether calcineurin may be involved in the effect of antidepressants. We first found that chronic antidepressant treatment in mice leads to an increase of calcineurin levels in the hippocampus. We then studied the behavioral and molecular responses to fluoxetine of mice with a genetic overactivation of calcineurin in the hippocampus (constitutively-activated calcineurin transgenic mouse line #98, CN98 mice). We observed that CN98 mice are more sensitive to the behavioral effect of fluoxetine and desipramine tested in the tail suspension test. Moreover, the basal expression of growth factor brain-derived neurotrophic factor and subunit 1 of AMPA glutamate receptor, GluR1, both of which are modified after chronic antidepressant administration, are altered in the hippocampus of CN98 mice. These results suggest that calcineurin-dependent dephosphorylation plays an important role in the mechanisms of action of antidepressants, providing a new starting point for developing improved therapeutic treatments for depression.
Collapse
Affiliation(s)
- C Crozatier
- INSERM U-513, 8 rue de Général Sarrail, 94000 Créteil, France
| | | | | | | | | | | |
Collapse
|
145
|
Xi Z, Yu L, Shi Y, Zhang J, Zheng Y, He G, He L, Wei Q, Yao W, Zhang K, Gu N, Feng G, Zhu S. No association between PPP3CC and schizophrenia in the Chinese population. Schizophr Res 2007; 90:357-9. [PMID: 17141475 DOI: 10.1016/j.schres.2006.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 10/08/2006] [Accepted: 10/16/2006] [Indexed: 11/19/2022]
|
146
|
Gogos JA. Schizophrenia susceptibility genes: in search of a molecular logic and novel drug targets for a devastating disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 78:397-422. [PMID: 17349868 DOI: 10.1016/s0074-7742(06)78013-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a devastating psychiatric disorder that affects approximately one percent of the population worldwide. We argue that the efforts to decipher the genetic causes of schizophrenia have reached another turning point and describe evidence supporting some of the major recent genetic findings in the field. In addition, we identify some general areas of caution in the interpretation of these findings and addresses the promise this recently acquired knowledge holds for the generation of reliable animal models, characterization of genetic interactions, dissection of the disease pathophysiology and development of novel, mechanism-based treatments for the patients.
Collapse
Affiliation(s)
- Joseph A Gogos
- Department of Physiology and Cellular Biophysics, and Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| |
Collapse
|
147
|
McNamara RK, Ostrander M, Abplanalp W, Richtand NM, Benoit SC, Clegg DJ. Modulation of phosphoinositide-protein kinase C signal transduction by omega-3 fatty acids: implications for the pathophysiology and treatment of recurrent neuropsychiatric illness. Prostaglandins Leukot Essent Fatty Acids 2006; 75:237-57. [PMID: 16935483 DOI: 10.1016/j.plefa.2006.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The phosphoinositide (PI)-protein kinase C (PKC) signal transduction pathway is initiated by pre- and postsynaptic Galphaq-coupled receptors, and regulates several clinically relevant neurochemical events, including neurotransmitter release efficacy, monoamine receptor function and trafficking, monoamine transporter function and trafficking, axonal myelination, and gene expression. Mounting evidence for PI-PKC signaling hyperactivity in the peripheral (platelets) and central (premortem and postmortem brain) tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, coupled with evidence that PI-PKC signal transduction is down-regulated in rat brain following chronic, but not acute, treatment with antipsychotic, mood-stabilizer, and antidepressant medications, suggest that PI-PKC hyperactivity is central to an underlying pathophysiology. Evidence that membrane omega-3 fatty acids act as endogenous antagonists of the PI-PKC signal transduction pathway, coupled with evidence that omega-3 fatty acid deficiency is observed in peripheral and central tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, support the hypothesis that omega-3 fatty acid deficiency may contribute to elevated PI-PKC activity in these illnesses. The data reviewed in this paper outline a potential molecular mechanism by which omega-3 fatty acids could contribute to the pathophysiology and treatment of recurrent neuropsychiatric illness.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0559, USA.
| | | | | | | | | | | |
Collapse
|
148
|
Abstract
Mouse models that recapitulate the full phenotypic spectrum of a psychiatric disorder, such as schizophrenia, are impossible. However, a more piecemeal recreation of phenotypic components is feasible and promises to harness the power of animal models using approaches that are either off limits or confounded by drug treatment in humans. In that context, animal models will have a central and indispensable role in the process of discovering the causes of psychiatric disorders and generating novel, mechanism-based treatments. Here, we discuss current approaches used to generate animal models of psychiatric disorders, address the different components of these disorders that can be modeled in animals, and describe currently available analytical tools. We also discuss accumulating empirical data and take an in-depth look at what we believe to be the future of animal models made possible by recent advances in psychiatric genetics.
Collapse
Affiliation(s)
- P Alexander Arguello
- Center for Neurobiology and Behavior, Columbia University Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
149
|
Translational and developmental perspective on N-methyl-D-aspartate synaptic deficits in schizophrenia. Dev Psychopathol 2006. [DOI: 10.1017/s0954579406060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
150
|
Fernandes C, Hoyle E, Dempster E, Schalkwyk LC, Collier DA. Performance deficit of α7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory. GENES BRAIN AND BEHAVIOR 2006; 5:433-40. [PMID: 16923147 DOI: 10.1111/j.1601-183x.2005.00176.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Patients with schizophrenia exhibit deficits in a range of cognitive functions, particularly working and episodic memory, which are thought to be core features of the disorder. Memory dysfunction in schizophrenia is familial and thus a promising endophenotype for genetic studies. Both human and animal studies suggest a role for the neural nicotinic acid receptor family in cognition and specifically the alpha7-receptor subunit in schizophrenia and its endophenotypes. Consequently, we tested mice lacking the alpha7 subunit of the neural nicotinic receptor (B6.129S7-Chrna7(tm1Bay)/J) in the delayed matching-to-place (DMP) task of the Morris water maze, a measure of working/episodic memory akin to human episodic memory. We report that a minor impairment in alpha7 knockout mice was observed in the DMP task, with knockout mice taking longer to find the hidden platform than their wildtype controls. This suggests a role for the alpha7 subunit in working/episodic memory and a potential role for the alpha7 neural nicotinic receptor gene (CHRNA7) in schizophrenia and its endophenotypes.
Collapse
Affiliation(s)
- C Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, UK.
| | | | | | | | | |
Collapse
|