101
|
Shrestha S, Morcavallo A, Gorrini C, Chesler L. Biological Role of MYCN in Medulloblastoma: Novel Therapeutic Opportunities and Challenges Ahead. Front Oncol 2021; 11:694320. [PMID: 34195095 PMCID: PMC8236857 DOI: 10.3389/fonc.2021.694320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The constitutive and dysregulated expression of the transcription factor MYCN has a central role in the pathogenesis of the paediatric brain tumour medulloblastoma, with an increased expression of this oncogene correlating with a worse prognosis. Consequently, the genomic and functional alterations of MYCN represent a major therapeutic target to attenuate tumour growth in medulloblastoma. This review will provide a comprehensive synopsis of the biological role of MYCN and its family components, their interaction with distinct signalling pathways, and the implications of this network in medulloblastoma development. We will then summarise the current toolbox for targeting MYCN and highlight novel therapeutic avenues that have the potential to results in better-tailored clinical treatments.
Collapse
Affiliation(s)
- Sumana Shrestha
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Alaide Morcavallo
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Chiara Gorrini
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom.,Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), and The Royal Marsden NHS Trust, Sutton, United Kingdom
| |
Collapse
|
102
|
Zhang L, Xiong D, Liu Q, Luo Y, Tian Y, Xiao X, Sang Y, Liu Y, Hong S, Yu S, Li J, Lv W, Li Y, Tang Z, Liu R, Zhong Q, Xiao H. Genome-Wide Histone H3K27 Acetylation Profiling Identified Genes Correlated With Prognosis in Papillary Thyroid Carcinoma. Front Cell Dev Biol 2021; 9:682561. [PMID: 34179011 PMCID: PMC8226268 DOI: 10.3389/fcell.2021.682561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/14/2021] [Indexed: 12/19/2022] Open
Abstract
Thyroid carcinoma (TC) is the most common endocrine malignancy, and papillary TC (PTC) is the most frequent subtype of TC, accounting for 85–90% of all the cases. Aberrant histone acetylation contributes to carcinogenesis by inducing the dysregulation of certain cancer-related genes. However, the histone acetylation landscape in PTC remains elusive. Here, we interrogated the epigenomes of PTC and benign thyroid nodule (BTN) tissues by applying H3K27ac chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) along with RNA-sequencing. By comparing the epigenomic features between PTC and BTN, we detected changes in H3K27ac levels at active regulatory regions, identified PTC-specific super-enhancer-associated genes involving immune-response and cancer-related pathways, and uncovered several genes that associated with disease-free survival of PTC. In summary, our data provided a genome-wide landscape of histone modification in PTC and demonstrated the role of enhancers in transcriptional regulations associated with prognosis of PTC.
Collapse
Affiliation(s)
- Luyao Zhang
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan Xiong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qian Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yiling Luo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuhan Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xi Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Sang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yihao Liu
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weiming Lv
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rengyun Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Zhong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
103
|
Vodnala M, Choi EB, Fong YW. Low complexity domains, condensates, and stem cell pluripotency. World J Stem Cells 2021; 13:416-438. [PMID: 34136073 PMCID: PMC8176841 DOI: 10.4252/wjsc.v13.i5.416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Biological reactions require self-assembly of factors in the complex cellular milieu. Recent evidence indicates that intrinsically disordered, low-complexity sequence domains (LCDs) found in regulatory factors mediate diverse cellular processes from gene expression to DNA repair to signal transduction, by enriching specific biomolecules in membraneless compartments or hubs that may undergo liquid-liquid phase separation (LLPS). In this review, we discuss how embryonic stem cells take advantage of LCD-driven interactions to promote cell-specific transcription, DNA damage response, and DNA repair. We propose that LCD-mediated interactions play key roles in stem cell maintenance and safeguarding genome integrity.
Collapse
Affiliation(s)
- Munender Vodnala
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Eun-Bee Choi
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yick W Fong
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Harvard Stem Cell Institute, Cambridge, MA 02138, United States.
| |
Collapse
|
104
|
Hogg SJ, Motorna O, Cluse LA, Johanson TM, Coughlan HD, Raviram R, Myers RM, Costacurta M, Todorovski I, Pijpers L, Bjelosevic S, Williams T, Huskins SN, Kearney CJ, Devlin JR, Fan Z, Jabbari JS, Martin BP, Fareh M, Kelly MJ, Dupéré-Richer D, Sandow JJ, Feran B, Knight D, Khong T, Spencer A, Harrison SJ, Gregory G, Wickramasinghe VO, Webb AI, Taberlay PC, Bromberg KD, Lai A, Papenfuss AT, Smyth GK, Allan RS, Licht JD, Landau DA, Abdel-Wahab O, Shortt J, Vervoort SJ, Johnstone RW. Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Mol Cell 2021; 81:2183-2200.e13. [PMID: 34019788 PMCID: PMC8183601 DOI: 10.1016/j.molcel.2021.04.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 01/19/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.
Collapse
Affiliation(s)
- Simon J Hogg
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olga Motorna
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; Monash Haematology, Monash Health, Clayton, 3168, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, 3800, Australia
| | - Leonie A Cluse
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Hannah D Coughlan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | | | - Robert M Myers
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Matteo Costacurta
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Izabela Todorovski
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Lizzy Pijpers
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Stefan Bjelosevic
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Tobias Williams
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Shannon N Huskins
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, 7000, Australia
| | - Conor J Kearney
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Jennifer R Devlin
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Zheng Fan
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Jafar S Jabbari
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
| | - Ben P Martin
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia
| | - Mohamed Fareh
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Madison J Kelly
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia
| | - Daphné Dupéré-Richer
- Division of Hematology/Oncology, The University of Florida Health Cancer Center, Gainesville, FL 32608, USA
| | - Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Breon Feran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Deborah Knight
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia
| | - Tiffany Khong
- Australian Center for Blood Diseases, Monash University, Melbourne, 3004, Australia
| | - Andrew Spencer
- Australian Center for Blood Diseases, Monash University, Melbourne, 3004, Australia
| | - Simon J Harrison
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; Clinical Hematology, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Royal Melbourne Hospital, Melbourne, 3000, Australia
| | - Gareth Gregory
- Monash Haematology, Monash Health, Clayton, 3168, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, 3800, Australia
| | - Vihandha O Wickramasinghe
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, 3000, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, 7000, Australia
| | - Kenneth D Bromberg
- Discovery, Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL 60064, USA
| | - Albert Lai
- Discovery, Global Pharmaceutical Research and Development, AbbVie, North Chicago, IL 60064, USA
| | - Anthony T Papenfuss
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Gordon K Smyth
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; School of Mathematics and Statistics, The University of Melbourne, Parkville, 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, 3010, Australia
| | - Jonathan D Licht
- Division of Hematology/Oncology, The University of Florida Health Cancer Center, Gainesville, FL 32608, USA
| | - Dan A Landau
- New York Genome Center, New York, NY 10013, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jake Shortt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia; Monash Haematology, Monash Health, Clayton, 3168, Australia; School of Clinical Sciences at Monash Health, Monash University, Clayton, 3800, Australia
| | - Stephin J Vervoort
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia.
| | - Ricky W Johnstone
- Translational Hematology Program, Gene Regulation Laboratory, Peter MacCallum Cancer Center, Melbourne, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3000, Australia.
| |
Collapse
|
105
|
Zhang S, Chen Y, Tian C, He Y, Tian Z, Wan Y, Liu T. Dual-target Inhibitors Based on BRD4: Novel Therapeutic Approaches for Cancer. Curr Med Chem 2021; 28:1775-1795. [PMID: 32520674 DOI: 10.2174/0929867327666200610174453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Currently, cancer continues being a dramatically increasing and serious threat to public health. Although many anti-tumor agents have been developed in recent years, the survival rate of patients is not satisfactory. The poor prognosis of cancer patients is closely related to the occurrence of drug resistance. Therefore, it is urgent to develop new strategies for cancer treatment. Multi-target therapies aim to have additive or synergistic effects and reduce the potential for the development of resistance by integrating different pharmacophores into a single drug molecule. Given the fact that majority of diseases are multifactorial in nature, multi-target therapies are being exploited with increasing intensity, which has brought improved outcomes in disease models and obtained several compounds that have entered clinical trials. Thus, it is potential to utilize this strategy for the treatment of BRD4 related cancers. This review focuses on the recent research advances of dual-target inhibitors based on BRD4 in the aspect of anti-tumor. METHODS We have searched the recent literatures about BRD4 inhibitors from the online resources and databases, such as pubmed, elsevier and google scholar. RESULTS In the recent years, many efforts have been taken to develop dual-target inhibitors based on BRD4 as anti-cancer agents, such as HDAC/BRD4 dual inhibitors, PLK1/BRD4 dual inhibitors and PI3K/BRD4 dual inhibitors and so on. Most compounds display good anti-tumor activities. CONCLUSION Developing new anti-cancer agents with new scaffolds and high efficiency is a big challenge for researchers. Dual-target inhibitors based on BRD4 are a class of important bioactive compounds. Making structural modifications on the active dual-target inhibitors according to the corresponding structure-activity relationships is of benefit to obtain more potent anti-cancer leads or clinical drugs. This review will be useful for further development of new dual-target inhibitors based on BRD4 as anti-cancer agents.
Collapse
Affiliation(s)
- Sitao Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Yanzhao Chen
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Chengsen Tian
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250200, China
| | - Yujing He
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| |
Collapse
|
106
|
Devenish LP, Mhlanga MM, Negishi Y. Immune Regulation in Time and Space: The Role of Local- and Long-Range Genomic Interactions in Regulating Immune Responses. Front Immunol 2021; 12:662565. [PMID: 34046034 PMCID: PMC8144502 DOI: 10.3389/fimmu.2021.662565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Mammals face and overcome an onslaught of endogenous and exogenous challenges in order to survive. Typical immune cells and barrier cells, such as epithelia, must respond rapidly and effectively to encountered pathogens and aberrant cells to prevent invasion and eliminate pathogenic species before they become overgrown and cause harm. On the other hand, inappropriate initiation and failed termination of immune cell effector function in the absence of pathogens or aberrant tissue gives rise to a number of chronic, auto-immune, and neoplastic diseases. Therefore, the fine control of immune effector functions to provide for a rapid, robust response to challenge is essential. Importantly, immune cells are heterogeneous due to various factors relating to cytokine exposure and cell-cell interaction. For instance, tissue-resident macrophages and T cells are phenotypically, transcriptionally, and functionally distinct from their circulating counterparts. Indeed, even the same cell types in the same environment show distinct transcription patterns at the single cell level due to cellular noise, despite being robust in concert. Additionally, immune cells must remain quiescent in a naive state to avoid autoimmunity or chronic inflammatory states but must respond robustly upon activation regardless of their microenvironment or cellular noise. In recent years, accruing evidence from next-generation sequencing, chromatin capture techniques, and high-resolution imaging has shown that local- and long-range genome architecture plays an important role in coordinating rapid and robust transcriptional responses. Here, we discuss the local- and long-range genome architecture of immune cells and the resultant changes upon pathogen or antigen exposure. Furthermore, we argue that genome structures contribute functionally to rapid and robust responses under noisy and distinct cellular environments and propose a model to explain this phenomenon.
Collapse
Affiliation(s)
- Liam P Devenish
- Division of Chemical, Systems, and Synthetic Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Musa M Mhlanga
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands.,Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Yutaka Negishi
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands.,Epigenomics & Single Cell Biophysics Group, Department of Cell Biology, Radboud University, Nijmegen, Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
107
|
Borthakur G, Odenike O, Aldoss I, Rizzieri DA, Prebet T, Chen C, Popovic R, Modi DA, Joshi RH, Wolff JE, Jonas BA. A phase 1 study of the pan-bromodomain and extraterminal inhibitor mivebresib (ABBV-075) alone or in combination with venetoclax in patients with relapsed/refractory acute myeloid leukemia. Cancer 2021; 127:2943-2953. [PMID: 33934351 PMCID: PMC8360206 DOI: 10.1002/cncr.33590] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/12/2021] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogenous malignancy driven by genetic and epigenetic factors. Inhibition of bromodomain and extraterminal (BET) proteins, epigenetic readers that play pivotal roles in the regulation of genes relevant to cancer pathogenesis, constitutes a novel AML treatment approach. METHODS In this first-in-human study of the pan-BET inhibitor mivebresib as monotherapy (MIV-mono) or in combination with venetoclax (MIV-Ven), the safety profile, efficacy, and pharmacodynamics of mivebresib were determined in patients with relapsed/refractory AML (ClinicalTrials.gov identifier NCT02391480). Mivebresib was administered at 3 monotherapy dose levels (1.5, 2.0, or 2.5 mg) or in combination with venetoclax (400 or 800 mg). RESULTS Forty-four patients started treatment: of 19 who started MIV-mono, 5 went on to receive MIV-Ven combination therapy after disease progression and a washout period. Twenty-five patients started MIV-Ven, resulting in a total of 30 patients treated with the combination. The most common mivebresib-related treatment-emergent adverse events were dysgeusia (74%), decreased appetite (42%), and diarrhea (42%) in the MIV-mono group and decreased appetite (44%), vomiting (44%), and nausea (40%) in the MIV-Ven group. Serious adverse events occurred in 14 patients (74%) who received MIV-mono and in 22 patients (88%) who received MIV-Ven. In the MIV-mono group, responses were complete remission with incomplete blood count recovery in 1 patient and resistant disease in 15 patients. In the MIV-Ven group, responses were complete remission in 2 patients, partial remission in 2 patients, morphologic leukemia-free state in 2 patients, resistant disease in 12 patients, and aplasia in 1 patient. The pharmacodynamic effects of mivebresib were proportional to dose and drug exposure. CONCLUSIONS Mivebresib was tolerated and showed antileukemic effects as monotherapy and in combination with venetoclax in patients with relapsed/refractory AML. LAY SUMMARY Mivebresib is a novel drug that influences the way cancer cells read genetic information. Mivebresib was tested together with venetoclax in patients with acute myeloid leukemia after standard medicines failed and the disease returned, or when standard medicine was unavailable. Adverse effects were described for different drug doses, and the dose that is tolerable was determined. In some patients, their leukemia improved for some time. More studies are necessary to determine whether mivebresib can be used to treat acute myeloid leukemia.
Collapse
Affiliation(s)
- Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Olatoyosi Odenike
- Section of Hematology/Oncology, The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | - Ibrahim Aldoss
- Gehr Family Center for Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - David A Rizzieri
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina
| | - Thomas Prebet
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut
| | | | | | | | | | | | - Brian A Jonas
- Division of Hematology and Oncology, Department of Internal Medicine, University of California-Davis School of Medicine, Sacramento, California
| |
Collapse
|
108
|
Tremblay D, Mascarenhas J. Next Generation Therapeutics for the Treatment of Myelofibrosis. Cells 2021; 10:cells10051034. [PMID: 33925695 PMCID: PMC8146033 DOI: 10.3390/cells10051034] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023] Open
Abstract
Myelofibrosis is a myeloproliferative neoplasm characterized by splenomegaly, constitutional symptoms, bone marrow fibrosis, and a propensity towards transformation to acute leukemia. JAK inhibitors are the only approved therapy for myelofibrosis and have been successful in reducing spleen and symptom burden. However, they do not significantly impact disease progression and many patients are ineligible due to coexisting cytopenias. Patients who are refractory to JAK inhibition also have a dismal survival. Therefore, non-JAK inhibitor-based therapies are being explored in pre-clinical and clinical settings. In this review, we discuss novel treatments in development for myelofibrosis with targets outside of the JAK-STAT pathway. We focus on the mechanism, preclinical rationale, and available clinical efficacy and safety information of relevant agents including those that target apoptosis (navitoclax, KRT-232, LCL-161, imetelstat), epigenetic modulation (CPI-0610, bomedemstat), the bone marrow microenvironment (PRM-151, AVID-200, alisertib), signal transduction pathways (parsaclisib), and miscellaneous agents (tagraxofusp. luspatercept). We also provide commentary on the future of therapeutic development in myelofibrosis.
Collapse
|
109
|
Mann M, Roberts DS, Zhu Y, Li Y, Zhou J, Ge Y, Brasier AR. Discovery of RSV-Induced BRD4 Protein Interactions Using Native Immunoprecipitation and Parallel Accumulation-Serial Fragmentation (PASEF) Mass Spectrometry. Viruses 2021; 13:v13030454. [PMID: 33799525 PMCID: PMC8000986 DOI: 10.3390/v13030454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) causes severe inflammation and airway pathology in children and the elderly by infecting the epithelial cells of the upper and lower respiratory tract. RSV replication is sensed by intracellular pattern recognition receptors upstream of the IRF and NF-κB transcription factors. These proteins coordinate an innate inflammatory response via Bromodomain-containing protein 4 (BRD4), a protein that functions as a scaffold for unknown transcriptional regulators. To better understand the pleiotropic regulatory function of BRD4, we examine the BRD4 interactome and identify how RSV infection dynamically alters it. To accomplish these goals, we leverage native immunoprecipitation and Parallel Accumulation—Serial Fragmentation (PASEF) mass spectrometry to examine BRD4 complexes isolated from human alveolar epithelial cells in the absence or presence of RSV infection. In addition, we explore the role of BRD4’s acetyl-lysine binding bromodomains in mediating these interactions by using a highly selective competitive bromodomain inhibitor. We identify 101 proteins that are significantly enriched in the BRD4 complex and are responsive to both RSV-infection and BRD4 inhibition. These proteins are highly enriched in transcription factors and transcriptional coactivators. Among them, we identify members of the AP1 transcription factor complex, a complex important in innate signaling and cell stress responses. We independently confirm the BRD4/AP1 interaction in primary human small airway epithelial cells. We conclude that BRD4 recruits multiple transcription factors during RSV infection in a manner dependent on acetyl-lysine binding domain interactions. This data suggests that BRD4 recruits transcription factors to target its RNA processing complex to regulate gene expression in innate immunity and inflammation.
Collapse
Affiliation(s)
- Morgan Mann
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI 53705, USA;
| | - David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (D.S.R.); (Y.G.)
| | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77550, USA; (Y.L.); (J.Z.)
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77550, USA; (Y.L.); (J.Z.)
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; (D.S.R.); (Y.G.)
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA;
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Allan R. Brasier
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: ; Tel.: +1-608-263-7371
| |
Collapse
|
110
|
Nayak A, Dutta M, Roychowdhury A. Emerging oncogene ATAD2: Signaling cascades and therapeutic initiatives. Life Sci 2021; 276:119322. [PMID: 33711386 DOI: 10.1016/j.lfs.2021.119322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
ATAD2 is a promising oncoprotein with tumor-promoting functions in many cancers. It is a valid cancer drug-target and a potential cancer-biomarker for multiple malignancies. As a cancer/testis antigen (CTA), ATAD2 could also be a probable candidate for immunotherapy. It is a unique CTA that belongs to both AAA+ ATPase and bromodomain family proteins. Since 2007, several research groups have been reported on the pleiotropic oncogenic functions of ATAD2 in diverse signaling pathways, including Rb/E2F-cMyc pathway, steroid hormone signaling pathway, p53 and p38-MAPK-mediated apoptotic pathway, AKT pathway, hedgehog signaling pathway, HIF1α signaling pathway, and Epithelial to Mesenchymal Transition (EMT) pathway in various cancers. In all these pathways, ATAD2 participates in chromatin dynamics, DNA replication, and gene transcription, demonstrating its role as an epigenetic reader and transcription factor or coactivator to promote tumorigenesis. However, despite the progress, an overall mechanism of ATAD2-mediated oncogenesis in diverse origin is elusive. In this review, we summarize the accumulated evidence to envision the overall ATAD2 signaling networks during carcinogenesis and highlight the area where missing links await further research. Besides, the structure-function aspect of ATAD2 is also discussed. Since the efforts have already been initiated to explore targeted drug molecules and RNA-based therapeutic alternatives against ATAD2, their potency and prospects have been elucidated. Together, we believe this is a well-rounded review on ATAD2, facilitating a new drift in ATAD2 research, essential for its clinical implication as a biomarker and/or cancer drug-target.
Collapse
Affiliation(s)
- Aditi Nayak
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
111
|
Gu B, Hakun MC. Challenges and Opportunities in NUT Carcinoma Research. Genes (Basel) 2021; 12:genes12020235. [PMID: 33562801 PMCID: PMC7915910 DOI: 10.3390/genes12020235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
NUT carcinoma (NC) is a type of aggressive cancer driven by chromosome translocations. Fusion genes between a DNA-binding protein, such as bromodomain and extraterminal domain (BET) proteins, and the testis-specific protein NUTM1 generated by these translocations drive the formation of NC. NC can develop in very young children without significant accumulation of somatic mutations, presenting a relatively clean model to study the genetic etiology of oncogenesis. However, after 20 years of research, a few challenging questions still remain for understanding the mechanism and developing therapeutics for NC. In this short review, we first briefly summarize the current knowledge regarding the molecular mechanism and targeted therapy development of NC. We then raise three challenging questions: (1) What is the cell of origin of NC? (2) How does the germline analogous epigenetic reprogramming process driven by the BET-NUTM1 fusion proteins cause NC? and (3) How will BET-NUTM1 targeted therapies be developed? We propose that with the unprecedented technological advancements in genome editing, animal models, stem cell biology, organoids, and chemical biology, we have unique opportunities to address these challenges.
Collapse
Affiliation(s)
- Bin Gu
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University East Lansing, MI 48824, USA
- Department of Biomedical Engineering; Michigan State University East Lansing, MI 48824, USA;
- Correspondence:
| | - Maxwell C. Hakun
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University East Lansing, MI 48824, USA
- Department of Biomedical Engineering; Michigan State University East Lansing, MI 48824, USA;
| |
Collapse
|
112
|
Supercharging BRD4 with NUT in carcinoma. Oncogene 2021; 40:1396-1408. [PMID: 33452461 PMCID: PMC7914217 DOI: 10.1038/s41388-020-01625-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
NUT carcinoma (NC) is an extremely aggressive squamous cancer with no effective therapy. NC is driven, most commonly, by the BRD4-NUT fusion oncoprotein. BRD4-NUT combines the chromatin-binding bromo- and extraterminal domain-containing (BET) protein, BRD4, with an unstructured, poorly understood protein, NUT, which recruits and activates the histone acetyltransferase p300. Recruitment of p300 to chromatin by BRD4 is believed to lead to the formation of hyperacetylated nuclear foci, as seen by immunofluorescence. BRD4-NUT nuclear foci correspond with massive contiguous regions of chromatin co-enriched with BRD4-NUT, p300, and acetylated histones, termed "megadomains" (MD). Megadomains stretch for as long as 2 MB. Proteomics has defined a BRD4-NUT chromatin complex in which members that associate with BRD4 also exist as rare NUT-fusion partners. This suggests that the common pathogenic denominator is the presence of both BRD4 and NUT, and that the function of BRD4-NUT may mimic that of wild-type BRD4. If so, then MDs may function as massive super-enhancers, activating transcription in a BET-dependent manner. Common targets of MDs across multiple NCs and tissues are three stem cell-related transcription factors frequently implicated in cancer: MYC, SOX2, and TP63. Recently, MDs were found to form a novel nuclear sub-compartment, called subcompartment M (subM), where MD-MD interactions occur both intra- and inter-chromosomally. Included in subM are MYC, SOX2, and TP63. Here we explore the possibility that if MDs are simply large super-enhancers, subM may exist in other cell systems, with broad implications for how 3D organization of the genome may function in gene regulation and maintenance of cell identity. Finally, we discuss how our knowledge of BRD4-NUT function has been leveraged for the therapeutic development of first-in-class BET inhibitors and other targeted strategies.
Collapse
|
113
|
Wu D, Yan Y, Wei T, Ye Z, Xiao Y, Pan Y, Orme JJ, Wang D, Wang L, Ren S, Huang H. An acetyl-histone vulnerability in PI3K/AKT inhibition-resistant cancers is targetable by both BET and HDAC inhibitors. Cell Rep 2021; 34:108744. [PMID: 33596421 DOI: 10.1016/j.celrep.2021.108744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/06/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Acquisition of resistance to phosphatidylinositol 3-kinase (PI3K)/AKT-targeted monotherapy implies the existence of common resistance mechanisms independent of cancer type. Here, we demonstrate that PI3K/AKT inhibitors cause glycolytic crisis, acetyl-coenzyme A (CoA) shortage, and a global decrease in histone acetylation. In addition, PI3K/AKT inhibitors induce drug resistance by selectively augmenting histone H3 lysine 27 acetylation (H3K27ac) and binding of CBP/p300 and BRD4 proteins at a subset of growth factor and receptor (GF/R) gene loci. BRD4 occupation at these loci and drug-resistant cell growth are vulnerable to both bromodomain and histone deacetylase (HDAC) inhibitors. Little or no occupation of HDAC proteins at the GF/R gene loci underscores the paradox that cells respond equivalently to the two classes of inhibitors with opposite modes of action. Targeting this unique acetyl-histone-related vulnerability offers two clinically viable strategies to overcome PI3K/AKT inhibitor resistance in different cancers.
Collapse
Affiliation(s)
- Di Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, MN 55905, USA; Wuxi Institute of Health Sciences of Beijing Institute of Genomics, Wuxi 214174, China
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, MN 55905, USA
| | - Ting Wei
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Yutian Xiao
- Department of Urology, Shanghai Changhai Hospital, Shanghai 200433, China
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, MN 55905, USA
| | - Jacob J Orme
- Division of Medical Oncology, Department of Internal Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Dejie Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, MN 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA.
| | - Shancheng Ren
- Wuxi Institute of Health Sciences of Beijing Institute of Genomics, Wuxi 214174, China; Department of Urology, Shanghai Changhai Hospital, Shanghai 200433, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, MN 55905, USA; Department of Urology, Mayo Clinic College of Medicine and Science, MN 55905, USA; Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, MN 55905, USA.
| |
Collapse
|
114
|
Huang Z, Yang R, Zhang L, Zhu M, Zhang C, Wen J, Li H. BRD4 inhibition alleviates mechanical stress-induced TMJ OA-like pathological changes and attenuates TREM1-mediated inflammatory response. Clin Epigenetics 2021; 13:10. [PMID: 33446277 PMCID: PMC7809762 DOI: 10.1186/s13148-021-01008-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this paper was to investigate the protective effects of bromodomain containing 4 (BRD4) inhibition on the temporomandibular joint osteoarthritis (TMJ OA) induced by compressive mechanical stress and to explore the underlying mechanism. In vivo, a rat model of TMJ compressive loading device was used and BRD4 inhibitor was injected into the TMJ region. HE staining and micro-CT analysis were used for histological and radiographic assessment. Immunohistochemistry and qPCR were performed to detect inflammatory cytokines expressions. High-throughput ChIP-sequencing screening was performed to compare the BRD4 and H3K27ac binding patterns between condylar cartilage from control and mechanical force groups. In vitro, the mandibular condylar chondrocytes were treated with IL-1β. Small Interference RNA (siRNA) infection was used to silencing BRD4 or TREM1. qPCR was performed to detect inflammatory cytokines expressions. Our study showed that BRD4 inhibition can alleviate the thinning of condylar cartilage and subchondral bone resorption, as well as decrease the inflammatory factors expression both in vivo and in vitro. ChIP-seq analysis showed that BRD4 was more enriched in the promoter region of genes related to the stress and inflammatory pathways under mechanical stress in vivo. Trem1, a pro-inflammatory gene, was screened out from the overlapped BRD4 and H3K27ac increased binding sites, and Trem1 mRNA was found to be regulated by BRD4 inhibition both in vivo and in vitro. TREM1 inhibition reduced the expression of inflammatory factors induced by IL-1β in vitro. In summary, we concluded that BRD4 inhibition can protect TMJ OA-like pathological changes induced by mechanical stress and attenuate TREM1-mediated inflammatory response.
Collapse
Affiliation(s)
- Ziwei Huang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ren Yang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengjiao Zhu
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Caixia Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Central Road, Nanjing, 210008, China.
| |
Collapse
|
115
|
Zhou Y, Jin X, Ma J, Ding D, Huang Z, Sheng H, Yan Y, Pan Y, Wei T, Wang L, Wu H, Huang H. HDAC5 Loss Impairs RB Repression of Pro-Oncogenic Genes and Confers CDK4/6 Inhibitor Resistance in Cancer. Cancer Res 2021; 81:1486-1499. [PMID: 33419772 DOI: 10.1158/0008-5472.can-20-2828] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022]
Abstract
The tumor-suppressor protein RB acts as a transcription repressor via interaction of its pocket domain with an LXCXE motif in histone deacetylase (HDAC) proteins such as HDAC1. Here, we demonstrate that HDAC5 deficient for the LXCXE motif interacts with both RB-N (via an FXXXV motif) and RB-C segments, and such interactions are diminished by phosphorylation of RB serine-249/threonine-252 and threonine-821. HDAC5 was frequently downregulated or deleted in human cancers such as prostate cancer. Loss of HDAC5 increased histone H3 lysine 27 acetylation (H3K27-ac) and circumvented RB-mediated repression of cell-cycle-related pro-oncogenic genes. HDAC5 loss also conferred resistance to CDK4/6 inhibitors such as palbociclib in prostate and breast cancer cells in vitro and prostate tumors in vivo, but this effect was overcome by the BET-CBP/p300 dual inhibitor NEO2734. Our findings reveal an unknown role of HDAC5 in RB-mediated histone deacetylation and gene repression and define a new mechanism modulating CDK4/6 inhibitor therapeutic sensitivity in cancer cells. SIGNIFICANCE: This study defines a previously uncharacterized role of HDAC5 in tumor suppression and provides a viable strategy to overcome CDK4/6 inhibitor resistance in HDAC5-deficent cancer.
Collapse
Affiliation(s)
- Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Xin Jin
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Zhenlin Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Haoyue Sheng
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Ting Wei
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota. .,Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
116
|
Muddassir M, Soni K, Sangani CB, Alarifi A, Afzal M, Abduh NAY, Duan Y, Bhadja P. Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Adv 2021; 11:612-636. [PMID: 35746919 PMCID: PMC9133982 DOI: 10.1039/d0ra07971e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc. These changes are due to aberration in histone modification enzymes that function as readers, writers and erasers. Bromodomains (BDs) and BET proteins that recognize acetylation of chromatin regulate gene expression. To block the function of any of these BrDs and/or BET protein can be a controlling agent in disorders such as cancer. BrDs and BET proteins are now emerging as targets for new therapeutic development. Traditional drugs like enzyme inhibitors and protein–protein inhibitors have many limitations. Recently Proteolysis-Targeting Chimeras (PROTACs) have become an advanced tool in therapeutic intervention as they remove disease causing proteins. This review provides an overview of the development and mechanisms of PROTACs for BRD and BET protein regulation in cancer and advanced possibilities of genetic technologies in therapeutics. Alteration in the pattern of epigenetic marking leads to cancer, neurological disorders, inflammatory problems etc.![]()
Collapse
Affiliation(s)
- Mohd. Muddassir
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Kunjal Soni
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Chetan B. Sangani
- Shri Maneklal M. Patel Institute of Sciences and Research
- Kadi Sarva Vishwavidyalaya University
- Gandhinagar
- India
| | - Abdullah Alarifi
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Mohd. Afzal
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Naaser A. Y. Abduh
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- KSA
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases
- Zhengzhou Children's Hospital
- Zhengzhou University
- Zhengzhou 450018
- China
| | - Poonam Bhadja
- Arthropod Ecology and Biological Control Research Group
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
- Faculty of Environment and Labour Safety
| |
Collapse
|
117
|
HDAC inhibition results in widespread alteration of the histone acetylation landscape and BRD4 targeting to gene bodies. Cell Rep 2021; 34:108638. [PMID: 33472068 DOI: 10.1016/j.celrep.2020.108638] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/18/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation levels are regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) that antagonistically control the overall balance of this post-translational modification. HDAC inhibitors (HDACi) are potent agents that disrupt this balance and are used clinically to treat diseases including cancer. Despite their use, little is known about their effects on chromatin regulators, particularly those that signal through lysine acetylation. We apply quantitative genomic and proteomic approaches to demonstrate that HDACi robustly increases a low-abundance histone 4 polyacetylation state, which serves as a preferred binding substrate for several bromodomain-containing proteins, including BRD4. Increased H4 polyacetylation occurs in transcribed genes and correlates with the targeting of BRD4. Collectively, these results suggest that HDAC inhibition functions, at least in part, through expansion of a rare histone acetylation state, which then retargets lysine-acetyl readers associated with changes in gene expression, partially mimicking the effect of bromodomain inhibition.
Collapse
|
118
|
Skibba M, Drelich A, Poellmann M, Hong S, Brasier AR. Nanoapproaches to Modifying Epigenetics of Epithelial Mesenchymal Transition for Treatment of Pulmonary Fibrosis. Front Pharmacol 2020; 11:607689. [PMID: 33384604 PMCID: PMC7770469 DOI: 10.3389/fphar.2020.607689] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronically progressive interstitial lung that affects over 3 M people worldwide and rising in incidence. With a median survival of 2-3 years, IPF is consequently associated with high morbidity, mortality, and healthcare burden. Although two antifibrotic therapies, pirfenidone and nintedanib, are approved for human use, these agents reduce the rate of decline of pulmonary function but are not curative and do not reverse established fibrosis. In this review, we discuss the prevailing epithelial injury hypothesis, wherein pathogenic airway epithelial cell-state changes known as Epithelial Mesenchymal Transition (EMT) promotes the expansion of myofibroblast populations. Myofibroblasts are principal components of extracellular matrix production that result in airspace loss and mortality. We review the epigenetic transition driving EMT, a process produced by changes in histone acetylation regulating mesenchymal gene expression programs. This mechanistic work has focused on the central role of bromodomain-containing protein 4 in mediating EMT and myofibroblast transition and initial preclinical work has provided evidence of efficacy. As nanomedicine presents a promising approach to enhancing the efficacy of such anti-IPF agents, we then focus on the state of nanomedicine formulations for inhalable delivery in the treatment of pulmonary diseases, including liposomes, polymeric nanoparticles (NPs), inorganic NPs, and exosomes. These nanoscale agents potentially provide unique properties to existing pulmonary therapeutics, including controlled release, reduced systemic toxicity, and combination delivery. NP-based approaches for pulmonary delivery thus offer substantial promise to modify epigenetic regulators of EMT and advance treatments for IPF.
Collapse
Affiliation(s)
- Melissa Skibba
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Adam Drelich
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Poellmann
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Seungpyo Hong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul, South Korea
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
119
|
Song Y, Hu G, Jia J, Yao M, Wang X, Lu W, Hutchins AP, Chen J, Ozato K, Yao H. DNA Damage Induces Dynamic Associations of BRD4/P-TEFb With Chromatin and Modulates Gene Transcription in a BRD4-Dependent and -Independent Manner. Front Mol Biosci 2020; 7:618088. [PMID: 33344510 PMCID: PMC7746802 DOI: 10.3389/fmolb.2020.618088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
The bromodomain-containing protein BRD4 has been thought to transmit epigenetic information across cell divisions by binding to both mitotic chromosomes and interphase chromatin. UV-released BRD4 mediates the recruitment of active P-TEFb to the promoter, which enhances transcriptional elongation. However, the dynamic associations between BRD4 and P-TEFb and BRD4-mediated gene regulation after UV stress are largely unknown. In this study, we found that BRD4 dissociates from chromatin within 30 min after UV treatment and thereafter recruits chromatin. However, P-TEFb binds tightly to chromatin right after UV treatment, suggesting that no interactions occur between BRD4 and P-TEFb within 30 min after UV stress. BRD4 knockdown changes the distribution of P-TEFb among nuclear soluble and chromatin and downregulates the elongation activity of RNA polymerase II. Inhibition of JNK kinase but not other MAP kinases impedes the interactions between BRD4 and P-TEFb. RNA-seq and ChIP assays indicate that BRD4 both positively and negatively regulates gene transcription in cells treated with UV stress. These results reveal previously unrecognized dynamics of BRD4 and P-TEFb after UV stress and regulation of gene transcription by BRD4 acting as either activator or repressor in a context-dependent manner.
Collapse
Affiliation(s)
- Yawei Song
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Gongcheng Hu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jinping Jia
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Mingze Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenliang Lu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
| | - Andrew P Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, Bethesda, MD, United States
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
120
|
Wang N, Weng J, Xia J, Zhu Y, Chen Q, Hu D, Zhang X, Sun R, Feng J, Minato N, Gong Y, Su L. SIPA1 enhances SMAD2/3 expression to maintain stem cell features in breast cancer cells. Stem Cell Res 2020; 49:102099. [PMID: 33296812 DOI: 10.1016/j.scr.2020.102099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
SIPA1, a GTPase activating protein that negatively regulates Ras-related protein (Rap), is a potential modulator of tumor metastasis and recurrence. In this study, we first showed that SIPA1 facilitated the stemness features of breast cancer cells, such as of tumorsphere formation capability and the expression of stemness marker CD44. In addition, SIPA1 promoted the expression of four stemness-associated transcription factors through increasing the expression of SMAD2 and SMAD3 in vitro and in vivo. The stemness features were abolished by blocking the phosphorylation of SMAD3 with its specific inhibitor SIS3. Furthermore, SIPA1 decreased the breast cancer cell sensitivity to chemotherapy drugs. This effect was, however, competitively reversed by blocking the SMAD3 phosphorylation by SIS3 treatment in breast cancer cells. Taken together, SIPA1 promotes and sustains the stemness of breast cancer cells and their resistance to chemotherapy by increasing the expression of SMAD2 and SMAD3, and blocking SMAD3 phosphorylation could suppress the cancer cell stemness and increase the sensitivity to chemotherapy in breast cancer cells expressing a high level of SIPA1.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Weng
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Xia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yangjin Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiongrong Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Die Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xue Zhang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Rui Sun
- Department of Oncology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Jueping Feng
- Department of Oncology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yiping Gong
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Department of Breast Surgery, Hubei Cancer Hospital, Wuhan 430079, China.
| | - Li Su
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
121
|
Kalra P, McGraw L, Kimbrough JR, Pandey AK, Solberg J, Cui H, Divakaran A, John K, Hawkinson JE, Pomerantz WCK. Quantifying the Selectivity of Protein-Protein and Small Molecule Interactions with Fluorinated Tandem Bromodomain Reader Proteins. ACS Chem Biol 2020; 15:3038-3049. [PMID: 33138352 PMCID: PMC8185897 DOI: 10.1021/acschembio.0c00720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidomain bromodomain-containing proteins regulate gene expression via chromatin binding, interactions with the transcriptional machinery, and by recruiting enzymatic activity. Selective inhibition of members of the bromodomain and extra-terminal (BET) family is important to understand their role in disease and gene regulation, although due to the similar binding sites of BET bromodomains, selective inhibitor discovery has been challenging. To support the bromodomain inhibitor discovery process, here we report the first application of protein-observed fluorine (PrOF) NMR to the tandem bromodomains of BRD4 and BRDT to quantify the selectivity of their interactions with acetylated histones as well as small molecules. We further determine the selectivity profile of a new class of ligands, 1,4-acylthiazepanes, and find them to have ≥3-10-fold selectivity for the C-terminal bromodomain of both BRD4 and BRDT. Given the speed and lower protein concentration required over traditional protein-observed NMR methods, we envision that these fluorinated tandem proteins may find use in fragment screening and evaluating nucleosome and transcription factor interactions.
Collapse
Affiliation(s)
- Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Logan McGraw
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Anil K Pandey
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jonathan Solberg
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Huarui Cui
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| | - Kristen John
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jon E Hawkinson
- Institute for Therapeutics Discovery and Development, Department of Medicinal Chemistry, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
122
|
Lotke R, Schneeweiß U, Pietrek M, Günther T, Grundhoff A, Weidner-Glunde M, Schulz TF. Brd/BET Proteins Influence the Genome-Wide Localization of the Kaposi's Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus Major Latency Proteins. Front Microbiol 2020; 11:591778. [PMID: 33193257 PMCID: PMC7642799 DOI: 10.3389/fmicb.2020.591778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023] Open
Abstract
The rhadinoviruses Kaposi’s Sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus (MHV-68) persist in infected hosts in a latent state that is characterized by the absence of virus production and by restricted viral gene expression. Their major latency protein, the latency-associated nuclear antigen (kLANA for KSHV and mLANA for MHV-68), is essential for viral genome maintenance and replication and involved in transcriptional regulation. Both kLANA and mLANA interact with cellular chromatin-associated proteins, among them the Bromodomain and Extra Terminal domain (Brd/BET) proteins, which recruit cellular and viral proteins to acetylated histones through their bromodomains and modulate cellular gene expression. Brd/BET proteins also play a role in the tethering, replication, segregation or integration of a diverse group of viral DNA genomes. In this study we explored if Brd/BET proteins influence the localization of the LANAs to preferential regions in the host chromatin and thereby contribute to kLANA- or mLANA-mediated transcriptional regulation. Using ChIP-Seq, we revealed a genome-wide co-enrichment of kLANA with Brd2/4 near cellular and viral transcriptional start sites (TSS). Treatment with I-BET151, an inhibitor of Brd/BET, displaced kLANA and Brd2/4 from TSS in the viral and host chromatin, but did not affect the direct binding of kLANA to kLANA-binding sites (LBS) in the KSHV latent origin of replication. Similarly, mLANA, but not a mLANA mutant deficient for binding to Brd2/4, also associated with cellular TSS. We compared the transcriptome of KSHV-infected with uninfected and kLANA-expressing human B cell lines, as well as a murine B cell line expressing mLANA or a Brd2/4-binding deficient mLANA mutant. We found that only a minority of cellular genes, whose TSS are occupied by kLANA or mLANA, is transcriptionally regulated by these latency proteins. Our findings extend previous reports on a preferential deposition of kLANA on cellular TSS and show that this characteristic chromatin association pattern is at least partially determined by the interaction of these viral latency proteins with members of the Brd/BET family of chromatin modulators.
Collapse
Affiliation(s)
- Rishikesh Lotke
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| | - Ulrike Schneeweiß
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Marcel Pietrek
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany
| | - Thomas Günther
- Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Adam Grundhoff
- German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany.,Heinrich-Pette-Institut, Leibniz-Institut für Experimentelle Virologie, Hamburg, Germany
| | - Magdalena Weidner-Glunde
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Hanover, Germany.,German Center for Infection Research, Hannover-Braunschweig and Hamburg Sites, Hanover, Germany
| |
Collapse
|
123
|
Wang S, Li J, Tong W, Li H, Feng Q, Teng B. Advances in the pathogenesis and treatment of nut carcinoma: a narrative review. Transl Cancer Res 2020; 9:6505-6515. [PMID: 35117258 PMCID: PMC8798738 DOI: 10.21037/tcr-20-1884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/12/2020] [Indexed: 11/06/2022]
Abstract
NUT carcinoma (NC) is a rare, highly invasive and fatal tumor and often misdiagnosed. It typically arises from the mediastinum and midline organs and has complicated pathogenesis and poor outcome. Genetically, its pathogenesis is related to a chromosomal rearrangement involving the NUTM1 gene. In most cases, the main oncoprotein is BRD4-NUT with a translocation between NUTM1 and BRD4 genes, but in a few cases, the oncoprotein is BRD3-NUT, or NSD3-NUT. Studies have shown that the histone hyperacetylation and BRD4 hyperphosphorylation may lead to the activation of cancer circuits. Abnormal production of microRNA, inactivation of tumor suppressor genes and abnormal activation of several signaling pathways are proposed as potential mechanisms underlying the pathogenesis of NC. Currently, there is no consensus on its standard treatment for NC. Extent of surgical resection with negative margins, initial radiotherapy and part of chemotherapy regimens may significantly associated with the improvement of progression-free survival (PFS) rate and overall survival (OS) rate. Some bromodomain and extraterminal inhibitors (BETis) have shown encouraging results in the clinical trials on NC, but delayed drug resistance is still an important issue that needs to be resolved. Histone deacetylase inhibitors are also found to possess the potential in the treatment of NC. Herein, we summarize recent advances in the pathogenesis and treatment of NC.
Collapse
Affiliation(s)
- Sanchun Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jinqiu Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Weifang Tong
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Hejie Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Qingjie Feng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Teng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
124
|
Kim YH, Lazar MA. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr Rev 2020; 41:5835826. [PMID: 32392281 PMCID: PMC7334005 DOI: 10.1210/endrev/bnaa014] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
All biological processes, living organisms, and ecosystems have evolved with the Sun that confers a 24-hour periodicity to life on Earth. Circadian rhythms arose from evolutionary needs to maximize daily organismal fitness by enabling organisms to mount anticipatory and adaptive responses to recurrent light-dark cycles and associated environmental changes. The clock is a conserved feature in nearly all forms of life, ranging from prokaryotes to virtually every cell of multicellular eukaryotes. The mammalian clock comprises transcription factors interlocked in negative feedback loops, which generate circadian expression of genes that coordinate rhythmic physiology. In this review, we highlight previous and recent studies that have advanced our understanding of the transcriptional architecture of the mammalian clock, with a specific focus on epigenetic mechanisms, transcriptomics, and 3-dimensional chromatin architecture. In addition, we discuss reciprocal ways in which the clock and metabolism regulate each other to generate metabolic rhythms. We also highlight implications of circadian biology in human health, ranging from genetic and environment disruptions of the clock to novel therapeutic opportunities for circadian medicine. Finally, we explore remaining fundamental questions and future challenges to advancing the field forward.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, and Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
125
|
Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev 2020; 41:223-245. [PMID: 32926459 PMCID: PMC7756446 DOI: 10.1002/med.21730] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Clinical development of bromodomain and extra‐terminal (BET) protein inhibitors differs from the traditional course of drug development. These drugs are simultaneously being evaluated for treating a wide spectrum of human diseases due to their novel mechanism of action. BET proteins are epigenetic “readers,” which play a primary role in transcription. Here, we briefly describe the BET family of proteins, of which BRD4 has been studied most extensively. We discuss BRD4 activity at latent enhancers as an example of BET protein function. We examine BRD4 redistribution and enhancer reprogramming in embryonic development, cancer, cardiovascular, autoimmune, and metabolic diseases, presenting hallmark studies that highlight BET proteins as attractive targets for therapeutic intervention. We review the currently available approaches to targeting BET proteins, methods of selectively targeting individual bromodomains, and review studies that compare the effects of selective BET inhibition to those of pan‐BET inhibition. Lastly, we examine the current clinical landscape of BET inhibitor development.
Collapse
|
126
|
Guo W, Long H, Bu Q, Zhao Y, Wang H, Tian J, Cen X. Role of BRD4 phosphorylation in the nucleus accumbens in relapse to cocaine-seeking behavior in mice. Addict Biol 2020; 25:e12808. [PMID: 31364211 DOI: 10.1111/adb.12808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
Abstract
Cocaine addiction is a chronic relapsing brain disorder characterized by compulsive drug seeking. Preliminary study suggested that bromodomain-containing protein 4 (BRD4), an epigenetic reader protein, participates in cocaine-induced reward and neuroplasticity. However, the exact role of BRD4 in cocaine addiction, particularly cocaine relapse, remains elusive. In this study, we found that BRD4 phosphorylation in the nucleus accumbens (NAc) was closely related to the maintenance of cocaine reinforcement and relapse in different cocaine exposure paradigms. Cocaine significantly increased the binding of phosphorylated BRD4 (pBRD4) at the promoter of Gria2 and Bdnf genes in the NAc. (+)JQ1, a selective BRD4 inhibitor, markedly reduced the reinforcement and reinstatement of cocaine-seeking behaviors, which was accompanied by the decreased expressions of GRIA2 and BDNF. Furthermore, chromatin immunoprecipitation assay showed that (+)JQ1 clearly attenuated cocaine-enhanced binding of pBRD4 at the promotor of Gria2 and Bdnf genes. Blockade of casein kinase II significantly attenuated BRD4 phosphorylation and cocaine relapse-like behaviors, suggesting the important role of pBRD4 in modulating cocaine effect. Together, our findings suggest that BRD4 phosphorylation in the NAc modulates multiple addiction-related behaviors of cocaine and particularly relapse to cocaine-seeking behaviors. Inhibition of BRD4 activity may be a novel target against cocaine addiction and relapse.
Collapse
Affiliation(s)
- Wei Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai University Yantai China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
| | - Hailei Long
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
- Healthy Food Evaluation Research Center, Department of Food Science and Technology, College of Light Industry, Textile and Food EngineeringSichuan University Chengdu China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai University Yantai China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai University Yantai China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu China
| |
Collapse
|
127
|
The Structural Diversity of Marine Microbial Secondary Metabolites Based on Co-Culture Strategy: 2009-2019. Mar Drugs 2020; 18:md18090449. [PMID: 32867339 PMCID: PMC7551240 DOI: 10.3390/md18090449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Marine microorganisms have drawn great attention as novel bioactive natural product sources, particularly in the drug discovery area. Using different strategies, marine microbes have the ability to produce a wide variety of molecules. One of these strategies is the co-culturing of marine microbes; if two or more microorganisms are aseptically cultured together in a solid or liquid medium in a certain environment, their competition or synergetic relationship can activate the silent biosynthetic genes to produce cryptic natural products which do not exist in monocultures of the partner microbes. In recent years, the co-cultivation strategy of marine microbes has made more novel natural products with various biological activities. This review focuses on the significant and excellent examples covering sources, types, structures and bioactivities of secondary metabolites based on co-cultures of marine-derived microorganisms from 2009 to 2019. A detailed discussion on future prospects and current challenges in the field of co-culture is also provided on behalf of the authors’ own views of development tendencies.
Collapse
|
128
|
Dzobo K, Senthebane DA, Ganz C, Thomford NE, Wonkam A, Dandara C. Advances in Therapeutic Targeting of Cancer Stem Cells within the Tumor Microenvironment: An Updated Review. Cells 2020; 9:E1896. [PMID: 32823711 PMCID: PMC7464860 DOI: 10.3390/cells9081896] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Despite great strides being achieved in improving cancer patients' outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dimakatso Alice Senthebane
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Chelene Ganz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Wernher and Beit Building (South), UCT Medical Campus, Anzio Road, Observatory, Cape Town 7925, South Africa; (D.A.S.); (C.G.)
- Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Nicholas Ekow Thomford
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
- Department of Medical Biochemistry, School of Medical Sciences, College of Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute for Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (N.E.T.); (A.W.); (C.D.)
| |
Collapse
|
129
|
Liang D, Yu Y, Ma Z. Novel strategies targeting bromodomain-containing protein 4 (BRD4) for cancer drug discovery. Eur J Med Chem 2020; 200:112426. [DOI: 10.1016/j.ejmech.2020.112426] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
|
130
|
Spriano F, Stathis A, Bertoni F. Targeting BET bromodomain proteins in cancer: The example of lymphomas. Pharmacol Ther 2020; 215:107631. [PMID: 32693114 DOI: 10.1016/j.pharmthera.2020.107631] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
The Bromo- and Extra-Terminal domain (BET) family proteins act as "readers" of acetylated histones and they are important transcription regulators. BRD2, BRD3, BRD4 and BRDT, part of the BET family, are important in different tumors, where upregulation or translocation often occurs. The potential of targeting BET proteins as anti-cancer treatment originated with data obtained with a first series of compounds, and there are now several data supporting BET inhibition in both solid tumors and hematological malignancies. Despite very positive preclinical data in different tumor types, the clinical results have been so far moderate. Using lymphoma as an example to review the data produced in the laboratory and in the context of the early clinical trials, we discuss the modalities to make BET targeting more efficient both generating novel generation of compounds and by exploring the combination with small molecules affecting various signaling pathways, BCL2, or DNA damage response signaling, but also with additional epigenetic agents and with immunotherapy. We also discuss the mechanisms of resistance and the toxicity profiles so far reported.
Collapse
Affiliation(s)
- Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
131
|
Bromodomain-containing protein 4 regulates a cascade of lipid-accumulation-related genes at the transcriptional level in the 3T3-L1 white adipocyte-like cell line. Eur J Pharmacol 2020; 883:173351. [PMID: 32650006 DOI: 10.1016/j.ejphar.2020.173351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 11/20/2022]
Abstract
Our previous study demonstrated that the transfection of a short hairpin (sh)RNA targeting bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) family of proteins, into 3T3-L1 cells, a white adipocyte-like cell line, reduced the expression of insulin sensitivity genes, such as Adipoq, Fabp4, Lpl, Slc2a4 and Dgat1, and that BRD4 directly bound to the Adipoq, Slc2a4 and Lpl genes. In the present study, we aimed to identify other target genes of BRD4 by microarray analysis of Brd4 shRNA- and control shRNA-transfected cells. We found that the expression of many genes related to fat metabolism, and particularly those involved in fat accumulation in the glycolytic pathway, tricarboxylic acid cycle, and triacylglycerol synthesis, such as Dgat2, Gpd1, Acsl1, Pnpla2, Pgkfb3, Pcx, Fasn, Acacb and Cidec, was reduced by Brd4 shRNA transfection 2 and 8 days after the end of adipocyte differentiation. The binding of BRD4 at the 2-day and histone acetylation at the 8-day time point, in the vicinity of the Dgat2, Gpd1, Acsl1 and Cidec genes, was also reduced by Brd4 shRNA transduction. Treatment with low doses (10-100 nM) of the BET family inhibitor (+)-JQ-1 for 2, 4 or 8 days also reduced the expression of Dgat2, Gpd1, Fasn, Acab, Acsl1, Pnpla2 and Cidec in 3T3-L1 white adipocyte-like cells. These results indicate that BRD4 regulates the expression of numerous genes involved in lipid accumulation at the transcriptional level in a white adipocyte-like cell line.
Collapse
|
132
|
Wang R, Yang JF, Ho F, Robertson ES, You J. Bromodomain-Containing Protein BRD4 Is Hyperphosphorylated in Mitosis. Cancers (Basel) 2020; 12:E1637. [PMID: 32575711 PMCID: PMC7353023 DOI: 10.3390/cancers12061637] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/06/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
The epigenetic reader BRD4 binds acetylated histones and plays a central role in controlling cellular gene transcription and proliferation. Dysregulation of BRD4's activity has been implicated in the pathogenesis of a wide variety of cancers. While blocking BRD4 interaction with acetylated histones using BET inhibitors (BETis) has been tested in clinical trials, many cancers have acquired BETi resistance. However, the underlying mechanisms are poorly understood and BETi resistance remains a pressing clinical problem. We previously showed that BRD4 phosphorylation supports stronger chromatin binding and target oncogene expression. In this study, we discovered that BRD4 is hyperphosphorylated by CDK1 during mitosis and determined the major CDK1 phosphorylation sites in BRD4. Using CRISPR/Cas9 gene editing, we replaced endogenous BRD4 with a non-phosphorylatable mutant and demonstrated that CDK1-mediated BRD4 phosphorylation contributes to BETi resistance. CDK1 over-activation frequently observed in cancers has the potential to cause aberrant BRD4 hyperphosphorylation persisting outside of mitosis to strengthen its target gene binding and confer BETi resistance. We found that dual CDK1 and BET inhibition generates a synergistic effect in killing BETi-resistant cancer cells. Our study therefore suggests that CDK1 inhibition can be employed to overcome tumor BETi resistance and improve treatments for BRD4-associated cancers.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.W.); (J.F.Y.); (F.H.)
| | - June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.W.); (J.F.Y.); (F.H.)
| | - Flora Ho
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.W.); (J.F.Y.); (F.H.)
| | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (R.W.); (J.F.Y.); (F.H.)
| |
Collapse
|
133
|
Abstract
Dysregulation of MYC protein levels is associated with most human cancers. MYC is regulated by both transcription and protein stability. BRD4, a driver of oncogenesis that activates Myc transcription, is being investigated as a therapeutic target in MYC-driven cancers. We report that BRD4 directly destabilizes MYC protein by phosphorylating it at a site leading to ubiquitination and degradation, thereby maintaining homeostatic levels of MYC protein. While JQ1, an inhibitor which releases BRD4 from chromatin and reduces MYC transcription has no effect on MYC protein stability, MZ1, which degrades BRD4 has the paradoxical effect of decreasing MYC transcription but increasing MYC stability. Our findings demonstrating BRD4-mediated MYC degradation are likely to have significant translational implications. The protooncogene MYC regulates a variety of cellular processes, including proliferation and metabolism. Maintaining MYC at homeostatic levels is critical to normal cell function; overexpression drives many cancers. MYC stability is regulated through phosphorylation: phosphorylation at Thr58 signals degradation while Ser62 phosphorylation leads to its stabilization and functional activation. The bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator with intrinsic kinase and histone acetyltransferase (HAT) activities that activates transcription of key protooncogenes, including MYC. We report that BRD4 phosphorylates MYC at Thr58, leading to MYC ubiquitination and degradation, thereby regulating MYC target genes. Importantly, BRD4 degradation, but not inhibition, results in increased levels of MYC protein. Conversely, MYC inhibits BRD4’s HAT activity, suggesting that MYC regulates its own transcription by limiting BRD4-mediated chromatin remodeling of its locus. The MYC stabilizing kinase, ERK1, regulates MYC levels directly and indirectly by inhibiting BRD4 kinase activity. These findings demonstrate that BRD4 negatively regulates MYC levels, which is counteracted by ERK1 activation.
Collapse
|
134
|
Targeting bromodomain-containing proteins to prevent spontaneous preterm birth. Clin Sci (Lond) 2020; 133:2379-2400. [PMID: 31750510 DOI: 10.1042/cs20190919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
Preterm birth is a global healthcare challenge. Spontaneous preterm birth (sPTB) is commonly caused by inflammation, yet there are currently no effective therapies available. The Bromodomain and Extra-Terminal motif (BET) proteins, Bromodomain-containing protein (Brd) 2 (Brd2), Brd3 and Brd4 regulate inflammation in non-gestational tissues. The roles of Brd2-4 in human pregnancy are unknown. Using human and mouse models, the present study has identified the Brd proteins part of the process by which inflammation induces parturition. Using human clinical samples, we demonstrate that labor and infection increase the expression of Brds in the uterus and fetal membranes. In primary human myometrial, amnion and decidual cells, we found that global Brd protein inhibition, as well as selective inhibition of Brds, suppressed inflammation-induced expression of mediators involved in myometrial contractions and rupture of fetal membranes. Importantly, studies in the mouse model demonstrate that the pan-Brd inhibitor JQ1 reduced intrauterine inflammation induced by bacterial endotoxin LPS as well as decreasing the effectiveness of LPS to induce parturition. These results implicate BET proteins as novel therapeutic targets for reducing inflammation associated with spontaneous preterm labor.
Collapse
|
135
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
136
|
Gaub A, Sheikh BN, Basilicata MF, Vincent M, Nizon M, Colson C, Bird MJ, Bradner JE, Thevenon J, Boutros M, Akhtar A. Evolutionary conserved NSL complex/BRD4 axis controls transcription activation via histone acetylation. Nat Commun 2020; 11:2243. [PMID: 32382029 PMCID: PMC7206058 DOI: 10.1038/s41467-020-16103-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Cells rely on a diverse repertoire of genes for maintaining homeostasis, but the transcriptional networks underlying their expression remain poorly understood. The MOF acetyltransferase-containing Non-Specific Lethal (NSL) complex is a broad transcription regulator. It is essential in Drosophila, and haploinsufficiency of the human KANSL1 subunit results in the Koolen-de Vries syndrome. Here, we perform a genome-wide RNAi screen and identify the BET protein BRD4 as an evolutionary conserved co-factor of the NSL complex. Using Drosophila and mouse embryonic stem cells, we characterise a recruitment hierarchy, where NSL-deposited histone acetylation enables BRD4 recruitment for transcription of constitutively active genes. Transcriptome analyses in Koolen-de Vries patient-derived fibroblasts reveals perturbations with a cellular homeostasis signature that are evoked by the NSL complex/BRD4 axis. We propose that BRD4 represents a conserved bridge between the NSL complex and transcription activation, and provide a new perspective in the understanding of their functions in healthy and diseased states.
Collapse
Affiliation(s)
- Aline Gaub
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - Bilal N Sheikh
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - M Felicia Basilicata
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany
| | - Marie Vincent
- CHU Nantes, Service de Génétique Médicale, 38 Boulevard Jean Monnet, 44000, Nantes, France
| | - Mathilde Nizon
- CHU Nantes, Service de Génétique Médicale, 38 Boulevard Jean Monnet, 44000, Nantes, France
| | - Cindy Colson
- Service Génétique, Génétique Clinique, CHU, Avenue Georges Clemenceau CS 30001, 14033, Caen, France.,Normandy University, UNICAEN, BIOTARGEN, Esplanade de la Paix CS 14032, 14032, Caen, France
| | - Matthew J Bird
- Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - James E Bradner
- Novartis Institutes for Biomedical Research, 181 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Julien Thevenon
- CNRS UMR 5309, INSERM, U1209, Institute of Advanced Biosciences, Université Grenoble-Alpes CHU Grenoble, Allée des Alpes, 38700, La Tronche Grenoble, France
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Asifa Akhtar
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| |
Collapse
|
137
|
Gilan O, Rioja I, Knezevic K, Bell MJ, Yeung MM, Harker NR, Lam EYN, Chung CW, Bamborough P, Petretich M, Urh M, Atkinson SJ, Bassil AK, Roberts EJ, Vassiliadis D, Burr ML, Preston AGS, Wellaway C, Werner T, Gray JR, Michon AM, Gobbetti T, Kumar V, Soden PE, Haynes A, Vappiani J, Tough DF, Taylor S, Dawson SJ, Bantscheff M, Lindon M, Drewes G, Demont EH, Daniels DL, Grandi P, Prinjha RK, Dawson MA. Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science 2020; 368:387-394. [PMID: 32193360 PMCID: PMC7610820 DOI: 10.1126/science.aaz8455] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
The two tandem bromodomains of the BET (bromodomain and extraterminal domain) proteins enable chromatin binding to facilitate transcription. Drugs that inhibit both bromodomains equally have shown efficacy in certain malignant and inflammatory conditions. To explore the individual functional contributions of the first (BD1) and second (BD2) bromodomains in biology and therapy, we developed selective BD1 and BD2 inhibitors. We found that steady-state gene expression primarily requires BD1, whereas the rapid increase of gene expression induced by inflammatory stimuli requires both BD1 and BD2 of all BET proteins. BD1 inhibitors phenocopied the effects of pan-BET inhibitors in cancer models, whereas BD2 inhibitors were predominantly effective in models of inflammatory and autoimmune disease. These insights into the differential requirement of BD1 and BD2 for the maintenance and induction of gene expression may guide future BET-targeted therapies.
Collapse
Affiliation(s)
- Omer Gilan
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Inmaculada Rioja
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Kathy Knezevic
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Matthew J Bell
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Miriam M Yeung
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicola R Harker
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Enid Y N Lam
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Chun-Wa Chung
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Paul Bamborough
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Massimo Petretich
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, Heidelberg, Germany
| | | | - Stephen J Atkinson
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Anna K Bassil
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Emma J Roberts
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Dane Vassiliadis
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Marian L Burr
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Alex G S Preston
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | | | - Thilo Werner
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, Heidelberg, Germany
| | - James R Gray
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Anne-Marie Michon
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, Heidelberg, Germany
| | - Thomas Gobbetti
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Vinod Kumar
- Computational Biology, GlaxoSmithKline, Collegeville, PA, USA
| | - Peter E Soden
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Andrea Haynes
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Johanna Vappiani
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, Heidelberg, Germany
| | - David F Tough
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Simon Taylor
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| | - Marcus Bantscheff
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, Heidelberg, Germany
| | - Matthew Lindon
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | - Gerard Drewes
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, Heidelberg, Germany
| | - Emmanuel H Demont
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK
| | | | - Paola Grandi
- Cellzome GmbH, Functional Genomics R&D, GlaxoSmithKline, Heidelberg, Germany
| | - Rab K Prinjha
- Epigenetics RU, GlaxoSmithKline Medicines Research Centre, Stevenage, UK.
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
138
|
Lazarchuk P, Hernandez-Villanueva J, Pavlova MN, Federation A, MacCoss M, Sidorova JM. Mutual Balance of Histone Deacetylases 1 and 2 and the Acetyl Reader ATAD2 Regulates the Level of Acetylation of Histone H4 on Nascent Chromatin of Human Cells. Mol Cell Biol 2020; 40:e00421-19. [PMID: 32015101 PMCID: PMC7156220 DOI: 10.1128/mcb.00421-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/25/2019] [Accepted: 01/21/2020] [Indexed: 01/04/2023] Open
Abstract
Newly synthesized histone H4 that is incorporated into chromatin during DNA replication is acetylated on lysines 5 and 12. Histone deacetylase 1 (HDAC1) and HDAC2 are responsible for reducing H4 acetylation as chromatin matures. Using CRISPR-Cas9-generated hdac1- or hdac2-null fibroblasts, we determined that HDAC1 and HDAC2 do not fully compensate for each other in removing de novo acetyls on H4 in vivo Proteomics of nascent chromatin and proximity ligation assays with newly replicated DNA revealed the binding of ATAD2, a bromodomain-containing posttranslational modification (PTM) reader that recognizes acetylated H4. ATAD2 is a transcription facilitator overexpressed in several cancers and in the simian virus 40 (SV40)-transformed human fibroblast model cell line used in this study. The recruitment of ATAD2 to nascent chromatin was increased in hdac2 cells over the wild type, and ATAD2 depletion reduced the levels of nascent chromatin-associated, acetylated H4 in wild-type and hdac2 cells. We propose that overexpressed ATAD2 shifts the balance of H4 acetylation by protecting this mark from removal and that HDAC2 but not HDAC1 can effectively compete with ATAD2 for the target acetyls. ATAD2 depletion also reduced global RNA synthesis and nascent DNA-associated RNA. A moderate dependence on ATAD2 for replication fork progression was noted only for hdac2 cells overexpressing the protein.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- University of Washington, Department of Pathology, Seattle, Washington, USA
| | | | - Maria N Pavlova
- University of Washington, Department of Pathology, Seattle, Washington, USA
| | | | - Michael MacCoss
- University of Washington, Department of Genome Sciences, Seattle, Washington, USA
| | - Julia M Sidorova
- University of Washington, Department of Pathology, Seattle, Washington, USA
| |
Collapse
|
139
|
Characterization of cereblon-dependent targeted protein degrader by visualizing the spatiotemporal ternary complex formation in cells. Sci Rep 2020; 10:3088. [PMID: 32080280 PMCID: PMC7033280 DOI: 10.1038/s41598-020-59966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/05/2020] [Indexed: 11/26/2022] Open
Abstract
Targeted protein degradation (TPD) through a proteasome-dependent pathway induced by heterofunctional small molecules is initiated by the formation of a ternary complex with recruited E3 ligases. This complex formation affects the degradation ability of TPD molecules, and thus we tested for visualization of the intracellular dynamics of ternary complex formation. In this study, we applied the fluorescent-based technology detecting protein-protein interaction (Fluoppi) system, in which detectable fluorescent foci are formed when ternary complex formation induced by TPD molecules occurs in cells. We show here that cells coexpressing BRD4 and cereblon (CRBN) tagged with the Fluoppi system formed detectable foci in both live and fixed cells only when treated with BRD4-targeting degraders utilizing CRBN as an E3 ligase in dose- and time-dependent manners. Notably, the maintenance and efficacy of TPD molecule-induced foci formation correlated with the ability to degrade target proteins. Furthermore, we demonstrated that BRD4-targeting and FKBP12F36V-targeting degraders formed ternary complexes mainly in the nucleus and cytoplasm, respectively, suggesting that TPD molecules utilize the proteasome to degrade target proteins in their corresponding localized region. Our results also suggest that the Fluoppi system is a powerful tool for characterizing TPD molecules by visualizing the spatiotemporal formation of ternary complex.
Collapse
|
140
|
H.S. Richter G, Hensel T, Schmidt O, Saratov V, von Heyking K, Becker-Dettling F, Prexler C, Yen HY, Steiger K, Fulda S, Dirksen U, Weichert W, Wang S, Burdach S, Schäfer BW. Combined Inhibition of Epigenetic Readers and Transcription Initiation Targets the EWS-ETS Transcriptional Program in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12020304. [PMID: 32012890 PMCID: PMC7072515 DOI: 10.3390/cancers12020304] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Previously, we used inhibitors blocking BET bromodomain binding proteins (BRDs) in Ewing sarcoma (EwS) and observed that long term treatment resulted in the development of resistance. Here, we analyze the possible interaction of BRD4 with cyclin-dependent kinase (CDK) 9. Methods: Co-immunoprecipitation experiments (CoIP) to characterize BRD4 interaction and functional consequences of inhibiting transcriptional elongation were assessed using drugs targeting of BRD4 or CDK9, either alone or in combination. Results: CoIP revealed an interaction of BRD4 with EWS-FLI1 and CDK9 in EwS. Treatment of EwS cells with CDKI-73, a specific CDK9 inhibitor (CDK9i), induced a rapid downregulation of EWS-FLI1 expression and block of contact-dependent growth. CDKI-73 induced apoptosis in EwS, as depicted by cleavage of Caspase 7 (CASP7), PARP and increased CASP3 activity, similar to JQ1. Microarray analysis following CDKI-73 treatment uncovered a transcriptional program that was only partially comparable to BRD inhibition. Strikingly, combined treatment of EwS with BRD- and CDK9-inhibitors re-sensitized cells, and was overall more effective than individual drugs not only in vitro but also in a preclinical mouse model in vivo. Conclusion: Treatment with BRD inhibitors in combination with CDK9i offers a new treatment option that significantly blocks the pathognomonic EWS-ETS transcriptional program and malignant phenotype of EwS.
Collapse
Affiliation(s)
- Günther H.S. Richter
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Division of Oncology and Hematology, Department of Pediatrics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Correspondence:
| | - Tim Hensel
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Oxana Schmidt
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Vadim Saratov
- Department of Oncology and Children’s Research Center, University Children’s Hospital, 8032 Zurich, Switzerland; (V.S.); (B.W.S.)
| | - Kristina von Heyking
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Fiona Becker-Dettling
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
| | - Carolin Prexler
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Hsi-Yu Yen
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Simone Fulda
- Institute for Experimental Cancer Research in Paediatrics, Goethe-University Frankfurt, 60528 Frankfurt/Main, Germany;
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre, University Hospital of Essen, 45147 Essen, Germany;
- German Cancer Research Center (DKFZ), partner site Essen, 45147 Essen, Germany
| | - Wilko Weichert
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
- Institute of Pathology, Technical University of Munich and Comparative Experimental Pathology (CEP), Technical University of Munich, 81675 Munich, Germany;
| | - Shudong Wang
- Centre for Drug Discovery and Development and School of Pharmacy and Medical Sciences, University of South Australia Cancer Research Institute, Adelaide, South Australia 5001, Australia;
| | - Stefan Burdach
- Children’s Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, 80804 München, Germany; (T.H.); (O.S.); (K.v.H.); (F.B.-D.); (C.P.); (S.B.)
- German Cancer Research Center (DKFZ), partner site Munich, 81377 Munich, Germany; (H.-Y.Y.); (W.W.)
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital, 8032 Zurich, Switzerland; (V.S.); (B.W.S.)
| |
Collapse
|
141
|
Yang J, Chen S, Yang Y, Ma X, Shao B, Yang S, Wei Y, Wei X. Jumonji domain-containing protein 6 protein and its role in cancer. Cell Prolif 2020; 53:e12747. [PMID: 31961032 PMCID: PMC7046477 DOI: 10.1111/cpr.12747] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023] Open
Abstract
The jumonji domain‐containing protein 6 (JMJD6) is a Fe(II)‐ and 2‐oxoglutarate (2OG)‐dependent oxygenase that catalyses lysine hydroxylation and arginine demethylation of histone and non‐histone peptides. Recently, the intrinsic tyrosine kinase activity of JMJD6 has also been reported. The JMJD6 has been implicated in embryonic development, cellular proliferation and migration, self‐tolerance induction in the thymus, and adipocyte differentiation. Not surprisingly, abnormal expression of JMJD6 may contribute to the development of many diseases, such as neuropathic pain, foot‐and‐mouth disease, gestational diabetes mellitus, hepatitis C and various types of cancer. In the present review, we summarized the structure and functions of JMJD6, with particular emphasis on the role of JMJD6 in cancer progression.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanfei Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Shao
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shengyong Yang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
142
|
Bechter O, Schöffski P. Make your best BET: The emerging role of BET inhibitor treatment in malignant tumors. Pharmacol Ther 2020; 208:107479. [PMID: 31931101 DOI: 10.1016/j.pharmthera.2020.107479] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022]
Abstract
Bromodomains are protein-protein interaction modules with a great diversity in terms of number of proteins and their function. The bromodomain and extraterminal protein (BET) represents a distinct subclass of bromodomain proteins mainly involved in transcriptional regulation via their interaction with acetylated chromatin. In cancer cells BET proteins are found to be altered in many ways such as overexpression, mutations and fusions of BET proteins or their interference with cancer relevant signaling pathways and transcriptional programs in order to sustain cancer growth and viability. Blocking BET protein function with small molecules is associated with therapeutic activity. Consequently, a variety of small molecules have been developed and a number of phase I clinical trials have explored their tolerability and efficacy in patients with solid tumors and hematological malignancies. We will review the rational for applying BET inhibitors in the clinic and we will discuss the toxicity profile as well as efficacy of this new class of protein inhibitors. We will also highlight the emerging problem of treatment resistance and the potential these drugs might have when combined with other anti-cancer therapies.
Collapse
Affiliation(s)
- Oliver Bechter
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| | - Patrick Schöffski
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU, Leuven, Belgium.
| |
Collapse
|
143
|
Jiang G, Deng W, Liu Y, Wang C. General mechanism of JQ1 in inhibiting various types of cancer. Mol Med Rep 2020; 21:1021-1034. [PMID: 31922235 PMCID: PMC7003028 DOI: 10.3892/mmr.2020.10927] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/04/2019] [Indexed: 01/21/2023] Open
Abstract
Bromodomain-containing 4 (BRD4) is a histone modification reader and transcriptional regulator that has been reported to interact with acetylated lysine histone motifs transcription factors (TFs), transcription co-activators and RNA polymerase II. The selective small molecule inhibitor JQ1, which binds competitively to bromodomains, has been reported to exhibit anti-proliferative effects in various types of cancer. Previous studies on the mechanism of action of JQ1 mostly focused on a specific tumor type or disease; however, the general mechanism through which JQ1 affects various tumors remains to be determined. In the present study, chromatin immunoprecipitation sequencing data for BRD4 and its expression profiles in six cancer cell lines were integrated and analyzed systematically. The results indicated that BRD4 binds to enhancers with histone H3 acetylated at lysine 27 (H3K27Ac) and mediator complex subunit 1 in a cell type-specific manner, as well as binds to promoter regions with the oncogenic TFs MYC and E2F1 in a cell type-common manner. The cell type-common sites across the six cell types investigated were found to be functionally important for tumorigenesis, whereas the cell type-specific sites were functionally enriched with the cell identity, all of which were sensitive to JQ1 treatment. Furthermore, a core set of JQ1-regulated BRD4 binding genes were obtained, which were significantly inhibited by JQ1 in various cancer cell lines and contributed to hallmarks of cancer. These results implied a common mechanism underlying the therapeutic effects of JQ1 and suggested its potential suitability as an anti-cancer drug targeting BRD4-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Guojuan Jiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Wanglong Deng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Yang Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Chengde Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
144
|
Izumikawa K, Ishikawa H, Yoshikawa H, Fujiyama S, Watanabe A, Aburatani H, Tachikawa H, Hayano T, Miura Y, Isobe T, Simpson RJ, Li L, Min J, Takahashi N. LYAR potentiates rRNA synthesis by recruiting BRD2/4 and the MYST-type acetyltransferase KAT7 to rDNA. Nucleic Acids Res 2019; 47:10357-10372. [PMID: 31504794 PMCID: PMC6821171 DOI: 10.1093/nar/gkz747] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/22/2019] [Accepted: 08/20/2018] [Indexed: 02/06/2023] Open
Abstract
Activation of ribosomal RNA (rRNA) synthesis is pivotal during cell growth and proliferation, but its aberrant upregulation may promote tumorigenesis. Here, we demonstrate that the candidate oncoprotein, LYAR, enhances ribosomal DNA (rDNA) transcription. Our data reveal that LYAR binds the histone-associated protein BRD2 without involvement of acetyl-lysine-binding bromodomains and recruits BRD2 to the rDNA promoter and transcribed regions via association with upstream binding factor. We show that BRD2 is required for the recruitment of the MYST-type acetyltransferase KAT7 to rDNA loci, resulting in enhanced local acetylation of histone H4. In addition, LYAR binds a complex of BRD4 and KAT7, which is then recruited to rDNA independently of the BRD2-KAT7 complex to accelerate the local acetylation of both H4 and H3. BRD2 also helps recruit BRD4 to rDNA. By contrast, LYAR has no effect on rDNA methylation or the binding of RNA polymerase I subunits to rDNA. These data suggest that LYAR promotes the association of the BRD2-KAT7 and BRD4-KAT7 complexes with transcription-competent rDNA loci but not to transcriptionally silent rDNA loci, thereby increasing rRNA synthesis by altering the local acetylation status of histone H3 and H4.
Collapse
Affiliation(s)
- Keiichi Izumikawa
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Hideaki Ishikawa
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Harunori Yoshikawa
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sally Fujiyama
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Akira Watanabe
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University 53, Shogoin-kawahara-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8507, Japan
| | - Hiroyuki Aburatani
- Laboratory for System Biology and Medicine, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroyuki Tachikawa
- Department of Applied Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshiya Hayano
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan
| | - Yutaka Miura
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachiouji-shi, Tokyo 192-0397, Japan
| | - Richard J Simpson
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,La Trobe Institute for Molecular Science (LIMS) LIMS Building 1, Room 412 La Trobe University, Bundoora Victoria 3086, Australia
| | - Li Li
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jinrong Min
- Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.,Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nobuhiro Takahashi
- Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Global Innovation Research Organizations, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| |
Collapse
|
145
|
NUT midline carcinoma: Current concepts and future perspectives of a novel tumour entity. Crit Rev Oncol Hematol 2019; 144:102826. [DOI: 10.1016/j.critrevonc.2019.102826] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/22/2023] Open
|
146
|
Maita H, Nakagawa S. What is the switch for coupling transcription and splicing? RNA Polymerase II C‐terminal domain phosphorylation, phase separation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1574. [DOI: 10.1002/wrna.1574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences Hokkaido University Sapporo Japan
| |
Collapse
|
147
|
Mao W, Ghasemzadeh A, Freeman ZT, Obradovic A, Chaimowitz MG, Nirschl TR, McKiernan E, Yegnasubramanian S, Drake CG. Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. J Immunother Cancer 2019; 7:277. [PMID: 31653272 PMCID: PMC6814994 DOI: 10.1186/s40425-019-0758-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Prostate cancer responds poorly to current immunotherapies. Epigenetic therapies such as BET Bromodomain inhibition can change the transcriptome of tumor cells, possibly making them more immunogenic and thus susceptible to immune targeting. METHODS We characterized the effects of BET bromodomain inhibition using JQ1 on PD-L1 and HLA-ABC expression in two human prostate cell lines, DU145 and PC3. RNA-Seq was performed to assess changes on a genome-wide level. A cytotoxic T cell killing assay was performed in MC38-OVA cells treated with JQ1 to demonstrate increased immunogenicity. In vivo experiments in the Myc-Cap model were conducted to show the effects of JQ1 administration in concert with anti-CTLA-4 checkpoint blockade. RESULTS Here, we show that targeting BET bromodomains using the small molecule inhibitor JQ1 decreased PD-L1 expression and mitigated tumor progression in prostate cancer models. Mechanistically, BET bromodomain inhibition increased MHC I expression and increased the immunogenicity of tumor cells. Transcriptional profiling showed that BET bromodomain inhibition regulates distinct networks of antigen processing and immune checkpoint molecules. In murine models, treatment with JQ1 was additive with anti-CTLA-4 immunotherapy, resulting in an increased CD8/Treg ratio. CONCLUSIONS BET Bromodomain inhibition can mediate changes in expression at a genome wide level in prostate cancer cells, resulting in an increased susceptibility to CD8 T cell targeting. These data suggest that combining BET bromodomain inhibition with immune checkpoint blockade may have clinical activity in prostate cancer patients.
Collapse
Affiliation(s)
- Wendy Mao
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ali Ghasemzadeh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine (ULAM), Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Systems Biology, Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Thomas R Nirschl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Emily McKiernan
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Urology, Columbia University Medical Center, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Division of Hematology / Oncology, Columbia University Medical Center, 177 Fort Washington Avenue, Suite 6GN-435, New York, NY, 10032, USA.
| |
Collapse
|
148
|
LeRoy G, Oksuz O, Descostes N, Aoi Y, Ganai RA, Kara HO, Yu JR, Lee CH, Stafford J, Shilatifard A, Reinberg D. LEDGF and HDGF2 relieve the nucleosome-induced barrier to transcription in differentiated cells. SCIENCE ADVANCES 2019; 5:eaay3068. [PMID: 31616795 PMCID: PMC6774727 DOI: 10.1126/sciadv.aay3068] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/05/2019] [Indexed: 05/25/2023]
Abstract
FACT (facilitates chromatin transcription) is a protein complex that allows RNA polymerase II (RNAPII) to overcome the nucleosome-induced barrier to transcription. While abundant in undifferentiated cells and many cancers, FACT is not abundant or is absent in most tissues. Therefore, we screened for additional proteins that might replace FACT upon differentiation. We identified two proteins, lens epithelium-derived growth factor (LEDGF) and hepatoma-derived growth factor 2 (HDGF2), each containing two high mobility group A (HMGA)-like AT-hooks and a methyl-lysine reading Pro-Trp-Trp-Pro (PWWP) domain that binds to H3K36me2 and H3K36me3.LEDGF and HDGF2 colocalize with H3K36me2/3 at genomic regions containing active genes. In myoblasts, LEDGF and HDGF2 are enriched on most active genes. Upon differentiation to myotubes, LEDGF levels decrease, while HDGF2 levels are maintained. Moreover, HDGF2 is required for their proper expression. HDGF2 knockout myoblasts exhibit an accumulation of paused RNAPII within the transcribed region of many HDGF2 target genes, indicating a defect in early elongation.
Collapse
Affiliation(s)
- Gary LeRoy
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ozgur Oksuz
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Nicolas Descostes
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- EMBL Rome, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015 Monterotondo (RM), Italy
| | - Yuki Aoi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rais A. Ganai
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Havva Ortabozkoyun Kara
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jia-Ray Yu
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Chul-Hwan Lee
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - James Stafford
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
149
|
Kumar R, Paul AM, Rameshwar P, Pillai MR. Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers (Basel) 2019; 11:cancers11081193. [PMID: 31426393 PMCID: PMC6721458 DOI: 10.3390/cancers11081193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
An increasingly number of women of all age groups are affected by cancer, despite substantial progress in our understanding of cancer pathobiology, the underlying genomic alterations and signaling cascades, and cellular-environmental interactions. Though our understanding of women’s cancer is far more complete than ever before, there is no comprehensive model to explain the reasons behind the increased incidents of certain reproductive cancer among older as well as younger women. It is generally suspected that environmental and life-style factors affecting hormonal and growth control pathways might help account for the rise of women’s cancers in younger age, as well, via epigenetic mechanisms. Epigenetic regulators play an important role in orchestrating an orderly coordination of cellular signals in gene activity in response to upstream signaling and/or epigenetic modifiers present in a dynamic extracellular milieu. Here we will discuss the broad principles of epigenetic regulation of DNA methylation and demethylation, histone acetylation and deacetylation, and RNA methylation in women’s cancers in the context of gene expression, hormonal action, and the EGFR family of cell surface receptor tyrosine kinases. We anticipate that a better understanding of the epigenetics of women’s cancers may provide new regulatory leads and further fuel the development of new epigenetic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India.
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Aswathy Mary Paul
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
- Graduate Degree Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - M Radhakrishna Pillai
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
| |
Collapse
|
150
|
Piha-Paul SA, Sachdev JC, Barve M, LoRusso P, Szmulewitz R, Patel SP, Lara PN, Chen X, Hu B, Freise KJ, Modi D, Sood A, Hutti JE, Wolff J, O'Neil BH. First-in-Human Study of Mivebresib (ABBV-075), an Oral Pan-Inhibitor of Bromodomain and Extra Terminal Proteins, in Patients with Relapsed/Refractory Solid Tumors. Clin Cancer Res 2019; 25:6309-6319. [DOI: 10.1158/1078-0432.ccr-19-0578] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/21/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022]
|