101
|
Sarker AH, Ikeda S, Nakano H, Terato H, Ide H, Imai K, Akiyama K, Tsutsui K, Bo Z, Kubo K, Yamamoto K, Yasui A, Yoshida MC, Seki S. Cloning and characterization of a mouse homologue (mNthl1) of Escherichia coli endonuclease III. J Mol Biol 1998; 282:761-74. [PMID: 9743625 DOI: 10.1006/jmbi.1998.2042] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endonuclease III (endoIII; nth gene product) of Escherichia coli is known to be a DNA repair enzyme having a relatively broad specificity for damaged pyrimidine bases of DNA. Here, we describe the cloning and characterization of the cDNA and the gene for a mouse homologue (mNthl1/mNth1) of endoIII. The cDNA was cloned from a mouse T-cell cDNA library with a probe prepared by PCR using the library and specific PCR primers synthesized based on the reported information of partial amino acid sequences of bovine NTHL1/NTH1 and of EST Data Bases. The cDNA is 1025 nucleotides long and encodes a protein consisting of 300 amino acids with a predicted molecular mass of 33.6 kDa. The amino acid sequence exhibits significant homologies to those of endoIII and its prokaryotic and eukaryotic homologues. The recombinant mNthl1 with a hexahistidine tag was overexpressed in a nth::cmr nei::Kmr double mutant of E. coli, and purified to apparent homogeneity. The enzyme showed thymine glycol DNA glycosylase, urea DNA glycosylase and AP lyase activities. Northern blot analysis indicated that mNthl1 mRNA is about 1 kb and is expressed ubiquitously. A 15 kb DNA fragment containing the mNthl1 gene was cloned from a mouse genomic library and sequenced. The gene consists of six exons and five introns spanning 6.09 kb. The sequenced 5' flanking region lacks a typical TATA box, but contains a CAAT box and putative binding sites for several transcription factors such as Ets, Sp1, AP-1 and AP-2. The mNthl1 gene was shown to lie immediately adjacent to the tuberous sclerosis 2 (Tsc2) gene in a 5'-to-5' orientation by sequence analysis and was assigned to chromosome 17A3 by in situ hybridization.
Collapse
Affiliation(s)
- A H Sarker
- Institute of Cellular & Molecular Biology, Okayama University Medical School, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Ikeda S, Biswas T, Roy R, Izumi T, Boldogh I, Kurosky A, Sarker AH, Seki S, Mitra S. Purification and characterization of human NTH1, a homolog of Escherichia coli endonuclease III. Direct identification of Lys-212 as the active nucleophilic residue. J Biol Chem 1998; 273:21585-93. [PMID: 9705289 DOI: 10.1074/jbc.273.34.21585] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human endonuclease III (hNTH1), a homolog of the Escherichia coli enzyme (Nth), is a DNA glycosylase with abasic (apurinic/apyrimidinic (AP)) lyase activity and specifically cleaves oxidatively damaged pyrimidines in DNA. Its cDNA was cloned, and the full-length enzyme (304 amino acid residues) was expressed as a glutathione S-transferase fusion polypeptide in E. coli. Purified wild-type protein with two additional amino acid residues and a truncated protein with deletion of 22 residues at the NH2 terminus were equally active and had absorbance maxima at 280 and 410 nm, the latter due to the presence of a [4Fe-4S]cluster, as in E. coli Nth. The enzyme cleaved thymine glycol-containing form I plasmid DNA and a dihydrouracil (DHU)-containing oligonucleotide duplex. The protein had a molar extinction coefficient of 5.0 x 10(4) and a pI of 10. With the DHU-containing oligonucleotide duplex as substrate, the Km was 47 nM, and kcat was approximately 0.6/min, independent of whether DHU paired with G or A. The enzyme carries out beta-elimination and forms a Schiff base between the active site residue and the deoxyribose generated after base removal. The prediction of Lys-212 being the active site was confirmed by sequence analysis of the peptide-oligonucleotide adduct. Furthermore, replacing Lys-212 with Gln inactivated the enzyme. However, replacement with Arg-212 yielded an active enzyme with about 85-fold lower catalytic specificity than the wild-type protein. DNase I footprinting with hNTH1 showed protection of 10 nucleotides centered around the base lesion in the damaged strand and a stretch of 15 nucleotides (with the G opposite the lesion at the 5'-boundary) in the complementary strand. Immunological studies showed that HeLa cells contain a single hNTH species of the predicted size, localized in both the nucleus and the cytoplasm.
Collapse
Affiliation(s)
- S Ikeda
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Griffiths HR, Mistry P, Herbert KE, Lunec J. Molecular and cellular effects of ultraviolet light-induced genotoxicity. Crit Rev Clin Lab Sci 1998; 35:189-237. [PMID: 9663376 DOI: 10.1080/10408369891234192] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exposure to the solar ultraviolet spectrum that penetrates the Earth's stratosphere (UVA and UVB) causes cellular DNA damage within skin cells. This damage is elicited directly through absorption of energy (UVB), and indirectly through intermediates such as sensitizer radicals and reactive oxygen species (UVA). DNA damage is detected as strand breaks or as base lesions, the most common lesions being 8-hydroxydeoxyguanosine (8OHdG) from UVA exposure and cyclobutane pyrimidine dimers from UVB exposure. The presence of these products in the genome may cause misreading and misreplication. Cells are protected by free radical scavengers that remove potentially mutagenic radical intermediates. In addition, the glutathione-S-transferase family can catalyze the removal of epoxides and peroxides. An extensive repair capacity exists for removing (1) strand breaks, (2) small base modifications (8OHdG), and (3) bulky lesions (cyclobutane pyrimidine dimers). UV also stimulates the cell to produce early response genes that activate a cascade of signaling molecules (e.g., protein kinases) and protective enzymes (e.g., haem oxygenase). The cell cycle is restricted via p53-dependent and -independent pathways to facilitate repair processes prior to replication and division. Failure to rescue the cell from replication block will ultimately lead to cell death, and apoptosis may be induced. The implications for UV-induced genotoxicity in disease are considered.
Collapse
|
104
|
Wang D, Kreutzer DA, Essigmann JM. Mutagenicity and repair of oxidative DNA damage: insights from studies using defined lesions. Mutat Res 1998; 400:99-115. [PMID: 9685598 DOI: 10.1016/s0027-5107(98)00066-9] [Citation(s) in RCA: 349] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative DNA damage has been implicated in mutagenesis, carcinogenesis and aging. Endogenous cellular processes such as aerobic metabolism generate reactive oxygen species (ROS) that interact with DNA to form dozens of DNA lesions. If unrepaired, these lesions can exert a number of deleterious effects including the induction of mutations. In an effort to understand the genetic consequences of cellular oxidative damage, many laboratories have determined the patterns of mutations generated by the interaction of ROS with DNA. Compilation of these mutational spectra has revealed that GC-->AT transitions and GC-->TA transversions are the most commonly observed mutations resulting from oxidative damage to DNA. Since mutational spectra convey only the end result of a complex cascade of events, which includes formation of multiple adducts, repair processing, and polymerase errors, it is difficult if not impossible to assess the mutational specificity of individual DNA lesions directly from these spectra. This problem is especially complicated in the case of oxidative DNA damage owing to the multiplicity of lesions formed by a single damaging agent. The task of assigning specific features of mutational spectra to individual DNA lesions has been made possible with the advent of a technology to analyze the mutational properties of single defined adducts, in vitro and in vivo. At the same time, parallel progress in the discovery and cloning of repair enzymes has advanced understanding of the biochemical mechanisms by which cells excise DNA damage. This combination of tools has brought our understanding of DNA lesions to a new level of sophistication. In this review, we summarize the known properties of individual oxidative lesions in terms of their structure, mutagenicity and repairability.
Collapse
Affiliation(s)
- D Wang
- Division of Toxicology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
105
|
Affiliation(s)
- S Linn
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720-3202, USA
| |
Collapse
|
106
|
Bruner SD, Nash HM, Lane WS, Verdine GL. Repair of oxidatively damaged guanine in Saccharomyces cerevisiae by an alternative pathway. Curr Biol 1998; 8:393-403. [PMID: 9545197 DOI: 10.1016/s0960-9822(98)70158-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transversion mutations are caused by 8-oxoguanine (OG), a DNA lesion produced by the spontaneous oxidation of guanine nucleotides, which mis-pairs with adenine during replication. Resistance to this mutagenic threat is mediated by the GO system, the components of which are functionally conserved in bacteria and mammals. To date, only one of three GO system components has been identified in the budding yeast Saccharomyces cerevisiae, namely the OG:C-specific glycosylase/lyase yOgg1. Furthermore, S. cerevisiae has been reported to contain a unique glycosylase/lyase activity, yOgg2, which excises OG residues opposite adenines. Paradoxically, according to the currently accepted model, yOgg2 activity should increase the mutagenicity of OG lesions. Here we report the isolation of yOgg2 and the elucidation of its role in oxidative mutagenesis. RESULTS Borohydride-dependent cross-linking using an OG-containing oligonucleotide substrate led to the isolation of yOgg1 and a second protein, Ntg1, which had previously been shown to process oxidized pyrimidines in DNA. We demonstrate that Ntg1 has OG-specific glycosylase/lyase activity indistinguishable from that of yOgg2. Targeted disruption of the NTG1 gene resulted in complete loss of yOgg2 activity and yeast lacking NTG1 had an elevated rate of A:T to C:G transversions. CONCLUSIONS The Ntg1 and yOgg2 activities are encoded by a single gene. We propose that yOgg2 has evolved to process OG:A mis-pairs that have arisen through mis-incorporation of 8-oxo-dGTP during replication. Thus, the GO system in S. cerevisiae is fundamentally distinct from that in bacteria and mammals.
Collapse
Affiliation(s)
- S D Bruner
- Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
107
|
Berdal KG, Johansen RF, Seeberg E. Release of normal bases from intact DNA by a native DNA repair enzyme. EMBO J 1998; 17:363-7. [PMID: 9430628 PMCID: PMC1170387 DOI: 10.1093/emboj/17.2.363] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Base excision repair is initiated by DNA glycosylases removing inappropriate bases from DNA. One group of these enzymes, comprising 3-methyladenine DNA glycosylase II (AlkA) from Escherichia coli and related enzymes from other organisms, has been found to have an unusual broad specificity towards quite different base structures. We tested whether such enzymes might also be capable of removing normal base residues from DNA. The native enzymes from E.coli, Saccharomyces cerevisiae and human cells promoted release of intact guanines with significant frequencies, and further analysis of AlkA showed that all the normal bases can be removed. Transformation of E. coli with plasmids expressing different levels of AlkA produced an increased spontaneous mutation frequency correlated with the expression levels, indicating that excision of normal bases occurs at biologically significant rates. We propose that the broad specificity 3-methyladenine DNA glycosylases represent a general type of repair enzyme 'pulling' bases in DNA largely at random, without much preference for a specific structure. The specificity for release of damaged bases occurs because base structure alterations cause instability of the base-sugar bonds. Damaged bases are therefore released more readily than normal bases once the bond activation energy is reduced further by the enzyme. Qualitatively, the model correlates quite well with the relative rate of excision observed for most, if not all, of the substrates described for AlkA and analogues.
Collapse
Affiliation(s)
- K G Berdal
- Department of Molecular Biology, Institute of Medical Microbiology, The National Hospital, University of Oslo, Norway
| | | | | |
Collapse
|
108
|
Jiang D, Hatahet Z, Melamede RJ, Kow YW, Wallace SS. Characterization of Escherichia coli endonuclease VIII. J Biol Chem 1997; 272:32230-9. [PMID: 9405426 DOI: 10.1074/jbc.272.51.32230] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli endonuclease VIII (endo VIII) was identified as an enzyme that, like endonuclease III (endo III), removes radiolysis products of thymine including thymine glycol, dihydrothymine, beta-ureidoisobutyric acid, and urea from double-stranded plasmid or phage DNA and cleaves the DNA strand at abasic (AP) sites (Melamede, R. J., Hatahet, Z., Kow, Y. W., Ide., H., and Wallace, S. S. (1994) Biochemistry 33, 1255-1264). Using apparently homogeneous endo VIII protein, we now show that endo VIII removes from double-stranded oligodeoxyribonucleotides the stable oxidative products of cytosine, 5-hydroxycytosine and 5-hydroxyuracil. Endo VIII cleaved the damage-containing DNA strand by beta,delta-elimination as does formamidopyrimidine DNA glycosylase (Fpg). Like Fpg, endo VIII also excised the 5'-terminal deoxyribose phosphate from an endonuclease IV (endo IV) pre-incised AP site. Thus, in addition to amino acid sequence homology (Jiang, D., Hatahet, Z., Blaisdell, J., Melamede, R. J., and Wallace, S. S. (1997) J. Bacteriol. 179, 3773-3782), endo VIII shares a number of catalytic properties with Fpg. In addition, endo VIII specifically bound to oligodeoxynucleotides containing a reduced AP site with a stoichiometry of 1:1 for protein to DNA with an apparent equilibrium dissociation constant of 3.9 nM. Like Fpg and endo III, the DNase I footprint was small with contact sites primarily on the damage-containing strand; unlike Fpg and endo III, the DNA binding of endo VIII to DNA was asymmetric, 3' to the reduced AP site.
Collapse
Affiliation(s)
- D Jiang
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
109
|
Bjorâs M, Luna L, Johnsen B, Hoff E, Haug T, Rognes T, Seeberg E. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J 1997; 16:6314-22. [PMID: 9321410 PMCID: PMC1326315 DOI: 10.1093/emboj/16.20.6314] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The guanine modification 7,8-dihydro-8-oxoguanine (8-oxoG) is a potent premutagenic lesion formed spontaneously at high frequencies in the genomes of aerobic organisms. We have characterized a human DNA repair glycosylase for 8-oxoG removal, hOGH1 (human yeast OGG1 homologue), by molecular cloning and functional analysis. Expression of the human cDNA in a repair deficient mutator strain of Escherichia coli (fpg mutY) suppressed the spontaneous mutation frequency to almost normal levels. The hOGH1 enzyme was localized to the nucleus in cells transfected by constructs of hOGH1 fused to green fluorescent protein. Enzyme purification yielded a protein of 38 kDa removing both formamidopyrimidines and 8-oxoG from DNA. The enzymatic activities of hOGH1 was analysed on DNA containing single residues of 8-oxoG or abasic sites opposite each of the four normal bases in DNA. Excision of 8-oxoG opposite C was the most efficient and was followed by strand cleavage via beta-elimination. However, significant removal of 8-oxoG from mispairs (8-oxoG: T >G >A) was also demonstrated, but essentially without an associated strand cleavage reaction. Assays with abasic site DNA showed that strand cleavage was indeed dependent on the presence of C in the opposite strand, irrespective of the prior removal of an 8-oxoG residue. It thus appears that strand incisions are made only if repair completion results in correct base insertion, whereas excision from mispairs preserves strand continuity and hence allows for error-free correction by a postreplicational repair mechanism.
Collapse
Affiliation(s)
- M Bjorâs
- Department of Molecular Biology, Institute of Medical Microbiology, University of Oslo, The National Hospital, N-0027 Oslo
| | | | | | | | | | | | | |
Collapse
|
110
|
Croteau DL, Bohr VA. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 1997; 272:25409-12. [PMID: 9325246 DOI: 10.1074/jbc.272.41.25409] [Citation(s) in RCA: 338] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- D L Croteau
- Laboratory of Molecular Genetics, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
111
|
Nash HM, Lu R, Lane WS, Verdine GL. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOgg1: direct identification, ablation and chemical reconstitution. CHEMISTRY & BIOLOGY 1997; 4:693-702. [PMID: 9331411 DOI: 10.1016/s1074-5521(97)90225-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Base-excision DNA repair (BER) is the principal pathway responsible for the removal of aberrant, genotoxic bases from the genome and restoration of the original sequence. Key components of the BER pathway are DNA glycosylases, enzymes that recognize aberrant bases in the genome and catalyze their expulsion. One major class of such enzymes, glycosylase/lyases, also catalyze scission of the DNA backbone following base expulsion. Recent studies indicate that the glycosylase and lyase functions of these enzymes are mechanistically unified through a common amine-bearing residue on the enzyme, which acts as both the electrophile that displaces the aberrant base and an electron sink that facilitates DNA strand scission through imine (Schiff base)/conjugate elimination chemistry. The identity of this critical amine-bearing residue has not been rigorously established for any member of a superfamily of BER glycosylase/lyases. RESULTS Here, we report the identification of the active-site amine of the human 8-oxoguanine DNA glycosylase (hOgg1), a human BER superfamily protein that repairs the mutagenic 8-oxoguanine lesion in DNA. We employed Edman sequencing of an active-site peptide irreversibly linked to substrate DNA to identify directly the active-site amine of hOgg1 as the epsilon-NH2 group of Lys249. In addition, we observed that the repair-inactive but recognition-competent Cys249 mutant (Lys249-->Cys) of hOgg1 can be functionally rescued by alkylation with 2-bromoethylamine, which functionally replaces the lysine residue by generating a gamma-thia-lysine. CONCLUSIONS This study provides the first direct identification of the active-site amine for any DNA glycosylase/lyase belonging to the BER superfamily, members of which are characterized by the presence of a helix-hairpin-helix-Gly/Pro-Asp active-site motif. The critical lysine residue identified here is conserved in all members of the BER superfamily that exhibit robust glycosylase/lyase activity. The ability to trigger the catalytic activity of the Lys249-->Cys mutant of hOgg1 by treatment with the chemical inducer 2-bromoethylamine may permit snapshots to be taken of the enzyme acting on its substrate and could represent a novel strategy for conditional activation of catalysis by hOgg1 in cells.
Collapse
Affiliation(s)
- H M Nash
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
112
|
Girard PM, Guibourt N, Boiteux S. The Ogg1 protein of Saccharomyces cerevisiae: a 7,8-dihydro-8-oxoguanine DNA glycosylase/AP lyase whose lysine 241 is a critical residue for catalytic activity. Nucleic Acids Res 1997; 25:3204-11. [PMID: 9241232 PMCID: PMC146873 DOI: 10.1093/nar/25.16.3204] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The OGG1 gene of Saccharomyces cerevisiae codes for a DNA glycosylase that excises 7,8-dihydro-8- oxoguanine (8-OxoG) and 2,6-diamino-4-hydroxy-5- N -methylformamidopyrimidine (Fapy) from damaged DNA. In this paper, we have analysed the substrate specificity and the catalytic mechanism of the Ogg1 protein acting on DNA subtrates containing 8-OxoG residues or apurinic/apyrimidinic (AP) sites. The Ogg1 protein displays a marked preference for DNA duplexes containing 8-OxoG placed opposite a cytosine, the rank order for excision of 8-OxoG and cleavage efficiencies being 8-OxoG/C >8-OxoG/T >>8-OxoG/G and 8-OxoG/A. The cleavage of the DNA strand implies the excision of 8-OxoG followed by abeta-elimination reaction at the 3'-side of the resulting AP site. The Ogg1 protein efficiently cleaves a DNA duplex where a preformed AP site is placed opposite a cytosine (AP/C). In contrast, AP/T, AP/A or AP/G substrates are incised with a very low efficiency. Furthermore, cleavage of 8-OxoG/C or AP/C substrates implies the formation of a reaction intermediate that is converted into a stable covalent adduct in the presence of sodium borohydre (NaBH4). Therefore, the Ogg1 protein is a eukaryotic DNA glycosylase/AP lyase. Sequence homology searches reveal that Ogg1 probably shares a common ancestor gene with the endonuclease III of Escherichia coli. A consensus sequence indicates a highly conserved lysine residue, K120 of endonuclease III or K241 of Ogg1, respectively. Mutations of K241 to Gln (K241Q) and Arg (K241R) have been obtained after site directed mutagenesis of OGG1. Mutation K241Q completely abolishes DNA glycosylase activity and covalent complex formation in the presence of NaBH4. However, the K241Q mutant still binds DNA duplexes containing 8-OxoG/C. In contrast, K241R mutation results in a catalytically active form of Ogg1. These results strongly suggest that the free amino group of Lys241 is involved in the catalytic mechanism of the Ogg1 protein.
Collapse
Affiliation(s)
- P M Girard
- Laboratoire de Radiobiologie du DNA, CEA/DSV, UMR217 Centre National de la Recherche Scientifique, Département de Radiobiologie et Radiopathologie, BP6, F-92265 Fontenay aux Roses, France
| | | | | |
Collapse
|
113
|
Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 1997; 272:19095-8. [PMID: 9235895 DOI: 10.1074/jbc.272.31.19095] [Citation(s) in RCA: 398] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- E S Henle
- Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
114
|
Roldán-Arjona T, Wei YF, Carter KC, Klungland A, Anselmino C, Wang RP, Augustus M, Lindahl T. Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc Natl Acad Sci U S A 1997; 94:8016-20. [PMID: 9223306 PMCID: PMC21548 DOI: 10.1073/pnas.94.15.8016] [Citation(s) in RCA: 285] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/1997] [Accepted: 04/29/1997] [Indexed: 02/04/2023] Open
Abstract
The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine (8-oxo-7, 8-dihydroguanine). In bacteria and Saccharomyces cerevisiae, this damaged base is excised by a DNA glycosylase with an associated lyase activity for chain cleavage. We have cloned, sequenced, and expressed a human cDNA with partial sequence homology to the relevant yeast gene. The encoded 47-kDa human enzyme releases free 8-hydroxyguanine from oxidized DNA and introduces a chain break in a double-stranded oligonucleotide specifically at an 8-hydroxyguanine residue base paired with cytosine. Expression of the human protein in a DNA repair-deficient E. coli mutM mutY strain partly suppresses its spontaneous mutator phenotype. The gene encoding the human enzyme maps to chromosome 3p25. These results show that human cells have an enzyme that can initiate base excision repair at mutagenic DNA lesions caused by active oxygen.
Collapse
Affiliation(s)
- T Roldán-Arjona
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Wang D, Essigmann JM. Kinetics of oxidized cytosine repair by endonuclease III of Escherichia coli. Biochemistry 1997; 36:8628-33. [PMID: 9214309 DOI: 10.1021/bi970341y] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Endonuclease III of Escherichia coli excises a broad range of oxidized, hydrated and ring-fragmented pyrimidines from DNA. The kinetic parameters were compared for repair of three potentially mutagenic oxidized cytosine lesions: 5,6-dihydroxy-5, 6-dihydro-2'-deoxyuridine (uracil glycol or Ug), 5-hydroxy-2'-deoxycytidine (5-ohC), and 5-hydroxy-2'-deoxyuridine (5-ohU). Site-specifically modified 40-mer oligonucleotides containing each of the three lesions in the same sequence context were synthesized chemically or by a combination of chemical and enzymatic methods. Appropriately protected phosphoramidites of 5-ohC and 5-ohU were synthesized and incorporated into oligonucleotides by standard solid-phase synthetic methods. The lability of Ug made it necessary to use an alternative approach to prepare the analogous 40-mers containing Ug. An uracil containing pentamer oligonucleotide was oxidized with OsO4 to generate the corresponding Ug containing product, which was then ligated into an oligonucleotide scaffold to generate 40 base pair duplexes. Using 32P-labeled substrates and a gel electrophoresis based assay, the values of Km and Vmax for excision of 5-ohC, 5-ohU, and Ug were determined. In this experimental system, the order of repair efficiency is Ug >> 5-ohC >> 5-ohU based on ratios of Vmax/Km. Modest effects were observed when the base paired opposite the lesion was changed from G to A.
Collapse
Affiliation(s)
- D Wang
- Department of Chemistry and Division of Toxicology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
116
|
Rosenquist TA, Zharkov DO, Grollman AP. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. Proc Natl Acad Sci U S A 1997; 94:7429-34. [PMID: 9207108 PMCID: PMC23838 DOI: 10.1073/pnas.94.14.7429] [Citation(s) in RCA: 384] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1997] [Accepted: 05/16/1997] [Indexed: 02/04/2023] Open
Abstract
Oxidative DNA damage is generated by reactive oxygen species. The mutagenic base, 8-oxoguanine, formed by this process, is removed from oxidatively damaged DNA by base excision repair. Genes coding for DNA repair enzymes that recognize 8-oxoguanine have been reported in bacteria and yeast. We have identified and characterized mouse and human cDNAs encoding homologs of the 8-oxoguanine DNA glycosylase (ogg1) gene of Saccharomyces cerevisiae. Escherichia coli doubly mutant for mutM and mutY have a mutator phenotype and are deficient in 8-oxoguanine repair. The recombinant mouse gene (mOgg1) suppresses the mutator phenotype of mutY/mutM E. coli. Extracts prepared from mutY/mutM E. coli expressing mOgg1 contain an activity that excises 8-oxoguanine from DNA and a beta-lyase activity that nicks DNA 3' to the lesion. The mouse ogg1 gene product acts efficiently on DNA duplexes in which 7, 8-dihydroxy-8-oxo-2'-deoxyguanosine (8-oxodG) is paired with dC, acts weakly on duplexes in which 8-oxodG is paired with dT or dG, and is inactive against duplexes in which 8-oxodG is paired with dA. Mouse and human ogg1 genes contain a helix-hairpin-helix structural motif with conserved residues characteristic of a recently defined family of DNA glycosylases. Ogg1 mRNA is expressed in several mouse tissues; highest levels were detected in testes. Isolation of the mouse ogg1 gene makes it possible to modulate its expression in mice and to explore the involvement of oxidative DNA damage and associated repair processes in aging and cancer.
Collapse
Affiliation(s)
- T A Rosenquist
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | |
Collapse
|
117
|
Abstract
A wide range of cytotoxic and mutagenic DNA bases are removed by different DNA glycosylases, which initiate the base excision repair pathway. DNA glycosylases cleave the N-glycosylic bond between the target base and deoxyribose, thus releasing a free base and leaving an apurinic/apyrimidinic (AP) site. In addition, several DNA glycosylases are bifunctional, since they also display a lyase activity that cleaves the phosphodiester backbone 3' to the AP site generated by the glycosylase activity. Structural data and sequence comparisons have identified common features among many of the DNA glycosylases. Their active sites have a structure that can only bind extrahelical target bases, as observed in the crystal structure of human uracil-DNA glycosylase in a complex with double-stranded DNA. Nucleotide flipping is apparently actively facilitated by the enzyme. With bacteriophage T4 endonuclease V, a pyrimidine-dimer glycosylase, the enzyme gains access to the target base by flipping out an adenine opposite to the dimer. A conserved helix-hairpin-helix motif and an invariant Asp residue are found in the active sites of more than 20 monofunctional and bifunctional DNA glycosylases. In bifunctional DNA glycosylases, the conserved Asp is thought to deprotonate a conserved Lys, forming an amine nucleophile. The nucleophile forms a covalent intermediate (Schiff base) with the deoxyribose anomeric carbon and expels the base. Deoxyribose subsequently undergoes several transformations, resulting in strand cleavage and regeneration of the free enzyme. The catalytic mechanism of monofunctional glycosylases does not involve covalent intermediates. Instead the conserved Asp residue may activate a water molecule which acts as the attacking nucleophile.
Collapse
Affiliation(s)
- H E Krokan
- UNIGEN Center for Molecular Biology, The Medical Faculty, Norwegian University of Science and Technology, N-7005 Trondheim, Norway
| | | | | |
Collapse
|
118
|
Saito Y, Uraki F, Nakajima S, Asaeda A, Ono K, Kubo K, Yamamoto K. Characterization of endonuclease III (nth) and endonuclease VIII (nei) mutants of Escherichia coli K-12. J Bacteriol 1997; 179:3783-5. [PMID: 9171430 PMCID: PMC179178 DOI: 10.1128/jb.179.11.3783-3785.1997] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nth and nei genes of Escherichia coli affect the production of endonuclease III and endonuclease VIII, respectively, glycosylases/apurinic lyases that attack DNA damaged by oxidizing agents. Here, we provide evidence that oxidative lethal lesions are repaired by both endonuclease III and endonuclease VIII and that spontaneous mutagenic lesions are repaired mainly by endonuclease III.
Collapse
Affiliation(s)
- Y Saito
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
119
|
Sander M, Ramotar D. Partial purification of Pde1 from Saccharomyces cerevisiae: enzymatic redundancy for the repair of 3'-terminal DNA lesions and abasic sites in yeast. Biochemistry 1997; 36:6100-6. [PMID: 9166780 DOI: 10.1021/bi970048y] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Earlier work indicates that the major DNA repair phosphodiesterase (PDE) in yeast cells is the well-characterized Apn1 protein. Apn1 demonstrates both Mg2+-independent PDE activity and Mg2+-independent class II apurinic/apyrimidinic (AP) endonuclease activity and represents greater than 90% of the activity detected in crude extracts from wild-type yeast cells. Apn1 is related to Echerichia coli endonuclease IV, both in its enzymatic properties and its amino acid sequence. In this work, we report the partial purification of a novel yeast protein, Pde1, present in Apn1-deficient cells. Pde1 is purified by sequential BioRex-70, PBE118, and MonoS chromatography steps using a sensitive and highly specific 3'-phosphoglycolate-terminated oligonucleotide-based assay as a measure of PDE activity. Mg2+-stimulated PDE and Mg2+-stimulated class II AP endonuclease copurify during this procedure. These results indicate that yeast, like many other organisms studied to date, has enzymatic redundancy for the repair of 3'-blocking groups and abasic sites.
Collapse
Affiliation(s)
- M Sander
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
120
|
Affiliation(s)
- R P Cunningham
- Department of Biological Sciences, SUNY at Albany 12222, USA
| |
Collapse
|
121
|
Abstract
The major DNA excision repair pathways of base excision repair for endogenous DNA lesions and nucleotide excision repair for DNA damage inflicted by ultraviolet light have been reconstructed with purified mammalian proteins and details of these repair mechanisms are emerging. Similar data are becoming available with regard to mismatch repair for correction of replication errors. Deletion of individual DNA repair proteins in knockout mice provides information on the roles of such factors in vivo and recent three-dimensional structures of several repair enzymes explain their detailed modes of action.
Collapse
Affiliation(s)
- T Lindahl
- Imperial Cancer Research Fund, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire, EN6 3LD, UK
| | | | | |
Collapse
|
122
|
Aspinwall R, Rothwell DG, Roldan-Arjona T, Anselmino C, Ward CJ, Cheadle JP, Sampson JR, Lindahl T, Harris PC, Hickson ID. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III. Proc Natl Acad Sci U S A 1997; 94:109-14. [PMID: 8990169 PMCID: PMC19249 DOI: 10.1073/pnas.94.1.109] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Repair of oxidative damage to DNA bases is essential to prevent mutations and cell death. Endonuclease III is the major DNA glycosylase activity in Escherichia coli that catalyzes the excision of pyrimidines damaged by ring opening or ring saturation, and it also possesses an associated lyase activity that incises the DNA backbone adjacent to apurinic/apyrimidinic sites. During analysis of the area adjacent to the human tuberous sclerosis gene (TSC2) in chromosome region 16p13.3, we identified a gene, OCTS3, that encodes a 1-kb transcript. Analysis of OCTS3 cDNA clones revealed an open reading frame encoding a predicted protein of 34.3 kDa that shares extensive sequence similarity with E. coli endonuclease III and a related enzyme from Schizosaccharomyces pombe, including a conserved active site region and an iron/sulfur domain. The product of the OCTS3 gene was therefore designated hNTH1 (human endonuclease III homolog 1). The hNTH1 protein was overexpressed in E. coli and purified to apparent homogeneity. The recombinant protein had spectral properties indicative of the presence of an iron/sulfur cluster, and exhibited DNA glycosylase activity on double-stranded polydeoxyribonucleotides containing urea and thymine glycol residues, as well as an apurinic/apyrimidinic lyase activity. Our data indicate that hNTH1 is a structural and functional homolog of E. coli endonuclease III, and that this class of enzymes, for repair of oxidatively damaged pyrimidines in DNA, is highly conserved in evolution from microorganisms to human cells.
Collapse
Affiliation(s)
- R Aspinwall
- Medical Research Council Molecular Haematology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|