101
|
Berger EM, Dubrovsky EB. Juvenile hormone molecular actions and interactions during development of Drosophila melanogaster. VITAMINS AND HORMONES 2005; 73:175-215. [PMID: 16399411 DOI: 10.1016/s0083-6729(05)73006-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edward M Berger
- Department Of Biology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
102
|
Mu X, Leblanc GA. Cross communication between signaling pathways: juvenoid hormones modulate ecdysteroid activity in a crustacean. ACTA ACUST UNITED AC 2004; 301:793-801. [PMID: 15449346 DOI: 10.1002/jez.a.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Methyl farnesoate is a juvenoid hormone that regulates a variety of processes in crustaceans including male sex determination among daphnids (Branchiopoda, Cladocera). The synthetic juvenoids pyriproxyfen and fenoxycarb mimic the action of methyl farnesoate in daphnids. In the present study we tested the hypothesis that juvenoids also can regulate ecdysteroid activity in a crustacean (Daphnia magna). Methyl farnesoate, pyriproxyfen, and fenoxycarb all disrupted ecdysteroid-regulated aspects of embryo development in daphnids. Exposure of ecdysteroid-responsive cells to 20-hydroxyecdysone reduced cell proliferation and increased mRNA levels of the ecdysone receptor and its partner protein ultraspiracle. Co-treatment of cells with the juvenoid pyriproxyfen attenuated all of these ecdysteroid mediated responses. While juvenoids functioned as anti-ecdysteroids in both intact embryos and in cultured cells, 20-hydroxyecdysone showed no evidence of acting as an anti-juvenoid. The combined effects of pyroproxyfen with the ecdysteroid synthesis inhibitor fenarimol and the ecdysteroid receptor antagonist testosterone were evaluated in an effort to discern whether the action of the juvenoids were additive with those of know anti-ecdysteroids. The anti-ecdysteroid effects of pyriproxyfen were non-additive with those of either anti-ecdysteroid. Rather, joint effects conformed to a model of synergy. These results demonstrated that juvenoids elicit anti-ecdysteroidal activity in a crustacean through a unique mechanism of action. A model involving receptor partner deprivation is proposed that explains the synergistic interactions observed.
Collapse
Affiliation(s)
- Xueyan Mu
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh 27695-7633, USA
| | | |
Collapse
|
103
|
McCall K. Eggs over easy: cell death in the Drosophila ovary. Dev Biol 2004; 274:3-14. [PMID: 15355784 DOI: 10.1016/j.ydbio.2004.07.017] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 07/07/2004] [Accepted: 07/21/2004] [Indexed: 11/22/2022]
Abstract
Programmed cell death is the most common fate of female germ cells in Drosophila and many animals. In Drosophila, oocytes form in individual egg chambers that are supported by germline nurse cells and surrounded by somatic follicle cells. As oogenesis proceeds, 15 nurse cells die for every oocyte that is produced. In addition to this developmentally regulated cell death, groups of germ cells or entire egg chambers may be induced to undergo apoptosis in response to starvation or other insults. Recent findings suggest that these different types of cell death involve distinct genetic pathways. This review focuses on progress towards elucidating the molecular mechanisms acting during programmed cell death in Drosophila oogenesis.
Collapse
Affiliation(s)
- Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
104
|
Wozniak M, Chu Y, Fang F, Xu Y, Riddiford L, Jones D, Jones G. Alternative farnesoid structures induce different conformational outcomes upon the Drosophila ortholog of the retinoid X receptor, ultraspiracle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:1147-1162. [PMID: 15522611 DOI: 10.1016/j.ibmb.2004.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 07/08/2004] [Indexed: 05/24/2023]
Abstract
In view of recent studies that the ligand-binding pocket of the Drosophila melanogaster nuclear hormone receptor, ultraspiracle (dUSP), is a necessary component of dUSP-dependent transcriptional activation by methyl epoxyfarnesoate, we have assessed qualitative differences in the effect of farnesoid and dodecanoid compounds on receptor conformation and transcriptional activation. Farnesoids possessing terminal alcohol, aldehyde, acid, ester and/or epoxide moieties induced different changes in the local environment of the ligand-binding pocket, as monitored by the change each induced in the fluorescence of the two tryptophan residues existing in dUSP (that are situated 10 residues apart on the alpha-helix 5 that forms one lining of ligand-binding pocket). Similarly, each compound differed in the extent that it promoted an increase in anisotropy (dimerization state) of the receptor. Dodecanoid derivatives were much weaker in causing such effects. Methyl expoxyfarnesoate (insect juvenile hormone III) exhibited the greatest biological activity to increase transcription of a DR12JHECore reporter construct in transfected Sf9 cells, even though it did not exert the most suppression of USP fluorescence nor exert the greatest increase in USP anisotropy. In a comparison of farnesoid derivatives possessing the three side branches either as all methyl groups (JH III), or one of the side branches as ethyl (JH II), or two of the side branches as ethyl (JH I), the JH III and JH I were more similar to each other in the fluorescence suppression and in vivo morphogenetic activity than either was to JH II, evidencing that dUSP does not sense JH II as a structural 'intermediate' between JH III and JH I. Ligand-binding domains of vertebrate retinoid X receptors respond to agonists by repositioning alpha-helix 12 to the edge of a hydrophobic groove, and there with the groove jointly forms a coactivator binding surface. When alpha-helix 12 in dUSP was mutated to place two signaling tryptophan residues its C-terminus, fluorescence signaling indicated that upon dUSP binding of methyl epoxyfarnesoate, the alpha-helix 12 was repositioned differently than what occurred upon binding of non-JH farnesoids. These leads on alternative ligand-induced conformations that dUSP can adopt provide a foundation for commercial development of synthetic molecules that induce specific dUSP conformations, and for identification of in vivo conditions under which endogenous molecules may exert these conformational outcomes to this receptor.
Collapse
Affiliation(s)
- Mietek Wozniak
- Department of Biology, University of Kentucky, 304 Morgan Building, Lexington, KY 40506, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Barchuk AR, Maleszka R, Simões ZLP. Apis mellifera ultraspiracle: cDNA sequence and rapid up-regulation by juvenile hormone. INSECT MOLECULAR BIOLOGY 2004; 13:459-467. [PMID: 15373804 DOI: 10.1111/j.0962-1075.2004.00506.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two hormones, 20-hydroxyecdysone (20E) and juvenile hormone (JH) are key regulators of insect development including the differentiation of the alternative caste phenotypes of social insects. In addition, JH plays a different role in adult honey bees, acting as a 'behavioural pacemaker'. The functional receptor for 20E is a heterodimer consisting of the ecdysone receptor and ultraspiracle (USP) whereas the identity of the JH receptor remains unknown. We have cloned and sequenced a cDNA encoding Apis mellifera ultraspiracle (AMUSP) and examined its responses to JH. A rapid, but transient up-regulation of the AMUSP messenger is observed in the fat bodies of both queens and workers. AMusp appears to be a single copy gene that produces two transcripts ( approximately 4 and approximately 5 kb) that are differentially expressed in the animal's body. The predicted AMUSP protein shows greater sequence similarity to its orthologues from the vertebrate-crab-tick-locust group than to the dipteran-lepidopteran group. These characteristics and the rapid up-regulation by JH suggest that some of the USP functions in the honey bee may depend on ligand binding.
Collapse
Affiliation(s)
- A R Barchuk
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil.
| | | | | |
Collapse
|
106
|
Maki A, Sawatsubashi S, Ito S, Shirode Y, Suzuki E, Zhao Y, Yamagata K, Kouzmenko A, Takeyama KI, Kato S. Juvenile hormones antagonize ecdysone actions through co-repressor recruitment to EcR/USP heterodimers. Biochem Biophys Res Commun 2004; 320:262-7. [PMID: 15207730 DOI: 10.1016/j.bbrc.2004.05.156] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Indexed: 11/28/2022]
Abstract
Insect development is controlled by the combined actions of ecdysteroid and juvenile hormones. Transcriptional control by ecdysteroid hormones is mediated via two nuclear receptor superfamily members, ecdysone receptor (EcR) and its heterodimeric partner, ultraspiracle (USP). Although the ecdysteroid hormone 20-hydroxyecdysone acts as an EcR ligand and activates transcription through EcR/USP heterodimers, the activity of juvenile hormones, such as Juvenile hormone III (JH III), and methoprenic acid (MA) via USP remains unclear. Here, we demonstrate that juvenile hormones act as USP ligands and exhibit suppressive effects on ecdysone-dependent EcR transactivation. JH III- and MA-bound USP markedly repressed ecdysone-dependent EcR transactivation through shifting of the USP ligand-binding domain alpha-helix 12 without affecting EcR/USP heterodimerization or DNA binding. Moreover, transcriptional repression by USP ligands was attenuated by a histone deacetylation inhibitor. Our results suggested that juvenile hormones serve as USP ligands that antagonize EcR-mediated ecdysone actions through the recruitment of histone deacetylase complexes.
Collapse
Affiliation(s)
- Akio Maki
- The Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Dubrovsky EB, Dubrovskaya VA, Berger EM. Hormonal regulation and functional role of Drosophila E75A orphan nuclear receptor in the juvenile hormone signaling pathway. Dev Biol 2004; 268:258-70. [PMID: 15063166 DOI: 10.1016/j.ydbio.2004.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/05/2004] [Accepted: 01/09/2004] [Indexed: 10/26/2022]
Abstract
Ecdysone and juvenile hormone (JH) are important regulators of insect growth and development. While ecdysone initiates a transition from one developmental stage to another, JH determines the nature of the transition. How these two hormones interact at the molecular level is not known. Here we report the JH inducibility of the E75A nuclear receptor encoded by the E75 early ecdysone-inducible gene. In Drosophila S2 cells, E75A transcription is specifically activated by JH at concentrations well within the physiological range found in larvae and adults. The induction is rapid and does not require a concurrent protein synthesis, and thus represents a primary hormone response. Consistent with JH regulation, E75A mRNA levels are reduced in ovaries of apterous(4) mutant adults defective in JH secretion. Expression is rescued by topical methoprene application. We further provide evidence that ectopic E75A is sufficient to perform several functions in the JH signaling pathway. First, it can down-regulate its own transcription. Second, E75A can potentiate the JH inducibility of a secondary response gene, JhI-21. Finally, in the presence of JH, E75A can repress ecdysone activation of early genes including Broad-Complex. Based on these data, we propose a model for the role of E75A in the ecdysone-JH regulatory interplay.
Collapse
|
108
|
Abstract
Mitochondrial content, a chief determinant of aerobic capacity, varies widely among muscle types and species. Mitochondrial enzyme levels in vertebrate skeletal muscles vary more than 100-fold, from fish white muscle to bird flight muscles. Recent studies have shed light on the transcriptional regulators that control mitochondrial gene expression in muscle fiber differentiation and development, and in the context of pathological conditions such as neuromuscular disease and obesity. While the transcriptional co-activator PGC-1alpha (peroxisome proliferator-activated receptor gamma co-activator 1) has emerged as a master controller of mitochondrial gene expression, it is important to consider other mechanisms by which coordinated changes in mitochondrial content could arise. These studies, largely using biomedical models, provide important information for comparative biologists interested in the mechanistic basis of inter-species variation in muscle aerobic capacity.
Collapse
Affiliation(s)
- Christopher D Moyes
- Department of Biology, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
109
|
Kethidi DR, Perera SC, Zheng S, Feng QL, Krell P, Retnakaran A, Palli SR. Identification and characterization of a juvenile hormone (JH) response region in the JH esterase gene from the spruce budworm, Choristoneura fumiferana. J Biol Chem 2004; 279:19634-42. [PMID: 14990570 DOI: 10.1074/jbc.m311647200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using a differential display of mRNA technique we discovered that the juvenile hormone (JH) esterase gene (Cfjhe) from Choristoneura fumiferana is directly induced by juvenile hormone I (JH I), and the JH I induction is suppressed by 20-hydroxyecdysone (20E). To study the mechanism of action of these two hormones in the regulation of expression of this gene, we cloned the 1270-bp promoter region of the Cfjhe gene and identified a 30-bp region that is located between -604 and -574 and is sufficient to support both JH I induction and 20E suppression. This 30-bp region contains two conserved hormone response element half-sites separated by a 4-nucleotide spacer similar to the direct repeat 4 element and is designated as a putative juvenile hormone response element (JHRE). In CF-203 cells, a luciferase reporter placed under the control of JHRE and a minimal promoter was induced by JH I in a dose- and time-dependent manner. Moreover, 20E suppressed this JH I-induced luciferase activity in a dose- and time-dependent manner. Nuclear proteins isolated from JH I-treated CF-203 cells bound to JHRE and the binding was competed by a 100-fold excess of the cold probe but not by 100-fold excess of double-stranded oligonucleotides of unrelated sequence. JH I induced/modified nuclear proteins prior to their binding to JHRE and 20E suppressed this JH I induction/modification. These results suggest that the 30-bp JHRE identified in the Cfjhe gene promoter is sufficient to support JH induction and 20E suppression of the Cfjhe gene.
Collapse
Affiliation(s)
- Damodar R Kethidi
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | | | |
Collapse
|
110
|
Biggers WJ, Laufer H. Identification of juvenile hormone-active alkylphenols in the lobster Homarus americanus and in marine sediments. THE BIOLOGICAL BULLETIN 2004; 206:13-24. [PMID: 14977726 DOI: 10.2307/1543194] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have identified, by gas chromatography/mass spectrometry, four alkylphenols that are present in the hemolymph and tissues of the American lobster Homarus americanus and in marine sediments. These alkylphenols are used industrially in antioxidant formulations for plastic and rubber polymer manufacturing, and are similar in structure to a known endocrine disruptor, bisphenol A. The compound 2-t-butyl-4-(dimethylbenzyl)phenol was present at concentrations of 0.02 to 1.15 microg/ml in hemolymph and 8.95 to 21.58 microg/g in sediments. A second compound, 2,4-bis-(dimethylbenzyl)phenol, was present at concentrations between 0.07 and 19.78 microg/ml in hemolymph and 138.94 to 224.89 microg/g in sediment, while a third compound, 2,6-bis-(t-butyl)-4-(dimethylbenzyl)phenol, was found at concentrations between 0.01 and 13.00 microg/ml in hemolymph, 2.55 and 6.11 microg/g in hepatopancreas, and 47.85 and 74.66 microg/g in sediment. A fourth compound, 2,4-bis-(dimethylbenzyl)-6-t-butylphenol, was found at concentrations of 0.20 to 70.71 microg/ml in hemolymph, 23.56 to 26.89 microg/g in hepatopancreas, and 90.68 to 125.58 microg/g in sediment. These compounds, along with bisphenol A, 4-dimethylbenzylphenol, and nonylphenol, display high juvenile hormone activity in bioassays. Alkylphenols at high concentrations are toxic to crustaceans and may contribute significantly to lobster mortality; at lower concentrations, they are likely to have endocrine-disrupting effects.
Collapse
Affiliation(s)
- William J Biggers
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania 18766, USA
| | | |
Collapse
|
111
|
Wilson TG. The molecular site of action of juvenile hormone and juvenile hormone insecticides during metamorphosis: how these compounds kill insects. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:111-121. [PMID: 15019512 DOI: 10.1016/j.jinsphys.2003.12.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 12/04/2003] [Accepted: 12/05/2003] [Indexed: 05/24/2023]
Abstract
Studies in a variety of insects during the past four decades has deepened our understanding of juvenile hormone (JH) physiology, but how this hormone works at the molecular level remains elusive. Similarly, the mechanism of toxicity of JH analogue insecticides is still in question. There is much evidence from laboratory usage that JHAs act as JH agonists and generally show the highest toxicity when applied at the onset of metamorphosis. A physiological basis for the toxicity and morphogenetic effects has been suggested by recent work linking these effects with interference with the expression or action of certain genes, particularly the Broad-Complex (BR-C) transcription factor gene, that direct metamorphic change. Misexpressed BR-C then leads to improper expression of one or more downstream effector genes controlled by BR-C gene products, resulting in abnormal developmental and physiological changes that disrupt metamorphosis. Therefore, JH is a necessary molecule at certain times in insect development but becomes toxic when present during metamorphosis.
Collapse
Affiliation(s)
- Thomas G Wilson
- Department of Entomology, 400 Aronoff Laboratory, Ohio State University, 318 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
112
|
Hayward DC, Dhadialla TS, Zhou S, Kuiper MJ, Ball EE, Wyatt GR, Walker VK. Ligand specificity and developmental expression of RXR and ecdysone receptor in the migratory locust. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:1135-1144. [PMID: 14624885 DOI: 10.1016/j.jinsphys.2003.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ecdysone receptor(1), which is a heterodimer of EcR and the retinoic acid receptor (RXR) homolog, Ultraspiracle (USP), has been well studied in the evolutionarily advanced and derived insects, the flies and moths. It is less well characterized in more primitive insect orders such as the Orthoptera, which include the grasshoppers and locusts. Following our previous isolation from Locusta migratoria (Lm) of a shorter RXR isoform (now called LmRXR-S), the isolation of a second, longer isoform (LmRXR-L) that appears to have characteristics of a ligand-modulated nuclear receptor is reported here. Transcripts for both isoforms, as well as LmEcR, were detected in embryos and in females during oocyte maturation. After expression in E. coli, both LmRXR-S and LmRXR-L form heterodimers with recombinant LmEcR in vitro which bind the active ecdysteroid, ponasterone A. Binding was only weakly competed for by ecdysone agonists that are known to be toxic to more advanced insects, suggesting functionally significant divergence in EcR ligand binding domains. In contrast, the DNA binding domain of LmEcR is less divergent and a protein complex, presumably LmEcR/LmRXR, that bound the ecdysone response element, IR-1, was detected in locust nuclear extracts. Because of reports of juvenile hormone (JH III) binding to Drosophila USP and the observed in silico RXR-like ligand-binding site in LmRXR-L, the recombinant proteins were also tested for binding to JH III. Neither LmRXR isoform, alone or in combination with LmEcR, bound JH III at nanomolar concentrations.
Collapse
MESH Headings
- Amino Acid Sequence
- Animal Migration
- Animals
- Binding, Competitive
- Cell Nucleus/metabolism
- Ecdysterone/analogs & derivatives
- Ecdysterone/metabolism
- Female
- Grasshoppers/growth & development
- Grasshoppers/metabolism
- Models, Molecular
- Molecular Sequence Data
- Protein Isoforms
- Radioligand Assay
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/isolation & purification
- Receptors, Retinoic Acid/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/isolation & purification
- Receptors, Steroid/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Response Elements/genetics
- Retinoid X Receptors
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sesquiterpenes/metabolism
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- David C Hayward
- Molecular Genetics and Evolution Group and Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
113
|
Song Q, Sun X, Jin XY. 20E-regulated USP expression and phosphorylation in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1211-1218. [PMID: 14599493 DOI: 10.1016/j.ibmb.2003.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The developmental profiles of ultraspiracle protein (USP) in the tissues of Drosophila melanogaster were investigated using a USP specific monoclonal antibody (mAb) as a probe. Western blot analysis revealed four USP mAb reactive bands (p46, p48, p54 and p56), each with tissue- and stage-specific expression patterns. The p54 and p56 were expressed in nearly all larval and prepupal tissues tested with fluctuations in abundance. However, the p46 and p48 were detected exclusively in the midgut of prepupae and shown to be the proteolytic products of p54 and p56. A lambda protein phosphatase assay demonstrated that the p56 is the phosphorylated form of p54. The expression and phosphorylation of the p54 USP is regulated by 20E. Protein kinase consensus recognition sequence analysis revealed 10 putative phosphorylation sites in Drosophila USP, with seven sites for protein kinase C (PKC) and three sites for casein kinase II (CKII). The fact that seven out of 10 putative phosphorylation sites reside in the ligand- and DNA-binding domains suggests that phosphorylation may play important role in regulating USP function. Identification of the in vivo USP phosphorylation sites and signal transduction pathways that regulate the specific USP phosphorylation is currently underway.
Collapse
Affiliation(s)
- Q Song
- Department of Entomology, University of Missouri, 1-87 Agriculture Building, Columbia, MO 65211, USA.
| | | | | |
Collapse
|
114
|
Zhu J, Chen L, Raikhel AS. Posttranscriptional control of the competence factor betaFTZ-F1 by juvenile hormone in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2003; 100:13338-43. [PMID: 14593204 PMCID: PMC263810 DOI: 10.1073/pnas.2234416100] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In anautogenous mosquitoes, vitellogenesis, which includes production of yolk protein precursors, requires blood feeding. Consequently, mosquitoes transmit many diseases. Understanding the molecular mechanisms of vitellogenesis regulation will contribute significantly to vector control strategies. Newly emerged Aedes aegypti females require 3 days before becoming competent to activate vitellogenesis in response to a blood-meal-initiated, elevated titer of 20-hydroxyecdysone (20E). An orphan nuclear receptor gene betaFTZ-F1 is transcribed in the fat body of newly emerged mosquito females; however, the betaFTZ-F1 protein is only found 3 days later. Dramatically increased titer of the juvenile hormone III (JH III) is essential for the acquisition of 20E competence. In vitro fat body culture experiments have shown that betaFTZ-F1 protein appears after exposure to JH III. Injection of double-stranded RNA complementary to betaFTZ-F1 into newly emerged females attenuated expression of the early genes EcR-B, E74B, and E75A and the target YPP gene Vg, in response to a blood meal. Thus, betaFTZ-F1 is indeed the factor defining the acquisition of competence to 20E in the mosquito fat body. Moreover, this is achieved through JH III-mediated posttranscriptional control of betaFTZ-F1.
Collapse
Affiliation(s)
- Jinsong Zhu
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
115
|
Wheeler DE, Nijhout HF. A perspective for understanding the modes of juvenile hormone action as a lipid signaling system. Bioessays 2003; 25:994-1001. [PMID: 14505366 DOI: 10.1002/bies.10337] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The juvenile hormones of insects regulate an unusually large diversity of processes during postembryonic development and adult reproduction. It is a long-standing puzzle in insect developmental biology and physiology how one hormone can have such diverse effects. The search for molecular mechanisms of juvenile hormone action has been guided by classical models for hormone-receptor interaction. Yet, despite substantial effort, the search for a juvenile hormone receptor has been frustrating and has yielded limited results. We note here that a number of lipid-soluble signaling molecules in vertebrates, invertebrates and plants show curious similarities to the properties of juvenile hormones of insects. Until now, these signaling molecules have been thought of as uniquely evolved mechanisms that perform specialized regulatory functions in the taxon where they were discovered. We show that this array of lipid signaling molecules share interesting properties and suggest that they constitute a large set of signal control and transduction mechanisms that include, but range far beyond, the classical steroid hormone signaling mechanism. Juvenile hormone is the insect representative of this widespread and diverse system of lipid signaling molecules that regulate protein activity in a variety of ways. We propose a synthetic perspective for understanding juvenile hormone action in light of other lipid signaling systems and suggest that lipid activation of proteins has evolved to modulate existing signal activation and transduction mechanisms in animals and plants. Since small lipids can be inserted into many different pathways, lipid-activated proteins have evolved to play a great diversity of roles in physiology and development.
Collapse
Affiliation(s)
- Diana E Wheeler
- Department of Entomology, University of Arizona, Tucson 85721, USA.
| | | |
Collapse
|
116
|
Olmstead AW, LeBlanc GA. Insecticidal juvenile hormone analogs stimulate the production of male offspring in the crustacean Daphnia magna. ENVIRONMENTAL HEALTH PERSPECTIVES 2003; 111:919-24. [PMID: 12782492 PMCID: PMC1241525 DOI: 10.1289/ehp.5982] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Juvenile hormone analogs (JHAs) represent a class of insecticides that were designed specifically to disrupt endocrine-regulated processes relatively unique to insects. Recently we demonstrated that the crustacean juvenoid hormone methyl farnesoate programs oocytes of the crustacean Daphnia magna to develop into males. We hypothesized that insecticidal JHAs might mimic the action of methyl farnesoate, producing altered sex ratios of offspring. Daphnids were exposed chronically (3 weeks) to sublethal concentrations of methyl farnesoate, the JHA pyriproxyfen, and several nonjuvenoid chemicals to discern whether excess male offspring production is a generic response to stress or a specific response to juvenoid hormones. Only methyl farnesoate and pyriproxyfen increased the percentage of males produced by exposed maternal organisms. As previously reported with methyl farnesoate, acute exposure (24 hr) to either pyriproxyfen or the JHA methoprene caused oocytes maturing in the ovary to develop into males. We performed experiments to determine whether combined effects of a JHA and methyl farnesoate conformed better to a model of concentration addition (indicative of same mechanism of action) or independent joint action (indicative of different mechanisms of action). Combined effects conformed better to the concentration-addition model, although some synergy, of unknown etiology, was evident between the insecticides and the hormone. These experiments demonstrate that insecticidal JHAs mimic the action of the crustacean juvenoid hormone methyl farnesoate, resulting in the inappropriate production of male offspring. The occurrence of such an effect in the environment could have dire consequences on susceptible crustacean populations.
Collapse
Affiliation(s)
- Allen W Olmstead
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695-7633, USA
| | | |
Collapse
|
117
|
Adám G, Perrimon N, Noselli S. The retinoic-like juvenile hormone controls the looping of left-right asymmetric organs in Drosophila. Development 2003; 130:2397-406. [PMID: 12702654 DOI: 10.1242/dev.00460] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrate development, the establishment of left-right asymmetry is essential for sidedness and the directional looping of organs like the heart. Both the nodal pathway and retinoic acid play major and conserved regulatory roles in these processes. We carried out a novel screen in Drosophila to identify mutants that specifically affect the looping of left-right asymmetric organs. We report the isolation of spin, a novel mutant in which the looping of the genitalia and spermiduct are incomplete; under-rotation of the genitalia indicates that spin controls looping morphogenesis but not direction, thus uncoupling left-right asymmetry and looping morphogenesis. spin is a novel, rotation-specific allele of the fasciclin2 (Fas2) gene, which encodes a cell-adhesion protein involved in several aspects of neurogenesis. In spin mutants, the synapses connecting specific neurosecretory cells to the corpora allata are affected. The corpus allatum is part of the ring gland and is involved in the control of juvenile hormone titers during development. Our genetic and pharmacological results indicate that Fas2(spin) rotation defects are linked to an abnormal endocrine function and an elevated level of juvenile hormone. As juvenile hormone is an insect sesquiterpenoid related to retinoic acid, these results establish a new genetic model for studying organ looping and demonstrate an evolutionarily conserved role for terpenoids in this process.
Collapse
Affiliation(s)
- Géza Adám
- Institute of Signaling, Developmental Biology and Cancer, Centre de Biochimie-UMR 6543-CNRS, Parc Valrose, 06108 Nice cedex 2, France
| | | | | |
Collapse
|
118
|
Tatar M. Unearthing Loci that influence life span. SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2003; 2003:PE5. [PMID: 12844557 DOI: 10.1126/sageke.2003.9.pe5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is known that certain hormones are involved in determining longevity (for example, insulin and insulin-like growth factor). Results presented in a paper published in this week's issue of Science allow us to add steroid hormones to this list. Anne Simon and colleagues show for the first time that a sterol hormone--ecdysone of the fly Drosophila melanogaster--regulates life span. In this Perspective, I discuss the implications of this result in the context of gene regulation and mechanisms of aging.
Collapse
Affiliation(s)
- Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
119
|
Zhu J, Miura K, Chen L, Raikhel AS. Cyclicity of mosquito vitellogenic ecdysteroid-mediated signaling is modulated by alternative dimerization of the RXR homologue Ultraspiracle. Proc Natl Acad Sci U S A 2003; 100:544-9. [PMID: 12522263 PMCID: PMC141032 DOI: 10.1073/pnas.0235695100] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In anautogenous mosquitoes, egg maturation requires a blood meal. As a consequence, mosquitoes are vectors of numerous devastating human diseases. Blood feeding triggers a 20-hydroxyecdysone (20E) hormonal cascade, which activates yolk protein precursor (YPP) genes in the female fat body, an insect metabolic tissue. An important adaptation for anautogeny is the previtellogenic arrest preventing activation of YPP genes. Equally essential is termination of their expression, so that another arrest is achieved after a batch of eggs is laid. Here, we report that mosquito Seven-up (AaSvp), a chicken ovalbumin upstream promoter-transcription factor homologue, is involved in regulating the cyclicity of vitellogenic ecdysteroid-mediated signaling through heterodimerization with a retinoid X receptor homologue Ultraspiracle (USP), the obligatory functional ecdysteroid receptor (EcR) partner. AaSvp inhibits 20E-dependent activation of the vitellogenin (Vg) gene in transfection assays. Two-hybrid and GST pull-down analyses demonstrate that in vitro AaSvp interacts with both AaUSP and AaEcR. However, the coimmunoprecipitation using fat body nuclear extracts reveals that at 33-36 h postblood meal, when the 20E titer sharply declines and YPP gene expression ceases, AaSvp replaces AaEcR in USP heterodimers. The chromatin immunoprecipitation assay indicates that protein-protein interaction rather than binding competition for the Vg ecdysteroid response element accounts for the inhibition of Vg expression by AaSvp.
Collapse
Affiliation(s)
- Jinsong Zhu
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
120
|
Malecová B, Ramser J, O'Brien JK, Janitz M, Júdová J, Lehrach H, Simúth J. Honeybee (Apis mellifera L.) mrjp gene family: computational analysis of putative promoters and genomic structure of mrjp1, the gene coding for the most abundant protein of larval food. Gene 2003; 303:165-75. [PMID: 12559578 DOI: 10.1016/s0378-1119(02)01174-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mrjp1 gene belongs to the honeybee mrjp gene family encoding the major royal jelly proteins (MRJPs), secreted by nurse bees into the royal jelly. In this study, we have isolated the genomic clone containing the entire mrjp1 gene and determined its sequence. The mrjp1 gene sequence spans over 3038 bp and contains six exons separated by five introns. Seven mismatches between the mrjp1 gene sequence and two previously independently published cDNA sequences were found, but these differences do not lead to any change in the deduced amino acid sequence of MRJP1. With the aid of inverse polymerase chain reaction we obtained sequences flanking the 5' ends of other mrjp genes (mrjp2, mrjp3, mrjp4 and mrjp5). Putative promoters were predicted upstream of all mrjp genes (including mrjp1). The predicted promoters contain the TATA motif (TATATATT), highly conserved both in sequence and position. Ultraspiracle (USP) transcription factor (TF) binding sites in putative promoter regions and clusters of dead ringer TF binding sites upstream of these promoters were predicted computationally. We propose that USP, as a juvenile hormone (JH) binding TF, might possibly act as a mediator of mrjp expression in response to JH. Mrjp1's genomic locus is predicted to encode an antisense transcript, partially overlapping with five mrjp1 exons and entirely overlapping with the putative promoter and predicted transcriptional start point of mrjp1. This finding may shed light on the mechanisms of regulation of mrjps expression. Southern blot analysis of genomic DNA revealed that all so far known members of mrjp gene family (mrjp1, mrjp2, mrjp3, mrjp4 and mrjp5) are present as single-copy genes per haploid honeybee genome. Although MRJPs and the yellow protein of Drosophila melanogaster share a certain degree of similarity in aa sequence and although it has been shown that they share a common evolutionary origin, neither structural similarities in the gene organization, nor significant similarities between intron sequences of mrjp1 gene and fourteen yellow-like genes of D. melanogaster were found.
Collapse
Affiliation(s)
- Barbora Malecová
- Institute of Chemistry, Slovak Academy of Sciences, Laboratory of Genetic Engineering, Dúbravska cesta 9, 84236 Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
121
|
Minakuchi C, Nakagawa Y, Kiuchi M, Seino A, Tomita S, Kamimura M. Molecular cloning and expression analysis of ultraspiracle (USP) from the rice stem borer Chilo suppressalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:41-49. [PMID: 12459199 DOI: 10.1016/s0965-1748(02)00165-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
cDNA for ultraspiracle (USP) from the lepidopteran rice stem borer Chilo suppressalis was cloned using PCR techniques. The deduced amino acid sequence of C. suppressalis USP (CsUSP) was very similar to those of other lepidopteran USPs, especially to the Manduca sexta USP-2 isoform. Northern hybridization analysis detected a 6.5-kb message in the epidermis, fat body, and midgut of wandering larvae. CsUSP mRNA expression in the epidermis varied little during the last larval instar. Gel mobility shift assays showed that in vitro translated C. suppressalis ecdysone receptor (CsEcR) and CsUSP proteins bound to the Pal1 or Drosophila melanogaster hsp27 ecdysone response element as a heterodimer. In a ligand-receptor binding assay, [(3)H]ponasterone A ([(3)H]PoA) did not bind to individual CsEcR or CsUSP protein, but bound strongly to the CsEcR/CsUSP complex. [(3)H]PoA binding to CsEcR/CsUSP complex was competed by 20-hydroxyecdysone and a non-steroidal ecdysteroid agonist, RH-5992, but not by cholesterol, indicating that compounds with molting hormone activity against C. suppressalis can bind specifically to the CsEcR/CsUSP complex.
Collapse
Affiliation(s)
- Chieka Minakuchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, 606-8502, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
122
|
Orth AP, Doll SC, Goodman WG. Sequence, structure and expression of the hemolymph juvenile hormone binding protein gene in the tobacco hornworm, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:93-102. [PMID: 12459204 DOI: 10.1016/s0965-1748(02)00180-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The hemolymph juvenile hormone binding protein (hJHBP) gene of Manduca sexta is a key target of its specific ligand, juvenile hormone (JH). While the cDNA for hJHBP has been partially characterized, little is known about the hJHBP gene structure or its promoter(s) and enhancers(s). Previous studies have demonstrated that JH stimulates a rapid accumulation of hJHBP mRNA in the fat body. To better understand the underlying molecular events affecting regulation, we sequenced the M. sexta hJHBP gene and its mRNA transcript, characterized its genomic organization, and determined the spatial and temporal expression patterns of the hJHBP gene. The gene is composed of 5 exons spanning 6.7 kb. Southern blot analysis indicates that the gene is present as a single copy. The earliest expression of hJHBP occurs 24 to 48 h after fertilization. Distribution studies indicate that fat body is the only site for hJHBP expression. Elements displaying similarity with sequences of other lepidopteran genes were discovered outside the open reading frame and may represent mobile insertion elements.
Collapse
Affiliation(s)
- A P Orth
- Department of Entomology, University of Wisconsin-Madison, 237 Russell Labs., Madison, WI 53706, USA
| | | | | |
Collapse
|
123
|
Rymarczyk G, Grad I, Rusek A, Oświecimska-Rusin K, Niedziela-Majka A, Kochman M, Ozyhar A. Purification of Drosophila melanogaster ultraspiracle protein and analysis of its A/B region-dependent dimerization behavior in vitro. Biol Chem 2003; 384:59-69. [PMID: 12674500 DOI: 10.1515/bc.2003.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two members of the nuclear receptor superfamily, EcR (ecdysteroid receptor protein) and Usp (Ultraspiracle), heterodimerize to form a functional receptor for the steroid hormone 20-hydroxyecdysone and thus enable it to coordinate morphogenetic events during insect metamorphosis. N-terminally His-tagged Usp was overexpressed in E. coli cells as a non-truncated protein and purified to homogeneity in two chromatographic steps. It was demonstrated that the recombinant receptor specifically binds the ecdysone response element of the hsp27 gene promoter (hsp27EcRE). Moreover, a highly synergistically formed heterodimeric complex with the DNA-binding domain of EcR was observed on hsp27EcRE, but not on the native Usp response element from the chorion s15 gene promoter. Recombinant Usp forms homodimers and homotetramers in the absence of DNA, as judged from gel filtration and chemical crosslinking experiments. Truncation of its N-terminal A/B region changes molecular characteristics of Usp, considerably weakening its oligomerization potential under the same experimental conditions. This contrasts with the results obtained previously for the similarly truncated RXR--a vertebrate homolog of Usp.
Collapse
Affiliation(s)
- Grzegorz Rymarczyk
- Institute of Organic Chemistry, Biochemistry and Biotechnology, Division of Biochemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
124
|
Sasorith S, Billas IM, Iwema T, Moras D, Wurtz JM. Structure-based analysis of the ultraspiracle protein and docking studies of putative ligands. ACTA ACUST UNITED AC 2002; 2:25. [PMID: 15455059 PMCID: PMC355923 DOI: 10.1093/jis/2.1.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Accepted: 10/21/2002] [Indexed: 11/15/2022]
Abstract
The ultraspiracle protein (USP) is the insect ortholog of the mammalian retinoid X receptor (RXR). Fundamental questions concern the functional role of USP as the heterodimerization partner of insect nuclear receptors such as the ecdysone receptor. The crystallographic structures of the ligand binding domain of USPs of Heliothis virescens and Drosophila melanogaster solved recently show that helix 12 is locked in an antagonist conformation raising the question whether USPs could adopt an agonist conformation as observed in RXRalpha. In order to investigate this hypothesis, a homology model for USP is proposed that allows a structural analysis of the agonist conformation of helix 12 based on the sequence comparison with RXR. For USP, one of the main issues concerns its function and in particular whether its activity is ligand independent or not. The x-ray structures strongly suggest that USP can bind ligands. Putative ligands have therefore been docked in the USP homology model. Juvenile hormones and juvenile hormone analogs were chosen as target ligands for the docking study. The interaction between the ligand and the receptor are examined in terms of the pocket shape as well as in terms of the chemical nature of the residues lining the ligand binding cavity.
Collapse
Affiliation(s)
- Souphatta Sasorith
- Département de Génomique et de Biologie Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404 Illkirch, France
| | - Isabelle M.L. Billas
- Département de Génomique et de Biologie Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404 Illkirch, France
| | - Thomas Iwema
- Département de Génomique et de Biologie Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404 Illkirch, France
| | - Dino Moras
- Département de Génomique et de Biologie Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404 Illkirch, France
| | - Jean-Marie Wurtz
- Département de Génomique et de Biologie Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1, rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
125
|
Tu MP, Yin CM, Tatar M. Impaired ovarian ecdysone synthesis of Drosophila melanogaster insulin receptor mutants. Aging Cell 2002; 1:158-60. [PMID: 12882346 DOI: 10.1046/j.1474-9728.2002.00016.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Meng-Ping Tu
- Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
126
|
Xu Y, Fang F, Chu Y, Jones D, Jones G. Activation of transcription through the ligand-binding pocket of the orphan nuclear receptor ultraspiracle. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:6026-36. [PMID: 12473098 DOI: 10.1046/j.1432-1033.2002.03293.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The invertebrate nuclear receptor, ultraspiracle (USP), an ortholog of the vertebrate RXR, is typically modelled as an orphan receptor that functions without a ligand-binding activity. The identification of a ligand that can transcriptionally activate USP would provide heuristic leads to the structure of potentially high affinity activating compounds, with which to detect unknown regulatory pathways in which this nuclear receptor participates. We show here that the application of the sesquiterpenoid methyl epoxyfarnesoate (juvenile hormone III) to Sf9 cells induces transcription from a transfected heterologous core promoter, through a 5'-placed DR12 enhancer to which the receptor ultraspiracle (USP) binds. Isolated, recombinant USP from Drosophila melanogaster specifically binds methyl epoxyfarnesoate, whereupon the receptor homodimerizes and changes tertiary conformation, including the movement of the ligand-binding domain alpha-helix 12. Ligand-binding pocket point mutants of USP that do not bind methyl epoxyfarnesoate act as dominant negative suppressors of methyl epoxyfarnesoate-activation of the reporter promoter, and addition of wild-type USP rescues this activation. These data establish a paradigm in which the USP ligand-binding pocket can productively bind ligand with a functional outcome of enhanced promoter activity, the first such demonstration for an invertebrate orphan nuclear receptor. USP thus establishes the precedent that invertebrate orphan receptors are viable targets for development of agonists and antagonists with which to discern and manipulate transcriptional pathways dependent on USP or other orphan receptors. The demonstration here of these functional capacities of USP in a transcriptional activation pathway has significant implications for current paradigms of USP action that do not include for USP a ligand-binding activity.
Collapse
Affiliation(s)
- Yong Xu
- Molecular and Cellular Biology Section, Department of Biology, and Graduate Center for Toxicology, Chandler Medical Center, University of Kentucky Lexington, USA
| | | | | | | | | |
Collapse
|
127
|
Dubrovsky EB, Dubrovskaya VA, Berger EM. Juvenile hormone signaling during oogenesis in Drosophila melanogaster. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1555-1565. [PMID: 12530223 DOI: 10.1016/s0965-1748(02)00076-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Juvenile hormone (JH) participates both in the control of insect development and the establishment of reproductive maturity. In cultured Drosophila cells and in ovarian nurse cells, JH and its synthetic analog, methoprene, induce the expression of two related genes. These genes encode highly similar amino acid transport proteins that are homologous to transporters found in a variety of eukaryotes. JhI-21 is a novel Drosophila gene, and minidiscs (mnd) is a gene that was identified earlier. Two JH-inducible genes are regulated by different molecular mechanisms; JhI-21 behaves as a secondary JH-responsive gene, while mnd behaves as a primary responsive gene. Both JhI-21 and mnd transcripts show developmental profiles, which are consistent with JH regulation. Following eclosion, transcripts from JhI-21 and mnd are synthesized in ovarian nurse cells and subsequently sequestered in the mature egg. Their ectopic accumulation in ovaries can be induced by topical methoprene application. In apterous (ap4) mutant adults defective in JH secretion, mnd and JhI-21 RNA levels are severely reduced, but normal abundance is rescued to a high degree by topical methoprene treatment. Based on the evidence, we propose that during sexual maturation of Drosophila, JH provides a signal to the ovary that leads to the production of several maternally inherited mRNAs.
Collapse
Affiliation(s)
- E B Dubrovsky
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | | | | |
Collapse
|
128
|
Dedos SG, Szurdoki F, Székács A, Mizoguchi A, Fugo H. Induction of dauer pupae by fenoxycarb in the silkworm, Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2002; 48:857-865. [PMID: 12770048 DOI: 10.1016/s0022-1910(02)00155-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Topical application of fenoxycarb (1 &mgr;g per animal) at 129 or 132 h of the fifth instar larvae of the silkworm, Bombyx mori, did not induce morphological abnormalities in the pupal stage, but these animals became dauer (permanent) pupae. This condition of B. mori and the endocrine events leading to permanent pupae are discussed in this work. Application of fenoxycarb at 132 h of the fifth instar elicited a high ecdysteroid titre in the pharate pupal stage and a steadily high ecdysteroid titre in the pupal stage. The fenoxycarb-induced permanent pupae had non-degenerating prothoracic glands that secreted low amounts of ecdysteroid and did not respond to recombinant prothoracicotropic hormone (rPTTH) late in the pupal stage. The Bombyx PTTH titre in the haemolymph, determined by a time-resolved fluoroimmunoassay, was lower than that of controls at the time of pupal ecdysis, but higher than controls later in the pupal stage in fenoxycarb-treated animals. After application of fenoxycarb, its haemolymph level, measured by ELISA, reached a peak at pupal ecdysis, then remained low. These results suggest that the fenoxycarb-mediated induction of permanent pupae is only partially a brain-centred phenomenon. It also involves alterations in the hormonal interplay that govern both the initiation of pupal-adult differentiation and changes in the steroidogenic pathway of the prothoracic glands of B. mori.
Collapse
Affiliation(s)
- S G. Dedos
- Department of Biological Production, Tokyo University of Agriculture and Technology, Fuchu-shi, 183, Tokyo, Japan
| | | | | | | | | |
Collapse
|
129
|
Rodriguez Parkitna JM, Ozyhar A, Wiśniewski JR, Kochman M. Cloning and sequence analysis of Galleria mellonella juvenile hormone binding protein--a search for ancestors and relatives. Biol Chem 2002; 383:1343-55. [PMID: 12437127 DOI: 10.1515/bc.2002.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Juvenile hormone binding proteins (JHBPs) serve as specific carriers of juvenile hormone (JH) in insect hemolymph. As shown in this report, Galleria mellonella JHBP is encoded by a cDNA of 1063 nucleotides. The pre-protein consists of 245 amino acids with a 20 amino acid leader sequence. The concentration of the JHBP mRNA reaches a maximum on the third day of the last larval instar, and decreases five-fold towards pupation. Comparison of amino acid sequences of JHBPs from Bombyx mori, Heliothis virescens, Manduca sexta and G. mellonella shows that 57 positions out of 226 are occupied by identical amino acids. A phylogeny tree was constructed from 32 proteins, which function could be associated to JH. It has three major branches: (i) ligand binding domains of nuclear receptors, (ii) JHBPs and JH esterases (JHEs), and (iii) hypothetical proteins found in Drosophila melanogaster genome. Despite the close positioning of JHEs and JHBPs on the tree, which probably arises from the presence of a common JH binding motif, these proteins are unlikely to belong to the same family. Detailed analysis of the secondary structure modeling shows that JHBPs may contain a beta-barrel motif flanked by alpha-helices and thus be evolutionary related to the same superfamily as calycins.
Collapse
Affiliation(s)
- Jan M Rodriguez Parkitna
- Division of Biochemistry, Institute of Organic Chemistry, Biochemistry and Biotechnology, Wrocław University of Technology, Poland
| | | | | | | |
Collapse
|
130
|
Abstract
The nuclear receptor RXR is an obligate partner in many signal transduction pathways. We report the high-resolution structures of two complexes of the human RXRalpha ligand-binding domain specifically bound to two different and chemically unrelated agonist compounds: docosa hexaenoic acid, a natural derivative of eicosanoic acid, present in mammalian cells and recently identified as a potential endogenous RXR ligand in the mouse brain, and the synthetic ligand BMS 649. In both structures the RXR-ligand-binding domain forms homodimers and exhibits the active conformation previously observed with 9-cis-RA. Analysis of the differences in ligand-protein contacts (predominantly van der Waals forces) and binding cavity geometries and volumes for the several agonist-bound RXR structures clarifies the structural features important for ligand recognition. The L-shaped ligand-binding pocket adapts to the diverse ligands, especially at the level of residue N306, which might thus constitute a new target for drug-design. Despite its highest affinity 9-cis-RA displays the lowest number of ligand-protein contacts. These structural results support the idea that docosa hexaenoic acid and related fatty acids could be natural agonists of RXRs and question the real nature of the endogenous ligand(s) in mammalian cells.
Collapse
Affiliation(s)
- Pascal F Egea
- Laboratoire de Biologie et Génomique Structurales, Université Louis Pasteur, Parc d'Innovation BP163, 67404 Illkirch cedex, France
| | | | | |
Collapse
|
131
|
Zhou S, Zhang J, Hirai M, Chinzei Y, Kayser H, Wyatt GR, Walker VK. A locust DNA-binding protein involved in gene regulation by juvenile hormone. Mol Cell Endocrinol 2002; 190:177-85. [PMID: 11997191 DOI: 10.1016/s0303-7207(01)00602-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although juvenile hormone (JH) has essential roles in insect development and reproduction, the molecular mechanisms of gene regulation by JH remain an enigma. In Locusta migratoria, the partially palindromic 15-nt sequence, GAGGTTCGAG(A)/(T)CCT(T)/(C), found upstream of a JH-induced gene, jhp21, was designated as a putative juvenile hormone response element (JHRE). When JH-deprived adult female locusts were treated with the active JH analog, methoprene, a fat body nuclear factor that bound specifically to JHRE appeared after 24 h. Binding exhibited a preference for an inverted repeat with GAGGTTC in the left half-site, a single nucleotide spacer, and a right half-site in which some variation is acceptable. Binding to JHRE was abolished by phosphorylation catalyzed by a C-type protein kinase present in the nuclear extracts. The DNA-binding protein is thus believed to be a transcription factor, which is brought to an active state through the action of JH and then participates in the regulation of certain JH-dependent genes.
Collapse
Affiliation(s)
- S Zhou
- Department of Biology, Queen's University, Kingston, Ont., Canada K7L 3N6
| | | | | | | | | | | | | |
Collapse
|
132
|
Durica DS, Wu X, Anilkumar G, Hopkins PM, Chung ACK. Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Mol Cell Endocrinol 2002; 189:59-76. [PMID: 12039065 DOI: 10.1016/s0303-7207(01)00740-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here complete coding sequences for the Uca pugilator homologs of the ecdysteroid (UpEcR) and retinoid-X receptors (UpRXR). Library screenings recovered cDNA clones containing a unique amino terminal open-reading frame (A/B domain) for each gene, most similar to insect B1 EcR and USP1/RXR isoforms. Splicing variants in the UpRXR ligand-binding domain were also identified, in a region critical for folding of Drosophila and lepidopteran USP. UpEcR and UpRXR proteins were able to associate, and both are required for binding to an ecdysteroid HRE; these interactions were not hormone-dependent. Ribonuclease protection assays (RPA) were conducted using A/B domain and 'common' (C or E) domain probes on RNA isolated from various stages of regenerating limb buds and ovaries. For several of the limb bud and ovarian stages examined, the relative level of A/B domain sequence protected was significantly less than common domain suggesting alternative amino terminal isoforms other than those isolated through cloning. This is the first report of UpEcR and UpRXR transcription during ovarian maturation, implicating the ovary as a potential target for hormonal control in Crustacea.
Collapse
Affiliation(s)
- David S Durica
- Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA.
| | | | | | | | | |
Collapse
|
133
|
Truman JW, Riddiford LM. Endocrine insights into the evolution of metamorphosis in insects. ANNUAL REVIEW OF ENTOMOLOGY 2002; 47:467-500. [PMID: 11729082 DOI: 10.1146/annurev.ento.47.091201.145230] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This review explores the roles of ecdysone and juvenile hormone (JH) in the evolution of complete metamorphosis and how metamorphosis, in turn, has impacted endocrine signaling. JH is a key player in the evolution of metamorphosis because it can act on embryos from more basal insect groups to suppress morphogenesis and cause premature differentiation, functions needed for transforming the transitional pronymphal stage of hemimetabolous insects into a functional larval stage. In the ancestral condition, imaginal-related growth is then delayed until JH finally disappears during the last larval instar. In the more derived groups of the Holometabola, selective tissues have escaped this JH suppression to form early-growing imaginal discs. We discuss how complete metamorphosis may have influenced the molecular aspects of both ecdysone and JH signaling.
Collapse
Affiliation(s)
- James W Truman
- Department of Zoology, University of Washington, Seattle, Washington 98195-1800, USA.
| | | |
Collapse
|
134
|
Jones G, Wozniak M, Chu Y, Dhar S, Jones D. Juvenile hormone III-dependent conformational changes of the nuclear receptor ultraspiracle. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 32:33-49. [PMID: 11719067 DOI: 10.1016/s0965-1748(01)00077-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The identification of potential endogenous or synthetic ligands for orphan receptors in the steroid receptor superfamily is important both for discerning endogenous regulatory pathways and for designing receptor inhibitors. The insect nuclear receptor Ultraspiracle (USP), an ortholog of vertebrate RXR, has long been treated as an orphan receptor. We have tested here the fit of terpenoid ligands to the JH III-binding site of monomeric and homo-oligomeric USP from Drosophila melanogaster (dUSP). dUSP specifically bound juvenile hormone III (JH III), but not control farnesol or JH III acid, and also specifically changed in conformation upon binding of JH III in a fluorescence binding assay. Juvenile hormone III binding caused intramolecular changes in receptor conformation, and stabilized the receptor's dimeric/oligomeric quaternary structure. In both a radiometric competition assay and the fluorescence binding assay the synthetic JH III agonist methoprene specifically competed with JH III for binding to dUSP, the first demonstration of specific binding of a biologically active JH III analog to an insect nuclear receptor. The recombinant dUSP bound with specificity to a DR12 hormone response element in a gel shift assay. The same DR12 element conferred enhanced transcriptional responsiveness of a transfected juvenile hormone esterase core promoter to treatment of transfected cells with JH III, but not to treatment with retinoic acid or T3. The activity of JH III or JH III-like structures, but not structures without JH III biological activity, to bind specifically to dUSP and activate its conformational change, provide evidence of a terpenoid endogenous ligand for Ultraspiracle, and offer the prospect that synthetic, terpenoid structures may be discovered that can agonize or antagonize USP function in vivo.
Collapse
Affiliation(s)
- G Jones
- School of Biological Sciences, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | | |
Collapse
|
135
|
Maleszka R, Helliwell P. Effect of juvenile hormone on short-term olfactory memory in young honeybees (Apis mellifera). Horm Behav 2001; 40:403-8. [PMID: 11673913 DOI: 10.1006/hbeh.2001.1705] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reliable retention of olfactory learning following a 1-trial classical conditioning of the proboscis extension reflex (PER) is not achieved in honeybees until they are 6-7 days old. Here we show that treatment of newly emerged honeybees with juvenile hormone (JH) has a profound effect on the maturation of short-term olfactory memory. JH-treated individuals display excellent short-term (1 h) memory of associative learning at times as early as 3 days of age and perform consistently better than untreated bees for at least the first week of their lives. By contrast, the retention of long-term (24 h) memory following a 3-trial conditioning of the PER is not significantly improved in JH-treated bees. Our study also shows that experience and (or) chemosensory activation are not essential to improve learning performance in olfactory tasks. The lack of accelerated development of long-term retention of olfactory memories in JH-treated honeybees is discussed in the context of neural circuits suspected to mediate memory formation and retrieval in the honeybee brain.
Collapse
Affiliation(s)
- R Maleszka
- Visual Sciences, Research School of Biological Sciences, The Australian National University, Canberra ACT 0200, Australia.
| | | |
Collapse
|
136
|
Rose U, Ferber M, Hustert R. Maturation of muscle properties and its hormonal control in an adult insect. J Exp Biol 2001; 204:3531-45. [PMID: 11707502 DOI: 10.1242/jeb.204.20.3531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The oviposition of female locusts requires longitudinal muscles to tolerate remarkable lengthening. Whether this ability together with concomitant properties develops during maturation or is present throughout life was investigated. The properties of the locust abdominal muscles involved in oviposition behaviour were investigated with respect to their maturation, segment- and gender-specificity and regulation by juvenile hormone (JH). Muscles from the sixth abdominal segment (an oviposition segment) of mature females (>18 days old) were able to tolerate large extensions (>8 mm). At this length, muscles were still able to generate considerable neurally evoked twitch tension. In contrast, muscle fibres from females less than 5 days old did not tolerate extension of more than 4 mm. At this length, tension generation was negligible. The maximum tension generated at different stimulus frequencies was significantly higher in muscles of females more than 18 days old than in females less than 5 days old. Furthermore, the cross-sectional area of muscle fibres increased significantly during reproductive development. Current-clamp recordings from denervated muscle fibres of females more than 18 days old revealed their ability to generate overshooting action potentials. The potentials were tetrodotoxin (TTX)-insensitive (0.5 μmol l–1 TTX), but were blocked by Cd2+ (50 μmol l–1) or nifedipine (50 μmol l–1), which suggests the involvement of L-type Ca2+ channels. Action potentials recorded from females less than 5 days old differed considerably in amplitude and shape from those recorded from females more than 18 days old, suggesting their maturation during the first 2 weeks of adult life. Inactivation of the corpora allata (CA) by precocene inhibited the maturation of these muscle properties, whereas injection of JH into precocene-treated females reversed this effect. Homologous muscles from the third abdominal segment (a non-oviposition segment, M169) and muscles from males (M214) revealed no comparable changes, although some minor changes occurred during reproductive development. The results suggest a gender- and segment-specific maturation of muscle properties that is related to reproductive behaviour and controlled by JH.
Collapse
Affiliation(s)
- U Rose
- Abteilung Neurobiologie, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany.
| | | | | |
Collapse
|
137
|
Dedos SG, Fugo H. Acceleration of Pupal-Adult Development by Fenoxycarb in the Silkworm, Bombyx mori. Zoolog Sci 2001. [DOI: 10.2108/zsj.18.771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
138
|
Hannan GN, Hill RJ. LcUSP, an ultraspiracle gene from the sheep blowfly, Lucilia cuprina: cDNA cloning, developmental expression of RNA and confirmation of function. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:771-781. [PMID: 11378412 DOI: 10.1016/s0965-1748(00)00182-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A DNA sequence corresponding to most of the DNA-binding domain of a Lucilia cuprina ultraspiracle protein (LcUSP) was amplified by PCR from genomic DNA and cloned. This cloned fragment was used to screen a L. cuprina cDNA library and to isolate a full-length LcUSP encoding sequence within a 3800-bp cDNA clone. The conceptually translated amino acid sequence of this open reading frame (467 amino acids) was used in alignment comparisons and phylogenetic analyses to reveal that LcUSP most closely resembles DmUSP relative to other known insect nuclear hormone receptors. An antisense RNA probe specific for the 5' end of Lcusp was used in ribonuclease protection assays to detect significant levels of Lcusp RNA throughout L. cuprina development. Highest levels were detected in embryos, late third instar larvae, pupae and adult females. This pattern parallels the pattern of expression observed for Dmusp RNAs during Drosophila melanogaster development. Finally, the LcUSP sequence was engineered for expression in mammalian cells and we now report that the cloned LcUSP is functional in vivo and can act as a partner for a chimeric L. cuprina ecdysone receptor to form an ecdysteroid-dependent transcription factor in mammalian cells.
Collapse
Affiliation(s)
- G N Hannan
- CSIRO Molecular Science, Sydney Laboratory, PO Box 184, North Ryde, NSW 2113, Australia.
| | | |
Collapse
|
139
|
Laufer H, Biggers WJ. Unifying Concepts Learned from Methyl Farnesoate for Invertebrate Reproduction and Post-Embryonic Development. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.3.442] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
140
|
Laufer H, Biggers WJ. Unifying Concepts Learned from Methyl Farnesoate for Invertebrate Reproduction and Post-Embryonic Development1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0442:uclfmf]2.0.co;2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
141
|
Vermunt AM, Kamimura M, Hirai M, Kiuchi M, Shiotsuki T. The juvenile hormone binding protein of silkworm haemolymph: gene and functional analysis. INSECT MOLECULAR BIOLOGY 2001; 10:147-154. [PMID: 11422510 DOI: 10.1046/j.1365-2583.2001.00249.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA fragment of haemolymph juvenile hormone binding protein (hJHBP) from larvae of Bombyx mori was amplified by RT-PCR using degenerate primers based on the N-terminal amino acid sequence of purified hJHBP and a conserved region near the C-terminus of other lepidopteran hJHBPs. 5'- and 3'-ends were amplified by RACE to yield cDNAs, hJHBP1 and hJHBP2, encoding 225 amino acids with three substitutions. hJHBP-mRNA levels in the fat body were constant in the 4th instar, but decreased in the 5th. JHBP protein was constant until wandering, then declined. Recombinant hJHBP1 expressed in E. coli migrated on SDS-PAGE with a Mr of 32 kDa and showed a Kd of 4.5 x 10-7 M with JH III, both similar to those of native hJHBP.
Collapse
Affiliation(s)
- A M Vermunt
- National Institute of Sericultural and Entomological Science, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | |
Collapse
|
142
|
Billas IM, Moulinier L, Rochel N, Moras D. Crystal structure of the ligand-binding domain of the ultraspiracle protein USP, the ortholog of retinoid X receptors in insects. J Biol Chem 2001; 276:7465-74. [PMID: 11053444 DOI: 10.1074/jbc.m008926200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major postembryonic developmental events happening in insect life, including molting and metamorphosis, are regulated and coordinated temporally by pulses of ecdysone. The biological activity of this steroid hormone is mediated by two nuclear receptors: the ecdysone receptor (EcR) and the Ultraspiracle protein (USP). The crystal structure of the ligand-binding domain from the lepidopteran Heliothis virescens USP reported here shows that the loop connecting helices H1 and H3 precludes the canonical agonist conformation. The key residues that stabilize this unique loop conformation are strictly conserved within the lepidopteran USP family. The presence of an unexpected bound ligand that drives an unusual antagonist conformation confirms the induced-fit mechanism accompanying the ligand binding. The ligand-binding pocket exhibits a retinoid X receptor-like anchoring part near a conserved arginine, which could interact with a USP ligand functional group. The structure of this receptor provides the template for designing inhibitors, which could be utilized as a novel type of environmentally safe insecticides.
Collapse
Affiliation(s)
- I M Billas
- Genomics and Structural Biology Laboratory, UPR 9004, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 1 rue Laurent Fries, 67404 Illkirch Cedex, Cité Universitaire de Strasbourg, France
| | | | | | | |
Collapse
|
143
|
Clayton GM, Peak-Chew SY, Evans RM, Schwabe JW. The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc Natl Acad Sci U S A 2001; 98:1549-54. [PMID: 11171988 PMCID: PMC29294 DOI: 10.1073/pnas.98.4.1549] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ultraspiracle (USP) is the invertebrate homologue of the mammalian retinoid X receptor (RXR). RXR plays a uniquely important role in differentiation, development, and homeostasis through its ability to serve as a heterodimeric partner to many other nuclear receptors. RXR is able to influence the activity of its partner receptors through the action of the ligand 9-cis retinoic acid. In contrast to RXR, USP has no known high-affinity ligand and is thought to be a silent component in the heterodimeric complex with partner receptors such as the ecdysone receptor. Here we report the 2.4-A crystal structure of the USP ligand-binding domain. The structure shows that a conserved sequence motif found in dipteran and lepidopteran USPs, but not in mammalian RXRs, serves to lock USP in an inactive conformation. It also shows that USP has a large hydrophobic cavity, implying that there is almost certainly a natural ligand for USP. This cavity is larger than that seen previously for most other nuclear receptors. Intriguingly, this cavity has partial occupancy by a bound lipid, which is likely to resemble the natural ligand for USP.
Collapse
Affiliation(s)
- G M Clayton
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
144
|
The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proc Natl Acad Sci U S A 2001. [PMID: 11171988 PMCID: PMC29294 DOI: 10.1073/pnas.041611298] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ultraspiracle (USP) is the invertebrate homologue of the mammalian retinoid X receptor (RXR). RXR plays a uniquely important role in differentiation, development, and homeostasis through its ability to serve as a heterodimeric partner to many other nuclear receptors. RXR is able to influence the activity of its partner receptors through the action of the ligand 9-cis retinoic acid. In contrast to RXR, USP has no known high-affinity ligand and is thought to be a silent component in the heterodimeric complex with partner receptors such as the ecdysone receptor. Here we report the 2.4-A crystal structure of the USP ligand-binding domain. The structure shows that a conserved sequence motif found in dipteran and lepidopteran USPs, but not in mammalian RXRs, serves to lock USP in an inactive conformation. It also shows that USP has a large hydrophobic cavity, implying that there is almost certainly a natural ligand for USP. This cavity is larger than that seen previously for most other nuclear receptors. Intriguingly, this cavity has partial occupancy by a bound lipid, which is likely to resemble the natural ligand for USP.
Collapse
|
145
|
Baker KD, Warren JT, Thummel CS, Gilbert LI, Mangelsdorf DJ. Transcriptional activation of the Drosophila ecdysone receptor by insect and plant ecdysteroids. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:1037-1043. [PMID: 10989290 DOI: 10.1016/s0965-1748(00)00075-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A number of insect ecdysteroids, plant ecdysteroids and juvenoids were assayed for their ability to activate Drosophila nuclear receptors in transfected tissue culture cells. Discrete modifications to 20-hydroxyecdysone, the apparent natural ligand for the ecdysone receptor (EcR), conferred dramatic changes on the transcriptional activity of this receptor, suggesting that other biologically relevant EcR ligands may exist. Conversely, none of the compounds tested had a significant effect on the activity of three Drosophila orphan nuclear receptors: DHR38, DHR78 or DHR96. Taken together, these results demonstrate the selectivity of EcR for a series of natural and synthetic ecdysone agonists and suggest that as yet untested compounds may be responsible for activating DHR38, DHR78 and DHR96.
Collapse
Affiliation(s)
- K D Baker
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 75390-9050, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
146
|
Abstract
Ecdysteroids trigger major developmental transitions in Drosophila, including larval molts and metamorphosis. Recent genetic studies strongly support a role for the Ecdysteroid receptor (EcR)/Ultraspiracle (USP) heterodimer as an ecdysteroid receptor at the onset of metamorphosis, functioning as both a transcriptional activator and repressor in vivo. Genetic analysis also indicates that USP, like its vertebrate homolog retinoid X receptor (RXR), might be involved in regulatory pathways independently of EcR. The ecdysteroid hierarchy was also shown recently to regulate Drosophila oogenesis and reproduction.
Collapse
Affiliation(s)
- T Kozlova
- Howard Hughes Medical Institute, 15 N 2030 E Rm 5100, University of Utah, UT 84112-5331, USA.
| | | |
Collapse
|
147
|
Dubrovsky EB, Dubrovskaya VA, Bilderback AL, Berger EM. The isolation of two juvenile hormone-inducible genes in Drosophila melanogaster. Dev Biol 2000; 224:486-95. [PMID: 10926782 DOI: 10.1006/dbio.2000.9800] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Juvenile hormone (JH) is an important regulator of both insect development and reproductive maturation. Although the molecular mechanism of JH action is not yet known, there is growing circumstantial evidence that JH directly regulates gene expression. In the absence of a JH target gene, however, this suggestion has remained speculative. Cultured Drosophila S2 cells have been used to identify genes whose expression is regulated by JH. Employing differential display we identified several genes whose transcripts accumulate in cells treated with the JH agonist methoprene. Two of the genes-JhI-1 and JhI-26-were cloned and characterized in detail. For both genes, transcripts showed rapid and specific induction in the presence of either methoprene or JHIII, but not in the presence of other biologically inactive compounds of similar chemical structure. Accumulation of JhI-1 and JhI-26 RNAs requires continuous hormone presence. The developmental expression of the two JH-inducible genes corresponds to the abundance profile of JH in vivo. Furthermore, topical methoprene application to pupae leads to the ectopic accumulation of JhI-1 and JhI-26 transcripts.
Collapse
Affiliation(s)
- E B Dubrovsky
- Department of Biology, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
148
|
Lu W, Wainwright G, Webster SG, Rees HH, Turner PC. Clustering of mandibular organ-inhibiting hormone and moult-inhibiting hormone genes in the crab, Cancer pagurus, and implications for regulation of expression. Gene 2000; 253:197-207. [PMID: 10940557 DOI: 10.1016/s0378-1119(00)00282-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Development and reproduction of crustaceans is regulated by a combination of neuropeptide hormones, ecdysteroids (moulting hormones) and the isoprenoid, methyl farnesoate (MF), the unepoxidised analogue of insect juvenile hormone-III (JH-III). MF and the ecdysteroids are respectively synthesised under the negative control of the sinus gland-derived mandibular organ-inhibiting hormones (MO-IHs) and moult-inhibiting hormone (MIH) that are produced in eyestalk neural ganglia. Previous work has demonstrated the existence of two isoforms of MO-IH, called MO-IH-1 and -2, that differ by a single amino acid in the mature peptide and one in the putative signal peptide. To study the structural organisation of the crab MIH and MO-IH genes, a genomic DNA library was constructed from DNA of an individual female crab and screened with both MO-IH and MIH probes. The results from genomic Southern blot analysis and library screening indicated that the Cancer pagurus genome contains at least two copies of the MIH gene and three copies of the MO-IH genes. Upon screening, two types of overlapping genomic clone were isolated. Each member of one type of genomic clone contains a single copy of each of the convergently transcribed MO-IH-1 and MIH genes clustered within 6.5kb. The other type contains only the MO-IH-2 gene, which is not closely linked to an MIH gene. There are three exons and two introns in all MIH and MO-IH genes analysed. The exon-intron boundary of the crab MIH and MO-IH genes follows Chambon's rule (GT-AG) for the splice donor and acceptor sites. The first intron occurs within the signal peptide region and the second intron occurs in the coding region of the mature peptide. Sequence analysis of upstream regions of MO-IH and MIH genes showed that they contained promoter elements with characteristics similar to other eukaryotic genes. These included sequences with high degrees of similarity to the arthropod initiator, TATA box and cAMP response element binding protein. Additionally, putative CF1/USP and Broad Complex Z2 transcription factor elements were found in the upstream regions of MIH and MO-IH genes respectively. The implications of the presence of the latter two putative transcription factor binding-elements for control of expression of MIH and MO-IH genes is discussed. Phylogenetic analysis and gene organisation show that MO-IH and MIH genes are closely related. Their relationship suggests that they represent an example of evolutionary divergence of crustacean hormones.
Collapse
Affiliation(s)
- W Lu
- School of Biological Sciences, University of Liverpool, Life Sciences Building, Crown Street, L69 7ZB, Liverpool, UK
| | | | | | | | | |
Collapse
|
149
|
Davey KG. The modes of action of juvenile hormones: some questions we ought to ask. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:663-669. [PMID: 10876109 DOI: 10.1016/s0965-1748(00)00037-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper argues that the current dogma that juvenile hormones are structurally unique and constitute a family of derivatives of farnesoic acid which are produced by the corpus allatum (CA), secreted into the hemolymph, frequently transported by binding proteins, enter cells by diffusion across the cell membrane and there the products of the CA interact in some way with the genome, probably via nuclear receptors of the steroid superfamily, may not be tenable. It does so by examining the following questions. How many JHs are there? Are there other sources of JH in insects? Are there non-farnesoids with JH activity in insects? How does JH get into cells? Is the product of the CA the effective hormone? How many modes of action are there? How many receptors are there?
Collapse
Affiliation(s)
- K G Davey
- Department of Biology, York University, Ontario, M3J 1P3, Toronto, Canada.
| |
Collapse
|
150
|
Gilbert LI, Granger NA, Roe RM. The juvenile hormones: historical facts and speculations on future research directions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:617-644. [PMID: 10876106 DOI: 10.1016/s0965-1748(00)00034-5] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- L I Gilbert
- Department of Biology, Campus Box #3280 Coker Hall, University of North Carolina at Chapel Hill, NC 27599-3280, USA.
| | | | | |
Collapse
|