101
|
Better together: building protein oligomers naturally and by design. Biochem Soc Trans 2020; 47:1773-1780. [PMID: 31803901 PMCID: PMC6925524 DOI: 10.1042/bst20190283] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Protein oligomers are more common in nature than monomers, with dimers being the most prevalent final structural state observed in known structures. From a biological perspective, this makes sense as it conserves vital molecular resources that may be wasted simply by generating larger single polypeptide units, and allows new features such as cooperativity to emerge. Taking inspiration from nature, protein designers and engineers are now building artificial oligomeric complexes using a variety of approaches to generate new and useful supramolecular protein structures. Oligomerisation is thus offering a new approach to sample structure and function space not accessible through simply tinkering with monomeric proteins.
Collapse
|
102
|
Kupke T, Klare JP, Brügger B. Heme binding of transmembrane signaling proteins undergoing regulated intramembrane proteolysis. Commun Biol 2020; 3:73. [PMID: 32060393 PMCID: PMC7021776 DOI: 10.1038/s42003-020-0800-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Transmembrane signaling proteins play a crucial role in the transduction of information across cell membranes. One function of regulated intramembrane proteolysis (RIP) is the release of signaling factors from transmembrane proteins. To study the role of transmembrane domains (TMDs) in modulating structure and activity of released signaling factors, we purified heterologously expressed human transmembrane proteins and their proteolytic processing products from Escherichia coli. Here we show that CD74 and TNFα are heme binding proteins. Heme coordination depends on both a cysteine residue proximal to the membrane and on the oligomerization of the TMD. Furthermore, we show that the various processing products have different modes of heme coordination. We suggest that RIP changes the mode of heme binding of these proteins and generates heme binding peptides with yet unexplored functions. The identification of a RIP modulated cofactor binding of transmembrane signaling proteins sheds new light on the regulation of cell signaling pathways. Kupke et al. study regulated intramembrane proteolysis (RIP) using recombinant transmembrane proteins CD74 and TNFα and find they are heme binding proteins that change their mode of heme binding after proteolytic processing. These data suggest that RIP of type II transmembrane proteins can generate intracellular heme sensor peptides.
Collapse
Affiliation(s)
- Thomas Kupke
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| | - Johann P Klare
- Department of Physics, University of Osnabrück, Osnabrück, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany.
| |
Collapse
|
103
|
Laranjeira-Silva MF, Hamza I, Pérez-Victoria JM. Iron and Heme Metabolism at the Leishmania-Host Interface. Trends Parasitol 2020; 36:279-289. [PMID: 32005611 DOI: 10.1016/j.pt.2019.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/27/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Species of the protozoan Leishmania are causative agents of human leishmaniasis, a disease that results in significant death, disability, and disfigurement around the world. The parasite is transmitted to a mammalian host by a sand fly vector where it develops as an intracellular parasite within macrophages. This process requires the acquisition of nutritional iron and heme from the host as Leishmania lacks the capacity for de novo heme synthesis and does not contain cytosolic iron-storage proteins. Proteins involved in Leishmania iron and heme transport and metabolism have been identified and shown to be crucial for the parasite's growth and replication within the host. Consequently, a detailed understanding of how these parasites harness host pathways for survival may lay the foundation for promising new therapeutic intervention against leishmaniasis.
Collapse
Affiliation(s)
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| |
Collapse
|
104
|
Interplay of Heme with Macrophages in Homeostasis and Inflammation. Int J Mol Sci 2020; 21:ijms21030740. [PMID: 31979309 PMCID: PMC7036926 DOI: 10.3390/ijms21030740] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Macrophages are an integral part of the mononuclear phagocyte system that is critical for maintaining immune homeostasis. They play a key role for initiation and modulation of immunological responses in inflammation and infection. Moreover, macrophages exhibit a wide spectrum of tissue-specific phenotypes in steady-state and pathophysiological conditions. Recent clinical and experimental evidence indicates that the ubiquitous compound heme is a crucial regulator of these cells, e.g., in the differentiation of monocytes to tissue-resident macrophages and/ or in activation by inflammatory stimuli. Notably, heme, an iron containing tetrapyrrole, is essential as a prosthetic group of hemoproteins (e.g., hemoglobin and cytochromes), whereas non-protein bound free or labile heme can be harmful via pro-oxidant, pro-inflammatory, and cytotoxic effects. In this review, it will be discussed how the complex interplay of heme with macrophages regulates homeostasis and inflammation via modulating macrophage inflammatory characteristics and/ or hematopoiesis. A particular focus will be the distinct roles of intra- and extracellular labile heme and the regulation of its availability by heme-binding proteins. Finally, it will be addressed how heme modulates macrophage functions via specific transcriptional factors, in particular the nuclear repressor BTB and CNC homologue (BACH)1 and Spi-C.
Collapse
|
105
|
Xu S, Liu HW, Chen L, Yuan J, Liu Y, Teng L, Huan SY, Yuan L, Zhang XB, Tan W. Learning from Artemisinin: Bioinspired Design of a Reaction-Based Fluorescent Probe for the Selective Sensing of Labile Heme in Complex Biosystems. J Am Chem Soc 2020; 142:2129-2133. [PMID: 31955575 DOI: 10.1021/jacs.9b11245] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Labile heme (LH) is an important signaling molecule in virtually all organisms. However, specifically detecting LH remains an outstanding challenge. Herein, by learning from the bioactivation mechanism of artemisinin, we have developed the first LH-responsive small-molecule fluorescent probe, HNG, based on a 4-amino-1,8-naphthalimide (NG) fluorophore. HNG showed high selectivity for LH without interference from hemin, protein-interacting heme, and zinc protoporphyrin. Using HNG, the changes of LH levels in live cells were imaged, and a positive correlation of LH level with the degree of hemolysis was uncovered in hemolytic mice. Our study not only presents the first molecular probe for specific LH detection but also provides a strategy to construct probes with high specificity through a bioinspired approach.
Collapse
Affiliation(s)
- Shuai Xu
- Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , P. R. China
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , P. R. China
| | - Lanlan Chen
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry , Fuzhou University , Fuzhou 350002 , P. R. China
| | - Jie Yuan
- Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , P. R. China
| | - Yongchao Liu
- Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , P. R. China
| | - Lili Teng
- Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , P. R. China
| | - Shuang-Yan Huan
- Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , P. R. China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Collaborative Innovation Center for Chemistry and Molecular Medicine , Hunan University , Changsha 410082 , P. R. China
| |
Collapse
|
106
|
Dastpeyman S, Godin R, Cosa G, English AM. Quantifying Heme-Protein Maturation from Ratiometric Fluorescence Lifetime Measurements on the Single Fluorophore in Its GFP Fusion. J Phys Chem A 2020; 124:746-754. [PMID: 31894984 DOI: 10.1021/acs.jpca.9b11901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein maturation by heme insertion is a common post-translation modification of key biological importance. Nonetheless, where and when this maturation occurs in eukaryotic cells remain unknown for most heme proteins. Here, we demonstrate for the first time that the maturation of a chromosomally expressed, endogenous heme protein fused to a green fluorescent protein (GFP) can be tracked in live cells. Selecting yeast cytochrome c peroxidase (Ccp1) as our model heme-binding protein, we first characterized the emission in vitro of recombinant Ccp1-GFP with GFP fused C-terminally to Ccp1 by the linker GRRIPGLIN. Time-correlated single-photon counting reveals a single fluorescence lifetime for heme-free apoCcp1-GFP, τ0 = 2.84 ± 0.01 ns. Heme bound to Ccp1 only partially quenches GFP fluorescence since holoCcp1-GFP exhibits two lifetimes, τ1 = 0.95 ± 0.02 and τ2 = 2.46 ± 0.03 ns with fractional amplitudes a1 = 38 ± 1.5% and a2 = 62 ± 1.5%. Also, τ and a are independent of Ccp1-GFP concentration and solution pH between 5.5 and 8.0, and a standard plot of a1 vs % holoCcp1-GFP in mixtures with apoCcp1-GFP is linear, establishing that the fraction of Ccp1-GFP with heme bound can be determined from a1. Fluorescence lifetime imaging microscopy (FLIM) of live yeast cells chromosomally expressing the same Ccp1-GFP fusion revealed 30% holoCcp1-GFP (i.e., mature Ccp1) and 70% apoCcp1-GFP in agreement with biochemical measurements on cell lysates. Thus, ratiometric fluorescence lifetime measurements offer promise for probing heme-protein maturation in live cells, and we can dispense with the reference fluorophore required for ratiometric intensity-based measurements.
Collapse
Affiliation(s)
- Samaneh Dastpeyman
- PROTEO and Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke St West , Montreal , Canada H4B 1R6
| | - Robert Godin
- Department of Chemistry , McGill University , 801 Sherbrooke St West , Montreal , Canada H3A 0B8
| | - Gonzalo Cosa
- Department of Chemistry , McGill University , 801 Sherbrooke St West , Montreal , Canada H3A 0B8
| | - Ann M English
- PROTEO and Department of Chemistry and Biochemistry , Concordia University , 7141 Sherbrooke St West , Montreal , Canada H4B 1R6
| |
Collapse
|
107
|
Functional expression of a bacterial α-ketoglutarate dehydrogenase in the cytosol of Saccharomyces cerevisiae. Metab Eng 2019; 56:190-197. [DOI: 10.1016/j.ymben.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022]
|
108
|
Thakuri B, Graves AB, Chao A, Johansen SL, Goulding CW, Liptak MD. The affinity of MhuD for heme is consistent with a heme degrading function in vivo. Metallomics 2019; 10:1560-1563. [PMID: 30239544 DOI: 10.1039/c8mt00238j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MhuD is a protein found in mycobacteria that can bind up to two heme molecules per protein monomer and catalyze the degradation of heme to mycobilin in vitro. Here the Kd1 for heme dissociation from heme-bound MhuD was determined to be 7.6 ± 0.8 nM and the Kd2 for heme dissocation from diheme-bound MhuD was determined to be 3.3 ± 1.1 μM. These data strongly suggest that MhuD is a competent heme oxygenase in vivo.
Collapse
Affiliation(s)
- Biswash Thakuri
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | | | |
Collapse
|
109
|
Noé R, Bozinovic N, Lecerf M, Lacroix-Desmazes S, Dimitrov JD. Use of cysteine as a spectroscopic probe for determination of heme-scavenging capacity of serum proteins and whole human serum. J Pharm Biomed Anal 2019; 172:311-319. [DOI: 10.1016/j.jpba.2019.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 12/23/2022]
|
110
|
Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, Yao H, Ziegler DV, Xu X, Ghosh T, Mondal T, Kanduri C, Lindahl P, Sayin VI, Bergo MO. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell 2019; 178:330-345.e22. [PMID: 31257027 DOI: 10.1016/j.cell.2019.06.005] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/29/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
For tumors to progress efficiently, cancer cells must overcome barriers of oxidative stress. Although dietary antioxidant supplementation or activation of endogenous antioxidants by NRF2 reduces oxidative stress and promotes early lung tumor progression, little is known about its effect on lung cancer metastasis. Here, we show that long-term supplementation with the antioxidants N-acetylcysteine and vitamin E promotes KRAS-driven lung cancer metastasis. The antioxidants stimulate metastasis by reducing levels of free heme and stabilizing the transcription factor BACH1. BACH1 activates transcription of Hexokinase 2 and Gapdh and increases glucose uptake, glycolysis rates, and lactate secretion, thereby stimulating glycolysis-dependent metastasis of mouse and human lung cancer cells. Targeting BACH1 normalized glycolysis and prevented antioxidant-induced metastasis, while increasing endogenous BACH1 expression stimulated glycolysis and promoted metastasis, also in the absence of antioxidants. We conclude that BACH1 stimulates glycolysis-dependent lung cancer metastasis and that BACH1 is activated under conditions of reduced oxidative stress.
Collapse
Affiliation(s)
- Clotilde Wiel
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden; Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kristell Le Gal
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Mohamed X Ibrahim
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | | - Muhammad Kashif
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Haidong Yao
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Dorian V Ziegler
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Xiufeng Xu
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Tanushree Ghosh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Tanmoy Mondal
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Per Lindahl
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Volkan I Sayin
- Sahlgrenska Cancer Center, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden; Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
111
|
Verstraete MM, Morales LD, Kobylarz MJ, Loutet SA, Laakso HA, Pinter TB, Stillman MJ, Heinrichs DE, Murphy MEP. The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by Staphylococcus aureus. J Biol Chem 2019; 294:11622-11636. [PMID: 31197035 DOI: 10.1074/jbc.ra119.007757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/12/2019] [Indexed: 01/30/2023] Open
Abstract
Staphylococcus aureus infection relies on iron acquisition from its host. S. aureus takes up iron through heme uptake by the iron-responsive surface determinant (Isd) system and by the production of iron-scavenging siderophores. Staphyloferrin B (SB) is a siderophore produced by the 9-gene sbn gene cluster for SB biosynthesis and efflux. Recently, the ninth gene product, SbnI, was determined to be a free l-serine kinase that produces O-phospho-l-serine (OPS), a substrate for SB biosynthesis. Previous studies have also characterized SbnI as a DNA-binding regulatory protein that senses heme to control sbn gene expression for SB synthesis. Here, we present crystal structures at 1.9-2.1 Å resolution of a SbnI homolog from Staphylococcus pseudintermedius (SpSbnI) in both apo form and in complex with ADP, a product of the kinase reaction; the latter confirmed the active-site location. The structures revealed that SpSbnI forms a dimer through C-terminal domain swapping and a dimer of dimers through intermolecular disulfide formation. Heme binding had only a modest effect on SbnI enzymatic activity, suggesting that its two functions are independent and structurally distinct. We identified a heme-binding site and observed catalytic heme transfer between a heme-degrading protein of the Isd system, IsdI, and SbnI. These findings support the notion that SbnI has a bifunctional role contributing precursor OPS to SB synthesis and directly sensing heme to control expression of the sbn locus. We propose that heme transfer from IsdI to SbnI enables S. aureus to control iron source preference according to the sources available in the environment.
Collapse
Affiliation(s)
- Meghan M Verstraete
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - L Daniela Morales
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marek J Kobylarz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Slade A Loutet
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Holly A Laakso
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Tyler B Pinter
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Martin J Stillman
- Department of Chemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
112
|
Sudan K, Vijayan V, Madyaningrana K, Gueler F, Igarashi K, Foresti R, Motterlini R, Immenschuh S. TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radic Biol Med 2019; 137:131-142. [PMID: 31026585 DOI: 10.1016/j.freeradbiomed.2019.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 02/07/2023]
Abstract
Heme oxygenase (HO)-1, a stress-inducible enzyme that converts heme into carbon monoxide (CO), iron and biliverdin, exerts important anti-inflammatory effects in activated macrophages. HO-1 expression is mainly governed by a mutual interplay between the transcriptional factor NRF2 and the nuclear repressor BTB and CNC homology 1 (BACH1), a heme sensor protein. In the current study we hypothesized that alterations in the levels of intracellular labile heme in macrophages stimulated by lipopolysaccharide (LPS), a prototypical pro-inflammatory Toll-like receptor (TLR)4 agonist, are responsible for BACH1-dependent HO-1 expression. To this end, labile heme was determined in both mouse bone marrow-derived macrophages (mBMDMs) and human monocyte-derived macrophages (hMDMs) using an apo-horseradish peroxidase-based assay. We found that LPS raised the levels of labile heme, depressed BACH1 protein and up-regulated HO-1 in mBMDMs. In contrast, in hMDMs LPS decreased labile heme levels while increasing BACH1 expression and down-regulating HO-1. These effects were abolished by the TLR4 antagonist TAK-242, suggesting that TLR4 activation triggers the signaling cascade leading to changes in the labile heme pool. Studies using mBMDMs from BACH1-/- and NRF2-/- mice revealed that regulation of HO-1 and levels of labile heme after LPS stimulation are strictly dependent on BACH1, but not NRF2. A strong interplay between BACH1-mediated HO-1 expression and intracellular levels of labile heme was also confirmed in hMDMs with siRNA knockdown studies and following inhibition of de novo heme synthesis with succinylacetone. Finally, CORM-401, a compound that liberates CO, counteracted LPS-dependent down-regulation of HO-1 and restored levels of labile heme in hMDMs. In conclusion, alterations of labile heme levels in macrophages following TLR4 stimulation play a crucial role in BACH1-mediated regulation of HO-1 expression.
Collapse
Affiliation(s)
- Kritika Sudan
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kukuh Madyaningrana
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Roberta Foresti
- INSERM U955, Team 12, Faculty of Medicine, University Paris Est, Creteil, France
| | - Roberto Motterlini
- INSERM U955, Team 12, Faculty of Medicine, University Paris Est, Creteil, France
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
113
|
Donegan RK, Moore CM, Hanna DA, Reddi AR. Handling heme: The mechanisms underlying the movement of heme within and between cells. Free Radic Biol Med 2019; 133:88-100. [PMID: 30092350 PMCID: PMC6363905 DOI: 10.1016/j.freeradbiomed.2018.08.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 02/02/2023]
Abstract
Heme is an essential cofactor and signaling molecule required for virtually all aerobic life. However, excess heme is cytotoxic. Therefore, heme must be safely transported and trafficked from the site of synthesis in the mitochondria or uptake at the cell surface, to hemoproteins in most subcellular compartments. While heme synthesis and degradation are relatively well characterized, little is known about how heme is trafficked and transported throughout the cell. Herein, we review eukaryotic heme transport, trafficking, and mobilization, with a focus on factors that regulate bioavailable heme. We also highlight the role of gasotransmitters and small molecules in heme mobilization and bioavailability, and heme trafficking at the host-pathogen interface.
Collapse
Affiliation(s)
- Rebecca K Donegan
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Courtney M Moore
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - David A Hanna
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Amit R Reddi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Parker Petit Institute for Bioengineering & Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
114
|
Fleischhacker AS, Ragsdale SW. An unlikely heme chaperone confirmed at last. J Biol Chem 2019; 293:14569-14570. [PMID: 30217868 DOI: 10.1074/jbc.h118.005247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Labile heme, as opposed to heme that is tightly bound within proteins, is thought to require a chaperone to be trafficked within the cell due to its cytotoxicity, but the identity of this chaperone was not known. A new study reveals that an unlikely protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is a heme chaperone that binds and transfers labile heme to downstream target proteins. These results provide a new framework for understanding heme homeostasis and raise intriguing questions regarding the intersection of heme transport, carbohydrate metabolism, and intracellular signaling.
Collapse
Affiliation(s)
- Angela S Fleischhacker
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen W Ragsdale
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
115
|
Leung GCH, Fung SSP, Dovey NRB, Raven EL, Hudson AJ. Precise determination of heme binding affinity in proteins. Anal Biochem 2019; 572:45-51. [PMID: 30807737 DOI: 10.1016/j.ab.2019.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/22/2023]
Abstract
Accumulating evidence suggests a new role for cellular heme as a signalling molecule, in which interactions with target proteins are more transient than found with traditionally-defined hemoproteins. To study this role, a precise method is needed for determining the heme-binding affinity (or dissociation constant, Kd). Estimates of Kd are commonly made following a spectrophotometric titration of an apo-protein with hemin. An impediment to precise determination is, however, the challenge in discriminating between the Soret absorbance for the product (holo-protein) and that for the titrant (hemin). An altogether different approach has been used in this paper to separate contributions made by these components to absorbance values. The pure component spectra and concentration profiles are estimated by a multivariate curve-resolution (MCR) algorithm. This approach has significant advantages over existing methods. First, a more precise determination of Kd can be made as concentration profiles for all three components (apo-protein/holo-protein/hemin) are determined and can be simultaneously fitted to a theoretical-binding model. Second, an absorption spectrum for the holo-protein is calculated. This is a unique advantage of MCR and attractive for investigating proteins in which the nature of heme binding has not, hitherto, been characterised because the holo-protein spectrum provides information on the interaction.
Collapse
Affiliation(s)
- Galvin C-H Leung
- Department of Chemistry and the Leicester Institute of Structural & Chemical Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Simon S-P Fung
- Department of Chemistry and the Leicester Institute of Structural & Chemical Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Nicholas R B Dovey
- Department of Chemistry and the Leicester Institute of Structural & Chemical Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Andrew J Hudson
- Department of Chemistry and the Leicester Institute of Structural & Chemical Biology, University of Leicester, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
116
|
Montllor-Albalate C, Colin AE, Chandrasekharan B, Bolaji N, Andersen JL, Wayne Outten F, Reddi AR. Extra-mitochondrial Cu/Zn superoxide dismutase (Sod1) is dispensable for protection against oxidative stress but mediates peroxide signaling in Saccharomyces cerevisiae. Redox Biol 2019; 21:101064. [PMID: 30576923 PMCID: PMC6302037 DOI: 10.1016/j.redox.2018.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/13/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
Cu/Zn Superoxide Dismutase (Sod1) is a highly conserved and abundant metalloenzyme that catalyzes the disproportionation of superoxide radicals into hydrogen peroxide and molecular oxygen. As a consequence, Sod1 serves dual roles in oxidative stress protection and redox signaling by both scavenging cytotoxic superoxide radicals and producing hydrogen peroxide that can be used to oxidize and regulate the activity of downstream targets. However, the relative contributions of Sod1 to protection against oxidative stress and redox signaling are poorly understood. Using the model unicellular eukaryote, Baker's yeast, we found that only a small fraction of the total Sod1 pool is required for protection against superoxide toxicity and that this pool is localized to the mitochondrial intermembrane space. On the contrary, we find that much larger amounts of extra-mitochondrial Sod1 are critical for peroxide-mediated redox signaling. Altogether, our results force the re-evaluation of the physiological role of bulk Sod1 in redox biology; namely, we propose that the vast majority of Sod1 in yeast is utilized for peroxide-mediated signaling rather than superoxide scavenging.
Collapse
Affiliation(s)
| | - Alyson E Colin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bindu Chandrasekharan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Naimah Bolaji
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
117
|
Newton LD, Pascu SI, Tyrrell RM, Eggleston IM. Development of a peptide-based fluorescent probe for biological heme monitoring. Org Biomol Chem 2019; 17:467-471. [PMID: 30574967 PMCID: PMC6350759 DOI: 10.1039/c8ob02290a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/18/2018] [Indexed: 02/01/2023]
Abstract
Heme plays a vital role in cell biology and dysregulation of heme levels is implicated in a wide range of diseases. However, monitoring heme levels in biological systems is currently not straightforward. A short synthetic peptide probe containing 7-azatryptophan is shown to bind hemin in vitro with quenching of the azatryptophan fluorescence. This chemical tool can be used to detect the change in free heme induced in human skin cells upon exposure to UVA irradiation.
Collapse
Affiliation(s)
- Laura D. Newton
- Department of Pharmacy and Pharmacology
, University of Bath
,
Bath BA2 7AY
, UK
.
| | - Sofia I. Pascu
- Department of Chemistry
, University of Bath
,
Bath BA2 7AY
, UK
| | - Rex M. Tyrrell
- Department of Pharmacy and Pharmacology
, University of Bath
,
Bath BA2 7AY
, UK
.
| | - Ian M. Eggleston
- Department of Pharmacy and Pharmacology
, University of Bath
,
Bath BA2 7AY
, UK
.
| |
Collapse
|
118
|
Shimizu T, Lengalova A, Martínek V, Martínková M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 2019; 48:5624-5657. [DOI: 10.1039/c9cs00268e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms of unprecedented functions of exchangeable/labile heme and heme proteins including transcription, DNA binding, protein kinase activity, K+ channel functions, cis–trans isomerization, N–N bond formation, and other functions are described.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Václav Martínek
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| |
Collapse
|
119
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
120
|
Fleischhacker AS, Carter EL, Ragsdale SW. Redox Regulation of Heme Oxygenase-2 and the Transcription Factor, Rev-Erb, Through Heme Regulatory Motifs. Antioxid Redox Signal 2018; 29:1841-1857. [PMID: 28990415 PMCID: PMC6217750 DOI: 10.1089/ars.2017.7368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SIGNIFICANCE Heme binds to and serves as a cofactor for a myriad of proteins that are involved in diverse biological processes. Hemoproteins also exhibit varying modes of heme binding, suggesting that the protein environment contributes to the functional versatility of this prosthetic group. The subject of this review is a subset of hemoproteins that contain at least one heme regulatory motif (HRM), which is a short sequence containing a Cys-Pro core that, in many cases, binds heme with the Cys acting as an axial ligand. Recent Advances: As more details about HRM-containing proteins are uncovered, some underlying commonalities are emerging, including a role in regulating protein stability. Further, the cysteines of some HRMs have been shown to form disulfide bonds. Because the cysteines must be in the reduced, dithiol form to act as a heme axial ligand, heme binds at these sites in a redox-regulated manner, as demonstrated for heme oxygenase-2 (HO2) and Rev-erbβ. CRITICAL ISSUES HRM-containing proteins have wide variations in heme affinity, utilize different axial ligand schemes, and exhibit differences in the ability to act as a redox sensor-all while having a wide variety of biological functions. Here, we highlight HO2 and Rev-erbβ to illustrate the similarities and differences between two hemoproteins that contain HRMs acting as redox sensors. FUTURE DIRECTIONS HRMs acting as redox sensors may be applicable to other HRM-containing proteins as many contain multiple HRMs and/or other cysteine residues, which may become more evident as the functional significance of HRMs is probed in additional proteins.
Collapse
Affiliation(s)
| | - Eric L Carter
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
121
|
Abstract
The movement or trafficking of heme is critical for cellular functions (e.g., oxygen transport and energy production); however, intracellular heme is tightly regulated due to its inherent cytotoxicity. These factors, combined with the transient nature of transport, have resulted in a lack of direct knowledge on the mechanisms of heme binding and trafficking. Here, we used the cytochrome c biogenesis system II pathway as a model to study heme trafficking. System II is composed of two integral membrane proteins (CcsBA) which function to transport heme across the membrane and stereospecifically position it for covalent attachment to apocytochrome c. We mapped two heme binding domains in CcsBA and suggest a path for heme trafficking. These data, in combination with metagenomic coevolution data, are used to determine a structural model of CcsBA, leading to increased understanding of the mechanisms for heme transport and the cytochrome c synthetase function of CcsBA. Although intracellular heme trafficking must occur for heme protein assembly, only a few heme transporters have been unequivocally discovered and nothing is known about their structure or mechanisms. Cytochrome c biogenesis in prokaryotes requires the transport of heme from inside to outside for stereospecific attachment to cytochrome c via two thioether bonds (at CXXCH). The CcsBA integral membrane protein was shown to transport and attach heme (and thus is a cytochrome c synthetase), but the structure and mechanisms underlying these two activities are poorly understood. We employed a new cysteine/heme crosslinking tool that traps endogenous heme in heme binding sites. We combined these data with a comprehensive imidazole correction approach (for heme ligand interrogation) to map heme binding sites. Results illuminate the process of heme transfer through the membrane to an external binding site (called the WWD domain). Using meta-genomic data (GREMLIN) and Rosetta modeling programs, a structural model of the transmembrane (TM) regions in CcsBA were determined. The heme mapping data were then incorporated to model the TM heme binding site (with TM-His1 and TM-His2 as ligands) and the external heme binding WWD domain (with P-His1 and P-His2 as ligands). Other periplasmic structure/function studies facilitated modeling of the full CcsBA protein as a framework for understanding the mechanisms. Mechanisms are proposed for heme transport from TM-His to WWD/P-His and subsequent stereospecific attachment of heme. A ligand exchange of the P-His1 for histidine of CXXCH at the synthetase active site is suggested.
Collapse
|
122
|
Hisamatsu Y, Umezawa N, Yagi H, Kato K, Higuchi T. Design and synthesis of a 4-aminoquinoline-based molecular tweezer that recognizes protoporphyrin IX and iron(iii) protoporphyrin IX and its application as a supramolecular photosensitizer. Chem Sci 2018; 9:7455-7467. [PMID: 30319746 PMCID: PMC6180317 DOI: 10.1039/c8sc02133c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
We report on the design and synthesis of a new type of 4-aminoquinoline-based molecular tweezer 1 which forms a stable host-guest complex with protoporphyrin IX (PPIX) via multiple interactions in a DMSO and HEPES buffer (pH 7.4) mixed solvent system. The binding constant for the 1 : 1 complex (K 11) between 1 and PPIX is determined to be 4 × 106 M-1. Furthermore, 1 also forms a more stable complex with iron(iii) protoporphyrin IX (Fe(iii)PPIX), the K 11 value for which is one order of magnitude greater than that for PPIX, indicating that 1 could be used as a recognition unit of a synthetic heme sensor. On the other hand, the formation of the stable PPIX·1 complex (supramolecular photosensitizer) prompted us to apply it to photodynamic therapy (PDT). Cell staining experiments using the supramolecular photosensitizer and evaluations of its photocytotoxicity indicate that the PDT activity of PPIX is improved as the result of the formation of a complex with 1.
Collapse
Affiliation(s)
- Yosuke Hisamatsu
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1 Tanabe-dori, Mizuho-ku , Nagoya 467-8603 , Japan . ;
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1 Tanabe-dori, Mizuho-ku , Nagoya 467-8603 , Japan . ;
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1 Tanabe-dori, Mizuho-ku , Nagoya 467-8603 , Japan . ;
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1 Tanabe-dori, Mizuho-ku , Nagoya 467-8603 , Japan . ;
- Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) , National Institutes of Natural Sciences , 5-1 Higashiyama, Myodaiji , Okazaki 444-8787 , Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1 Tanabe-dori, Mizuho-ku , Nagoya 467-8603 , Japan . ;
| |
Collapse
|
123
|
Hrg1 promotes heme-iron recycling during hemolysis in the zebrafish kidney. PLoS Genet 2018; 14:e1007665. [PMID: 30248094 PMCID: PMC6171960 DOI: 10.1371/journal.pgen.1007665] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/04/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
Heme-iron recycling from senescent red blood cells (erythrophagocytosis) accounts for the majority of total body iron in humans. Studies in cultured cells have ascribed a role for HRG1/SLC48A1 in heme-iron transport but the in vivo function of this heme transporter is unclear. Here we present genetic evidence in a zebrafish model that Hrg1 is essential for macrophage-mediated heme-iron recycling during erythrophagocytosis in the kidney. Furthermore, we show that zebrafish Hrg1a and its paralog Hrg1b are functional heme transporters, and genetic ablation of both transporters in double knockout (DKO) animals shows lower iron accumulation concomitant with higher amounts of heme sequestered in kidney macrophages. RNA-seq analyses of DKO kidney revealed large-scale perturbation in genes related to heme, iron metabolism and immune functions. Taken together, our results establish the kidney as the major organ for erythrophagocytosis and identify Hrg1 as an important regulator of heme-iron recycling by macrophages in the adult zebrafish. Total body iron stores in mammals is a composite of iron absorption from diet and iron recycled by macrophages from dying red blood cells (RBCs). Upon erythrophagocytosis of RBCs, the hemoglobin is degraded and heme is imported from the phagosomal compartment into the cytoplasm so that the iron can be released from heme. Defects in these pathways can lead to aberrant iron homeostasis. The Heme Responsive Gene-1 (HRG1, SLC48A1) was identified previously as a heme importer in the intestine of the roundworm, Caenorhabditis elegans. In cell culture studies, HRG1 was demonstrated to mobilize heme from the erythrophagosome of mouse macrophages into the cytosol. However, the in vivo function of HRG1 remains to be elucidated. The zebrafish is a powerful genetic animal model for studying vertebrate development and ontogeny of hematopoiesis. In zebrafish, the kidney marrow is the adult hematopoietic organ that is functionally analogous to the mammalian bone marrow. In this study, we show that Hrg1 plays an essential in vivo role in recycling of damaged RBCs, and that the kidney macrophages are primarily responsible for recycling heme-iron in the adult zebrafish.
Collapse
|
124
|
Sweeny EA, Singh AB, Chakravarti R, Martinez-Guzman O, Saini A, Haque MM, Garee G, Dans PD, Hannibal L, Reddi AR, Stuehr DJ. Glyceraldehyde-3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells. J Biol Chem 2018; 293:14557-14568. [PMID: 30012884 DOI: 10.1074/jbc.ra118.004169] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/05/2018] [Indexed: 11/06/2022] Open
Abstract
Cellular heme is thought to be distributed between a pool of sequestered heme that is tightly bound within hemeproteins and a labile heme pool required for signaling and transfer into proteins. A heme chaperone that can hold and allocate labile heme within cells has long been proposed but never been identified. Here, we show that the glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) fulfills this role by acting as an essential repository and allocator of bioavailable heme to downstream protein targets. We identified a conserved histidine in GAPDH that is needed for its robust heme binding both in vitro and in mammalian cells. Substitution of this histidine, and the consequent decreases in GAPDH heme binding, antagonized heme delivery to both cytosolic and nuclear hemeprotein targets, including inducible nitric-oxide synthase (iNOS) in murine macrophages and the nuclear transcription factor Hap1 in yeast, even though this GAPDH variant caused cellular levels of labile heme to rise dramatically. We conclude that by virtue of its heme-binding property, GAPDH binds and chaperones labile heme to create a heme pool that is bioavailable to downstream proteins. Our finding solves a fundamental question in cell biology and provides a new foundation for exploring heme homeostasis in health and disease.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Anuradha Bharara Singh
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Ritu Chakravarti
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Osiris Martinez-Guzman
- the School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Arushi Saini
- the School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Mohammad Mahfuzul Haque
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Greer Garee
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Pablo D Dans
- the Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Balidiri Reixac 10-12, Barcelona 08028, Spain, and
| | - Luciana Hannibal
- the Laboratory of Clinical Biochemistry and Metabolism, Center of Pediatrics, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
| | - Amit R Reddi
- the School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Dennis J Stuehr
- From the Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
125
|
Hanna DA, Hu R, Kim H, Martinez-Guzman O, Torres MP, Reddi AR. Heme bioavailability and signaling in response to stress in yeast cells. J Biol Chem 2018; 293:12378-12393. [PMID: 29921585 DOI: 10.1074/jbc.ra118.002125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/15/2018] [Indexed: 12/28/2022] Open
Abstract
Protoheme (hereafter referred to as heme) is an essential cellular cofactor and signaling molecule that is also potentially cytotoxic. To mitigate heme toxicity, heme synthesis and degradation are tightly coupled to heme utilization in order to limit the intracellular concentration of "free" heme. Such a model, however, would suggest that a readily accessible steady-state, bioavailable labile heme (LH) pool is not required for supporting heme-dependent processes. Using the yeast Saccharomyces cerevisiae as a model and fluorescent heme sensors, site-specific heme chelators, and molecular genetic approaches, we found here that 1) yeast cells preferentially use LH in heme-depleted conditions; 2) sequestration of cytosolic LH suppresses heme signaling; and 3) lead (Pb2+) stress contributes to a decrease in total heme, but an increase in LH, which correlates with increased heme signaling. We also observed that the proteasome is involved in the regulation of the LH pool and that loss of proteasomal activity sensitizes cells to Pb2+ effects on heme homeostasis. Overall, these findings suggest an important role for LH in supporting heme-dependent functions in yeast physiology.
Collapse
Affiliation(s)
| | - Rebecca Hu
- From the School of Chemistry and Biochemistry
| | - Hyojung Kim
- From the School of Chemistry and Biochemistry.,School of Biological Sciences, and
| | | | - Matthew P Torres
- School of Biological Sciences, and.,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Amit R Reddi
- From the School of Chemistry and Biochemistry, .,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
126
|
Sankar SB, Donegan RK, Shah KJ, Reddi AR, Wood LB. Heme and hemoglobin suppress amyloid β-mediated inflammatory activation of mouse astrocytes. J Biol Chem 2018; 293:11358-11373. [PMID: 29871926 DOI: 10.1074/jbc.ra117.001050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/24/2018] [Indexed: 11/06/2022] Open
Abstract
Glial immune activity is a key feature of Alzheimer's disease (AD). Given that the blood factors heme and hemoglobin (Hb) are both elevated in AD tissues and have immunomodulatory roles, here we sought to interrogate their roles in modulating β-amyloid (Aβ)-mediated inflammatory activation of astrocytes. We discovered that heme and Hb suppress immune activity of primary mouse astrocytes by reducing expression of several proinflammatory cytokines (e.g. RANTES (regulated on activation normal T cell expressed and secreted)) and the scavenger receptor CD36 and reducing internalization of Aβ(1-42) by astrocytes. Moreover, we found that certain soluble (>75-kDa) Aβ(1-42) oligomers are primarily responsible for astrocyte activation and that heme or Hb association with these oligomers reverses inflammation. We further found that heme up-regulates phosphoprotein signaling in the phosphoinositide 3-kinase (PI3K)/Akt pathway, which regulates a number of immune functions, including cytokine expression and phagocytosis. The findings in this work suggest that dysregulation of Hb and heme levels in AD brains may contribute to impaired amyloid clearance and that targeting heme homeostasis may reduce amyloid pathogenesis. Altogether, we propose heme as a critical molecular link between amyloid pathology and AD risk factors, such as aging, brain injury, and stroke, which increase Hb and heme levels in the brain.
Collapse
Affiliation(s)
- Sitara B Sankar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Rebecca K Donegan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Kajol J Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332.
| | - Levi B Wood
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332.
| |
Collapse
|
127
|
Comer JM, Zhang L. Experimental Methods for Studying Cellular Heme Signaling. Cells 2018; 7:cells7060047. [PMID: 29795036 PMCID: PMC6025097 DOI: 10.3390/cells7060047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/10/2023] Open
Abstract
The study of heme is important to our understanding of cellular bioenergetics, especially in cancer cells. The function of heme as a prosthetic group in proteins such as cytochromes is now well-documented. Less is known, however, about its role as a regulator of metabolic and energetic pathways. This is due in part to some inherent difficulties in studying heme. Due to its slightly amphiphilic nature, heme is a "sticky" molecule which can easily bind non-specifically to proteins. In addition, heme tends to dimerize, oxidize, and aggregate in purely aqueous solutions; therefore, there are constraints on buffer composition and concentrations. Despite these difficulties, our knowledge of heme's regulatory role continues to grow. This review sums up the latest methods used to study reversible heme binding. Heme-regulated proteins will also be reviewed, as well as a system for imaging the cellular localization of heme.
Collapse
Affiliation(s)
- Jonathan M Comer
- Department of Biological Sciences, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Li Zhang
- Department of Biological Sciences, School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
128
|
Conger MA, Pokhrel D, Liptak MD. Tight binding of heme to Staphylococcus aureus IsdG and IsdI precludes design of a competitive inhibitor. Metallomics 2018; 9:556-563. [PMID: 28401968 DOI: 10.1039/c7mt00035a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The micromolar equilibrium constants for heme dissociation from IsdG and IsdI reported in the literature call into question whether these enzymes are actually members of the iron-regulated surface determinant system of Staphylococcus aureus, which harvests heme iron from a host during infection. In order to address this question, the heme dissociation constants for IsdG and IsdI were reevaluated using three approaches. The heme dissociation equilibrium constants were measured using a UV/Vis absorption-detected assay analyzed with an assumption-free model, and using a newly developed fluorescence-detected assay. The heme dissociation rate constants were estimated using apomyoglobin competition assays. Analyses of the UV/Vis absorption data revealed a critical flaw in the previous measurements; heme is 99.9% protein-bound at the micromolar concentrations needed for UV/Vis absorption spectroscopy, which renders accurate equilibrium constant measurement nearly impossible. However, fluorescence can be measured for more dilute samples, and analyses of these data resulted in dissociation equilibrium constants of 1.4 ± 0.6 nM and 12.9 ± 1.3 nM for IsdG and IsdI, respectively. Analyses of the kinetic data obtained from apomyoglobin competition assays estimated heme dissociation rate constants of 0.022 ± 0.002 s-1 for IsdG and 0.092 ± 0.008 s-1 for IsdI. Based upon these data, and what is known regarding the post-translational regulation of IsdG and IsdI, it is proposed that only IsdG is a member of the heme iron acquisition pathway and IsdI regulates heme homeostasis. Furthermore, the nanomolar dissociation constants mean that heme is bound tightly by IsdG and indicates that competitive inhibition of this protein will be difficult. Instead, uncompetitive inhibition based upon a detailed understanding of enzyme mechanism is a more promising antibiotic development strategy.
Collapse
Affiliation(s)
- Matthew A Conger
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | |
Collapse
|
129
|
Chen AJ, Yuan X, Li J, Dong P, Hamza I, Cheng JX. Label-Free Imaging of Heme Dynamics in Living Organisms by Transient Absorption Microscopy. Anal Chem 2018; 90:3395-3401. [PMID: 29401392 PMCID: PMC5972037 DOI: 10.1021/acs.analchem.7b05046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heme, a hydrophobic and cytotoxic macrocycle, is an essential cofactor in a large number of proteins and is important for cell signaling. This must mean that heme is mobilized from its place of synthesis or entry into the cell to other parts of the cell where hemoproteins reside. However, the cellular dynamics of heme movement is not well understood, in large part due to the inability to image heme noninvasively in live biological systems. Here, using high-resolution transient absorption microscopy, we showed that heme storage and distribution is dynamic in Caenorhabditis elegans. Intracellular heme exists in concentrated granular puncta which localizes to lysosomal-related organelles. These granules are dynamic, and their breaking down into smaller granules provides a mechanism by which heme stores can be mobilized. Collectively, these direct and noninvasive dynamic imaging techniques provide new insights into heme storage and transport and open a new avenue for label-free investigation of heme function and regulation in living systems.
Collapse
Affiliation(s)
- Andy Jing Chen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaojing Yuan
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Junjie Li
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Puting Dong
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
130
|
Abstract
Although many putative heme transporters have been discovered, it has been challenging to prove that these proteins are directly involved with heme trafficking in vivo and to identify their heme binding domains. The prokaryotic pathways for cytochrome c biogenesis, Systems I and II, transport heme from inside the cell to outside for stereochemical attachment to cytochrome c, making them excellent models to study heme trafficking. System I is composed of eight integral membrane proteins (CcmA-H) and is proposed to transport heme via CcmC to an external "WWD" domain for presentation to the membrane-tethered heme chaperone, CcmE. Herein, we develop a new cysteine/heme crosslinking approach to trap and map endogenous heme in CcmC (WWD domain) and CcmE (defining "2-vinyl" and "4-vinyl" pockets for heme). Crosslinking occurs when either of the two vinyl groups of heme localize near a thiol of an engineered cysteine residue. Double crosslinking, whereby both vinyls crosslink to two engineered cysteines, facilitated a more detailed structural mapping of the heme binding sites, including stereospecificity. Using heme crosslinking results, heme ligand identification, and genomic coevolution data, we model the structure of the CcmCDE complex, including the WWD heme binding domain. We conclude that CcmC trafficks heme via its WWD domain and propose the structural basis for stereochemical attachment of heme.
Collapse
|
131
|
Kapetanaki SM, Burton MJ, Basran J, Uragami C, Moody PCE, Mitcheson JS, Schmid R, Davies NW, Dorlet P, Vos MH, Storey NM, Raven E. A mechanism for CO regulation of ion channels. Nat Commun 2018; 9:907. [PMID: 29500353 PMCID: PMC5834611 DOI: 10.1038/s41467-018-03291-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023] Open
Abstract
Despite being highly toxic, carbon monoxide (CO) is also an essential intracellular signalling molecule. The mechanisms of CO-dependent cell signalling are poorly defined, but are likely to involve interactions with heme proteins. One such role for CO is in ion channel regulation. Here, we examine the interaction of CO with KATP channels. We find that CO activates KATP channels and that heme binding to a CXXHX16H motif on the SUR2A receptor is required for the CO-dependent increase in channel activity. Spectroscopic and kinetic data were used to quantify the interaction of CO with the ferrous heme-SUR2A complex. The results are significant because they directly connect CO-dependent regulation to a heme-binding event on the channel. We use this information to present molecular-level insight into the dynamic processes that control the interactions of CO with a heme-regulated channel protein, and we present a structural framework for understanding the complex interplay between heme and CO in ion channel regulation.
Collapse
Affiliation(s)
- Sofia M Kapetanaki
- Department of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, England
| | - Mark J Burton
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 9HN, England
| | - Jaswir Basran
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 9HN, England
| | - Chiasa Uragami
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Peter C E Moody
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 9HN, England
| | - John S Mitcheson
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 9HN, England
| | - Ralf Schmid
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 9HN, England
| | - Noel W Davies
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 9HN, England
| | - Pierre Dorlet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Marten H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128, Palaiseau Cedex, France
| | - Nina M Storey
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 9HN, England.
| | - Emma Raven
- Department of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, England.
| |
Collapse
|
132
|
Hao Z, Zhu R, Chen PR. Genetically encoded fluorescent sensors for measuring transition and heavy metals in biological systems. Curr Opin Chem Biol 2017; 43:87-96. [PMID: 29275290 DOI: 10.1016/j.cbpa.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
Great progress has been made in expanding the repertoire of genetically encoded fluorescent sensors for monitoring intracellular transition metals (TMs). This powerful toolkit permits dynamic and non-invasive detection of TMs with high spatial-temporal resolution, which enables us to better understand the roles of TM homeostasis in both physiological and pathological settings. Here we summarize the recent development of genetically encoded fluorescent sensors for intracellular detection of TMs such as zinc and copper, as well as heavy metals including lead, cadmium, mercury, and arsenic.
Collapse
Affiliation(s)
- Ziyang Hao
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Chemistry, The University of Chicago, Chicago 60637, USA
| | - Rongfeng Zhu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Peng R Chen
- Synthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Beijing, China.
| |
Collapse
|
133
|
Gouveia Z, Carlos AR, Yuan X, Aires-da-Silva F, Stocker R, Maghzal GJ, Leal SS, Gomes CM, Todorovic S, Iranzo O, Ramos S, Santos AC, Hamza I, Gonçalves J, Soares MP. Characterization of plasma labile heme in hemolytic conditions. FEBS J 2017; 284:3278-3301. [PMID: 28783254 PMCID: PMC5978748 DOI: 10.1111/febs.14192] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/13/2017] [Accepted: 08/03/2017] [Indexed: 01/29/2023]
Abstract
Extracellular hemoglobin, a byproduct of hemolysis, can release its prosthetic heme groups upon oxidation. This produces metabolically active heme that is exchangeable between acceptor proteins, macromolecules and low molecular weight ligands, termed here labile heme. As it accumulates in plasma labile heme acts in a pro‐oxidant manner and regulates cellular metabolism while exerting pro‐inflammatory and cytotoxic effects that foster the pathogenesis of hemolytic diseases. Here, we developed and characterized a panel of heme‐specific single domain antibodies (sdAbs) that together with a cellular‐based heme reporter assay, allow for quantification and characterization of labile heme in plasma during hemolytic conditions. Using these approaches, we demonstrate that when generated during hemolytic conditions labile heme is bound to plasma molecules with an affinity higher than 10−7m and that 2–8% (~ 2–5 μm) of the total amount of heme detected in plasma can be internalized by bystander cells, termed here bioavailable heme. Acute, but not chronic, hemolysis is associated with transient reduction of plasma heme‐binding capacity, that is, the ability of plasma molecules to bind labile heme with an affinity higher than 10−7m. The heme‐specific sdAbs neutralize the pro‐oxidant activity of soluble heme in vitro, suggesting that these maybe used to counter the pathologic effects of labile heme during hemolytic conditions. Finally, we show that heme‐specific sdAbs can be used to visualize cellular heme. In conclusion, we describe a panel of heme‐specific sdAbs that when used with other approaches provide novel insights to the pathophysiology of heme.
Collapse
Affiliation(s)
| | - Ana R Carlos
- Instituto Gulbenkian da Ciência, Oeiras, Portugal
| | - Xiaojing Yuan
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Frederico Aires-da-Silva
- Technophage S.A., Lisboa, Portugal.,CIISA-Faculdade de Medicina Veterinária, Universidade de Lisboa, Portugal
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sónia S Leal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cláudio M Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Olga Iranzo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana Ramos
- Instituto Gulbenkian da Ciência, Oeiras, Portugal
| | - Ana C Santos
- IMM, Faculdade Medicina, Universidade de Lisboa, Portugal.,CPM-URIA, Faculdade Farmácia, Universidade de Lisboa, Portugal
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - João Gonçalves
- IMM, Faculdade Medicina, Universidade de Lisboa, Portugal.,CPM-URIA, Faculdade Farmácia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
134
|
Wißbrock A, Imhof D. A Tough Nut to Crack: Intracellular Detection and Quantification of Heme in Malaria Parasites by a Genetically Encoded Protein Sensor. Chembiochem 2017; 18:1561-1564. [DOI: 10.1002/cbic.201700274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Amelie Wißbrock
- University of Bonn; Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; Brühler Strasse 7 53119 Bonn Germany
| | - Diana Imhof
- University of Bonn; Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; Brühler Strasse 7 53119 Bonn Germany
| |
Collapse
|
135
|
Carter EL, Ramirez Y, Ragsdale SW. The heme-regulatory motif of nuclear receptor Rev-erbβ is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism. J Biol Chem 2017; 292:11280-11299. [PMID: 28500133 DOI: 10.1074/jbc.m117.783118] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Rev-erbβ is a heme-responsive transcription factor that regulates genes involved in circadian rhythm maintenance and metabolism, effectively bridging these critical cellular processes. Heme binding to Rev-erbβ indirectly facilitates its interaction with the nuclear receptor co-repressor (NCoR1), resulting in repression of Rev-erbβ target genes. Fe3+-heme binds in a 6-coordinate complex with axial His and Cys ligands, the latter provided by a heme-regulatory motif (HRM). Rev-erbβ was thought to be a heme sensor based on a weak Kd value for the Rev-erbβ·heme complex of 2 μm determined with isothermal titration calorimetry. However, our group demonstrated with UV-visible difference titrations that the Kd value is in the low nanomolar range, and the Fe3+-heme off-rate is on the order of 10-6 s-1 making Rev-erbβ ineffective as a sensor of Fe3+-heme. In this study, we dissected the kinetics of heme binding to Rev-erbβ and provided a Kd for Fe3+-heme of ∼0.1 nm Loss of the HRM axial thiolate via redox processes, including oxidation to a disulfide with a neighboring cysteine or dissociation upon reduction of Fe3+- to Fe2+-heme, decreased binding affinity by >20-fold. Furthermore, as measured in a co-immunoprecipitation assay, substitution of the His or Cys heme ligands in Rev-erbβ was accompanied by a significant loss of NCoR1 binding. These results demonstrate the importance of the Rev-erbβ HRM in regulating interactions with heme and NCoR1 and advance our understanding of how signaling through HRMs affects the major cellular processes of circadian rhythm maintenance and metabolism.
Collapse
Affiliation(s)
- Eric L Carter
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yanil Ramirez
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen W Ragsdale
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
136
|
Hanna DA, Martinez-Guzman O, Reddi AR. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors. Biochemistry 2017; 56:1815-1823. [PMID: 28316240 DOI: 10.1021/acs.biochem.7b00007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Heme (iron protoporphyrin IX) is an essential protein prosthetic group and signaling molecule required for most life on Earth. All heme-dependent processes require the dynamic and rapid mobilization of heme from sites of synthesis or uptake to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitate that heme mobilization be carefully controlled to mitigate the deleterious effects of this essential toxin. Indeed, a number of disorders, including certain cancers, cardiovascular diseases, and aging and age-related neurodegenerative diseases, are tied to defects in heme homeostasis. However, the molecules and mechanisms that mediate heme transport and trafficking, and the dynamics of these processes, are poorly understood. This is in large part due to the lack of physical tools for probing cellular heme. Herein, we discuss the recent development of fluorescent probes that can monitor and image kinetically labile heme with respect to its mobilization and role in signaling. In particular, we will highlight how heme gazing with these tools can uncover new heme trafficking factors upon being integrated with genetic screens and illuminate the concentration, subcellular distribution, and dynamics of labile heme in various physiological contexts. Altogether, the monitoring of labile heme, along with recent biochemical and cell biological studies demonstrating the reversible regulation of certain cellular processes by heme, is challenging us to reconceptualize heme from being a static cofactor buried in protein active sites to a dynamic and mobile signaling molecule.
Collapse
Affiliation(s)
- David A Hanna
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Osiris Martinez-Guzman
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Amit R Reddi
- School of Chemistry and Biochemistry and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
137
|
Abstract
Genetically encoded fluorescent sensors are essential tools in modern biological research, and recent advances in fluorescent proteins (FPs) have expanded the scope of sensor design and implementation. In this review we compare different sensor platforms, including Förster resonance energy transfer (FRET) sensors, fluorescence-modulated single FP-based sensors, translocation sensors, complementation sensors, and dimerization-based sensors. We discuss elements of sensor design and engineering for each platform, including the incorporation of new types of FPs and sensor screening techniques. Finally, we summarize the wide range of sensors in the literature, exploring creative new sensor architectures suitable for different applications.
Collapse
Affiliation(s)
- Lynn Sanford
- University of Colorado Boulder, Boulder, CO, United States
| | - Amy Palmer
- University of Colorado Boulder, Boulder, CO, United States.
| |
Collapse
|
138
|
Quantification of labile heme in live malaria parasites using a genetically encoded biosensor. Proc Natl Acad Sci U S A 2017; 114:E2068-E2076. [PMID: 28242687 PMCID: PMC5358388 DOI: 10.1073/pnas.1615195114] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Malaria parasites degrade substantial quantities of hemoglobin to release heme within a specialized digestive vacuole. Most of this heme is sequestered in an inert crystal. However, the concentration of bioavailable, labile heme in the parasite’s cytosol was unknown. We developed a biosensor to provide the first quantitative insights into labile heme concentrations in malaria parasites. We find that ∼1.6 µM labile cytosolic heme is maintained, including during a period coincident with intense hemoglobin degradation. The heme-binding antimalarial drug, chloroquine, which interferes with heme crystallization, specifically induces an increase in labile heme. The ability to quantify labile heme in malaria parasites opens opportunities for better understanding heme homeostasis, signaling, and metabolism, and its association with antimalarial potency. Heme is ubiquitous, yet relatively little is known about the maintenance of labile pools of this cofactor, which likely ensures its timely bioavailability for proper cellular function. Quantitative analysis of labile heme is of fundamental importance to understanding how nature preserves access to the diverse chemistry heme enables, while minimizing cellular damage caused by its redox activity. Here, we have developed and characterized a protein-based sensor that undergoes fluorescence quenching upon heme binding. By genetically encoding this sensor in the human malarial parasite, Plasmodium falciparum, we have quantified cytosolic labile heme levels in intact, blood-stage parasites. Our findings indicate that a labile heme pool (∼1.6 µM) is stably maintained throughout parasite development within red blood cells, even during a period coincident with extensive hemoglobin degradation by the parasite. We also find that the heme-binding antimalarial drug chloroquine specifically increases labile cytosolic heme, indicative of dysregulation of this homeostatic pool that may be a relevant component of the antimalarial activity of this compound class. We propose that use of this technology under various environmental perturbations in P. falciparum can yield quantitative insights into fundamental heme biology.
Collapse
|
139
|
Oh JY, Hamm J, Xu X, Genschmer K, Zhong M, Lebensburger J, Marques MB, Kerby JD, Pittet JF, Gaggar A, Patel RP. Absorbance and redox based approaches for measuring free heme and free hemoglobin in biological matrices. Redox Biol 2016; 9:167-177. [PMID: 27566280 PMCID: PMC5007433 DOI: 10.1016/j.redox.2016.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 02/07/2023] Open
Abstract
Cell-free heme (CFH) and hemoglobin (Hb) have emerged as distinct mediators of acute injury characterized by inflammation and microcirculatory dysfunction in hemolytic conditions and critical illness. Several reports have shown changes in Hb and CFH in specific pathophysiological settings. Using PBS, plasma from patients with sickle cell disease, acute respiratory distress syndrome (ARDS) patients and supernatants from red cells units, we found that commonly used assays and commercially available kits do not distinguish between CFH and Hb. Furthermore, they suffer from a variety of false-positive interferences and limitations (including from bilirubin) that lead to either over- or underestimation of CFH and/or Hb. Moreover, commonly used protocols to separate CFH and Hb based on molecular weight (MWt) are inefficient due to CFH hydrophobicity. In this study, we developed and validated a new approach based on absorbance spectrum deconvolution with least square fitting analyses that overcomes these limitations and simultaneously measures CFH and Hb in simple aqueous buffers, plasma or when associated with red cell derived microvesicles. We show how incorporating other plasma factors that absorb light over the visible wavelength range (specifically bilirubin), coupled with truncating the wavelength range analyzed, or addition of mild detergent significantly improves fits allowing measurement of oxyHb, CFH and metHb with >90% accuracy. When this approach was applied to samples from SCD patients, we observed that CFH levels are higher than previously reported and of similar magnitude to Hb.
Collapse
Affiliation(s)
- Joo-Yeun Oh
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jennifer Hamm
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Xin Xu
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kristopher Genschmer
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Ming Zhong
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Cardiology, Qili Hospital of Shandong University, China
| | - Jeffrey Lebensburger
- Departments of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Marisa B Marques
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jeffrey D Kerby
- Departments of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jean-Francois Pittet
- Departments of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Amit Gaggar
- Departments of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Rakesh P Patel
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
140
|
Unraveling the mystery of the ring: Tracking heme dynamics in living cells. Proc Natl Acad Sci U S A 2016; 113:7296-7. [PMID: 27342864 DOI: 10.1073/pnas.1607505113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
141
|
Abstract
Heme is universally recognized as an essential and ubiquitous prosthetic group that enables proteins to carry out a diverse array of functions. All heme-dependent processes, from protein hemylation to heme signaling, require the dynamic and rapid mobilization of heme to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitates that heme mobilization is carefully controlled at the cellular and systemic level. However, the molecules and mechanisms that mediate heme homeostasis are poorly understood. In this Account, we provide a heuristic paradigm with which to conceptualize heme trafficking and highlight the most recent developments in the mechanisms underlying heme trafficking. As an iron-containing tetrapyrrole, heme exhibits properties of both transition metals and lipids. Accordingly, we propose its transport and trafficking will reflect principles gleaned from the trafficking of both metals and lipids. Using this conceptual framework, we follow the flow of heme from the final step of heme synthesis in the mitochondria to hemoproteins present in various subcellular organelles. Further, given that many cells and animals that cannot make heme can assimilate it intact from nutritional sources, we propose that intercellular heme trafficking pathways must exist. This necessitates that heme be able to be imported and exported from cells, escorted between cells and organs, and regulated at the organismal level via a coordinated systemic process. In this Account, we highlight recently discovered heme transport and trafficking factors and provide the biochemical foundation for the cell and systems biology of heme. Altogether, we seek to reconceptualize heme from an exchange inert cofactor buried in hemoprotein active sites to an exchange labile and mobile metallonutrient.
Collapse
Affiliation(s)
- Amit R. Reddi
- School of Chemistry and Biochemistry and Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Iqbal Hamza
- Department of Animal and Avian Sciences and Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20740, United States
| |
Collapse
|