101
|
Streitner C, Hennig L, Korneli C, Staiger D. Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7. BMC PLANT BIOLOGY 2010; 10:221. [PMID: 20946635 PMCID: PMC3017831 DOI: 10.1186/1471-2229-10-221] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/14/2010] [Indexed: 05/23/2023]
Abstract
BACKGROUND The clock-controlled RNA-binding protein AtGRP7 influences circadian oscillations of its own transcript at the post-transcriptional level. To identify additional targets that are regulated by AtGRP7, transcript profiles of transgenic plants constitutively overexpressing AtGRP7 (AtGRP7-ox) and wild type plants were compared. RESULTS Approximately 1.4% of the transcripts represented on the Affymetrix ATH1 microarray showed changes in steady-state abundance upon AtGRP7 overexpression. One third of the differentially expressed genes are controlled by the circadian clock, and they show a distinct bias of their phase: The up-regulated genes preferentially peak around dawn, roughly opposite to the AtGRP7 peak abundance whereas the down-regulated genes preferentially peak at the end of the day. Further, transcripts responsive to abiotic and biotic stimuli were enriched among AtGRP7 targets. Transcripts encoding the pathogenesis-related PR1 and PR2 proteins were elevated in AtGRP7-ox plants but not in plants overexpressing AtGRP7 with a point mutation in the RNA-binding domain, indicating that the regulation involves RNA binding activity of AtGRP7. Gene set enrichment analysis uncovered components involved in ribosome function and RNA metabolism among groups of genes upregulated in AtGRP7-ox plants, consistent with its role in post-transcriptional regulation. CONCLUSION Apart from regulating a suite of circadian transcripts in a time-of-day dependent manner AtGRP7, both directly and indirectly, affects other transcripts including transcripts responsive to abiotic and biotic stimuli. This suggests a regulatory role of AtGRP7 in the output of the endogenous clock and a complex network of transcripts responsive to external stimuli downstream of the AtGRP7 autoregulatory circuit.
Collapse
Affiliation(s)
| | - Lars Hennig
- Department of Biology & Zurich-Basel Plant Science Center, ETH Zurich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christin Korneli
- Molecular Cell Physiology, Bielefeld University, Bielefeld, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
102
|
Zhou MQ, Shen C, Wu LH, Tang KX, Lin J. CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit Rev Biotechnol 2010; 31:186-92. [PMID: 20919819 DOI: 10.3109/07388551.2010.505910] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plants under low temperature (LT) stress exhibit a C-repeat binding factor (CBF)-dependent responsive pathway. The transcription factors in the CBF family, existing in multiple plant species, are the key regulators of the cold-responsive (COR) genes. CBF1 and CBF3 are regulated in a different way from CBF2, and CBF4 is the only known CBF gene definitely involved in abscisic acid (ABA)-dependent signaling pathways. RAP2.1 and RAP2.6 are the downstream regulators under CBFs. The upstream regulators of the CBF named inducer of CBF expression (ICE) acts as a positive regulator of CBFs. Meanwhile, these CBF signaling pathway components could associate with many other transcription activators and repressors in regulating gene expression when plants are under LT stress. HOS1 negatively regulates ICE1, which down regulates MYB15, an upstream repressor of CBFs. ZAT12 participates in the repression of CBFs, while ZAT10 and FRY2 negatively regulate the CBF-target genes. ADF5 was recently also found to repress CBFs. LOS2 works against ZAT10, and LOS4 positively regulates CBFs. SFR6 is involved in the modification of CBFs to activate the COR genes, and SIZ1-dependent sumoylation plays a positive role in the regulation of ICE1. The utilization of CBF-dependent signaling components has a broad perspective in the field of plant breeding for enhancing crop LT tolerance.
Collapse
Affiliation(s)
- M Q Zhou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
103
|
Huang CK, Yu SM, Lu CA. A rice DEAD-box protein, OsRH36, can complement an Arabidopsis atrh36 mutant, but cannot functionally replace its yeast homolog Dbp8p. PLANT MOLECULAR BIOLOGY 2010; 74:119-28. [PMID: 20607362 DOI: 10.1007/s11103-010-9659-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/18/2010] [Indexed: 05/25/2023]
Abstract
DEAD-box proteins comprise a large family and function in RNA metabolism. Although DEAD-box proteins are highly conserved among eukaryotes, little is known about the role of DEAD-box proteins in rice. In this study, we identified a rice DEAD-box protein, OsRH36, and demonstrated that OsRH36 and AtRH36 are functional orthologs. OsRH36 was expressed ubiquitously throughout the plant and the OsRH36-GFP fusion protein was localized to the nucleus and nucleolus. Furthermore, functional complementation tests among three homologous DEAD-box protein genes indicated that OsRH36 can restore segregation distortion in the Arabidopsis atrh36-1 mutant, but cannot complement the lethal phenotype in the yeast dbp8p mutant. Moreover, mutation of osrh36 also led to defective transmission of the osrh36 allele, as shown for the atrh36 mutants of Arabidopsis. Previously, we have shown that AtRH36 is involved at an early stage of rRNA maturation and is required for synchronous development of female gametophytes in Arabidopsis. Therefore, we suggest that OsRH36 is required for rRNA biogenesis and megagametogenesis in rice, consistent with the function of AtRH36 in Arabidopsis.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Department of Life Science, National Central University, Zhongli, Taoyuan County, Taiwan, ROC
| | | | | |
Collapse
|
104
|
Umate P, Tuteja R, Tuteja N. Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. PLANT MOLECULAR BIOLOGY 2010; 73:449-65. [PMID: 20383562 DOI: 10.1007/s11103-010-9632-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 03/18/2010] [Indexed: 05/04/2023]
Abstract
Helicases are motor proteins which can catalyze the unwinding of stable RNA or DNA duplex utilizing mainly ATP as source of energy. In this study we have identified complete sets of helicases from rice and Arabidopsis. The helicase gene family in rice and Arabidopsis contains 115 and 113 genes respectively. These helicases were validated based on their annotations and supported with organization of conserved helicase signature motifs. We have also identified homologs of 64 rice RNA and DNA helicases in Arabidopsis, yeast and human. We explored Arabidopsis oligonucleotide array data to gain functional insights into the transcriptome of helicase family members under ten different stress conditions. Our results revealed that expression of helicase genes is profoundly regulated under various stress conditions. The helicases identified in this study lay a foundation for the in depth characterization of each helicase type.
Collapse
Affiliation(s)
- Pavan Umate
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | |
Collapse
|
105
|
Liu Q, Wang J, Miki D, Xia R, Yu W, He J, Zheng Z, Zhu JK, Gong Z. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis. THE PLANT CELL 2010; 22:2336-52. [PMID: 20639449 PMCID: PMC2929113 DOI: 10.1105/tpc.110.076349] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 05/18/2023]
Abstract
Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylation-independent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junguo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Daisuke Miki
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ran Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenxiang Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhimin Zheng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Kang Zhu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- China Agricultural University–University of California, Riverside Center for Biological Sciences and Biotechnology, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University–University of California, Riverside Center for Biological Sciences and Biotechnology, Beijing 100193, China
- National Center for Plant Gene Research, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
106
|
Janská A, Marsík P, Zelenková S, Ovesná J. Cold stress and acclimation - what is important for metabolic adjustment? PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:395-405. [PMID: 20522175 DOI: 10.1111/j.1438-8677.2009.00299.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are unable to escape from the many abiotic and biotic factors that cause a departure from optimal conditions of growth and development. Low temperature represents one of the most harmful abiotic stresses affecting temperate plants. These species have adapted to seasonal variations in temperature by adjusting their metabolism during autumn, increasing their content of a range of cryo-protective compounds to maximise their cold tolerance. Some of these molecules are synthesised de novo. The down-regulation of some gene products represents an additional important regulatory mechanism. Ways in which plants cope with cold stress are described, and the current state of the art with respect to both the model plant Arabidopsis thaliana and crop plants in the area of gene expression and metabolic pathways during low-temperature stress are discussed.
Collapse
Affiliation(s)
- A Janská
- Crop Research Institute, v.v.i., Prague, Czech Republic.
| | | | | | | |
Collapse
|
107
|
Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM. A novel MYBS3-dependent pathway confers cold tolerance in rice. PLANT PHYSIOLOGY 2010; 153:145-58. [PMID: 20130099 PMCID: PMC2862423 DOI: 10.1104/pp.110.153015] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 01/31/2010] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) seedlings are particularly sensitive to chilling in early spring in temperate and subtropical zones and in high-elevation areas. Improvement of chilling tolerance in rice may significantly increase rice production. MYBS3 is a single DNA-binding repeat MYB transcription factor previously shown to mediate sugar signaling in rice. In this study, we observed that MYBS3 also plays a critical role in cold adaptation in rice. Gain- and loss-of-function analyses indicated that MYBS3 was sufficient and necessary for enhancing cold tolerance in rice. Transgenic rice constitutively overexpressing MYBS3 tolerated 4 degrees C for at least 1 week and exhibited no yield penalty in normal field conditions. Transcription profiling of transgenic rice overexpressing or underexpressing MYBS3 led to the identification of many genes in the MYBS3-mediated cold signaling pathway. Several genes activated by MYBS3 as well as inducible by cold have previously been implicated in various abiotic stress responses and/or tolerance in rice and other plant species. Surprisingly, MYBS3 repressed the well-known DREB1/CBF-dependent cold signaling pathway in rice, and the repression appears to act at the transcriptional level. DREB1 responded quickly and transiently while MYBS3 responded slowly to cold stress, which suggests that distinct pathways act sequentially and complementarily for adapting short- and long-term cold stress in rice. Our studies thus reveal a hitherto undiscovered novel pathway that controls cold adaptation in rice.
Collapse
|
108
|
Tsutsui T, Kato W, Asada Y, Sako K, Sato T, Sonoda Y, Kidokoro S, Yamaguchi-Shinozaki K, Tamaoki M, Arakawa K, Ichikawa T, Nakazawa M, Seki M, Shinozaki K, Matsui M, Ikeda A, Yamaguchi J. DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. JOURNAL OF PLANT RESEARCH 2009; 122:633-43. [PMID: 19618250 DOI: 10.1007/s10265-009-0252-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 06/04/2009] [Indexed: 05/20/2023]
Abstract
Plants have evolved intricate mechanisms to respond and adapt to a wide variety of biotic and abiotic stresses in their environment. The Arabidopsis DEAR1 (DREB and EAR motif protein 1; At3g50260) gene encodes a protein containing significant homology to the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) domain and the EAR (ethylene response factor-associated amphiphilic repression) motif. We show here that DEAR1 mRNA accumulates in response to both pathogen infection and cold treatment. Transgenic Arabidopsis overexpressing DEAR1 (DEAR1ox) showed a dwarf phenotype and lesion-like cell death, together with constitutive expression of PR genes and accumulation of salicylic acid. DEAR1ox also showed more limited P. syringae pathogen growth compared to wild-type, consistent with an activated defense phenotype. In addition, transient expression experiments revealed that the DEAR1 protein represses DRE/CRT (dehydration-responsive element/C-repeat)-dependent transcription, which is regulated by low temperature. Furthermore, the induction of DREB1/CBF family genes by cold treatment was suppressed in DEAR1ox, leading to a reduction in freezing tolerance. These results suggest that DEAR1 has an upstream regulatory role in mediating crosstalk between signaling pathways for biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Tomokazu Tsutsui
- Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo, 060-0810, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Zhou X, Hua D, Chen Z, Zhou Z, Gong Z. Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:79-90. [PMID: 19500300 DOI: 10.1111/j.1365-313x.2009.03931.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Elongator is a histone acetyl-transferase complex consisting of six subunits, and is highly conserved in eukaryotic organisms. Here, we isolated two novel mutants, elp2 and elp6, during a genetic screening for ABA-hypersensitive Arabidopsis mutants. Map-based cloning identified ELP2 and ELP6, which encode the orthologs of the yeast Elongator subunits, ELP2 and ELP6, respectively. Another Elongator subunit mutant, elp4/elo1, was obtained from the SALK T-DNA collection. The elp1/abo1/elo2 mutant was isolated in a previous study. All four of the Elongator mutants had narrow leaves, reduced root growth, ABA hypersensitivity and an increased accumulation of anthocyanins. Mutations in the core subcomplex subunits ELP1/ABO1 and ELP2, but not in the accessory subcomplex subunits ELP4/ELO1 and ELP6, caused stomatal closing to be supersensitive to ABA. In addition, the four mutants were all more resistant than the wild type to oxidative stress produced by methyl viologen, and to CsCl. Gene expression analysis indicated that the four mutants had increased transcript levels of CAT3 under normal conditions, increased transcript levels of ZAT10 when treated with ABA and reduced transcript levels of MYBL2, which encodes a single-repeat MYB protein, acting as a negative regulator of anthocyanin biosynthesis. Our results suggest that Elongator plays crucial roles in regulating plant responses to ABA, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
110
|
Kim MH, Sasaki K, Imai R. Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J Biol Chem 2009; 284:23454-60. [PMID: 19556243 PMCID: PMC2749119 DOI: 10.1074/jbc.m109.025791] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/24/2009] [Indexed: 11/06/2022] Open
Abstract
In response to cold, Escherichia coli produces cold shock proteins (CSPs) that have essential roles in cold adaptation as RNA chaperones. Here, we demonstrate that Arabidopsis cold shock domain protein 3 (AtCSP3), which shares a cold shock domain with bacterial CSPs, is involved in the acquisition of freezing tolerance in plants. AtCSP3 complemented a cold-sensitive phenotype of the E. coli CSP quadruple mutant and displayed nucleic acid duplex melting activity, suggesting that AtCSP3 also functions as an RNA chaperone. Promoter-GUS transgenic plants revealed tissue-specific expression of AtCSP3 in shoot and root apical regions. When exposed to low temperature, GUS activity was extensively induced in a broader region of the roots. In transgenic plants expressing an AtCSP3-GFP fusion, GFP signals were detected in both the nucleus and cytoplasm. An AtCSP3 knock-out mutant (atcsp3-2) was sensitive to freezing compared with wild-type plants under non-acclimated and cold-acclimated conditions, whereas expression of C-repeat-binding factors and their downstream genes during cold acclimation was not altered in the atcsp3-2 mutant. Overexpression of AtCSP3 in transgenic plants conferred enhanced freezing tolerance over wild-type plants. Together, the data demonstrated an essential role of RNA chaperones for cold adaptation in higher plants.
Collapse
Affiliation(s)
- Myung-Hee Kim
- From the Crop Cold Tolerance Research Team, National Agricultural Research Center for Hokkaido Region, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Kentaro Sasaki
- From the Crop Cold Tolerance Research Team, National Agricultural Research Center for Hokkaido Region, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Ryozo Imai
- From the Crop Cold Tolerance Research Team, National Agricultural Research Center for Hokkaido Region, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| |
Collapse
|
111
|
Terzi LC, Simpson GG. Arabidopsis RNA immunoprecipitation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:163-8. [PMID: 19419533 DOI: 10.1111/j.1365-313x.2009.03859.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA-binding proteins are key regulators of plant gene expression. Consistent with this, the Arabidopsis genome encodes many RNA-binding proteins that are genetically required for normal development and for responding to environmental changes. However, the direct RNA targets and RNA processing events that these RNA-binding proteins control are poorly understood. In order to facilitate the functional characterization of RNA-binding proteins, we have applied the RNA immunoprecipitation assay to Arabidopsis. Working with the U2B''-U2 snRNA interaction as a model experimental system, we show that treatment of intact plants with formaldehyde allows immunocapture of U2 snRNA using antibodies that recognize U2B'' fused to the generic GFP tag. When coupled with recent developments in whole-genome tiling arrays and high-throughput next-generation sequencing, this combination of procedures and technology has the potential to allow systematic functional analysis of plant RNA-binding proteins.
Collapse
Affiliation(s)
- Lionel C Terzi
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee DD25EH, UK
| | | |
Collapse
|
112
|
Govind G, Harshavardhan VT, ThammeGowda HV, Patricia JK, Kalaiarasi PJ, Dhanalakshmi R, Iyer DR, Senthil Kumar M, Muthappa SK, Sreenivasulu N, Nese S, Udayakumar M, Makarla UK. Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genomics 2009; 281:591-605. [PMID: 19224247 PMCID: PMC2757612 DOI: 10.1007/s00438-009-0432-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 01/30/2009] [Indexed: 12/28/2022]
Abstract
Peanut, found to be relatively drought tolerant crop, has been the choice of study to characterize the genes expressed under gradual water deficit stress. Nearly 700 genes were identified to be enriched in subtractive cDNA library from gradual process of drought stress adaptation. Further, expression of the drought inducible genes related to various signaling components and gene sets involved in protecting cellular function has been described based on dot blot experiments. Fifty genes (25 regulators and 25 functional related genes) selected based on dot blot experiments were tested for their stress responsiveness using northern blot analysis and confirmed their nature of differential regulation under different field capacity of drought stress treatments. ESTs generated from this subtracted cDNA library offered a rich source of stress-related genes including signaling components. Additional 50% uncharacterized sequences are noteworthy. Insights gained from this study would provide the foundation for further studies to understand the question of how peanut plants are able to adapt to naturally occurring harsh drought conditions. At present functional validation cannot be deemed in peanut, hence as a proof of concept seven orthologues of drought induced genes of peanut have been silenced in heterologous N. benthamiana system, using virus induced gene silencing method. These results point out the functional importance for HSP70 gene and key regulators such as Jumonji in drought stress response.
Collapse
Affiliation(s)
- Geetha Govind
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560 065, Karnataka, India.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Boavida LC, Shuai B, Yu HJ, Pagnussat GC, Sundaresan V, McCormick S. A collection of Ds insertional mutants associated with defects in male gametophyte development and function in Arabidopsis thaliana. Genetics 2009; 181:1369-85. [PMID: 19237690 PMCID: PMC2666506 DOI: 10.1534/genetics.108.090852] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 02/13/2009] [Indexed: 11/18/2022] Open
Abstract
Functional analyses of the Arabidopsis genome require analysis of the gametophytic generation, since approximately 10% of the genes are expressed in the male gametophyte and approximately 9% in the female gametophyte. Here we describe the genetic and molecular characterization of 67 Ds insertion lines that show reduced transmission through the male gametophyte. About half of these mutations are male gametophytic-specific mutations, while the others also affect female transmission. Genomic sequences flanking both sides of the Ds element were recovered for 39 lines; for 16 the Ds elements were inserted in or close to coding regions, while 7 were located in intergenic/unannotated regions of the genome. For the remaining 16 lines, chromosomal rearrangements such as translocations or deletions, ranging between 30 and 500 kb, were associated with the transposition event. The mutants were classified into five groups according to the developmental processes affected; these ranged from defects in early stages of gametogenesis to later defects affecting pollen germination, pollen tube growth, polarity or guidance, or pollen tube-embryo sac interactions or fertilization. The isolated mutants carry Ds insertions in genes with diverse biological functions and potentially specify new functions for several unannotated or unknown proteins.
Collapse
Affiliation(s)
- Leonor C Boavida
- Plant Gene Expression Center and Plant and Microbial Biology, US Department of Agriculture/Agricultural Research Service, Albany, California 94710, USA
| | | | | | | | | | | |
Collapse
|
114
|
Luo Y, Liu YB, Dong YX, Gao XQ, Zhang XS. Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:385-94. [PMID: 18929429 DOI: 10.1016/j.jplph.2008.06.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/23/2008] [Accepted: 06/23/2008] [Indexed: 05/20/2023]
Abstract
Plant helicases are known to be involved in salinity and low-temperature tolerance. However, a functional involvement of helicases in the antioxidative response of plants has not been described. We have isolated a DEAD-box-containing cDNA sequence from Medicago sativa (alfalfa) that is a homolog of the pea DNA helicase 45 (PDH45) and named it M. sativa helicase 1 (MH1). Transient transfection of 35S::MH1-GFP to onion epidermis revealed that MH1 was localized in the nucleus. Expression of MH1 was detected in roots, stems and leaves of alfalfa. Furthermore, real-time PCR analysis revealed that mannitol, NaCl, methyl viologen and abscisic acid induced the expression of MH1. The ectopic expression of MH1 in Arabidopsis improved seed germination and plant growth under drought, salt and oxidative stress. The capacity for osmotic adjustment, superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and proline content were also elevated in the transgenic Arabidopsis plants. Our results suggest that MH1 responds to reactive oxygen species (ROS) and functions in drought and salt stress tolerance by enhancing the capacities for ROS scavenging and osmotic adjustment.
Collapse
Affiliation(s)
- Yan Luo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, PR China
| | | | | | | | | |
Collapse
|
115
|
Dong CH, Zolman BK, Bartel B, Lee BH, Stevenson B, Agarwal M, Zhu JK. Disruption of Arabidopsis CHY1 reveals an important role of metabolic status in plant cold stress signaling. MOLECULAR PLANT 2009; 2:59-72. [PMID: 19529827 PMCID: PMC2639738 DOI: 10.1093/mp/ssn063] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 08/25/2008] [Indexed: 05/18/2023]
Abstract
To study cold signaling, we screened for Arabidopsis mutants with altered cold-induced transcription of a firefly luciferase reporter gene driven by the CBF3 promoter (CBF3-LUC). One mutant, chy1-10, displayed reduced cold-induction of CBF3-LUC luminescence. RNA gel blot analysis revealed that expression of endogenous CBFs also was reduced in the chy1 mutant. chy1-10 mutant plants are more sensitive to freezing treatment than wild-type after cold acclimation. Both the wild-type and chy1 mutant plants are sensitive to darkness-induced starvation at warm temperatures, although chy1 plants are slightly more sensitive. This dark-sensitivity is suppressed by cold temperature in the wild-type but not in chy1. Constitutive CBF3 expression partially rescues the sensitivity of chy1-10 plants to dark treatment in the cold. The chy1 mutant accumulates higher levels of reactive oxygen species, and application of hydrogen peroxide can reduce cold-induction of CBF3-LUC in wild-type. Map-based cloning of the gene defective in the mutant revealed a nonsense mutation in CHY1, which encodes a peroxisomal beta-hydroxyisobutyryl (HIBYL)-CoA hydrolase needed for valine catabolism and fatty acid beta-oxidation. Our results suggest a role for peroxisomal metabolism in cold stress signaling, and plant tolerance to cold stress and darkness-induced starvation.
Collapse
Affiliation(s)
- Chun-Hai Dong
- Department of Botany and Plant Science, 2150 Batchelor Hall, University of California at Riverside, Riverside, CA 92521, USA
- Present address: Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Bethany K. Zolman
- Department of Biology, University of Missouri-St Louis, St Louis, MO 63121, USA
| | - Bonnie Bartel
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Byeong-ha Lee
- Department of Botany and Plant Science, 2150 Batchelor Hall, University of California at Riverside, Riverside, CA 92521, USA
- Present address: Department of Life Science, Sogang University, Seoul 121-742, South Korea
| | - Becky Stevenson
- Department of Botany and Plant Science, 2150 Batchelor Hall, University of California at Riverside, Riverside, CA 92521, USA
| | - Manu Agarwal
- Department of Botany and Plant Science, 2150 Batchelor Hall, University of California at Riverside, Riverside, CA 92521, USA
| | - Jian-Kang Zhu
- Department of Botany and Plant Science, 2150 Batchelor Hall, University of California at Riverside, Riverside, CA 92521, USA
- To whom correspondence should be addressed. E-mail , fax 951-827-7115, tel. 951-827-7117
| |
Collapse
|
116
|
Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z. Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. MOLECULAR PLANT 2009; 2:22-31. [PMID: 19529826 PMCID: PMC2639737 DOI: 10.1093/mp/ssn058] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 08/18/2008] [Indexed: 05/05/2023]
Abstract
Soil salinity is a major abiotic stress that decreases plant growth and productivity. Recently, it was reported that plants overexpressing AtNHX1 or SOS1 have significantly increased salt tolerance. To test whether overexpression of multiple genes can improve plant salt tolerance even more, we produced six different transgenic Arabidopsis plants that overexpress AtNHX1, SOS3, AtNHX1+SOS3, SOS1, SOS2+SOS3, or SOS1+SOS2+SOS3. Northern blot analyses confirmed the presence of high levels of the relevant gene transcripts in transgenic plants. Transgenic Arabidopsis plants overexpressing AtNHX1 alone did not present any significant increase in salt tolerance, contrary to earlier reports. We found that transgenic plants overexpressing SOS3 exhibit increased salt tolerance similar to plants overexpressing SOS1. Moreover, salt tolerance of transgenic plants overexpressing AtNHX1+SOS3, SOS2+SOS3, or SOS1+SOS2+SOS3, respectively, appeared similar to the tolerance of transgenic plants overexpressing either SOS1 or SOS3 alone.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- The National Center for Plant Gene Research, Beijing, China
- University of California-Riverside-China Agricultural University Joint Center for Plant Cell and Molecular Biology, Beijing 100193, China
| | - Zhi-Zhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- The National Center for Plant Gene Research, Beijing, China
- University of California-Riverside-China Agricultural University Joint Center for Plant Cell and Molecular Biology, Beijing 100193, China
| | - Xiao-Feng Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- The National Center for Plant Gene Research, Beijing, China
- University of California-Riverside-China Agricultural University Joint Center for Plant Cell and Molecular Biology, Beijing 100193, China
| | - Hai-Bo Yin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- The National Center for Plant Gene Research, Beijing, China
- University of California-Riverside-China Agricultural University Joint Center for Plant Cell and Molecular Biology, Beijing 100193, China
| | - Xia Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- The National Center for Plant Gene Research, Beijing, China
- University of California-Riverside-China Agricultural University Joint Center for Plant Cell and Molecular Biology, Beijing 100193, China
| | - Xiu-Fang Xin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- The National Center for Plant Gene Research, Beijing, China
- University of California-Riverside-China Agricultural University Joint Center for Plant Cell and Molecular Biology, Beijing 100193, China
| | - Xu-Hui Hong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- The National Center for Plant Gene Research, Beijing, China
- University of California-Riverside-China Agricultural University Joint Center for Plant Cell and Molecular Biology, Beijing 100193, China
| | - Jian-Kang Zhu
- University of California-Riverside-China Agricultural University Joint Center for Plant Cell and Molecular Biology, Beijing 100193, China
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, 2150 Batchelor Hall, University of California, Riverside, CA 92521, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- The National Center for Plant Gene Research, Beijing, China
- University of California-Riverside-China Agricultural University Joint Center for Plant Cell and Molecular Biology, Beijing 100193, China
- To whom correspondence should be addressed. E-mail , fax 86-10-62733733
| |
Collapse
|
117
|
|
118
|
Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y. Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene, GmDREB3, in soybean (Glycine max L.). JOURNAL OF EXPERIMENTAL BOTANY 2008; 60:121-35. [PMID: 18988621 PMCID: PMC3071762 DOI: 10.1093/jxb/ern269] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/29/2008] [Accepted: 10/09/2008] [Indexed: 05/18/2023]
Abstract
DREB (dehydration-responsive element-binding protein) transcription factors have important roles in the stress-related regulation network in plants. A DREB orthologue, GmDREB3, belonging to the A-5 subgroup of the DREB subfamily, was isolated from soybean using the RACE (rapid amplification of cDNA ends) method. Northern blot analysis showed that expression of GmDREB3 in soybean seedlings was induced following cold stress treatment for 0.5 h and was not detected after 3 h. However, it was not induced by drought and high salt stresses or by abscisic acid (ABA) treatment. This response was similar to those of members in the A-1 subgroup and different from those of other members in the A-5 subgroup, suggesting that the GmDREB3 gene was involved in an ABA-independent cold stress-responsive signal pathway. Furthermore, analysis of the GmDREB3 promoter elucidated its cold-induced modulation. A promoter fragment containing bases -1058 to -664 was involved in response to cold stress, and its effect was detected for 1 h after treatment, but a transcriptional repressor appeared to impair this response by binding to a cis-element in the region -1403 to -1058 at 24 h after the beginning of cold stress. Moreover, the GmDREB3 protein could specifically bind to the DRE element in vitro, and activated expression of downstream reporter genes in yeast cells. In addition, overexpression of GmDREB3 enhanced tolerance to cold, drought, and high salt stresses in transgenic Arabidopsis. Physiological analyses indicated that the fresh weight and osmolality of GmDREB3 transgenic Arabidopsis under cold stress were higher than those of wild-type controls. GmDREB3 transgenic tobacco accumulated higher levels of free proline under drought stress and retained higher leaf chlorophyll levels under high salt stress than wild-type tobacco. In addition, constitutive expression of GmDREB3 in transgenic Arabidopsis caused growth retardation, whereas its expression under control of the stress-inducible Rd29A promoter minimized negative effects on plant growth under normal growth conditions, indicating that a combination of the Rd29A promoter and GmDREB3 might be useful for improving tolerance to environmental stresses in crop plants.
Collapse
Affiliation(s)
- Ming Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKFCRI)/Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, PR China
| | - Zhaoshi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKFCRI)/Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, PR China
| | - Lanqin Xia
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKFCRI)/Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, PR China
| | - Liancheng Li
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKFCRI)/Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, PR China
| | - Xianguo Cheng
- Institute of Natural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, PR China
| | - Jianhui Dong
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKFCRI)/Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, PR China
| | - Qiaoyan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKFCRI)/Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, PR China
| | - Youzhi Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement (NKFCRI)/Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, PR China
| |
Collapse
|
119
|
Jayaraman A, Puranik S, Rai NK, Vidapu S, Sahu PP, Lata C, Prasad M. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol 2008. [PMID: 18592419 DOI: 10.1007/s12033-008-90814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.
Collapse
Affiliation(s)
- Ananthi Jayaraman
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
120
|
Kim JS, Kim KA, Oh TR, Park CM, Kang H. Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. PLANT & CELL PHYSIOLOGY 2008; 49:1563-71. [PMID: 18725370 DOI: 10.1093/pcp/pcn125] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DEAD-box RNA helicases have been implicated to have a function during stress adaptation processes, but their functional roles in plant stress responses remain to be clearly elucidated. Here, we assessed the expression patterns and functional roles of two RNA helicases, AtRH9 and AtRH25, in Arabidopsis thaliana under abiotic stress conditions. The transcript levels of AtRH9 and AtRH25 were up-regulated markedly in response to cold stress, whereas their transcript levels were down-regulated by salt or drought stress. Phenotypic analysis of the transgenic plants and T-DNA-tagged mutants showed that the constitutive overexpression of AtRH9 or AtRH25 resulted in the retarded seed germination of Arabidopsis plants under salt stress conditions. AtRH25, but not AtRH9, enhanced freezing tolerance in Arabidopsis plants. Both AtRH9 and AtRH25 complemented the cold-sensitive phenotype of BX04 Escherichia coli mutant cells, but AtRH25 had much more prominent complementation ability than AtRH9. An in vitro nucleic acid binding assay showed that AtRH9 binds equally to all homoribopolymers, whereas AtRH25 binds preferentially to poly(G). Taken together, these results demonstrate that AtRH9 and AtRH25 impact on the seed germination of Arabidopsis plants under salt stress conditions, and suggest that the difference in cold tolerance capability between AtRH9 and AtRH25 arises from their different nucleic acid-binding properties.
Collapse
Affiliation(s)
- Jin Sun Kim
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757 Korea
| | | | | | | | | |
Collapse
|
121
|
Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M. Structure and functional analysis of wheat ICE (inducer of CBF expression) genes. PLANT & CELL PHYSIOLOGY 2008; 49:1237-49. [PMID: 18635580 DOI: 10.1093/pcp/pcn100] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two different inducers of CBF expression (ICE1-like genes), TaICE41 and TaICE87, were isolated from a cDNA library prepared from cold-treated wheat aerial tissues. TaICE41 encodes a protein of 381 aa with a predicted MW of 39.5 kDa while TaICE87 encodes a protein of 443 aa with a predicted MW of 46.5 kDa. TaICE41 and TaICE87 share 46% identity while they share 50 and 47% identity with Arabidopsis AtICE1 respectively. Expression analysis revealed that mRNA accumulation was not altered by cold treatment suggesting that both genes are expressed constitutively. Gel mobility shift analysis showed that TaICE41 and TaICE87 bind to different MYC elements in the wheat TaCBFIVd-B9 promoter. Transient expression assays in Nicotiana benthamiana, showed that both TaICE proteins can activate TaCBFIVd-B9 transcription. The different affinities of TaICE41 and TaICE87 for MYC variants suggest that ICE binding specificity may be involved in the differential expression of wheat CBF genes. Furthermore, analysis of MYC elements demonstrates that a specific variant is present in the wheat CBF group IV that is associated with freezing tolerance. Overexpression of either TaICE41 or TaICE87 genes in Arabidopsis enhanced freezing tolerance only upon cold acclimation suggesting that other factors induced by low temperature are required for their activity. The increased freezing tolerance in transgenic Arabidopsis is associated with a higher expression of the cold responsive activators AtCBF2, AtCBF3, and of several cold-regulated genes.
Collapse
Affiliation(s)
- Mohamed Badawi
- Département des Sciences Biologiques, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8
| | | | | | | | | | | | | |
Collapse
|
122
|
cDNA-AFLP Analysis Reveals Differential Gene Expression in Response to Salt Stress in Foxtail Millet (Setaria italica L.). Mol Biotechnol 2008; 40:241-51. [DOI: 10.1007/s12033-008-9081-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
|
123
|
Zhang J, Addepalli B, Yun KY, Hunt AG, Xu R, Rao S, Li QQ, Falcone DL. A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 2008; 3:e2410. [PMID: 18545667 PMCID: PMC2408970 DOI: 10.1371/journal.pone.0002410] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/02/2008] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such mutant, oxt6. METHODOLOGY/PRINCIPAL FINDINGS The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to restore wild-type growth and stress susceptibility to the oxt6 mutant. Transcriptional profiling and single gene expression studies show elevated constitutive expression of a subset of genes that encode proteins containing thioredoxin- and glutaredoxin-related domains in the oxt6 mutant, suggesting that stress can be ameliorated by these gene classes. Bulk poly(A) tail length was not seemingly affected in the oxt6 mutant, but poly(A) site selection was different, indicating a subtle effect on polyadenylation in the mutant. CONCLUSIONS/SIGNIFICANCE These results implicate the Arabidopsis CPSF30 protein in the posttranscriptional control of the responses of plants to stress, and in particular to the expression of a set of genes that suffices to confer tolerance to oxidative stress.
Collapse
Affiliation(s)
- Jingxian Zhang
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Balasubramanyam Addepalli
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kil-Young Yun
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biological Sciences, University of Massachusetts, Lowell, Massachusetts, United States of America
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (DF), (AH)
| | - Ruqiang Xu
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Suryadevara Rao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Qingshun Q. Li
- Department of Botany, Miami University, Oxford, Ohio, United States of America
| | - Deane L. Falcone
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biological Sciences, University of Massachusetts, Lowell, Massachusetts, United States of America
- * E-mail: (DF), (AH)
| |
Collapse
|
124
|
Zhang J, Addepalli B, Yun KY, Hunt AG, Xu R, Rao S, Li QQ, Falcone DL. A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 2008; 3:e2410. [PMID: 18545667 DOI: 10.1001/jama.1941.02820310001001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/02/2008] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such mutant, oxt6. METHODOLOGY/PRINCIPAL FINDINGS The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to restore wild-type growth and stress susceptibility to the oxt6 mutant. Transcriptional profiling and single gene expression studies show elevated constitutive expression of a subset of genes that encode proteins containing thioredoxin- and glutaredoxin-related domains in the oxt6 mutant, suggesting that stress can be ameliorated by these gene classes. Bulk poly(A) tail length was not seemingly affected in the oxt6 mutant, but poly(A) site selection was different, indicating a subtle effect on polyadenylation in the mutant. CONCLUSIONS/SIGNIFICANCE These results implicate the Arabidopsis CPSF30 protein in the posttranscriptional control of the responses of plants to stress, and in particular to the expression of a set of genes that suffices to confer tolerance to oxidative stress.
Collapse
Affiliation(s)
- Jingxian Zhang
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Jain M, Tyagi AK, Khurana JP. Constitutive expression of a meiotic recombination protein gene homolog, OsTOP6A1, from rice confers abiotic stress tolerance in transgenic Arabidopsis plants. PLANT CELL REPORTS 2008; 27:767-778. [PMID: 18071708 DOI: 10.1007/s00299-007-0491-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 11/23/2007] [Accepted: 11/26/2007] [Indexed: 05/25/2023]
Abstract
Plant productivity is greatly influenced by various environmental stresses, such as high salinity and drought. Earlier, we reported the isolation of topoisomerase 6 homologs from rice and showed that over expression of OsTOP6A3 and OsTOP6B confers abiotic stress tolerance in transgenic Arabidopsis plants. In this study, we have assessed the function of nuclear-localized topoisomerase 6 subunit A homolog, OsTOP6A1, in transgenic Arabidopsis plants. The over expression of OsTOP6A1 in transgenic Arabidopsis plants driven by cauliflower mosaic virus-35S promoter resulted in pleiotropic effects on plant growth and development. The transgenic Arabidopsis plants showed reduced sensitivity to stress hormone, abscisic acid (ABA), and tolerance to high salinity and dehydration at the seed germination; seedling and adult stages as reflected by the percentage of germination, fresh weight of seedlings and leaf senescence assay, respectively. Concomitantly, the expression of many stress-responsive genes was enhanced under various stress conditions in transgenic Arabidopsis plants. Moreover, microarray analysis revealed that the expression of a large number of genes involved in various processes of plant growth and development and stress responses was altered in transgenic plants. Although AtSPO11-1, the homolog of OsTOP6A1 in Arabidopsis, has been implicated in meiotic recombination; the present study demonstrates possible additional role of OsTOP6A1 and provides an effective tool for engineering crop plants for tolerance to different environmental stresses.
Collapse
Affiliation(s)
- Mukesh Jain
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
126
|
Abstract
Plants control the time at which they flower by integrating environmental cues such as day length and temperature with an endogenous program of development. Flowering time is a quantitative trait and a model for how precision in gene regulation is delivered. In this review, we reveal that flowering time control is particularly rich in RNA processing-based gene regulatory phenomena. We review those factors which function in conserved RNA processing events like alternative 3' end formation, splicing, RNA export and miRNA biogenesis and how they affect flowering time. Likewise, we review the novel plant-specific RNA-binding proteins identified as regulators of flowering time control. In addition, we add to the network of flowering time control pathways, information on alternative processing of flowering time gene pre-mRNAs. Finally, we describe new approaches to dissect the mechanisms which underpin this control.
Collapse
Affiliation(s)
- L C Terzi
- Scottish Crop Research Institute, Invergowrie, UK
| | | |
Collapse
|
127
|
|
128
|
Nuclear Pores in Plant Cells: Structure, Composition, and Functions. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
129
|
Xu XM, Meier I. The nuclear pore comes to the fore. TRENDS IN PLANT SCIENCE 2008; 13:20-7. [PMID: 18155634 DOI: 10.1016/j.tplants.2007.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/09/2007] [Accepted: 12/10/2007] [Indexed: 05/08/2023]
Abstract
The nuclear pore complex is the gateway of macromolecular trafficking between the nucleus and the cytoplasm. Although its composition is well characterized in yeast and mammalian systems, little is known about the plant nuclear pore. Several recent reports describe complex whole-organism phenotypes based on mutations in plant nucleoporins. The pathways affected include plant-microbe interactions, auxin response, cold-stress tolerance and flowering-time regulation. The effects are probably based, at least in part, on changes in protein import and/or RNA export (including regulatory small RNAs). Here, we review these new findings while comparing and contrasting them with what is known about nucleoporin functions from non-plant organisms, including nucleoporin activities not linked to nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Xianfeng M Xu
- Department of Plant Cellular and Molecular Biology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
130
|
Li D, Liu H, Zhang H, Wang X, Song F. OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2133-46. [PMID: 18441339 PMCID: PMC2413282 DOI: 10.1093/jxb/ern072] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 05/18/2023]
Abstract
DEAD-box proteins comprise a large protein family with members from all kingdoms and play important roles in all types of processes in RNA metabolism. In this study, a rice gene OsBIRH1, which encodes a DEAD-box RNA helicase protein, was cloned and characterized. The predicted OsBIRH1 protein contains a DEAD domain and all conserved motifs that are common characteristics of DEAD-box RNA helicases. Recombinant OsBIRH1 protein purified from Escherichia coli was shown to have both RNA-dependent ATPase and ATP-dependent RNA helicase activities in vitro. Expression of OsBIRH1 was activated in rice seedling leaves after treatment with defence-related signal chemicals, for example benzothiadiazole, salicylic acid, l-aminocyclopropane-1-carboxylic acid, and jasmonic acid, and was also up-regulated in an incompatible interaction between a resistant rice genotype and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants that overexpress the OsBIRH1 gene were generated. Disease resistance phenotype assays revealed that the OsBIRH1-overexpressing transgenic plants showed an enhanced disease resistance against Alternaria brassicicola and Pseudomonas syringae pv. tomato DC3000. Meanwhile, defence-related genes, for example PR-1, PR-2, PR-5, and PDF1.2, showed an up-regulated expression in the transgenic plants. Moreover, the OsBIRH1 transgenic Arabidopsis plants also showed increased tolerance to oxidative stress and elevated expression levels of oxidative defence genes, AtApx1, AtApx2, and AtFSD1. The results suggest that OsBIRH1 encodes a functional DEAD-box RNA helicase and plays important roles in defence responses against biotic and abiotic stresses.
Collapse
|
131
|
Chinnusamy V, Gong Z, Zhu JK. Nuclear RNA Export and Its Importance in Abiotic Stress Responses of Plants. Curr Top Microbiol Immunol 2008; 326:235-55. [DOI: 10.1007/978-3-540-76776-3_13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
132
|
Kant P, Kant S, Gordon M, Shaked R, Barak S. STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. PLANT PHYSIOLOGY 2007; 145:814-30. [PMID: 17556511 PMCID: PMC2048787 DOI: 10.1104/pp.107.099895] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Two genes encoding Arabidopsis (Arabidopsis thaliana) DEAD-box RNA helicases were identified in a functional genomics screen as being down-regulated by multiple abiotic stresses. Mutations in either gene caused increased tolerance to salt, osmotic, and heat stresses, suggesting that the helicases suppress responses to abiotic stress. The genes were therefore designated STRESS RESPONSE SUPPRESSOR1 (STRS1; At1g31970) and STRS2 (At5g08620). In the strs mutants, salt, osmotic, and cold stresses induced enhanced expression of genes encoding the transcriptional activators DREB1A/CBF3 and DREB2A and a downstream DREB target gene, RD29A. Under heat stress, the strs mutants exhibited enhanced expression of the heat shock transcription factor genes, HSF4 and HSF7, and the downstream gene HEAT SHOCK PROTEIN101. Germination of mutant seed was hyposensitive to the phytohormone abscisic acid (ABA), but mutants showed up-regulated expression of genes encoding ABA-dependent stress-responsive transcriptional activators and their downstream targets. In wild-type plants, STRS1 and STRS2 expression was rapidly down-regulated by salt, osmotic, and heat stress, but not cold stress. STRS expression was also reduced by ABA, but salt stress led to reduced STRS expression in both wild-type and ABA-deficient mutant plants. Taken together, our results suggest that STRS1 and STRS2 attenuate the expression of stress-responsive transcriptional activators and function in ABA-dependent and ABA-independent abiotic stress signaling networks.
Collapse
Affiliation(s)
- Pragya Kant
- Albert Katz Department of Dryland Biotechnologies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | | | | | | | | |
Collapse
|
133
|
Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. TRENDS IN PLANT SCIENCE 2007; 12:444-51. [PMID: 17855156 DOI: 10.1016/j.tplants.2007.07.002] [Citation(s) in RCA: 1072] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 05/17/2023]
Abstract
Cold stress adversely affects plant growth and development. Most temperate plants acquire freezing tolerance by a process called cold acclimation. Here, we focus on recent progress in transcriptional, post-transcriptional and post-translational regulation of gene expression that is critical for cold acclimation. Transcriptional regulation is mediated by the inducer of C-repeat binding factor (CBF) expression 1 (ICE1), the CBF transcriptional cascade and CBF-independent regulons during cold acclimation. ICE1 is negatively regulated by ubiquitination-mediated proteolysis and positively regulated by SUMO (small ubiquitin-related modifier) E3 ligase-catalyzed sumoylation. Post-transcriptional regulatory mechanisms, such as pre-mRNA splicing, mRNA export and small RNA-directed mRNA degradation, also play important roles in cold stress responses.
Collapse
|
134
|
Li C, Bonnema G, Che D, Dong L, Lindhout P, Visser R, Bai Y. Biochemical and molecular mechanisms involved in monogenic resistance responses to tomato powdery mildew. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1161-72. [PMID: 17849718 DOI: 10.1094/mpmi-20-9-1161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The monogenic genes Ol-1, ol-2, and Ol-4 confer resistance to tomato powdery mildew Oidium neolycopersici via different mechanisms. The biochemical mechanisms involved in these monogenic resistances were studied by monitoring through time the association of H2O2 and callose accumulation with hypersensitive response (HR) and papilla formation. Our results showed that H2O2 and callose accumulation are coupled with both Ol-1- and Ol-4-mediated HR-associated resistance as well as with the ol-2-mediated papillae-associated resistance. Further, the transcriptomal changes related to these monogenic resistances were studied by using cDNA-amplification fragment length polymorphism. The expression profiling clarified that 81% of DE-TDF (differentially expressed transcript-derived fragments) were up-regulated upon inoculation with O. neolycopersici in both the compatible and Ol-1-mediated incompatible interactions, though with a difference in expression timing. Of these DE-TDF, more than 70% were not detected in the Ol-4-mediated resistance, while 58% were expressed in the ol-2-mediated resistance, generally at later timepoints. Sequence information suggested that most of these DE-TDF are related to genes involved in either basal defense or establishment of compatibility. In addition, DE-TDF (19%) specifically expressed in different incompatible interactions were identified. Expression patterns of some DE-TDF and marker gene GluB suggested that papillae-associated resistance exploits a different defense pathway from that of HR-associated resistance.
Collapse
Affiliation(s)
- Chengwei Li
- Laboratory of Plant Breeding, Wageningen University, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
135
|
Zhu J, Dong CH, Zhu JK. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:290-5. [PMID: 17468037 DOI: 10.1016/j.pbi.2007.04.010] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Temperate plants are capable of developing freezing tolerance when they are exposed to low nonfreezing temperatures. Acquired freezing tolerance involves extensive reprogramming of gene expression and metabolism. Recent full-genome transcript profiling studies, in combination with mutational and transgenic plant analyses, have provided a snapshot of the complex transcriptional network that operates under cold stress. Ubiquitination-mediated proteosomal protein degradation has a crucial role in regulating one of the upstream transcription factors, INDUCER OF CBF EXPRESSION 1 (ICE1), and thus in controlling the cold-responsive transcriptome. The changes in expression of hundreds of genes in response to cold temperatures are followed by increases in the levels of hundreds of metabolites, some of which are known to have protective effects against the damaging effects of cold stress. Genetic analysis has revealed important roles for cellular metabolic signals, and for RNA splicing, export and secondary structure unwinding, in regulating cold-responsive gene expression and chilling and freezing tolerance.
Collapse
Affiliation(s)
- Jianhua Zhu
- Department of Botany and Plant Sciences, 2150 Batchelor Hall, University of California-Riverside, California 92521, USA
| | | | | |
Collapse
|
136
|
Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. PLANT PHYSIOLOGY 2007; 143:1739-51. [PMID: 17293435 PMCID: PMC1851822 DOI: 10.1104/pp.106.094532] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We used a cDNA microarray approach to monitor the expression profile of rice (Oryza sativa) under cold stress and identified 328 cold-regulated genes. Thirteen such genes encoding MYB, homeodomain, and zinc finger proteins with unknown functions showed a significant change in expression under 72-h cold stress. Among them, OsMYB3R-2 was selected for further study. Unlike most plant R2R3 MYB transcription factors, OsMYB3R-2 has three imperfect repeats in the DNA-binding domain, the same as in animal c-MYB proteins. Expression of OsMYB3R-2 was induced by cold, drought, and salt stress. The Arabidopsis (Arabidopsis thaliana) transgenic plants overexpressing OsMYB3R-2 showed increased tolerance to cold, drought, and salt stress, and the seed germination of transgenic plants was more tolerant to abscisic acid or NaCl than that of wild type. The expression of some clod-related genes, such as dehydration-responsive element-binding protein 2A, COR15a, and RCI2A, was increased to a higher level in OsMYB3R-2-overexpressing plants than in wild type. These results suggest that OsMYB3R-2 acts as a master switch in stress tolerance.
Collapse
Affiliation(s)
- Xiaoyan Dai
- Research Center for Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | |
Collapse
|
137
|
Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun DJ, Hasegawa PM. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. THE PLANT CELL 2007; 19:1403-14. [PMID: 17416732 PMCID: PMC1913760 DOI: 10.1105/tpc.106.048397] [Citation(s) in RCA: 523] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
SIZ1 is a SUMO E3 ligase that facilitates conjugation of SUMO to protein substrates. siz1-2 and siz1-3 T-DNA insertion alleles that caused freezing and chilling sensitivities were complemented genetically by expressing SIZ1, indicating that the SIZ1 is a controller of low temperature adaptation in plants. Cold-induced expression of CBF/DREB1, particularly of CBF3/DREB1A, and of the regulon genes was repressed by siz1. siz1 did not affect expression of ICE1, which encodes a MYC transcription factor that is a controller of CBF3/DREB1A. A K393R substitution in ICE1 [ICE1(K393R)] blocked SIZ1-mediated sumoylation in vitro and in protoplasts identifying the K393 residue as the principal site of SUMO conjugation. SIZ1-dependent sumoylation of ICE1 in protoplasts was moderately induced by cold. Sumoylation of recombinant ICE1 reduced polyubiquitination of the protein in vitro. ICE1(K393R) expression in wild-type plants repressed cold-induced CBF3/DREB1A expression and increased freezing sensitivity. Furthermore, expression of ICE1(K393R) induced transcript accumulation of MYB15, which encodes a MYB transcription factor that is a negative regulator of CBF/DREB1. SIZ1-dependent sumoylation of ICE1 may activate and/or stabilize the protein, facilitating expression of CBF3/DREB1A and repression of MYB15, leading to low temperature tolerance.
Collapse
Affiliation(s)
- Kenji Miura
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, Indiana 47907-2010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Xin Z, Mandaokar A, Chen J, Last RL, Browse J. Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:786-99. [PMID: 17316173 DOI: 10.1111/j.1365-313x.2006.02994.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The eskimo1 (esk1) mutation of Arabidopsis resulted in a 5.5 degrees C improvement in freezing tolerance in the absence of cold acclimation. Here we show that the increase in freezing tolerance is not associated with any increase in the ability to survive drought or salt stresses, which are similar to freezing in their induction of cellular dehydration. Genome-wide comparisons of gene expression between esk1-1 and wild type indicate that mutations at esk1 result in altered expression of transcription factors and signaling components and of a set of stress-responsive genes. Interestingly, the list of 312 genes regulated by ESK1 shows greater overlap with sets of genes regulated by salt, osmotic and abscisic acid treatments than with genes regulated by cold acclimation or by the transcription factors CBF3 and ICE1, which have been shown to control genetic pathways for freezing tolerance. Map-based cloning identified the esk1 locus as At3g55990. The wild-type ESK1 gene encodes a 57-kDa protein and is a member of a large gene family of DUF231 domain proteins whose members encode a total of 45 proteins of unknown function. Our results indicate that ESK1 is a novel negative regulator of cold acclimation. Mutations in the ESK1 gene provide strong freezing tolerance through genetic regulation that is apparently very different from previously described genetic mechanisms of cold acclimation.
Collapse
Affiliation(s)
- Zhanguo Xin
- Plant Stress and Germplasm Development Unit, USDA-ARS, 3810 4th Street, Lubbock, TX 79415, USA.
| | | | | | | | | |
Collapse
|
139
|
Jain M, Tyagi AK, Khurana JP. Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants. FEBS J 2006; 273:5245-60. [PMID: 17116242 DOI: 10.1111/j.1742-4658.2006.05518.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
DNA topoisomerase 6 (TOP6) belongs to a novel family of type II DNA topoisomerases present, other than in archaebacteria, only in plants. Here we report the isolation of full-length cDNAs encoding putative TOP6 subunits A and B from rice (Oryza sativa ssp. indica), preserving all the structural domains conserved among archaebacterial TOP6 homologs and eukaryotic meiotic recombination factor SPO11. OsTOP6A1 was predominantly expressed in prepollinated flowers. The transcript abundance of OsTOP6A2, OsTOP6A3 and OsTOP6B was also higher in prepollinated flowers and callus. The expression of OsTOP6A2, OsTOP6A3 and OsTOP6B was differentially regulated by the plant hormones, auxin, cytokinin, and abscisic acid. Yeast two-hybrid analysis revealed that the full-length OsTOP6B protein interacts with both OsTOP6A2 and OsTOP6A3, but not with OsTOP6A1. The nuclear localization of OsTOP6A3 and OsTOP6B was established by the transient expression of their beta-glucuronidase fusion proteins in onion epidermal cells. Overexpression of OsTOP6A3 and OsTOP6B in transgenic Arabidopsis plants conferred reduced sensitivity to the stress hormone, abscisic acid, and tolerance to high salinity and dehydration. Moreover, the stress tolerance coincided with enhanced induction of many stress-responsive genes in transgenic Arabidopsis plants. In addition, microarray analysis revealed that a large number of genes are expressed differentially in transgenic plants. Taken together, our results demonstrate that TOP6 genes play a crucial role in stress adaptation of plants by altering gene expression.
Collapse
Affiliation(s)
- Mukesh Jain
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
140
|
Dong CH, Hu X, Tang W, Zheng X, Kim YS, Lee BH, Zhu JK. A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol Cell Biol 2006; 26:9533-43. [PMID: 17030626 PMCID: PMC1698518 DOI: 10.1128/mcb.01063-06] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the genetic control of plant responses to cold stress, Arabidopsis thaliana mutants were isolated by a screen for mutations that impair cold-induced transcription of the CBF3-LUC reporter gene. We report here the characterization and cloning of a mutated gene, atnup160-1, which causes reduced CBF3-LUC induction under cold stress. atnup160-1 mutant plants display altered cold-responsive gene expression and are sensitive to chilling stress and defective in acquired freezing tolerance. AtNUP160 was isolated through positional cloning and shown to encode a putative homolog of the animal nucleoporin Nup160. In addition to the impaired expression of CBF genes, microarray analysis revealed that a number of other genes important for plant cold tolerance were also affected in the mutants. The atnup160 mutants flower early and show retarded seedling growth, especially at low temperatures. AtNUP160 protein is localized at the nuclear rim, and poly(A)-mRNA in situ hybridization shows that mRNA export is defective in the atnup160-1 mutant plants. Our study suggests that Arabidopsis AtNUP160 is critical for the nucleocytoplasmic transport of mRNAs and that it plays important roles in plant growth and flowering time regulation and is required for cold stress tolerance.
Collapse
Affiliation(s)
- Chun-Hai Dong
- Institute for Integrative Genome Biology and Department of Botany and Plant Science, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | |
Collapse
|
141
|
Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 2006; 281:37636-45. [PMID: 17015446 DOI: 10.1074/jbc.m605895200] [Citation(s) in RCA: 561] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cold temperatures trigger the expression of the CBF family of transcription factors, which in turn activate many downstream genes that confer freezing tolerance to plants. It has been shown previously that the cold regulation of CBF3 involves an upstream bHLH-type transcription factor, ICE1. ICE1 binds to the Myc recognition sequences in the CBF3 promoter. Apart from Myc recognition sequences, CBF promoters also have Myb recognition sequences. We report here that the Arabidopsis MYB15 is involved in cold-regulation of CBF genes and in the development of freezing tolerance. The MYB15 gene transcript is up-regulated by cold stress. The MYB15 protein interacts with ICE1 and binds to Myb recognition sequences in the promoters of CBF genes. Overexpression of MYB15 results in reduced expression of CBF genes whereas its loss-of-function leads to increased expression of CBF genes in the cold. The myb15 mutant plants show increased tolerance to freezing stress whereas its overexpression reduces freezing tolerance. Our results suggest that MYB15 is part of a complex network of transcription factors controlling the expression of CBFs and other genes in response to cold stress.
Collapse
Affiliation(s)
- Manu Agarwal
- Institute for Integrative Genome Biology and Department of Botany & Plant Science, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Fung RWM, Wang CY, Smith DL, Gross KC, Tao Y, Tian M. Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:1049-60. [PMID: 16376455 DOI: 10.1016/j.jplph.2005.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 11/09/2005] [Indexed: 05/05/2023]
Abstract
Methyl salicylate (MeSA) vapor increased resistance against chilling injury (CI) in freshly harvested pink tomatoes. The expression patterns of alternative oxidase (AOX) before and during the chilling period demonstrated that pre-treatment of tomato fruit with MeSA vapor increased the transcript levels of AOX. We used 4 EST tomato clones of AOX from the public database that belong to two distinctly related families, 1 and 2 defined in plants. Three clones were designated as LeAOX1a, 1b and 1c and the fourth clone as LeAOX2. Using RT-PCR, 1a and 1b genes were found to be expressed in leaf, root and fruit tissues, but 1c was expressed preferentially in roots. RNA transcript from LeAOX1a of AOX subfamily 1 was present in much greater abundance than 1b or 1c. The presence of longer AOX transcripts detected by RNA gel blot analysis in cold-stored tomato fruit was confirmed to be the un-spliced pre-mRNA transcripts of LeAOX1a and LeAOX1b genes. Intron splicing of LeAOX1c gene was also affected by cold storage when it was detected in roots. This alternative splicing event in AOX pre-mRNAs molecules occurred, preferentially at low temperature, regardless of mRNA abundance. Transcript levels of several key genes involved in RNA processing (splicing factors: 9G8-SR and SF2-SR, fibrillarin and DEAD box RNA helicase) were also affected by changes in storage temperature. The aberrant splicing event in AOX pre-mRNA and its possible association with the change in expression of genes involved in RNA processing in tomato fruit having chilling disorder was discussed.
Collapse
Affiliation(s)
- Raymond W M Fung
- Produce Quality and Safety Laboratory, Plant Sciences Institute, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705-2350, USA
| | | | | | | | | | | |
Collapse
|
143
|
Chen Z, Zhang H, Jablonowski D, Zhou X, Ren X, Hong X, Schaffrath R, Zhu JK, Gong Z. Mutations in ABO1/ELO2, a subunit of holo-Elongator, increase abscisic acid sensitivity and drought tolerance in Arabidopsis thaliana. Mol Cell Biol 2006; 26:6902-12. [PMID: 16943431 PMCID: PMC1592858 DOI: 10.1128/mcb.00433-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays an important role in modulating plant growth, development, and stress responses. In a genetic screen for mutants with altered drought stress responses, we identified an ABA-overly sensitive mutant, the abo1 mutant, which showed a drought-resistant phenotype. The abo1 mutation enhances ABA-induced stomatal closing and increases ABA sensitivity in inhibiting seedling growth. abo1 mutants are more resistant to oxidative stress than the wild type and show reduced levels of transcripts of several stress- or ABA-responsive genes. Interestingly, the mutation also differentially modulates the development and growth of adjacent guard cells. Map-based cloning identified ABO1 as a new allele of ELO2, which encodes a homolog of Saccharomyces cerevisiae Iki3/Elp1/Tot1 and human IkappaB kinase-associated protein. Iki3/Elp1/Tot1 is the largest subunit of Elongator, a multifunctional complex with roles in transcription elongation, secretion, and tRNA modification. Ecotopic expression of plant ABO1/ELO2 in a tot1/elp1Delta yeast Elongator mutant complements resistance to zymocin, a yeast killer toxin complex, indicating that ABO1/ELO2 substitutes for the toxin-relevant function of yeast Elongator subunit Tot1/Elp1. Our results uncover crucial roles for ABO1/ELO2 in modulating ABA and drought responses in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhizhong Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Khanna R, Shen Y, Toledo-Ortiz G, Kikis EA, Johannesson H, Hwang YS, Quail PH. Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation. THE PLANT CELL 2006; 18:2157-71. [PMID: 16891401 PMCID: PMC1560915 DOI: 10.1105/tpc.106.042200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In previous time-resolved microarray-based expression profiling, we identified 32 genes encoding putative transcription factors, signaling components, and unknown proteins that are rapidly and robustly induced by phytochrome (phy)-mediated light signals. Postulating that they are the most likely to be direct targets of phy signaling and to function in the primary phy regulatory circuitry, we examined the impact of targeted mutations in these genes on the phy-induced seedling deetiolation process in Arabidopsis thaliana. Using light-imposed concomitant inhibition of hypocotyl and stimulation of cotyledon growth as diagnostic criteria for normal deetiolation, we identified three major mutant response categories. Seven (22%) lines displayed statistically significant, reciprocal, aberrant photoresponsiveness in the two organs, suggesting disruption of normal deetiolation; 13 (41%) lines displayed significant defects either unidirectionally in both organs or in hypocotyls only, suggesting global effects not directly related to photomorphogenic signaling; and 12 (37%) lines displayed no significant difference in photoresponsiveness from the wild type. Potential reasons for the high proportion of rapidly light-responsive genes apparently unnecessary for the deetiolation phenotype are discussed. One of the seven disrupted genes displaying a significant mutant phenotype, the basic helix-loop-helix factor-encoding PHYTOCHROME-INTERACTING FACTOR3-LIKE1 gene, was found to be necessary for rapid light-induced expression of the photomorphogenesis- and circadian-related PSEUDO-RESPONSE REGULATOR9 gene, indicating a regulatory function in the early phy-induced transcriptional network.
Collapse
Affiliation(s)
- Rajnish Khanna
- Department of Plant and Microbial Biology, University of California, Berkeley, 94720, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Benedict C, Geisler M, Trygg J, Huner N, Hurry V. Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:1219-32. [PMID: 16896234 PMCID: PMC1533918 DOI: 10.1104/pp.106.083527] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The whole-genome response of Arabidopsis (Arabidopsis thaliana) exposed to different types and durations of abiotic stress has now been described by a wealth of publicly available microarray data. When combined with studies of how gene expression is affected in mutant and transgenic Arabidopsis with altered ability to transduce the low temperature signal, these data can be used to test the interactions between various low temperature-associated transcription factors and their regulons. We quantized a collection of Affymetrix microarray data so that each gene in a particular regulon could vote on whether a cis-element found in its promoter conferred induction (+1), repression (-1), or no transcriptional change (0) during cold stress. By statistically comparing these election results with the voting behavior of all genes on the same gene chip, we verified the bioactivity of novel cis-elements and defined whether they were inductive or repressive. Using in silico mutagenesis we identified functional binding consensus variants for the transcription factors studied. Our results suggest that the previously identified ICEr1 (induction of CBF expression region 1) consensus does not correlate with cold gene induction, while the ICEr3/ICEr4 consensuses identified using our algorithms are present in regulons of genes that were induced coordinate with observed ICE1 transcript accumulation and temporally preceding genes containing the dehydration response element. Statistical analysis of overlap and cis-element enrichment in the ICE1, CBF2, ZAT12, HOS9, and PHYA regulons enabled us to construct a regulatory network supported by multiple lines of evidence that can be used for future hypothesis testing.
Collapse
Affiliation(s)
- Catherine Benedict
- Umeå Plant Science Centre, Department of Plant Physiology , Umeå University, S-901 87 Umea, Sweden.
| | | | | | | | | |
Collapse
|
146
|
Lee BH, Kapoor A, Zhu J, Zhu JK. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. THE PLANT CELL 2006; 18:1736-49. [PMID: 16751345 PMCID: PMC1488911 DOI: 10.1105/tpc.106.042184] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In plants, many gene transcripts are very unstable, which is important for the tight control of their temporal and spatial expression patterns. To identify cellular factors controlling the stability of unstable mRNAs in plants, we used luciferase imaging in Arabidopsis thaliana to isolate a recessive mutant, stabilized1-1 (sta1-1), with enhanced stability of the normally unstable luciferase transcript. The sta1-1 mutation also causes the stabilization of some endogenous gene transcripts and has a range of developmental and stress response phenotypes. STA1 encodes a nuclear protein similar to the human U5 small ribonucleoprotein-associated 102-kD protein and to the yeast pre-mRNA splicing factors Prp1p and Prp6p. STA1 expression is upregulated by cold stress, and the sta1-1 mutant is defective in the splicing of the cold-induced COR15A gene. Our results show that STA1 is a pre-mRNA splicing factor required not only for splicing but also for the turnover of unstable transcripts and that it has an important role in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Byeong-ha Lee
- Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
147
|
Abstract
RNA helicases function as molecular motors that rearrange RNA secondary structure, potentially performing roles in any cellular process involving RNA metabolism. Although RNA helicase association with a range of cellular functions is well documented, their importance in response to abiotic stress is only beginning to emerge. This review summarizes the available data on the expression, biochemistry and physiological function(s) of RNA helicases regulated by abiotic stress. Examples originate primarily from non-mammalian organisms while instances from mammalian sources are restricted to post-translational regulation of helicase biochemical activity. Common emerging themes include the requirement of a cold-induced helicase in non-homeothermic organisms, association and regulation of helicase activity by stress-induced phosphorylation cascades, altered nuclear–cytoplasmic shuttling in eukaryotes, association with the transcriptional apparatus and the diversity of biochemical activities catalyzed by a subgroup of stress-induced helicases. The data are placed in the context of a mechanism for RNA helicase involvement in cellular response to abiotic stress. It is proposed that stress-regulated helicases can catalyze a nonlinear, reversible sequence of RNA secondary structure rearrangements which function in RNA maturation or RNA proofreading, providing a mechanism by which helicase activity alters the activation state of target RNAs through regulation of the reaction equilibrium.
Collapse
Affiliation(s)
- George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9.
| |
Collapse
|
148
|
Nakaminami K, Karlson DT, Imai R. Functional conservation of cold shock domains in bacteria and higher plants. Proc Natl Acad Sci U S A 2006; 103:10122-7. [PMID: 16788067 PMCID: PMC1502516 DOI: 10.1073/pnas.0603168103] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In Escherichia coli, a family of cold shock proteins (CSPs) function as transcription antiterminators or translational enhancers at low temperature by destabilizing RNA secondary structure. A wheat nucleic acid-binding protein (WCSP1) was found to contain a cold shock domain (CSD) bearing high similarity to E. coli cold shock proteins. In the present study, a series of mutations were introduced into WCSP1, and its functionality was investigated by using in vivo and in vitro assays in the context of functional conservation with E. coli CSPs. Constitutive expression of WT WCSP1 in an E. coli cspA, cspB, cspE, cspG quadruple deletion mutant complemented its cold-sensitive phenotype, suggesting that WCSP1 shares a function with E. coli CSPs for cold adaptation. In addition, transcription antitermination activity was demonstrated for WCSP1 by using an E. coli strain that has a hairpin loop upstream of a chloramphenicol resistance gene. In vitro dsDNA melting assays clearly demonstrated that WCSP1 melts dsDNA, an activity that was positively correlated to the ability to bind ssDNA. When mutations were introduced at critical residues within the consensus RNA binding motifs (RNP1 and RNP2) of WCSP1, it failed to melt dsDNA. Studies with WCSP1-GFP fusion proteins documented patterns that are consistent with ER and nuclear localization. In vivo and in vitro functional analyses, coupled with subcellular localization data, suggest that WCSP1 may function as a RNA chaperone to destabilize secondary structure and is involved in the regulation of translation under low temperature.
Collapse
Affiliation(s)
- Kentaro Nakaminami
- Research Team for Crop Cold Tolerance, National Agricultural Research Center for Hokkaido Region, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Dale T. Karlson
- Research Team for Crop Cold Tolerance, National Agricultural Research Center for Hokkaido Region, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Ryozo Imai
- Research Team for Crop Cold Tolerance, National Agricultural Research Center for Hokkaido Region, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
149
|
Vashisht AA, Tuteja N. Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 84:150-60. [PMID: 16624568 DOI: 10.1016/j.jphotobiol.2006.02.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 02/15/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Abiotic stresses including various environmental factors adversely affect plant growth and limit agricultural production worldwide. Minimizing these losses is a major area of concern for all countries. Therefore, it is desirable to develop multi-stress tolerant varieties. Salinity, drought, and cold are among the major environmental stresses that greatly influence the growth, development, survival, and yield of plants. UV-B radiation of sunlight, which damages the cellular genomes, is another growth-retarding factor. Several genes are induced under the influence of various abiotic stresses. Among these are DNA repair genes, which are induced in response to the DNA damage. Since the stresses affect the cellular gene expression machinery, it is possible that molecules involved in nucleic acid metabolism including helicases are likely to be affected. The light-driven shifts in redox-potential can also initiate the helicase gene expression. Helicases are ubiquitous enzymes that catalyse the unwinding of energetically stable duplex DNA (DNA helicases) or duplex RNA secondary structures (RNA helicases). Most helicases are members of DEAD-box protein superfamily and play essential roles in basic cellular processes such as DNA replication, repair, recombination, transcription, ribosome biogenesis and translation initiation. Therefore, helicases might be playing an important role in regulating plant growth and development under stress conditions by regulating some stress-induced pathways. There are now few reports on the up-regulation of DEAD-box helicases in response to abiotic stresses. Recently, salinity-stress tolerant tobacco plants have already been raised by overexpressing a helicase gene, which suggests a new pathway to engineer plant stress tolerance [N. Sanan-Mishra, X.H. Pham, S.K. Sopory, N. Tuteja, Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc. Natl. Acad. Sci. USA 102 (2005) 509-514]. Presently the exact mechanism of helicase-mediated stress tolerance is not understood. In this review we have described all the reported stress-induced helicases and also discussed the possible mechanisms by which they can provide stress tolerance.
Collapse
Affiliation(s)
- Ajay Amar Vashisht
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
150
|
Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM. Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J Biol Chem 2006; 281:10752-9. [PMID: 16497677 DOI: 10.1074/jbc.m510535200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DREB1/C-repeat binding factor (CBF) is a plant-specific family of transcription factors and plays a crucial role in freeze tolerance. In the present work, two groups of drought-responsive element binding factor (DREB)-like genes were isolated from Brassica napus, named Group I and Group II. The two groups of genes were both induced by low temperature, but the expression of Group I preceded that of Group II. The Group I DREBs could specifically bind with the DRE cis-acting element and activate the expression of downstream genes, but Group II factors were trans-inactive although they still had the ability to bind with DRE, which was confirmed by electrophoretic mobility shift assay. Fluorescence quenching assays indicated that the DRE binding ability of the two groups was similar. Co-expression of Group II could depress the trans-activation activity of Group I DREB in a concentration-dependent manner. These results strongly suggested that the trans-active Group I DREBs were expressed at the early stage of cold stress to open the DRE-mediated signaling pathway in cold stress, whereas the trans-inactive Group II DREBs were expressed at the later stage to close the signal pathway in a competitive manner. The results herein provide a new insight into the regulation mechanisms of the DRE-mediated signaling pathway in response to cold stress.
Collapse
Affiliation(s)
- Tong-Jin Zhao
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|